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Abstract We consider the Navier–Stokes equation (N-S) in dimensions two and three
as limits of the fractional approximations. In 2-D the N-S problem is critical with
respect to the standard L2 a priori estimates andwe consider its regular approximations
with the fractional power operator (−P�)1+α , α > 0 small, where P is the projector
on the space of divergence-free functions. In 3-D different properties of the N-S
problem with respect to the standard L2 a priori estimate are obtained and the 3-
D regular approximating problem involves fractional power operator (−P�)s with
s > 5

4 . Using Dan Henry’s semigroup approach and the Giga-Miyakawa estimates
we construct regular solutions to such approximations. The solutions are global in
time, unique, smooth and regularized through the equation in time. Solution to 2-D
and 3-D N-S equations are obtained next as a limit of such regular solutions of the
approximations. Moreover, since the nonlinearity of the N-S equation is of quadratic
type, the solutions corresponding to small initial data and small f are shown to be
global in time and regular.
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1 Introduction

Fifteen years ago, in the monograph [3], we were studying a direct generalization
of semilinear parabolic equations, namely abstract semilinear equation with secto-
rial positive operator in the main part. Following the idea of Dan Henry [21], such
equation will be studied using classical techniques of the theory of ordinary differ-
ential equations, modified however to cover equations with unbounded operator in a
Banach space. Such approach, located inside the semigroup theory, proves its strength
and utility in the study of several classical problems; some of them were reported in
[3,21]. But such technique offers further possible generalizations, first to study the
problems, like e.g. Korteweg-de Vries equation and its extensions [7,8,12,13], where
the solutions are obtained as a limit of solutions to parabolic regularizations of such
equations (the method known as vanishing viscosity technique, originated by Hopf,
Oleinik, Lax in 1950th); see also [9,10]. Another possible application of Henry’s tech-
nique is to study critical problems (e.g. [3,41]), not falling directly into the class of
semilinear sectorial equations because the nonlinear term in it is of the same order,
or value, as the main part operator. A recent paper [11] was devoted to such type
problem, the quasi-geostrophic equation in R

2 (e.g. [4–6,26,44,45]). But certainly
the most celebrated example of such critical problem is the Navier–Stokes equation in
dimension two. Wewill obtain and study its solutions constructed as limits of solutions
to sub-critical approximations (1.2) when α → 0+ where, in 2-D, the P� operator
is replaced with its fractional power −(−P�)1+α, α > 0 (P is the projector on the
space of divergence-free functions; see e.g. [15]). In 3-D a higher order diffusion term
like −(−P�)s, s > 5

4 , is considered in the corresponding regularization of the N-S
equation because the properties of the problem with respect to the natural L2 estimate
in that case are different.

The classical 3-D Navier–Stokes equation (N-S) considered here has the form:

ut = ν�u − ∇ p − (u · ∇)u + f, divu = 0, x ∈ �, t > 0,

u = 0, t > 0, x ∈ ∂�,

u(0, x) = u0(x), (1.1)

where ν > 0 is the viscosity coefficient, u = (u1(t, x), u2(t, x), u3(t, x)) denotes
velocity, p = p(t, x) pressure, and f = ( f1(x), f2(x), f3(x)) external force, and
� is a bounded domain with C2 boundary. It is impossible to recall even the most
important results devoted to that problem, since the corresponding literature is too
large; see anyway [2,14–17,20,23,24,29–31,36–38,40] together with the references
cited there. However, we will try to recall the most important steeps in the semigroup
approach to the Navier–Stokes problem, the approach used in the present paper. In
1962 and 1964, thirty years after the Leray fundamental paper [31], the semigroup
treatment of the 2-D and 3-DN-Swas stated by Fujita andKato [16,25]. Existence and
uniqueness of strong solutions was obtained by solving the evolution equation in X2
space, together with basic semigroup formulation and tools. That idea was extended
later by Giga andMiyakawa in a series of papers including [17,18,20] in early 1980th.
Detail informations concerning analyticity of the semigroup generated by the Stokes
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operator with Dirichlet boundary condition on general Lr type spaces, deep estimates
of the nonlinearity (including (1.15), below), existence-uniqueness theory in fractional
order spaces D(Aγ ) were reported in that references. Here also the papers [23,43]
should be mentioned, contributing to the latter results. Finally, the 1985 monograph
by vonWahl, collects and extends in the direction of the global in time solvability and
regularity, the existing semigroup results concerning the N-S equation. Meanwhile, in
1981 (with first version in 1974), an abstract approach to semilinear equations with
sectorial operators was presented by Dan Henry in [21]. However, the N-S equation
is only mentioned there. Finally, an extended discussion of the semigroup approach
to the Navier–Stokes equation can be found in the review article [19].

Let describe briefly the contents of the present paper. In space dimensions 2 and 3
the N-S equation possess local in time regular solutions. Using strongly the technique
of [20], we recall local in time solvability in Theorems 1.5 and 1.6. We analyze further
criticality of the Navier–Stokes equation (compare [3,40,41]), in a sense that available
for it L2(�) a priori estimate (1.11) is not sufficient to control its nonlinearity through
the viscosity term ν P�u. Consequently, possible is a balance between the income
from nonlinearity and the stabilizing action of the viscosity so that the local solutions
can not be extended globally in time. For small initial data the decisive role is played
by viscosity, while for larger initial data the nonlinear term is strong enough to unable
us to obtain regularization of the solutions through the main part operator. We will try
to see such effect through the estimates obtained in the paper.

In 2-D, our idea is to improving a bit the viscosity term to make the whole problem
sub-critical, such that the improved viscosity together with the known L2(�) a priori
estimate will control the nonlinear term. Theway for obtaining such effect is to replace
the classical viscosity term Au = −ν P�u through a bit higher fractional diffusion
−A1+αu, with small α > 0. Next, we will study the process of letting α to 0+; which
properties/estimates of the solutions of regularized problems (with α > 0) are lost in
such a limit. We also look at 3-D N-S equation in which case a stronger diffusion term,
with−P� operator in the power s > 5

4 , will be considered to guarantee together with
the standard L2(�) a priori estimate the control on the nonlinear term.

In 2-D, instead of (1.1), we consider a family of sub-critical problems, with α ∈
(0, 1

2 ]:

ut = −A1+αu − P(u · ∇)u + P f, t > 0,

u(0, x) = u0(x). (1.2)

The approximation proposed in 3-D is given in (2.6) with s > 5
4 .

Until very recently, equations with fractional power operators were not seriously
studied in the literature, therefore we hope the regularizations proposed will help to
understand the difficulties faced in the original N-S equation. An analogous phe-
nomena was studied recently [11] for the quasi-geostrophic equation in R2 (e.g.
[4–6,44,45]). The technique used in the present paper is similar to that of [11].

Therewere several tries of replacing the classicalN-S equation, or the viscosity term
in it, with another equation having better properties of solutions, starting with Leray
α -regularization reported in paper [31], see also [14]. Modification of one factor in
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nonlinearity, usingmollifier, was sufficient to improve properties of solutions. Another
modification of the N-S equation was proposed by Lions in [33, Chapter 1, Remarque
6.11] (see also [30]), where the−� operator was replaced with−�+κ(−�)l , l ≥ 5

4 .
Further modifications can be easily found in the literature, in particular in the closing
part of [29]. In fact, in this paper we follow the idea of Lions to replace the diffusion
term with a stronger one fractal diffusion term.

1.1 Introductory Facts

Notation We are using standard notation for Sobolev spaces. Compare [39] or [3,
Chapter 1] for properties of fractional order Sobolev spaces; see also [22] for Sobolev
type embeddings. For r ∈ R, let r− denotes a number strictly less than r but close to
it. Similarly, r+ > r and r+ close to r . When needed for clarity of the presentation,
we mark the dependence of the solution u of (1.2) on α ∈ (0, 1

2 ], calling it uα , or uε

for the approximation in 3-D. Throughout the text the ’standard’ or ‘natural’ a priori
estimates mean the estimates (1.11) and (1.12).

Recall first [3, Chapter 3], that studying in a Banach space X an abstract Cauchy’s
problem with sectorial positive operator A and solutions varying in the phase space
Xβ = D(Aβ):

ut + Au = F(u),

u(0) = u0, (1.3)

knowing an a priori estimate of all its potential Xβ solutions; ‖u(t)‖Y ≤ const in
another Banach space D(A) ⊂ Y , we say that the nonlinear term F is sub-critical
relative to such a priori bound, if for each such Xβ solution u(t) an estimate is valid

∃θ∈(0,1)∃nondecreasingg:[0,∞)→[0,∞) ‖F(u(t)‖X ≤ g(‖u(t)‖Y )
(
1 + ‖u(t)‖θ

Xβ

)
,

(1.4)

for all t ∈ (0, τu0), where τu0 is the ’life time’ of that solution. In that case (e.g. [3,
Chapter 3]) the Xβ norm of the local solution will be bounded on [0, τu0), which
allows to extend such solution globally in time. Similar extendibility property holds
even if θ = 1 provided that β < 1 (as we assume above), which in turn is unknown if
θ = β = 1; the nonlinearity F being in the latter case called critical relative to that a
priori estimate.

Note that critical nonlinearities are ’of the same order’ in the equation as the main
part operator A (compare [40,41]). The main part operator A will not control the
nonlinearity in that case, unless we find a better a priori estimate.

1.2 Properties of the Stokes Operator

Familiar in the theory of the N-S equation are the following spaces:
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Lr (�) = [Lr (�)]3,
W2,r (�) = [W 2,r (�)]3,

Xr = clLr (�)

{
φ ∈ [C∞

0 (�)]3; divφ = 0
}

, (1.5)

1 < r < ∞. We define also the Stokes operator (N = 3)

Ar = −ν Pr

⎡

⎣
� 0 0
0 � 0
0 0 �

⎤

⎦ ,

where Pr denotes the projection from Lr (�) to Xr given by the decomposition of
Lr (�) onto the space of divergence-free vector fields and scalar-function gradient
(e.g. [37]). It is further known [20, Lemma1.1], that

Proposition 1.1 The operator −Ar considered with the domain

D(Ar ) = Xr ∩
{
φ ∈ W2,r (�);φ = 0 on ∂�

}
,

generates on Xr an analytic semigroup {e−t Ar } for arbitrary 1 < r < ∞.

A complete description of the domains of fractional powers of the Stokes operator
Ar = −ν Pr�, D(Ar ) = D(−�) ∩ Xr , can be found in [20, p. 269], or in [18]. Note
further, that the domains of negative powers of the operator Ar are introduced through
the relation (e.g. [20, p. 269]):

D(Aβ
r ) = D(A−β

r ′ )∗, 1

r
+ 1

r ′ = 1.

Thus, D(Aβ
r ), β < 0, is the completion of Xr under the norm ‖Aβ

r · ‖0,r ′ .
It is also easy to see, that the resolvent of the operator A2 fulfills an estimate:

�(σ (A2)) ≥ νλ1, where λ1 is the first positive eigenvalue of−� in L2(�) considered
with theDirichlet boundary condition.The sameestimate remains valid for the operator
considered in Lr (�) with any r ∈ (1,∞). It follows further from [20, Lem. 3.1], that
the resolvent of Ar is compact, also the embeddings D(Aβ

r ) ⊂ D(Aα
r ) are compact

when 0 < α < β ([21, Th. 1.4.8]). In fact the operator A = A2 (we skip the subscript
further for simplicity) is self-adjoint in the Hilbert space L2(�); see e.g. [17,20].
For such type operators the powers of the order (1 + α) have similar properties; in
particular they are also sectorial operators.

Consequently, the operators Ar , 1 < r < ∞, are sectorial positive. Fractional
powers of the order 1+ α for such operators are introduced through the Balakrishnan
formula ([27,34]):

A1+αφ = 2 sin(πα)

απ

∫ ∞

0
λα[A(λ + A)−1]2φdλ, φ ∈ D(A2), (1.6)
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We recall next the, specific for the N-S equation, standard a priori estimate. Calcu-
lating on regular solutions (which extends toweak solutions), it is obtainedmultiplying
(1.1) in [L2(�)]3 through u, to get:

1

2

d

dt
‖u‖2L2(�)

= −ν‖∇u‖2L2(�)
−

∫

�

∇ p · udx +
∫

�

f · udx, (1.7)

since the nonlinear component vanish in that calculation due to condition div u = 0:

3∑

j=1

∫

�

3∑

i=1

ui
∂u j

∂xi
u j dx = −1

2

∫

�

3∑

i=1

∂ui

∂xi

3∑

j=1

u2
j dx = 0. (1.8)

The term
∫
�

∇ p · udx is transformed as follows:

∫

�

∇ p · udx =
∫

�

(
∂p

∂x1
u1 + ∂p

∂x2
u2 + ∂p

∂x3
u3

)
dx

= −
∫

�

p divudx = 0. (1.9)

Consequently, for divergence-free f , an L2(�) estimate is obtained:

1

2

d

dt
‖u‖2L2(�)

= −ν‖∇u‖2L2(�)
+

∫

�

f · udx ≤ −ν

2
‖∇u‖2L2(�)

+ cP

2ν
‖ f ‖2L2(�)

≤ − ν

2cP
‖u‖2L2(�)

+ cP

2ν
‖ f ‖2L2(�)

, (1.10)

thanks to the Poincaré inequality. Integrating the above, we obtain:

‖u(t)‖2L2(�)
≤ ‖u0‖2L2(�)

e
− νt

cP +
(cP

ν

)2 ‖ f ‖2L2(�)

(
1 − e

− νt
cP

)
, (1.11)

where cP denotes the constant in the Poincaré inequality. Having already the last
estimate one can return to (1.10), to see that

ν‖u‖2
L2(0,T ;[H1

0 (�)]3) ≤ cP

ν
T ‖ f ‖2L2(�)

+ ‖u0‖2L2(�)
, (1.12)

for arbitrary T > 0. These are the strongest natural a priori estimates known for
solutions of the N-S equation.

Remark 1.2 Note that similar estimates are also valid for solutions of the fractal
approximations (1.2), with only one difference that the [H1

0 (�)]3 norm is replaced
with the [H1+α

0 (�)]3 norm. Consequently, the estimates (1.11) and (1.12) are valid
for all the solutions uα uniformly in α > 0.
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1.3 Local in Time Solvability of the 3-D and 2-D N-S Problems

Wewill rewrite N-S equation in a form of an abstract parabolic equation with sectorial
positive operator and solve it using Dan Henry’s approach ([3,21]). I want to make a
comment here, that using such approach we have fairly large choice of phase spaces
(= space where solution varies). In fact, calling here paper [35], as far as we consider
the corresponding to (1.3) linear Cauchy problem with sectorial positive operator:

ut + Au = 0, t > 0,

u(0) = u0,

we can ’set it’ at any level of the fractional power scale Xβ = D((−A)β), β ∈ R,
corresponding to −A (see [1, Section V.2] for an extension of that idea). When we
move to the semilinear problem (1.3) with nonlinearity F subordinated to A, it is an art
to choose the proper level at that scale to be the phase space for semilinear problem.
For that, we need to consider a priori estimates available for the specific equation,
usually of physical origin, e.g. following from energy decay or conservation of mass
valid in the process described through the equation. The full semilinear problem will
be next written abstractly as

ut + Au = F(u), t > 0,

u(0) = u0.

The standard way to set the problem (1.1) in the above setting, in L2(�) (see e.g.
[17,20,37]), is to apply to the equation the projector P = P2 : [L2(�)]3 → H ,
where H is the closure in [L2(�)]3 of the set of divergence-free functions {u ∈
[C∞

0 (�)]3; divu = 0}. The pressure term disappears then from the equation. The
realization A of the Stokes operator acts from D(A) → H . We also introduce the
energy space V = {u ∈ [H1

0 (�)]3; divu = 0}, and the simplified notation for the
nonlinearity: F(u) = −P(u · ∇)u.

Operator A = A2 has an associated scale of fractional order spaces Xβ ⊂
[H2β(�)]3, β ≥ 0. The realizations of A in Xβ act from D(Aβ) = Xβ+1 → Xβ

and are sectorial positive operators (see e.g. [17,21,34,39]).
We will rewrite the classical N-S equation in an equivalent form, using the property

of the divergence-free functions. We have:

u jt = ν�u j − ∂p

∂x j
−

3∑

i=1

∂(ui u j )

∂xi
+ f j , divu = 0, x ∈ �, t > 0, j =1, 2, 3,

u = 0, t > 0, x ∈ ∂�,

u(0, x) = u0(x), (1.13)

where u = (u1, u2, u3).
We need to emphasize here, that all the technical tools needed for local in time

solvability of the N-S equation (in standard spaces), like sectoriality of the Stokes
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operator, description of its domain and needed estimates, were reported in [17,18,20].
We recall next an estimate, important for further calculations, borrowed from [20,
Lemma 2.1]. A similar observation was given also in [21, p. 18] in dimension one, see
also the review of earlier results in [20, p. 271].

Corollary 1.3 For each j, 1 ≤ j ≤ N, the operator A− 1
2 P ∂

∂x j
extends uniquely to

a bounded linear operator from [Lr (�)]N to Xr , 1 < r < ∞. Consequently, the
following estimate holds:

‖A− 1
2 P(u · ∇)v‖[Lr (�)]N ≤ M(r)‖|u||v|‖[Lr (�)]N . (1.14)

Observation 1.4 We have also the following estimates used further in the text. From
[20, Lemma 2.1] we get, for all N ∈ N:

∥∥∥A− 1
2 P(u · ∇)v

∥∥∥[L2(�)]N
≤ c‖|u||v|‖[L2(�)]N ≤ c‖u‖[L4(�)]N ‖v‖[L4(�)]N ,

‖P(u · ∇)v‖[L2(�)]N ≤ c‖u‖[L4(�)]N ‖∇v‖[L4(�)]N . (1.15)

Now, for any δ ∈ (0, 1
2 ), using the theory of interpolation;

∥∥A−δ P(u · ∇)v
∥∥[L2(�)]N ≤ c

∥∥∥A− 1
2 P(u · ∇)v

∥∥∥
2δ

[L2(�)]N
‖P(u · ∇)v‖1−2δ

[L2(�)]N

≤ c‖u‖1+2δ
[L4(�)]N ‖∇v‖1−2δ

[L4(�)]N . (1.16)

In a similar way, starting from the estimates:

∥∥∥A− 1
2 P(u · ∇)v

∥∥∥[L2(�)]N
≤ c‖|u||v|‖[L2(�)]N ≤ c‖u‖[L6(�)]N ‖v‖[L3(�)]N ,

‖P(u · ∇)v‖[L2(�)]N ≤ c‖u‖[L6(�)]N ‖∇v‖[L3(�)]N , (1.17)

for any δ ∈ (0, 1
2 ), we get:

‖A−δ P(u · ∇)v‖[L2(�)]N ≤ c
∥∥
∥A− 1

2 P(u · ∇)v

∥∥
∥
2δ

[L2(�)]N
‖P(u · ∇)v‖1−2δ

[L2(�)]N

≤ c‖u‖[L6(�)]N ‖u‖2δ[L3(�)]N ‖∇v‖1−2δ
[L3(�)]N . (1.18)

The above estimates (1.16), (1.18), are valid for all the space dimensions N =
2, 3, 4, . . .. They can be extended further, using Sobolev type estimates, in a way
depending on N .

For local in time solvability, we will set the problem (1.13) in the base space X− 1
4

for the space dimension N = 2, and in the base space X− 1
8 for the space dimension

N = 3. The corresponding phase spaces will be; X
1
2

+ ⊂ [H1+
(�)]2) in case N = 2,

and X
3
4

+ ⊂ [H
3
2

+
(�)]3) in case N = 3 (e.g. [20, Proposition 1.4]). Note that, in

both cases, the phase spaces are contained in the space [L∞(�)]N . Note also, there
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is another possible choice of the phase spaces (e.g. [20]), if we decide to work in the
spaces [Lr (�)]N , N = 2, 3, with r > N .

We will formulate now the corresponding local existence results for N = 2, 3.
Case N = 3. The main tool is the estimate taken from [20, Lemma 2.2] (with

δ = 1
8 , θ = ρ = 3

4 ):

∥∥∥A− 1
8 P(u · ∇)v

∥∥∥[L2(�)]3 ≤ M
∥∥∥A

3
4

+
u
∥∥∥[L2(�)]3

∥∥∥A
3
4

+
v

∥∥∥[L2(�)]3 . (1.19)

Since the form above is bi-linear, we have also the following consequences of the last
estimate:

∥∥∥A− 1
8 P((u − v) · ∇)v

∥∥∥[L2(�)]3 ≤ M
∥∥∥A

3
4

+
(u − v)

∥∥∥[L2(�)]3
∥∥∥A

3
4

+
v

∥∥∥[L2(�)]3 ,

∥
∥∥A− 1

8 P(u · ∇)(u − v)

∥
∥∥[L2(�)]3 ≤ M

∥
∥∥A

3
4

+
u
∥
∥∥[L2(�)]3

∥
∥∥A

3
4

+
(u − v)

∥
∥∥[L2(�)]3 .

(1.20)

Consequently, the nonlinear term F(u) + P f = −P(u · ∇)u + P f acts from

D(A
3
4

+
) ⊂ [H

3
2

+
(�)]3 into D(A− 1

8 ) as a map, Lipschitz continuous on bounded

subsets of D(A
3
4

+
). Indeed, for u, v varying in a bounded set B ⊂ D(A

3
4

+
),

∥∥
∥A− 1

8 F(u − v)

∥∥
∥[L2(�)]3

≤ M
∥∥∥A

3
4

+
(u − v)

∥∥∥[L2(�)]3

(∥∥∥A
3
4

+
u
∥∥∥[L2(�)]3 +

∥∥∥A
3
4

+
v

∥∥∥[L2(�)]3

)

≤ C(B)

∥
∥∥A

3
4

+
(u − v)

∥
∥∥[L2(�)]3 .

According to abstract theory in [3,21] and thanks to the properties of the Stokes
operator as reported in [17,20], this suffices to obtain a local in time solution of the
3-D equation (1.1) (also of 3-D equation (2.6)), more precisely we have:

Theorem 1.5 When P f ∈ D(A− 1
8 ), u0 ∈ D(A

3
4

+
), then there exists a unique local in

time mild solution u(t) to (1.1) in the phase space D(A
3
4

+
) ⊂ [H

3
2

+
(�)]3. Moreover,

u ∈ C
(
[0, τ ); D

(
A

3
4

+))
∩ C

(
(0, τ ); D

(
A

7
8

))
, ut ∈ C

(
(0, τ ); D

(
A

7
8

−))
.(1.21)

Here τ > 0 is the ’life time’ of that local in time solution. Moreover, the Cauchy
formula is satisfied:

u(t) = e−At u0 +
∫ t

0
e−A(t−s)F(u(s))ds, t ∈ [0, τ ),

where e−At denotes the linear semigroup corresponding to the operator A. We need
also to mention that the considered here mild solutions have additional regularity
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properties, as described in particular in [3, p. 218]; here u ∈ C1((0, τ ); D(A
7
8

−
)).

This property is used in the calculations below.

Case N = 2. We will use a version of the estimate in [20, Lemma 2.2] (with
δ = 1

4 , θ = ρ = 1
2 ):

∥∥
∥A− 1

4 P(u · ∇)v

∥∥
∥[L2(�)]2 ≤ M

∥∥
∥A

1
2

+
u
∥∥
∥[L2(�)]3

∥∥
∥A

1
2

+
v

∥∥
∥[L2(�)]2 . (1.22)

Since the form above is bi-linear, we have also the following consequences of the last
estimate:

∥∥∥A− 1
4 P((u − v) · ∇)v

∥∥∥[L2(�)]2 ≤ M
∥∥∥A

1
2

+
(u − v)

∥∥∥[L2(�)]2
∥∥∥A

1
2

+
v

∥∥∥[L2(�)]2 ,

∥∥∥A− 1
4 P(u · ∇)(u − v)

∥∥∥[L2(�)]2 ≤ M
∥∥∥A

1
2

+
u
∥∥∥[L2(�)]2

∥∥∥A
1
2

+
(u − v)

∥∥∥[L2(�)]2 .

(1.23)

Consequently, the nonlinear term F(u) + P f = −P(u · ∇)u + P f acts from

D(A
1
2

+
) ⊂ [H1+

(�)]2 into D(A− 1
4 ) as a map, Lipschitz continuous on bounded

subsets of D(A
1
2

+
). According to [3,21], this suffices to obtain a local in time solution

of the 2-D equation (1.1) (also of 2-D equation (1.2)), more precisely:

Theorem 1.6 When P f ∈ D(A− 1
4 ), u0 ∈ D(A

1
2

+
) ⊂ [H1+

(�)]2, then there exists

a unique local in time mild solution u(t) to (1.1) in the phase space D(A
1
2

+
) ⊂

[H1+
(�)]2. Moreover,

u ∈ C
(
[0, τ ); D

(
A

1
2

+))
∩ C

(
(0, τ ); D

(
A

3
4

))
, ut ∈ C

(
(0, τ ); D

(
A

3
4

−))
.

(1.24)

Here τ > 0 is the ’life time’ of that local in time solution. Moreover, the Cauchy
formula is satisfied:

u(t) = e−At u0 +
∫ t

0
e−A(t−s)F(u(s))ds, t ∈ [0, τ ),

where e−At denotes the linear semigroup corresponding to the operator A.

Remark 1.7 Another choices of the pairs base/phase spaces are possible [20]. In par-
ticular, setting for N = 2: (δ = 1 − ν, θ = ρ = ν

2 , ν = 0+) in [20, Lemma 2.2], one

has that F : D(A
ν
2 ) → D(A−1+ν). For N = 3, setting there: (δ = 1

2 , θ = ρ = 3
8 ),

one has that F : D(A
3
8 ) → D(A− 1

2 ), and F is Lipschitz continuous on bounded sets.
Corresponding local solvability results follow immediately.
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1.4 Properties of 2-D and 3-D N-S Equation with Respect to the Known a Priori
Bound

We will consider now criticality of the N-S equation (1.1) in the sense stated e.g.
in [3,40,41], that means ‘the nonlinear term is of the same order as the main part
operator with respect to the given a priori estimate’. To exhibit this concept better
we will assume in the definition below that (1.3) is stated in a Banach ‘base’ space
denoted Z , A is a sectorial positive operator in Z and F is a map Lipschitz continuous
on bounded sets from Zβ into Z where β ∈ [0, 1). In particular we will consider in
this setting Zβ solutions as in [3, p. 55].

Definition 1.8 The problem (1.3) will be called sub-critical with respect to the given
a priori estimate in Y , if for all its possible Zβ solutions an estimate holds

∃θ∈([0,1] ∃nondecreasing g:[0,∞)→[0,∞) ‖F(u(t))‖Z ≤ g(‖u(t)‖Y )
(
1+‖Aβu(t)‖θ

Z

)
,

(1.25)

for all t ∈ (0, τu0), the life time of the considered Zβ solution.
The problem (1.3) will be called critical with respect to the given a priori estimate

in Y if, instead of (1.25), for all its possible Zβ solutions an estimate holds

∃nondecreasing g:[0,∞)→[0,∞) ‖F(u(t))‖Z ≤g(‖u(t)‖Y )
(
1+‖A1u(t)‖Z

)
,

(1.26)

for all t ∈ (0, τu0), the life time of the considered Zβ solution.

Using the abstract setting as in Definition 1.8 we now indicate that the 3-D N-S can
manifest a different behavior; namely,

∃�>1∃nondecreasing g:[0,∞)→[0,∞) ‖F(u(t))‖Z ≤ g(‖u(t)‖Y )
(
1 + ‖A1u(t)‖�

Z

)
,

(1.27)

for all t ∈ (0, τu0).
Case N = 3. In case of the Navier–Stokes equation (1.1) the mentioned above a

priori estimate will be the Y = [L2(�)]N estimate (1.11).

Following first (1.19), thus choosing X− 1
8 and X

3
4

+
to play a role of Z and Zβ

respectively, we will see that (1.27) holds for (1.1) with respect to the standard L2

estimate. Indeed, the estimate (1.18) written for the local solution u = u(t) obtained
in Theorem 1.5 extends for N = 3, with the use of the Nirenberg–Gagliardo type
estimates, to:

∥∥∥A− 1
8 P(u · ∇)u

∥∥∥[L2(�)]3 ≤ c‖u‖[L6(�)]3 ‖u‖
1
4
[L3(�)]3 ‖∇u‖

3
4
[L3(�)]3

≤ c ‖u‖
9
7

[H
7
4 (�)]3

‖u‖
5
7
[L2(�)]3 , (1.28)

which gives the exponent � above equal 9
7 .
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On the other hand, using the estimate of Corollary 1.3, we will find for the 3-D N-S
equation that

‖P(u · ∇)u‖
X− 1

2
=

∥∥
∥A− 1

2 P(u · ∇)u
∥∥
∥[L2(�)]3 ≤ M‖|u|2‖[L2(�)]3 ≤ c‖u‖2[L4(�)]3

≤ c ‖u‖
3
2
[H1(�)]3 ‖u‖

1
2
[L2(�)]3 , (1.29)

in which case � = 3
2 .

Finally, for the further use, we will check how large the exponent s > 1 should be,
for the ‘strengthen diffusion’ of the form As replacing the usual operator A in (1.1) to
make the L2(�) estimate critical. Using again Corollary 1.3 we get that

∥∥∥A− 1
2 P(u · ∇)u

∥∥∥[L2(�)]3 ≤ M‖|u|2‖[L2(�)]3 ≤ c‖u‖
3

2(2s−1)

[H2s−1(�)]3‖u‖
4s−5
4s−2

[L2(�)]3 .

(1.30)

We find such critical value of s from the condition; 3
2(2s−1) = 1. Consequently, s = 5

4 .

Remark 1.9 Consideration as in the above case indicates (although it does not pre-
judge) that the 3-D N-S may behave in a supercritical manner with respect to L2

estimate of the solutions, which in turn leads to an open question if there exists a
mechanism in the 3-D N-S equation that prevents the development of a singularity
(see also Remark 3.7).

Case N = 2. Using Corollary 1.3 it is easy to see criticality of the 2-D Navier–
Stokes equation. More precisely, to verify that its nonlinearity is critical with respect

to the standard L2(�) a priori estimates, as a map from X
1
2 ⊂ [H1(�)]2 to X− 1

2 .
Indeed,

‖P(u · ∇)u‖
X− 1

2
≤

∥∥∥A− 1
2 P(u · ∇)u

∥∥∥[L2(�)]2 ≤ M‖|u|2‖[L2(�)]2

≤ c‖u‖2[L4(�)]2 ≤ ‖u‖[H1(�)]2‖u‖[L2(�)]2 = c(‖u‖[L2(�)]2)‖u‖1
X

1
2
,

(1.31)

and no better estimate (with exponent smaller than 1) seems possible.

Observation 1.10 Using the estimate (1.16)with δ = 1
4 , we will show that the nonlin-

earity in 2-D N-S equation is critical as a map from X
3
4 ⊂ [H

3
2 (�)]2 to X− 1

4 . Indeed,
from (1.16) with δ = 1

4 , N = 2,

∥∥∥A− 1
4 P(u · ∇)u

∥∥∥[L2(�)]2 ≤ c‖u‖
3
2
[L4(�)]2‖∇u‖

1
2
[L4(�)]2 ≤ c‖u‖[L2(�)]2‖u‖[H

3
2 (�)]2 ,

(1.32)
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where the Nirenberg–Gagliardo type estimates were used:

‖φ‖L4(�) ≤ c‖φ‖
1
3

H
3
2 (�)

‖φ‖
2
3
L2(�)

,

‖φ‖W 1,4(�) ≤ c‖φ‖
H

3
2 (�)

. (1.33)

No better estimates seems possible.

Note further, that in 2-D the nonlinearity is also critical with respect to the L2(�)

a priori estimate as a map between X1 = D(A) ⊂ [H2(�)]2 and X . Indeed, the
following estimate holds,

‖P(u · ∇)u‖X ≤ c‖u‖[L4(�)]2‖∇u‖[L4(�)]2 ≤ c‖u‖[H2(�)]2‖u‖[L2(�)]2 , (1.34)

and no smaller exponent on the H2(�) norm seems possible.

2 Global in Time Solutions in 3-D: Small Data

As well known (e.g. [41], [3, Chapters 3,5]), global in time extendibility of the local
mild solution constructed in the Theorem 1.5 is possible provided we have sufficiently

well a priori estimates that prevents the D(A
3
4

+
) ⊂ [H

3
2

+
(�)]3 norm of the solution

to blow up in a finite time. We will show next such type estimate, in [H1(�)]3, for
solutions of the 3-D N-S equation when the data: u0 and f are smooth and sufficiently
small; see e.g. [33, Theorem 6.8, Chapter 1] for such result. The estimate will be used
later to construct global in time solutions of the N-Swith small data. Another approach
to that problem in arbitrary dimension N , using estimates on integral equation, was
presented in [2].

Theorem 2.1 If u0 ∈ D(A) ⊂ [H2(�)]3 and f ∈ [L2(�)]3 fulfill the ’smallness
restriction’ (2.4), then the [H1(�)]3 norms of the solutions u are bounded uniformly
in time t ≥ 0.

Proof It is known (e.g. [3,21]), that the local in time solutions u are regularized for
t > 0 (through the equation) into the space D(A) ⊂ [H2(�)]3. When the initial data
u0 ∈ D(A), they simply vary in D(A) for t ≥ 0 small, until possible blow-up time
t (α, u0). We want to show that, to small u0 and f correspond small solutions, in the
[H1(�)]3 norm (uniformly in time).

To get estimate of the solution u in [H1(�)]3 multiply (1.2) by Au to obtain:

< ut , Au >[L2(�)]3 = − < Au, Au >[L2(�)]3 − < P(u · ∇)u, Au >[L2(�)]3
+ < P f, Au >[L2(�)]3, (2.1)
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since the pressure term vanishes. Thanks to (1.15), this gives,

1

2

d

dt
‖u‖2[H1(�)]3 ≤ −cν‖u‖2[H2(�)]3 + c‖u‖[W 1,4(�)]3‖u‖[L4(�)]3‖u‖[H2(�)]3

+‖P f ‖[L2(�)]3‖u‖[H2(�)]3

≤ −cν‖u‖2[H2(�)]3 + c1‖u‖
5
4
[H2(�)]3‖u‖

7
4
[H1(�)]3

+‖P f ‖[L2(�)]3‖u‖[H2(�)]3

≤ −c′ν
2

‖u‖2[H1(�)]3 + Cν

(
‖u‖

14
3

[H1(�)]3 + ‖P f ‖2[L2(�)]3
)

, (2.2)

with the standard use of Young’s inequality, and the embedding H2(�) ⊂ H1(�)

(constant c′). Denoting; y(t) := ‖u(t)‖2[H1(�)]3 , we arrive at the differential inequality
(e.g. [42]):

1

2
y′(t) ≤ −c′ν

2
y(t) + Cν y

7
3 (t) + Cν‖P f ‖2[L2(�)]3,

y(0) = ‖u(0)‖2[H1(�)]3 . (2.3)

Analyzing its right hand side, real function g(z) = − c′ν
2 z + Cνz

7
3 + Cν‖P f ‖2[L2(�)]3 ,

we see that g(0) = Cν‖P f ‖2[L2(�)]3 > 0, g′(0) < 0, and g has a minimum for the

argument zmin = ( 3c′ν
14Cν

) 3
4 , with g(zmin) < 0 when the ’free term’ Cν‖P f ‖2[L2(�)]3 is

small. More precisely, to keep the value of y(t) bounded for all positive times, we need
to assume the smallness hypothesis: Let the data: ‖u(0)‖2[H1(�)]3 and ‖P f ‖2[L2(�)]3 be
so small, that:

g(zmin) < 0, equivalently ‖P f ‖2[L2(�)]3 <
4

3
z
7
3
min, and

‖u0‖2[H1(�)]3 ≤ zmin =
(
3c′ν
14Cν

) 3
4

. (2.4)

Note that
(

ν
Cν

) 3
4 is proportional to ν2. Consequently we obtain the bound

‖u(t)‖2[H1(�)]3 ≤ zmin valid for all t ≥ 0. (2.5)

With the last assumption, the smooth local solutions u(t), introduced in Theorem
3.1 are bounded in [H1(�)]3 uniformly in t ≥ 0. Note, that a bit more accurate bounds
in (2.4) are possible if one compare the data with the two positive zeros of the function
g. See also the corresponding restrictions formulated in [37, Theorem 3.7]. ��
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2.1 Regularization of the 3-D N-S Equation

It was shown above that in the 3-D case theN-S equation (1.1)may behavewith respect
to the standard estimate according to (1.27). Global in time extendibility of the local
solutions constructed in Theorem 1.5 is in general unknown (unless for small data).
The viscosity term in the equation (1.1) together with the standard a priori estimate are
not strong enough to control the nonlinearity. In the present subsection we discuss an
approximation/regularization (with stronger diffusion term) of the 3-D N-S equation,
for which the L2(�) estimates (same as for the original equation) are sufficient to
make such problems sub-critical. The idea of such regularization was proposed first
by Lions in [33, Chapter 1, Remarque 6.11].

We consider approximation of the original 3-D Navier–Stokes equation having
global in time, unique and regular solutions. Consider namely the approxima-
tion/regularization of (1.1) having the form:

ut = −(A + ε As)u − P(u · ∇)u + P f, t > 0,

u(0, x) = u0(x), (2.6)

with a parameter s > 1 (to be chosen), and ε > 0. For fixed (for a moment) parameter
ε, denote the solution to the above problem as us . We mean here the solution on the

base space D(A− 1
4 ), obtained in a similar way as for the original N-S equation (1.1)

in Sect. 1.3.
It is clear how to determine the proper, sufficiently large, value of the exponent

s > 1 to guarantee, together with the L2(�) estimates valid also for solutions of (2.6),
that the nonlinear term is subordinated to the main part operator −(A + ε As). We
need to compare the bound obtained for the nonlinearity with the income from the
improved viscosity term. Estimate of the nonlinearity, obtained from (1.16), reads

∥∥∥A− 1
4 F(us(t))

∥∥∥[L2(�)]3 ≤ c‖us(t)‖
3
2
[L4(�)]3‖us(t)‖

1
2
[W 1,4(�)]3 . (2.7)

Let s > 5
4 . With the use of the Nirenberg–Gagliardo type estimate we obtain the

subordination condition

∥∥∥A− 1
4 F(us(t))

∥∥∥[L2(�)]3 ≤ c
(‖us(t)‖[L2(�)]3

) ‖us(t)‖θ

[H2s− 1
2 (�)]3

≤ c′ (‖us(t)‖[L2(�)]3
) ‖As− 1

4 us(t)‖θ
[L2(�)]3, (2.8)

where θ = 2
2s− 1

2
< 1. Consequently, the standard L2(�) a priori estimate is sufficient

to assure the global in time extendibility of such local solutions us when s > 5
4 . We

will study such approximation next.

Remark 2.2 The exponent 5
4 proposed for regularization of (1.1) in [33, Chapter 1,

Remarque 6.11] is the same (also, as in (1.30)).
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2.2 3-D N-S Equation

Let us study the introduced above regularization (2.6) of the original 3-DN-S equation
with exponent s > 5

4 . We formulate first the corresponding existence result.

Theorem 2.3 Consider (2.6) with s > 5
4 as equation in D(A− 1

8 ). When P f ∈
D(A− 1

8 ), u0 ∈ D(A
3
4

+
) ⊂ [H

3
2

+
(�)]3, then there exists a unique local in time

mild solution uε(t) to (2.6), s > 5
4 , in the phase space D(A

3
4

+
). Moreover,

uε ∈C
(
[0, τ ); D

(
A

3
4

+))
∩C

(
(0, τ ); D

(
As− 1

4

))
, uε

t ∈C
(
(0, τ ); D

(
A(s− 1

4 )−
))

.

(2.9)

Here τ > 0 is the ’life time’ of that local in time solution. Also, the corresponding
Cauchy formula is satisfied.

Furthermore, together with the standard [L2(�)]3 a priori estimate valid for solu-
tions of (2.6) uniformly in ε > 0, the obtained above local solution will be extended
globally in time in the class (2.9).

The proof, similar as for Theorem 1.5, is omitted.
Passing to the limit ε → 0+ in (2.10) We will describe next shortly the process

of passing to the limit, as ε → 0+, in such approximations. The idea is similar as in
[7,8,33], using the parabolic regularization technique. We write the corresponding
approximating equation:

ut = −Au − ε Asu + F(u) + P f, (2.10)

with s > 5
4 (but close to 5

4 ), and denote its solution by uε . Applying to it the operator

A−s+ 1
2 we get

A−s+ 1
2 uε

t = −A−s+ 3
2 uε − ε A

1
2 uε + A−s+ 1

2 F(uε) + A−s+ 1
2 P f. (2.11)

Using to nonlinear term the estimate of [20, Lemma 2.2] with δ = s − 1
2 , ε = s − 1,

we get

‖A−δ F(uε)‖[L2(�)]3 ≤ c‖|uε |2‖[Lz(�)]3 ≤ c′‖uε‖2[L2z(�)]3

≤ c′′‖uε‖
7
2−2s

[H1(�)]3‖uε‖2s− 3
2

[L2(�)]3

= c′′′‖A
1
2 uε‖

7
2−2s

[L2(�)]3‖uε‖2s− 3
2

[L2(�)]3, (2.12)

where 1
z = 1

2 + 2ε
3 , consequently z = 6

3+4(s−1) < 3
2 (but close). Due to the standard L2

estimate, all the right hand side components in (2.11) belong to L2(0, T ; [L2(�)]3)
(in particular −ε A

1
2 u; note that 7

2 − 2s < 1 in (2.12)). Consequently,

A−s+ 1
2 uε

t ∈ L2
(
0, T ; [L2(�)]3

)
, or uε

t ∈ L2
(
0, T ; D

(
A−s+ 1

2

))
.
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Thus the Lions–Aubin compactness lemma (e.g. [33, Chapter I, 5]) will be used to
conclude that any sequence {uεn } has a subsequence convergent almost everywhere in
(0, T ) × �, as εn → 0+. Also, any sequence {uεn } has a subsequence convergent in
L2(0, T ; [H1−

0 (�)]3).
Denote by U the limit in L2(0, T ; [H1−

0 (�)]3) of uε , over a sequence εn → 0+.
Remember that from the standard a priori estimate written for the problem (2.6) it
follows that the D(A

s
2 ) norms of uε fulfill

√
ε‖A

s
2 uε‖L2(0,T ;[L2(�)]3) ≤ const, (2.13)

with const independent on ε > 0. We recall a weak formulation of the approximating
equations (2.10):

< uε
t , v >[L2(�)]3 = − < A

1
2 uε, A

1
2 v >[L2(�)]3 −ε < A

s
2 uε, A

s
2 v >[L2(�)]3

+ < F(uε), v >[L2(�)]3 + < P f, v >[L2(�)]3, (2.14)

where v ∈ D(A
1
2 ) arbitrary. Note that, due to (2.13), the second right hand side

component vanishes when ε → 0+. For the nonlinear component we have

∫ T

0
< F(uεn ), v >[L2(�)]3 dt =

∫ T

0
< A− 1

2 F(uεn ), A
1
2 v >[L2(�)]3 dt

→
∫ T

0
< A− 1

2 F(U ), A
1
2 v >[L2(�)]3 dt, (2.15)

due to the estimate

∫ T

0
‖A− 1

2
[
F(uεn ) − F(U )

]‖[L2(�)]3dt ≤
∫ T

0
‖|uεn − U |(|uεn | + |U |)‖[L2(�)]3dt

≤
∫ T

0
‖uεn − U‖[L4(�)]3

(‖uεn ‖[L4(�)]3 + ‖U‖[L4(�)]3
)
dt

≤
∫ T

0
‖uεn − U‖[H1− (�)]3

(‖uεn ‖[H1− (�)]3 + ‖U‖[H1− (�)]3
)
dt

≤ ‖uεn − U‖L2(0,T ;[H1− (�)]3)
(‖uεn ‖L2(0,T ;[H1− (�)]3)

+‖U‖L2(0,T ;[H1− (�)]3)
) → 0, εn → 0+. (2.16)

Finally, thanks to [37, Lemma 1.1] and the convergence uεn → U in L2(0, T ;
[H1−

0 (�)]3) (or weak in L2(0, T ; [H1
0 (�)]3)), we have

< uεn
t , v >[L2(�)]3=

d

dt
< uεn , v >[L2(�)]3→

d

dt
< U, v >[L2(�)]3 , (2.17)

in the sense of ’scalar distributions’ (e.g. [33,37]); the derivative d
dt in the sense of

distributions.
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Consequently, we were able to pass to the limit in the weakly formulated regular-
ization (2.10) of the 3-D N-S equation. We obtain

d

dt
< U, v >[L2(�)]3 = − < A

1
2 U, A

1
2 v >[L2(�)]3 + < A− 1

2 F(U ), A
1
2 v >[L2(�)]3

+ < P f, v >[L2(�)]3, (2.18)

where v ∈ D(A
1
2 ) was arbitrary, and the convergence of the first right hand side

component is in the weak sense. We obtain a weak solution to the 3-D N-S equation
in the spirit of the Leray original definition (e.g. [40, p. 139]). Such solution is global
in time, as was first observed in [24].

Note that the weak solution obtained above is global in time, while eventually
not unique, since it depends on the chosen subsequence. For regular initial data

u0 ∈ D(A
3
4

+

2 ) it must coincide (for small times) with the unique local strong solution
described in Theorem 1.5, since the last exists on certain time interval t ∈ [0, τ ) and
fulfills (2.18) for T < τ .

3 2-D Critical N-S Equation as a Limit of Sub-Critical Approximations

We will describe now the convergence of the solutions of the 2-D fractal approxima-
tions (1.2) to the solution of the limiting 2-D N-S equation. Precisely as in Theorem
1.6, the solutions uα of (1.2) (the superscript is added for clarity) will be constructed
in the class:

uα ∈C
(
([0, τ );D

(
A

1
2

+))
∩C

(
(0, τ );D

(
A

3
4

))
, uα

t ∈C((0, τ );D
(

A
3
4

−
)
)

. (3.1)

Further, the L2(�) a priori estimates are satisfied for uα uniformly in α ∈ (0, 1
2 ].

Consequently, we claim:

Theorem 3.1 The local in time solution uα(t) of the approximating problem (1.2)
constructed as in Theorem 1.6 will be extended globally in time in the above class.
Moreover, the standard L2(�) a priori estimate (1.11) is valid for it uniformly in
α ∈ (0, 1

2 ].
All the nice properties of the abstract semilinear sectorial equation, like elegant

theory of existence and uniqueness, regularization of the solution for positive times,
are valid for solutions uα(t)with anyα > 0. Typical regularization goes from the phase
space Xβ, β < 1, to the space X1 = D(A); see e.g. [3,21]. However, for problems
(1.2), estimates of norms better that L2(�) will depend on α > 0, possibly blowing
up when α → 0+, and therefore can not be extended in general to a limit solution u.

3.1 2-D (1.1) as a Limit of (1.2) When α → 0+

A precise description of letting α → 0+ in the equation (1.2) is given next. In this
section we consider the solutions uα of (1.2) constructed in Theorem 3.1 on the
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phase space D(A
3
4 ) ⊂ [H

3
2 (�)]2. Such solutions, for any α ∈ (0, 1

2 ], are varying in

[H
3
2 (�)]2. Indeed, according to [20, Proposition 1.4]: For any β ≥ 0, the domain

D(Aβ) is continuously embedded in X2 ∩ [H2β(�)]2. Solutions uα fulfill also, uni-
formly in α ∈ (0, 1

2 ], estimate (1.11) in [L2(�)]2. More precisely, for such solutions
of (1.2) we have an estimate:

∃const>0∀α∈(0, 12 ] ‖uα‖L∞([0,∞);[L2(�)]2) ≤ const. (3.2)

This is the main information allowing us to let α → 0+ in the equation (1.2).
Passing in (1.2) to the limit α → 0+. We look at (1.2) as an equation in [L2(�)]2,
and ’multiply’ by the test function A−1−αφ where φ ∈ D(A

3
4 ); recall that D(A

3
4 ) ⊂

[H
3
2 (�)]2,

< uα
t + P(uα · ∇)uα, A−1−αφ >[L2(�)]2 = − < A1+αuα, A−1−αφ >[L2(�)]2

+ < P f, A−1−αφ >[L2(�)]2 . (3.3)

We will discuss now the convergence of the terms in (3.3) one by one. Note that when
α → 0+ then, by Lemma 4.1, A−1−αφ → A−1φ. Thanks to uniform in α ∈ (0, 1

2 ]
boundedness of uα in L∞([0,∞); [L2(�)]2), we obtain:

< A1+αuα, A−1−αφ >[L2(�)]2=< uα, φ >[L2(�)]2→< u, φ >[L2(�)]2 ,
< P f, A−1−αφ >[L2(�)]2→< P f, A−1φ >[L2(�)]2 , (3.4)

where u is the weak limit of uα in [L2(�)]2 as α → 0+ (over a sequence {αn}
convergent to 0+; various sequences may lead to various weak limits).

We return to (3.3) to see that letting α → 0+ over a sequence {αn}, where u denotes
weak limit in [L2(�)]2 of such sequence, we have

lim
αn→0

< A−α
(
uα

t + P(uα · ∇)uα
)
, A−1φ >[L2(�)]2

= − < u, φ >[L2(�)]2 + < P f, A−1φ >[L2(�)]2 , (3.5)

since the right hand side is convergent. Consequently, the left hand side has a limit as
αn → 0+,

lim
αn→0

< A−α
(
uα

t + P(uα · ∇)uα
)
, A−1φ >[L2(�)]2= ωφ. (3.6)

Note that, for the ’test functions’ A−1φ varying in a separableBanach space, passing
countable many times to a subsequence, we can chose a common subsequence proper
for all test functions in dense subset of the space. Consequently, the equation below
will be fulfilled in the whole space. We obtain

∀φ∈X2 ωφ = − < u, φ >[L2(�)]2 + < P f, A−1φ >[L2(�)]2 , (3.7)

which is a weak form of the limiting equation.
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Separation of terms The two terms of [A−α
(
uα

t + P(uα · ∇)uα
)] will be separated

when letting α → 0+. More precisely we have:

Remark 3.2 Since the approximating solutions uα satisfy (in particular)

uα ∈ L∞(0, T ; [L2(�)]2), uα
t ∈ L2(0, T ; [L2(�)]2), (3.8)

then by [37, Lemma 1.1, Chapt. III]

∀η∈X2 < uα
t , η >[L2(�)]2=

d

dt
< uα, η >[L2(�)]2→

d

dt
< u, η >[L2(�)]2 , (3.9)

the timederivative d
dt and the convergence are understood inD′(0, T ; [L2(�)]2) (space

of the ‘scalar distributions’ [33]). Consequently,

ωφ = d

dt
< A−αu, A−1φ >[L2(�)]2 +ω1

φ, (3.10)

where ω1
φ is a limit inD′(0, T ; [L2(�)]2) of < P(uα · ∇)uα, A−1−αφ >[L2(�)]2 over

a chosen sequence αn → 0+.
Convergence of the nonlinear term F(uα) = P(uα ·∇)uα will be discussed next. As

seen from (1.12), the approximating solutions uα are bounded in L2(0, T ; [H1
0 (�)]2)

uniformly in α > 0. Estimate (1.15):

‖A− 1
2 F(uα)‖[L2(�)]2 ≤ c‖uα‖2[L4(�)]2 ≤ c′‖uα‖[L2(�)]2‖uα‖[H1

0 (�)]2 , N = 2,

(3.11)

together with the consequence of Eq. (1.2)

A−( 12+α)uα
t = −A

1
2 uα + A−( 12+α)F(uα) + A−( 12+α) P f ∈ L2(0, T ; [L2(�)]2),

show that uα
t are bounded in L2(0, T ; D(A−1)) uniformly in α ∈ (0, 1

2 ]. By Lions–
Aubin compactness lemma [33, Theorem 5.1], the family {uα}α∈(0, 12 ] as bounded in
the space

W =
{
φ;φ ∈ L2(0, T ; [H1

0 (�)]2), φt ∈ L2(0, T ; D(A−1))
}

,

is precompact in L2(0, T ; [H1−
0 (�)]2). In particular any sequence {uαn }, αn → 0+,

has a subsequence convergent almost everywhere in (0, T ) × �. Moreover, the above
compactness allows to pass to a limit (using estimates of Observation 1.4) in the
nonlinear term in (3.3). Indeed, if uαn → u, αn → 0+ in the above sense then, using
a consequence of [20, Lemma 2.2]; for small ε > 0

‖A−( 12+ε) P[(u · ∇)u − (uαn · ∇)uαn ]‖[L2(�)]2 ≤ C‖|u − uαn |(|u| + |uαn |)‖[Ls (�)]2 ,
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where 1
s = 1

2 + ε (so that s < 2), we have

∫ T

0
< P(uαn · ∇)uαn , A−1−αn φ >[L2(�)]2 dt

=
∫ T

0
< A−( 12+ε) P(uαn · ∇)uαn , A− 1

2−αn+εφ >[L2(�)]2 dt

→
∫ T

0
< A−( 12+ε) P(u · ∇)u, A− 1

2+εφ >[L2(�)]2 dt. (3.12)

The construction presented above allows us to formulate the following theorem:

Theorem 3.3 Let {uα}α∈(0, 12 ] be the set of regular D(A
3
4 ) solutions to sub-critical

equations (1.2). Such solutions are bounded in the space [L2(�)]2, uniformly in α.
As a consequence of that and the regularity properties of such solutions (varying in

D(A
3
4 ) ⊂ [H

3
2 (�)]2), for arbitrary sequence {αn} ⊂ (0, 1

2 ] convergent to 0+ we
can find a subsequence {αnk } that the corresponding sequence of solutions {uαnk }
converges weakly in [L2(�)]2 to a function u fulfilling the equation:

∀φ∈X2 ωφ = − < u, φ >[L2(�)]2 + < P f, A−1φ >[L2(�)]2 . (3.13)

Due to denseness of the set D(A
3
4 ) in X2, the right hand side of (3.13) defines a unique

element in X2. The left hand side ωφ is defined in (3.6) and discussed in Remark 3.2.

Remark 3.4 As well known (e.g. [33, Theorem 6.2]), the L∞(0, T ; [L2(�)]2) ∩
L2(0, T ; D(A

1
2 )) solution of the 2-D N-S equation with ut ∈ L2(0, T ; D(A− 1

2 ))

is unique. Indeed, if u1, u2 are two such (weak) solutions, applying projector P , tak-
ing the difference of the equations and multiplying the result by w = u1 − u2, we
get:

1

2

d

dt
‖w(t)‖2[L2(�)]2 ≤ −‖A

1
2 w‖2[L2(�)]2+ < P(w · ∇)u1, w >[L2(�)]2

+ < P(u2 · ∇)w,w >[L2(�)]2 . (3.14)

The last term vanishes for divergence-free functions. The earlier term, using an equiv-
alent form of the nonlinearity in (1.13) and the Nirenberg–Gagliardo inequality, is
estimated as follows:

| < P(w · ∇)u1, w >[L2(�)]2 | ≤ c‖w‖2[L4(�)]2‖A
1
2 u1‖[L2(�)]2

≤ c‖w‖[L2(�)]2‖A
1
2 w‖[L2(�)]2‖A

1
2 u1‖[L2(�)]2 .

(3.15)
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Inserting the last estimate into (3.14), using Cauchy’s inequality, we obtain

1

2

d

dt
‖w(t)‖2[L2(�)]2 ≤ −‖A

1
2 w‖2[L2(�)]2+c‖w‖[L2(�)]2‖A

1
2 w‖[L2(�)]2‖A

1
2 u1‖[L2(�)]2

≤ C‖w‖2[L2(�)]2‖A
1
2 u1‖2[L2(�)]2 .

Since ‖w(0)‖2[L2(�)]2 = 0 then ‖w(t)‖2[L2(�)]2 = 0 for all t ∈ [0, T ], due to the
Gronwall lemma.

Remark 3.5 In 2-D, convergence of the approximating solutions uα of (1.2) to the

unique solution u of the N-S equation holds in a better sense whenever u0 ∈ D(A
1
2 ).

Multiplying (1.2) by Auα , we get

1

2

d

dt
‖A

1
2 uα‖2[L2(�)]2 = −‖A1+ α

2 uα‖2[L2(�)]2+ < P(uα · ∇)uα, Auα >[L2(�)]2

+ < P f, Auα >[L2(�)]2 . (3.16)

Further, due to (1.16), Nirenberg–Gagliardo and Young inequalities,

| < P(uα · ∇)uα, Auα >[L2(�)]2 |
≤ ‖A− α

2 P(uα · ∇)uα‖[L2(�)]2‖A1+ α
2 uα‖[L2(�)]2

≤ c‖uα‖1+α

[L4(�)]2‖∇uα‖1−α

[L4(�)]2‖A1+ α
2 uα‖[L2(�)]2

≤ ε‖A1+ α
2 uα‖2[L2(�)]2 + Cε‖uα‖

2[2+3α+α2]
1+5α

[H1(�)]2 ‖uα‖
2[3+4α−α2]

1+5α

[L2(�)]2 .

For small ε > 0, α > 0, we thus have

1

2

d

dt
‖A

1
2 uα‖2[L2(�)]2 ≤ −1

4
‖A1+ α

2 uα‖2[L2(�)]2 + Cε‖uα‖
2[2+3α+α2]

1+5α

[H1(�)]2 ‖uα‖
2[3+4α−α2]

1+5α

[L2(�)]2

+‖P f ‖2[L2(�)]2; (3.17)

note that 2[2+3α+α2]
1+5α < 4. It follows from the natural a priori estimates and Gronwall

inequality that the family {uα}α∈(0, 12 ] is bounded in the norm

L∞(0, T ; [H1
0 (�)]2) ∩ L2(0, T ; D(A)). (3.18)

Consequently, it is precompact in

L p(0, T ; [H1−
0 (�)]2) ∩ L2(0, T ; D(A1−

)), (3.19)

with arbitrary p > 1. The convergence uα → u as α → 0+ is thus verified in the
above space.
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Remark 3.6 To understand better the method used in the study of global extendibility
of solutions we will discuss shortly an example1 of the Burgers type system in 3-D,
obtained by neglecting the viscosity in homogeneous 3-D N-S equation:

Ut = ν�U − (U · ∇)U, x ∈ �, t > 0,

U = 0, t > 0, x ∈ ∂�,

U (0, x) = U0(x). (3.20)

It is easy to see that each component of the sufficiently regular (that is, varying in
[L∞(�)]3) solution of (3.20) fulfills Maximum Principle:

‖Ui (t, ·)‖L∞(�) ≤ ‖U0i‖L∞(�), i = 1, 2, 3. (3.21)

We are thus given a natural a priori estimate in Y = [L∞(�)]3 for such system. The
nonlinear term is as in the N-S equation, and we have the estimates:

‖(U · ∇)U‖[L2(�)]3 ≤ ‖U‖[L∞(�)]3‖U‖[H1
0 (�)]3 ≤ ‖U0‖[L∞(�)]3‖U‖[H1

0 (�)]3,

‖(U · ∇)U‖[H−1(�)]3 ≤ c‖U‖2[L∞(�)]3 , (3.22)

valid in particular for all the local solutions varying in [H
3
2

+
(�)]3 ∩ [H1

0 (�)]3 (as

in Theorem 1.5). Since H
3
2

+
(�) ⊂ L∞(�), the Maximum Principle works for such

solutions. By interpolation, (3.22) gives

‖(U · ∇)U‖[H− 1
4 (�)]3 ≤ c‖U‖

5
4
[L∞(�)]3‖U‖

3
4

[H1
0 (�)]3 ≤ c‖U0‖

5
4
[L∞(�)]3‖U‖

3
4

[H1
0 (�)]3,

(3.23)

which shows the nonlinearity is sub-critical in that case. Consequently, the local
solution will be extended globally in time.

The above example shows that our approach is sensitive (through subordination
condition (1.8)) not only on the formof nonlinearity, but also another specificproperties
of the problem. It also indicates the role of the pressure in the classicalN-S equation, the
term which seems responsible for the delicate properties of solutions of that equation.

Remark 3.7 It is evident from the considerations above that the phenomenonof loosing
regularity by local smooth solutions of 3-D N-S is possible only if they enter the super-
critical range of the nonlinearity (compare (1.28)). It would be therefore interesting
to consider local solutions corresponding to initial data u0 fulfilling

‖A− 1
8 F(u0)‖[L2(�)]3 ≥ g(‖u0‖[L2(�)]3)‖A

7
8 u0‖1+ε

[L2(�)]3, (3.24)

where 0 < ε < 2
7 , as eventual candidates for such phenomenon.

1 Suggested kindly by professor Eduard Feireisl.
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4 Conclusion

The PROBLEM connected with the 3-D Navier–Stokes equation is not solved in the
paper, while we are explaining its reason. The viscosity in the classical N-S equation
together with the standard a priori estimate could not be used in general to prevent
better norms of its solutions from blowing-up in a finite time, especially in 3-D case. In
order, for small initial data we enjoy the standard property of problems with quadratic
nonlinearity, that near zero function the estimates of nonlinearity obtained from the
equation are proportional to the square of the norm, therefore there is a ball centered
at zero the solutions originated in it will never leave that ball. For such solutions, the
nonlinear term in N-S is subordinated to the main part operator. Of course, if a better
estimate was known, for example the estimate in L N (�) (L N+

(�)), it would make the
N-D Navier–Stokes equation critical (sub-critical) due to the following calculation

‖P(u · ∇)u‖
X− 1

2
≤ c‖|u|2‖[L2(�)]N ≤ c′‖u‖

[L 2N
N−2 (�)]N

‖u‖[L N (�)]N

≤ c′′‖u‖
X

1
2
‖u‖[L N (�)]N . (4.1)

An alternative possibility is mentioned in Remark 3.7.
It seems that the fractal regularizations; (1.2) in 2-D and (2.6), s > 5

4 , in 3-D, having
much better properties of solutions, offer an alternative way of description of the flow
and for numerical calculations where, for small values of parameters, solutions of the
regularizations are globally existing and regular approximations of solutions to the
original N-S equation.
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Appendix: Fractional Powers Operators and Estimates

Some Technicalities

When passing to the limit in the considerations above it was important that the esti-
mates, in particular the constants in it, can be taken uniform in α. Therefore, in the
technical lemmas below we need to care on a very precise expression of that unifor-
mity. Even some estimates can be found in the literature, usually such uniformity is
not clear from the presentation, thus we include here the proofs for completeness.

First, we formulate a lemma used in the previous calculations:
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Lemma 4.1 Let A be a positive operator in a Banach space X ([3,34,39]). For arbi-
trary φ ∈ X, we have

∀ε>0∃L‖(I − A−β)φ‖X ≤ sin(πβ)

(
2L(1 + M)

π
+ L−1M

)
‖φ‖X + ε.

Consequently, the left hand side tends to zero as 0 < β → 0+.

Proof Our task is, for fixed φ ∈ X and β near 0+, to estimate the expression:

(A−β − I )φ = sin(πβ)

π

∫ ∞
0

λ−β(λ + A)−1φdλ − sin(π(1 − β))

π

∫ ∞
0

λ(1−β)−1

λ + 1
dλ φ

= sin(πβ)

π

∫ ∞
0

λ−β [(λ + A)−1φ − 1

λ + 1
φ]dλ. (4.2)

In the estimates we are using the following properties; taken from [34, p. 62] equality
valid for η ∈ (0, 1)

∫ ∞

0

λη−1

λ + 1
dλ = π

sin(πη)
,

the simple formula:

(λ + A)−1φ − 1

λ + 1
φ = 1

λ + 1

[
λ(λ + A)−1φ − φ + (λ + A)−1φ

]
, (4.3)

and the two asymptotic properties of non-negative operators valid on functions φ ∈ X
taken from [34, Proposition 1.1.3]:

lim
λ→∞ λ(λ + A)−1φ = φ,

lim
λ→∞(λ + A)−1Aφ = 0. (4.4)

Returning to the proof, we split the integral in (4.2) into (0, L) and (L ,∞) and
estimate the first part,

sin(πβ)

π

∥∥∥∥

∫ L

0
λ−β

(
1

λ + 1
− (λ + A)−1

)
φdλ

∥∥∥∥
X

≤ sin(πβ)

π

∫ L

0
λ−β(1 + M)dλ‖φ‖X

= sin(πβ)

π

L1−β

1 − β
(1 + M)‖φ‖X , (4.5)

where L > 0 will be chosen later. Note that letting β → 0+ the result of the estimate
above is bounded by | sin(πβ)

π
|2L(1 + M)‖φ‖X → 0, for any fixed L > 0.
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Next using (4.3), the integral over (L ,∞) is, for φ ∈ X , estimated as follows:

sin(πβ)

π

∥∥∥∥

∫ ∞

L
λ−β

[
(λ + A)−1φ − 1

λ + 1
φ

]
dλ

∥∥∥∥
X

≤ sin(πβ)

π

∫ ∞

L

λ−β

λ + 1
‖λ(λ + A)−1φ − φ + (λ + A)−1φ‖X dλ, (4.6)

where due to (4.4) we see that

‖(λ + 1)(λ + A)−1Aφ − φ‖X ≤ ‖λ(λ + A)−1φ − φ‖X + ‖(λ + A)−1φ‖X ≤ ε

+ M

1 + λ
‖φ‖X as λ → ∞, (4.7)

ε > 0 arbitrary fixed. Consequently we obtain:

sin(πβ)

π

∫ ∞

L

λ−β

λ + 1

(
ε + M

1 + λ
‖φ‖X

)
dλ

≤ sin(πβ)

π

∫ ∞

L
λ−β−1

(
ε + M

λ
‖φ‖X

)
dλ

≤ sin(πβ)

π

L−β

β
ε + sin(πβ)

π

L−β−1

β + 1
M‖φ‖X , (4.8)

for sufficiently large value of L ≥ 1, as specified in (4.7). Note that letting β → 0+
in the resulting estimate we have:

sin(πβ)

πβ
L−βε + sin(πβ)

π

L−β−1

β + 1
M‖φ‖X ≤ ε + sin(πβ)L−1M‖φ‖X , (4.9)

for chosen large value of L .
For such L we get a final estimate of the integral in (4.2) having the form:

‖(A−β − I )φ‖X ≤ sin(πβ)

π
‖
∫ ∞

0
λ−β

[
(λ + A)−1φ − 1

λ + 1
φ

]
dλ‖X

≤ sin(πβ)

(
2L(1 + M)

π
+ L−1M

)
‖φ‖X + ε, (4.10)

where ε > 0 was arbitrary. The right hand side of (4.10) will be made small when we
let β near 0+, noting ε was an arbitrary positive number. ��

Properties of the Fractional Powers Operators

Recall first the Balakrishnan definition of fractional power of non-negative operator
(e.g. [27, p. 299], [28]). Let A be a closed linear densely defined operator in a Banach
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space X , such that its resolvent set contains (−∞, 0) and the resolvent satisfies:

‖λ(λ + A)−1‖ ≤ M, λ > 0.

Then, for η ∈ (0, 1),

Aηφ = sin(πη)

π

∫ ∞

0
sη−1A(s + A)−1φds. (4.11)

Note that there is another definition, through singular integrals, of the fractional powers
of the (−�)−α in L p(RN ) frequently used in the literature. See [34, Chapter 2.2] for
the proof of equivalence of the two definitions for 1 < p < N

2�α
; see also [11, section

4.3]. See further [32] for the commutator estimates.
Moment inequality We recall here, the moment inequality estimate valid for

fractional powers of non-negative operators. They are suitable to compare various
fractional powers. Recalling [46, p. 98], we have the following version of the moment
inequality with precise constant; for 0 ≤ α < β < γ ≤ 1,

‖Aβφ‖ ≤ (sin π(β−α)
γ−α

)(γ − α)2

π(γ − β)(β − α)
(M + 1)‖Aγ φ‖ β−α

γ−α ‖Aαφ‖ γ−β
γ−α ,

where φ ∈ D(Aγ ).

Moment Inequality Extended

The task here is to extend the moment inequality to the form suitable to compare the
powers 1+ α and 1 (here α > 0 near 0+). We need to use a more general than (4.11)
expression (1.6) for the fractional powers, taken from [34, (3.4), p. 59], which states
that:

A1+αφ = 2 sin(πα)

(1 − α)π

∫ ∞

0
λα[A(λ + A)−1]2φdλ, φ ∈ D(A2), (4.12)

where the original term �(2)
�(α)�(2−α)

has been transformed using the known properties
of the � function;

�(1 + α) = α�(α), �(α)�(1 − α) = π

sin(πα)
, �(2) = 2.

We are using the following bound, valid for positive operators, in the calculations
below:

‖A(λ + A)−1‖X ≤ M + 1, (4.13)
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splitting the integral over (0, L) and (L ,∞), we estimate the first integral,

2 sin(πα)

(1 − α)π

∫ L

0
λα[A(λ + A)−1]2φdλ

= 2 sin(πα)

(1 − α)π

∫ L

0
λα(λ + A)−1[A(λ + A)−1]Aφdλ

= 2 sin(πα)

(1 − α)π

∫ L

0
λα M

1 + λ
(M + 1)dλ‖Aφ‖X . (4.14)

We thus have:

∥∥∥∥
2 sin(πα)

(1 − α)π

∫ L

0
λα[A(λ + A)−1]2φdλ

∥∥∥∥
X

≤ 2 sin(πα)

(1 − α)π
M(M + 1)

Lα

α
‖Aφ‖X .

(4.15)

The second integral over (L ,∞) is estimated next:

2 sin(πα)

(1 − α)π

∥
∥∥∥

∫ ∞

L
λα[(λ + A)−1]2A2φdλ

∥
∥∥∥

X
≤ 2 sin(πα)

(1 − α)π

∫ ∞

L
λα

(
M

λ

)2

‖A2φ‖X dλ

= 2 sin(πα)

(1 − α)π

M2

1 − α
Lα−1‖A2φ‖X .

(4.16)

Minimizing with respect to L > 0 we get Lmin = M‖A2φ‖X
(M+1)‖Aφ‖X

, which leads to the
final estimate:

‖A1+αφ‖X ≤ 2 sin(πα)

(1 − α)π
M(M + 1)

Lα
min

α
‖Aφ‖X + 2 sin(πα)

(1 − α)π

M2

1 − α
Lα−1

min ‖A2φ‖X

= 2 sin(πα)

(1 − α)2πα
M1+α(M + 1)α‖Aφ‖1−α

X ‖A2φ‖α
X → 2M‖Aφ‖X ,

(4.17)

as α → 0+.
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