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Abstract
The objectives were to develop and validate a Convolutional Neural Network (CNN) using local features for differentiating 
distal ureteral stones from pelvic phleboliths, compare the CNN method with a semi-quantitative method and with radiolo-
gists’ assessments and to evaluate whether the assessment of a calcification and its local surroundings is sufficient for dis-
criminating ureteral stones from pelvic phleboliths in non-contrast-enhanced CT (NECT). We retrospectively included 341 
consecutive patients with acute renal colic and a ureteral stone on NECT showing either a distal ureteral stone, a phlebolith 
or both. A 2.5-dimensional CNN (2.5D-CNN) model was used, where perpendicular axial, coronal and sagittal images 
through each calcification were used as input data for the CNN. The CNN was trained on 384 calcifications, and evaluated 
on an unseen dataset of 50 stones and 50 phleboliths. The CNN was compared to the assessment by seven radiologists who 
reviewed a local 5 × 5 × 5 cm image stack surrounding each calcification, and to a semi-quantitative method using cut-off 
values based on the attenuation and volume of the calcifications. The CNN differentiated stones and phleboliths with a sen-
sitivity, specificity and accuracy of 94%, 90% and 92% and an AUC of 0.95. This was similar to a majority vote accuracy of 
93% and significantly higher (p = 0.03) than the mean radiologist accuracy of 86%. The semi-quantitative method accuracy 
was 49%. In conclusion, the CNN differentiated ureteral stones from phleboliths with higher accuracy than the mean of seven 
radiologists’ assessments using local features. However, more than local features are needed to reach optimal discrimination.
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Abbreviations
NECT	� Non-contrast-enhanced computed 

tomography
CTU​	� CT urography
CNN	� Convolutional neural network
2.5D-CNN	� 2.5-Dimensional CNN including axial, coro-

nal and sagittal images
CAD	� Computer-aided diagnosis
ANN	� Artificial neural network
AI	� Artificial intelligence
FC layer	� Fully connected layer
PACS	� Picture archiving and communication system
MPR	� Multiplanar reconstructions
CI	� Confidence interval

ROC	� Receiver operating characteristic
AUC​	� Area under the curve
ROI	� Region of interest

Key points 

A Convolutional Neural Network for classifying pelvic 
calcifications was developed and validated.

The Convolutional Neural Network differentiated ure-
teral stones from phleboliths with higher accuracy than 
the mean assessment by seven radiologists.

More than local image features are needed to correctly 
classify pelvic calcifications
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Introduction

For more than 20 years, non-contrast enhanced computed 
tomography (NECT) has been the examination of choice 
for diagnosing ureteral stones. At detection, about two thirds 
(62–68%) of all ureteral stones are positioned in the lower 
part of the ureter (defined as overlying or below the sacro-
iliac joint) [1–3]. For a number of reasons, the assessment of 
this part of the ureter is a challenge even for an experienced 
radiologist. The lower ureters are located close to blood ves-
sels, bowels and adnexa and, in lean patients in particular 
with a small amount of intra-abdominal fat, it may be impos-
sible to separate those structures and identify a non-dilated 
distal ureter.

A frequent finding in the pelvis is phleboliths or wall cal-
cifications of small veins. They have a prevalence of about 
40% in the adult population [4], can be located close to the 
ureters and can be hard to distinguish from a distal stone. 
CT urography (CTU) to delineate the ureters is one method 
used to determine whether the calcification is a stone or a 
phlebolith. However, CTU has the disadvantage of increased 
radiation exposure and exposure to potentially nephrotoxic 
iodinized contrast media. Different approaches based on 
local features have been tried to distinguish urinary stones 
from phleboliths, such as the “soft tissue rim sign” [5–8] 
used to indicate a stone in the ureter and “the comet sign”, a 
central lucency or low attenuation [6, 9], used to indicate a 
phlebolith. In everyday practice, these signs are often insuf-
ficient for differential diagnosis, Fig. 1.

Another approach for differentiating stones from phlebo-
liths is Computer-Aided Diagnosis (CAD). Differentiation 
using these methods is based on automatically or semi-auto-
matically derived local image features of the calcifications. 

Recently, a semi-quantitative method was applied using cut-
off values for the volume and attenuation of the calcification 
to discriminate stones from phleboliths [10]; while another 
method used image features that were fed into an artificial 
network [11]. Irrespective of the CAD method used, a key 
question for their development is whether the images of the 
calcification and its local surroundings can provide sufficient 
information for differentiation, or whether distant informa-
tion, such as from visible upper ureters, is also needed.

Recent years have seen an enormous interest in artificial 
neural network (ANN)-based artificial intelligence (AI) in 
medical imaging [12, 13]. Briefly, an ANN is built from a 
simple mathematical nerve cell model, a neuron, which com-
putes one output value from multiple input values. When 
a large number of neurons are arranged in inter-connected 
layers, the ANN can be optimized—trained—to predict 
outcomes based on the input of the first layer. A convo-
lutional neural network (CNN) is an ANN with a specific 
arrangement in one or more layers called convolutional lay-
ers, which are especially suited for image analysis. A CNN 
can be fed with annotated images and learn to classify them 
through automatic iterative adjustments of the weighted neu-
ron functions [14].

To the best of our knowledge, there are no previous stud-
ies that evaluate a CNN method for differentiating stones 
from phleboliths.

Therefore, with the overall aim of evaluating whether the 
assessment of a calcification and its surroundings is suffi-
cient for discriminating distal ureteral stones from pelvic 
phleboliths in NECT, the objectives of this study were to: 
(1) Develop and validate a CNN method using local features 
for differentiating distal ureteral stones from pelvic phlebo-
liths. (2) Compare the CNN method with a semi-quantitative 

Fig. 1   Examples of pelvic calcifications. Upper row Distal ureteral stones, Lower row Phleboliths
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method, and with radiologists’ assessments of the calcifica-
tion and its local surroundings.

Methods

The Regional Research Ethics Board approved this retro-
spective study and waived informed consent. We reviewed 
1824 consecutive, acute NECT in patients referred in the 
period April 2012–September 2014 from the local Emer-
gency Department with symptoms of suspected acute ure-
teral stone.

Inclusion and exclusion numbers and criteria are shown 
in Fig. 2. Sample size was defined according to a previous 
study using the same material [3] and therefore, no specific 
power analysis for the present study was performed.

From the retrospectively created data bank, 341 patients 
with a stone in the lower ureter (n = 267) and/or a pelvic 
phlebolith (n = 217) were included. We created a pseu-
donymized image stack of 1-mm slices around each calcifi-
cation as a cube measuring 5 × 5 × 5 cm (fifty 1-mm images 
with a limited field of view of 5 × 5 cm) for use in the study.

The stone group consisted of 65 women and 202 men, 
with a mean age of 49 years (range 18–100). The phlebo-
lith group included 49 women and 168 men; the mean age 
was 53 years (range 22–86). Average stone size (largest 
diameter) was 4.5 mm (range 2.0–11.8 mm) and average 
phlebolith size 4.5 mm (range 2.8–9.6 mm). 110 stones 
and 91 phleboliths were examined using a 40-detector row 
CT scanner (Brilliance, Philips Medical Systems Best, The 
Netherlands) with a low-dose NECT protocol for the urinary 
tract (120 kV, 70 mAs/slice, CTDI 4.9 mGy, 40 × 0.625 mm, 

Fig. 2   Flowchart of inclusion and exclusion criteria. NECT non-contrast enhanced computed tomography, CNN convolutional neural network
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standard filter [B], supine position). 157 stones and 126 
phleboliths were examined using a 2 × 128-channel scanner 
(Somatom Definition Flash, Siemens, Erlangen, Germany) 
(120kVp, 70mAs/slice CTDI 4.7 mGy128 × 0.6 mm, filter 
B20f, B25f or I30f, supine position).

Ground truth

At inclusion, one radiologist (with 12 years’ experience of 
reading abdominal CT) used the complete diagnostic NECT 
examination, as well as knowledge from all follow-up exami-
nations until stone passage, potential previous examinations 
and the clinical information in the referral, to diagnose the 
ureteral stones. Ipsilateral hydronephrosis, hydroureter, per-
inephric and periureteral stranding and the clinical informa-
tion, as site of pain, were used for guiding to a distal ureteral 
stone, which had to be clearly visible in the distal ureter to 
be included.

When a pelvic phlebolith was present, the one most likely 
to be mistaken for a distal ureteral stone was included in 
the study. This assessment was subjective, but based on the 
size and nearness to the distal part of one the ureters. When 
necessary, several prior and subsequent examinations were 
used to define a phlebolith as such.

If there was doubt of the classification into a distal ure-
teral stone or a pelvic phlebolith, the calcification was not 
included.

Test dataset

As illustrated in the flowchart (Fig. 2), the stacks with cal-
cifications were randomly split into two separate datasets. 
We created one smaller dataset containing 50 stones and 
50 phleboliths from the included calcifications. This dataset 
was not used for training the neural network, but served as 
a validation dataset when evaluating the three methods for 
their ability to differentiate phleboliths from stones.

Convolutional neural network (2.5D‑CNN)

A convolutional neural network was developed and trained 
using the training dataset comprised of the remaining 217 
ureteral stones and 167 phleboliths. A 2.5-dimensional CNN 
(2.5D-CNN) model was used, where three perpendicular 
2D images (axial, coronal and sagittal) were created having 
each calcification voxel as intercept. The image triplets for 
all voxels were used as input data for the CNN [15]. Each 
calcification was segmented using a threshold of 250 HU, 
and any hole in the segmented volume was filled using a 
morphologic operation.

The training data were augmented by mirroring in the 
left–right plane, where the anatomic differences are small.

Using each voxel location as a separate training exam-
ple, each calcification contributed from a few to more than 
one thousand training examples, depending on its size. 
In total, the 384 stones and phleboliths generated 38 068 
training examples, i.e., image triplets.

Several different 2.5D-CNN architectures were tested 
on the training data and three different network candidates 
were selected, see Fig. 3. After selection, the three can-
didate networks were trained on the full training cohort.

For classification on the unseen test set, each calcifica-
tion was segmented and 2.5D images generated similarly 
as in the training set, but without mirroring. The classifica-
tion was performed on each voxel location in the calcifica-
tion, and the output for each calcification was computed as 
the average probability output of the softmax classification 
layer. A cut-off of 0.5 on the final score was used for clas-
sification as stone or phlebolith.

Radiologist assessments

Seven radiologists, with 10–28 years of experience reading 
abdominal CTs independently reviewed the one hundred 
5 × 5 × 5 cm 1-mm stacks in the test data, using standard 
PACS (IDS7 Sectra AB, Linköping, Sweden). The readers 
were allowed to use all available features in the system, 
such as multiplanar reformats (MPR), zoom, attenuation 
and size measurements. The readers were blinded to the 
result of the reference standard, clinical information and 
distant image information (such as hydronephrosis, peri-
renal fat stranding etc.).

a

b

c

Fig. 3   Schematic architecture of the three 2.5D convolutional net-
work (2.5D-CNN) candidates validated on the test dataset. Conv con-
volutional layer, Av average pooling layer, FC fully connected layer
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Semi‑quantitative method using attenuation 
and volume

Following the protocol for a recently published study [10], 
classification of distal ureteral stones and phleboliths was 
performed based on the cut-off values below:

Attenuation > 643HU →Ureteral stone.
Attenuation < 643HU →Phlebolith.
Volume > 171mm3 →Ureteral stone.
Volume < 171mm3 →Phlebolith.
The same window settings (W300/L40) and slice thick-

ness of 5 mm as in the original study were used for the meas-
urements for the semi-quantitative method. The 5-mm slices 
were created as MPR based on 1-mm images. The volume 
of the calcification was calculated with the ellipsoid formula 
used in the original article, W × L × H × Pi/6, where W, L 
and H are the lengths of the three principal axes of the ellip-
soid. The mean attenuation was measured in the center of the 
calcification using the in PACS integrated tool for attenua-
tion measurement, the region of interest (ROI) circle.

The size measurements of the calcifications were per-
formed manually by a radiologist with 14 years’ experience 
reviewing abdominal CTs. He was blinded to the results 
of the reference test, distant image information and clini-
cal information and to the results of the assessments by the 
seven radiologists.

Statistics

Statistical analysis was performed using IBM SPSS for 
Mac OS v24.0.0.0 (SPSS Inc. Chicago, Il. USA) and Mat-
lab R2018b (The Mathworks Inc, Natick, Mass, USA). The 
neural networks were developed using Matlab Deep Learn-
ing Toolbox.

Sensitivity, specificity and accuracy with 95% confidence 
intervals (CI) using binomial distribution were calculated for 
the neural network and for the radiologists’ classifications 
compared to the reference standard. The average accuracy 
for the seven readers was calculated as well as the “vote 
majority”, defined as the assessment of each calcification 
chosen by the majority of the readers (≥ 4).

The statistical significance of the difference between the 
CNN and the mean accuracy of the readers was tested using 
the one sample t test.

In the semi-quantitative method, the differences in vol-
ume and attenuation between stones and phleboliths were 
not normally distributed and were, therefore, analyzed 
using the Mann–Whitney U-test. The scatter plot was visu-
ally analyzed for alternative cut-off values for the semi-
quantitative method. Where applicable, the area under the 
Receiver Operating Characteristic (ROC) curve (AUC) was 
computed.

Results

Validation on test dataset

Neither the radiologists, nor the 2.5D-CNN, nor the semi-
quantitative method could fully differentiate between the 
pelvic calcifications in the test dataset. Cross tabulations 
for the three methods against the reference standard are 
shown in Table 1.

Table 1   Cross tabulations and accuracy with 95% CI for three meth-
ods for differentiation of 50 distal ureteral stones and 50 pelvic phle-
boliths using only local features

Reference standard = Calcification assessment by a radiologist using 
the complete NECT examination as well as knowledge from follow-
up examinations until stone passage and clinical information
(a) Convolutional neural network (2.5D-CNN) using the information 
from perpendicular axial, coronal and sagittal images intersecting 
each voxel of the calcification
(b) Majority vote of seven radiologists using only a 5 × 5 × 5cm large 
1-mm slice stack surrounding the calcification
(c) Median radiologist assessment using only a 5 × 5 × 5cm large 
1-mm slice stack surrounding the calcification
(d) Semi-quantitative method using only the volume (mm3) and atten-
uation (HU) of each calcification in a 5-mm slice stack

Reference standard

Phlebolith Stone Total

(a) 2.5D-CNN Prediction Stone vs phlebolith
2.5D-CNN Phlebolith 45 3 48

Stone 5 47 52
Total 50 50 100

Accuracy 92% (95% CI 85–97%)
(b) Cooperation all readers Prediction Stone vs phlebolith
Majority of the 

readers assess-
ments

Phlebolith 49 6 55
Stone 1 44 45
Total 50 50 100

Accuracy 93% (95% CI 86–97%)
(c) Median reader assessment
Median reader Phlebolith 44 5 49

Stone 6 45 51
Total 50 50 100

Accuracy 89% (95% CI 81–94%)
(d) Semi-quantitative method: ≤ 643HU and ≤ 173mm³ →Phlebolith
Quantitative 

prediction 
volume + HU

Phlebolith 38 39 77
Stone 12 11 23
Total 50 50 100

Accuracy 49% (95% CI 39–59%)
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2.5D‑CNN

There were only small differences in classification accuracy 
for the pelvic calcifications between the three candidate 
networks.

The accuracy on the unseen test set was 93%, 90% and 
92% and the AUC was 0.93, 0.93 and 0.95 for the three 
2.5D-CNN candidates, respectively. For the further anal-
ysis, the third network candidate (Fig. 3c), with two con-
volutional layers, was selected. The sensitivity, specificity 
and accuracy for the third 2.5D-CNN candidate were 94% 
(95% CI 87–98%), 90% (95% CI 82–95%) and 92% (95% CI 
85–97%), respectively.

Radiologist assessment

The average accuracy for the seven radiologists’ classifi-
cations was 86% (range 76–91%), which was significantly 
lower (p = 0.03) than the accuracy of the third 2.5D-CNN. 
Using a majority vote among the readers (classification of 
each calcification chosen by ≥ 4 readers) for the assessments 
of the calcifications, the accuracy rose to 93% (95% CI 
86–97%), sensitivity 88% (95% CI 80–94%) and specificity 
98% (95% CI 93–100%). The accuracy of the reader with the 
median result was 89% (95% CI 81–94%). The ROC curve 
for the third 2.5D-CNN compared to the radiologists’ results 
is shown in Fig. 4.

Semi‑quantitative method

There was no significant difference in the median volume 
(p = 0.70) or the median attenuation (p = 0.29) between the 
lower ureteral stones and pelvic phleboliths.

The AUC for classifying a pelvic calcification as a stone 
or phlebolith using the semi-quantitative method was 0.56 
(95% CI 0.45–0.68) and 0.52 (95% CI 0.41–0.64) for the 
attenuation and volume measured on 5-mm images, respec-
tively. Use of the proposed cut-off values of 643HU and 
171mm3 did not enable differentiation between a stone and 
a phlebolith, see Fig. 5 and Table 1 d.

The scatter plot did not reveal an alternative cut-off 
suitable for differentiation between a ureteral stone and 
phlebolith.

Discussion

In this study, we showed that a convolutional neural network 
(2.5D-CNN) that had been trained on a dataset of 384 pelvic 
calcifications, using only local image features, could clas-
sify calcifications in an unseen test set into lower ureteral 
stones and phleboliths with an accuracy of more than 90%. 
This result was similar to the majority vote among seven 

radiologists, also using only local image features, having a 
pooled accuracy of 93%,  and significantly better than the 
mean of the same radiologists’ results.

In recent years, a large number of studies have been per-
formed using machine learning in radiology in many dif-
ferent applications including neuroimaging and imaging of 
the chest and abdomen, where the main interest has been 
towards oncology imaging and anatomy [12]. In two pre-
vious studies, CNNs have been used for the detection of 
ureteral stones [16, 17]. We are not aware of any study previ-
ously published on the differentiation between lower ureteral 
stones and pelvic phleboliths on NECT using CNN.

In 2010, Lee et al. [11] created an artificial neural net-
work (ANN) that used combinations of various shape and 
internal texture parameters of 112 calcifications to classify 
them into ureteral stones or vascular calcifications. They 
reached an AUC of 0.85 for the shape parameters and 0.88 
for texture parameters. However, the same study group was 
used for the ANN development and for validation, and their 
true AUC on a separate test set must be presumed to be 
lower.

To the best of our knowledge, the accuracy of 92% and 
an AUC of 0.95 on the unseen test set for the third candidate 
2.5D-CNN in our study is the best published result for this 
computer-aided diagnosis (CAD) application. These results 
are promising for the development of CAD for pelvic cal-
cifications but, to be clinically useful, greater accuracy is 
necessary than that expected from an experienced radiologist 
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using the information contained in the complete NECT. It is 
also of major importance that ureteral stones are not falsely 
classified as phleboliths, which was the case in three out of 
50 stones (6%) in our test data set.

Neither the individual radiologists, nor the majority vote 
among the radiologists, nor the 2.5D-CNN could completely 
differentiate between stones and phleboliths using only local 
features in a 5 × 5 × 5 cm large cube surrounding the calci-
fications. This finding strongly suggests that local features 
are not sufficient for this discrimination and that future CNN 
models should contain distant information, such as all parts 
of the urinary tract and its closest surroundings for improved 
performance [17]. In daily practice, the radiologists assess 
various information such as hydronephrosis, hydroureter, 
perirenal or periureteral fat stranding, and information in 
the referral about ipsi- or contralateral symptoms together 
with the regional image information close to the calcifica-
tion. Analogous to the performance of human readers, it 
is reasonable to believe that inclusion of more information 
sources in the ANN could improve the machine learning 
performance.

Earlier studies on visual local features and signs have 
shown divergent results, with mostly high specificity as, 
for example, 92–100% [6, 9] for the rim sign indicating a 

ureteral stone and up to 100% for the comet sign [5, 7–9] 
indicating a phlebolith. The sensitivity has been lower, 
50–77% and 21–65%, respectively, and the authors have 
recommended the use of distant and clinical information 
along with the local features for the assessment of pelvic 
calcifications. In a study of Rochester Guest et al. the rim 
sign was accompanied by distant features of obstruction in 
all cases but one and the same study also found a pseudo-
comet sign in some of the ureteral stones [18]. The cen-
tral lucency that was used to differentiate phleboliths from 
stones on plain radiographs has shown to be present only 
occasionally (1–9%) on NECT [9, 19].

The ability of a recently published semi-quantitative 
method that used the attenuation and volume of the cal-
cifications to differentiate between stone and phlebolith 
could not be confirmed in our study. The volume crite-
rion in the semi-quantitative method is highly sensitive 
for inclusion criteria [20] and, similar to us, Bell et al. [9] 
did not find a significant difference in size between distal 
ureteral stones and phleboliths. In our study, we included 
the phlebolith most likely to be mistaken for a ureteral 
stone, as we considered that the radiologist or urologist 
would need automated assistance with this calcification. 
This might have contributed to the lack of difference in 

Fig. 5   Scatter plot with manual 
measurements of volume and 
attenuation. X-axis: Mean 
attenuation (mean HU), Y-axis: 
Volume (mm3), Red circles Dis-
tal ureteral stones. Black stars 
Phleboliths
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volume and attenuation between ureteral stones and phle-
boliths in our material.

Our study has limitations. Even though we used the larg-
est dataset with labeled pelvic calcifications that has been 
used for machine learning so far, more training examples 
might have increased the accuracy of the CNN. A gener-
alization of the CNN method would also require training 
examples from a wide range of scanners with different pro-
tocol parameters.

In regard to the inclusion of phleboliths, only proven 
phleboliths (proven with the help of consecutive examina-
tions, distance NECT information, etc.) were included. This 
might have resulted in a bias towards a better accuracy than 
achievable in daily practice. We endeavored to minimize this 
bias by selecting the phlebolith most likely to be mistaken 
for a stone. Inclusion was performed retrospectively and only 
a very small number of the patients underwent ureteroscopy, 
which could, therefore, not be used for defining ground truth. 
However, we do not regard the lack of ureteroscopy as ref-
erence standard to be a major limitation. Ureteroscopy has 
two disadvantages compared to multiple radiologic follow-
up examinations. Firstly, it cannot confirm the presence of a 
phlebolith, merely the presence of a ureteral stone. Secondly, 
spontaneous stone passage in the interval between the CT 
examination and the ureteroscopy could lead to false-nega-
tive results of the ureteroscopy.

In conclusion, we demonstrated that a 2.5D-CNN could 
differentiate ureteral stones from phleboliths with a 92% 
accuracy, which is higher than the mean accuracy of assess-
ment by seven radiologists. This finding suggests that AI 
can become a valuable tool for ureteral stone imaging. In 
contrast, the semi-quantitative method had a significantly 
lower accuracy. Importantly, neither the CNN, nor the 
majority vote by seven trained readers was entirely accurate, 
which suggests that more than local image features, such as 
information from the complete CT examination and clinical 
information, is needed for the discrimination between distal 
ureteral stones and pelvic phleboliths.
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