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Abstract
Virtually all enzymes catalyse more than one reaction, a phenomenon known as enzyme promiscuity. It is unclear whether 
promiscuous enzymes are more often generalists that catalyse multiple reactions at similar rates or specialists that catalyse 
one reaction much more efficiently than other reactions. In addition, the factors that shape whether an enzyme evolves 
to be a generalist or a specialist are poorly understood. To address these questions, we follow a three-pronged approach. 
First, we examine the distribution of promiscuity in empirical enzymes reported in the BRENDA database. We find that 
the promiscuity distribution of empirical enzymes is bimodal. In other words, a large fraction of promiscuous enzymes are 
either generalists or specialists, with few intermediates. Second, we demonstrate that enzyme biophysics is not sufficient to 
explain this bimodal distribution. Third, we devise a constraint-based model of promiscuous enzymes undergoing duplica-
tion and facing selection pressures favouring subfunctionalization. The model posits the existence of constraints between the 
catalytic efficiencies of an enzyme for different reactions and is inspired by empirical case studies. The promiscuity distribu-
tion predicted by our constraint-based model is consistent with the empirical bimodal distribution. Our results suggest that 
subfunctionalization is possible and beneficial only in certain enzymes. Furthermore, the model predicts that conflicting 
constraints and selection pressures can cause promiscuous enzymes to enter a ‘frustrated’ state, in which competing interac-
tions limit the specialisation of enzymes. We find that frustration can be both a driver and an inhibitor of enzyme evolution 
by duplication and subfunctionalization. In addition, our model predicts that frustration becomes more likely as enzymes 
catalyse more reactions, implying that natural selection may prefer catalytically simple enzymes. In sum, our results suggest 
that frustration may play an important role in enzyme evolution.
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Introduction

Virtually all enzymes catalyse more than one chemical 
reaction, a phenomenon that is called enzyme promiscuity 
(Glasner et al. 2020; Peracchi 2018; Khersonsky and Tawfik 
2010; Nobeli et al. 2009; Copley 2017). Some promiscu-
ous enzymes are heavily specialised towards catalysing a 
single reaction with one substrate (Tawfik and Gruic-Sovulj 
2020) but also catalyse side reactions at low and physiologi-
cally irrelevant rates (Copley 2017; Khersonsky and Tawfik 
2010). Current estimates suggest that enzymes catalyse on 
average 10 side reactions (Copley 2017), although evidence 
suggests the number of reactions per enzyme could be sub-
stantially higher (Huang et al. 2015). Other promiscuous 
enzymes are true generalists. These generalist enzymes 
catalyse reactions with multiple substrates at comparable 
rates. Some of these reactions may be quite different from 
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each other (Copley 2017). Most enzymes are far less dis-
criminating between substrates than they could be (Perac-
chi 2018). For example, the repair enzymes that detoxify 
the metabolic waste of central carbon metabolism are often 
generalists (Bommer et al. 2020; Zhang et al. 2012). We do 
not know whether and when evolution favours specialist or 
generalist enzymes.

In this study, we will use the general term ‘activity’ to 
refer to the ability of an enzyme to catalyse either a par-
ticular kind of reaction, or a reaction with a given substrate. 
The extent of this ability is commonly quantified in terms of 
catalytic efficiency (Eisenthal et al. 2007). We will refer to 
activities favoured and preserved by selection as functional 
activities (Keeling et al. 2019). If an enzyme has multiple 
such activities, we consider it multifunctional. Because we 
work with a dataset in which it is difficult to know if a given 
activity is functional or not, we will use promiscuity in the 
most general sense (Copley 2017; Peracchi 2018; Nath and 
Atkins 2008). The more promiscuous an enzyme is, the more 
reactions it catalyses, regardless of whether these activities 
are functional or not.

Enzyme promiscuity has multiple possible mechanical 
and chemical causes (Nobeli et al. 2009; Khersonsky and 
Tawfik 2010). A prominent one is that proteins can fluc-
tuate between different, energetically equivalent confor-
mations (Campbell et al. 2016; Nobeli et al. 2009; James 
and Tawfik 2003; Khersonsky and Tawfik 2010). These 
alternative conformations alter the shape of an enzyme’s 
active site and thus which substrates fit into this site (Ben-
David et al. 2012). Evolution can change enzyme activities 
by stabilising some conformations and destabilising others 
(Campbell et al. 2016). For example, over billions of years, 
�-lactamases evolved from flexible promiscuous enzymes 
into the current more rigid enzymes that are efficient and 
specific catalysts of penicillin breakdown. This loss of flex-
ibility came at the cost of losing activity for other antibiot-
ics (Zou et al. 2015). Conversely, directed evolution of a 
metallo-�-lactamase towards the antibiotic cephalexin can 
result in a more flexible and promiscuous enzyme (Tomatis 
et al. 2008).

Promiscuity can also occur within the same conformation, 
for example, because an alternative substrate may be able 
to bind to the active site, albeit imperfectly (Nobeli et al. 
2009). Certain substrates are so similar that enzymes cannot 
discriminate between them (Peracchi 2018) and require addi-
tional proofreading mechanisms outside the active site to 
do so. Examples include some aminoacyl-tRNA synthetases 
that have to discriminate between very similar amino acids 
when attaching them to their cognate tRNA (Tawfik and 
Gruic-Sovulj 2020).

Promiscuity has two important consequences for enzyme 
evolution. First, it facilitates the evolution of new metabolic 
pathways when organisms encounter a novel environment. 

The required catalytic activities do not need to evolve from 
scratch, but can be recruited from the side reactions cata-
lysed by existing enzymes (Glasner et al. 2020; D’Ari and 
Casadesús 1998; Newton et al. 2018; Conant and Wolfe 
2008; Peracchi 2018). Second, promiscuity can affect the 
fate of gene duplicates, affecting, for example, the survival 
of duplicates or the acquisition of novel functions (Conant 
and Wolfe 2008; Noda-Garcia and Tawfik 2020; Des Marais 
and Rausher 2008; Sikosek et al. 2012). Duplication with 
subsequent changes in catalytic activity of either duplicate 
is common during enzyme evolution (Copley 2020).

Whilst most duplicates quickly become lost (Lynch and 
Conery 2000), the fate of surviving duplicates is shaped by 
their enzymatic activities and the selection pressures acting 
upon them. Some duplicates benefit an organism by sim-
ply increasing the expression of a low-efficiency enzyme 
(Bergthorsson et al. 2007; Kondrashov and Kondrashov 
2006). In others where the duplicated enzyme catalyses two 
beneficial reactions that strongly trade-off with one another, 
duplication can allow each duplicate to subfunctionalise, 
that is, to retain a subset of the functions of the generalist 
ancestor and to specialise by improving the catalysis of one 
of the two competing reactions (Noda-Garcia and Tawfik 
2020; Des Marais and Rausher 2008; Sikosek et al. 2012). 
Subfunctionalization can also occur without such a trade-
off and without increasing catalytic activity. In such cases, 
the duplicates of a bi-functional ancestor can experience a 
release from selection for one of the two activities, which 
subsequently become eroded by loss-of-function mutations 
and genetic drift (Force et al. 1999). Subfunctionalisation is 
also at times followed by the gain of a new function in one 
of the duplicates, a process known as neofunctionalisation 
(Conant and Wolfe 2008; Scannell and Wolfe 2008). It can 
be facilitated by promiscuity (Glasner et al. 2020), which 
can buffer the effects of deleterious mutations that decrease 
functional activities, allowing duplicates to accumulate more 
mutations, with each mutation increasing the chance of dis-
covering new promiscuous activities (Glasner et al. 2020).

A poorly understood factor in the survival and evolu-
tion of duplicate enzymes is the effect of mutations on an 
enzyme’s promiscuity itself. There is strong evidence that 
mutations constrain catalytic activities for different reac-
tions, i.e. their effects on different catalytic activities are 
correlated (Bayer et al. 2017; Tawfik and Gruic-Sovulj 2020; 
Savir et al. 2010; Kaltenbach and Tokuriki 2014). Such con-
straints usually also entail trade-offs, i.e. a high catalytic rate 
for one reaction implies a low rate for the other reactions 
(Khersonsky and Tawfik 2010; Tawfik and Gruic-Sovulj 
2020; Tokuriki et al. 2012; Kaltenbach et al. 2016). Trade-
offs can be strong but are more often weak (Kaltenbach 
and Tokuriki 2014; Aharoni et al. 2005; Gould and Tawfik 
2005; Tokuriki et al. 2012; Des Marais and Rausher 2008; 
McLoughlin and Copley 2008).
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The strength of a trade-off can influence the fate of a 
duplicated gene. If trade-offs between two important enzyme 
activities are sufficiently weak, selection may not favour sub-
functionalisation strongly enough to prevent one duplicate 
from becoming lost (Noda-Garcia and Tawfik 2020).

As opposed to trade-offs, some constraints on enzyme 
activities create synergies between two or more reactions 
(Espinosa-Cantú et al. 2015; Savir et al. 2010; van Loo et al. 
2019). For example, in some enzymes an increase in the 
catalytic activity of the enzyme for one substrate requires 
that it also improves its activity on another substrate (van 
Loo et al. 2019). In other enzymes the catalytic rates of dif-
ferent reactions are even inseparable such that the catalysis 
of one reaction entails the catalysis of another reaction, even 
if that other reaction is deleterious (Savir et al. 2010). Such 
constraints are less well documented but may also affect 
enzyme evolution after duplication.

Constraints may interact with selection pressures on 
enzyme activity to affect enzyme evolution. Here, we 
explore the possibility that this interaction can render an 
enzyme a poor catalyst even when selection favours high 
catalytic activity. This can occur when multiple activities 
of an enzyme are in irresolvable conflict with one another. 
In this case, the enzyme can be considered to be in a state 
of frustration (Ferreiro et al. 2014). Frustration is a concept 
originally describing the suboptimal arrangements of atoms 
in glasses, which cannot achieve the optimal regular arrange-
ment that define crystals due to conflicting forces affecting 
their orientation (Ferreiro et al. 2014). Frustration occurs 
at multiple levels of biological organisation (Ferreiro et al. 
2014; Wolf et al. 2018). It has, to our knowledge, not been 
studied for promiscuous enzymes.

We follow a three-pronged approach to explore how con-
straints may have shaped the evolution of enzyme prom-
iscuity. First, we examine the distribution of promiscuity 
amongst enzymes reposited in the Braunschweig Enzyme 
Database (BRENDA) (Jeske et al. 2019). To do so, we quan-
tify the degree of substrate promiscuity in terms of how well 
a given enzyme catalyses reactions with different substrates 
(Nath and Atkins 2008). If these catalytic efficiencies for dif-
ferent substrates are similar, we consider the enzyme a gen-
eralist. If they are dissimilar, with the enzyme acting much 
more efficiently on one substrate than on others, we consider 
it a specialist. We find that the distribution of promiscuity 
is bimodal, with enzymes being largely either specialists or 
generalists. Second, we use a simple biophysical model to 
show that enzyme biochemistry alone cannot explain the 
bimodality we observe in empirical enzymes. Third, we 
build a phenomenological model of how constraints affect-
ing the ability of an enzyme to catalyse multiple reactions 
influences the degree of specialisation that is possible before 
and after duplication. This model is based on experimen-
tal case studies of constraints in ribozymes, enzymes, and 

other proteins engaged in two activities (Bendixsen et al. 
2019; Kaltenbach and Tokuriki 2014; Tokuriki et al. 2012; 
Lite et al. 2020; van Loo et al. 2019; Savir et al. 2010). 
Our results suggest that the bimodal distribution of enzyme 
promiscuity observed in empirical data cannot be explained 
solely by enzyme biochemistry but also involves selection 
followed by duplication.

Results

Promiscuous Enzymes Have a Bimodal Distribution 
of Promiscuity

We started by considering the distribution of promiscuity 
amongst enzymes in nature. To do so, we obtained cata-
lytic parameters from the BRENDA enzyme database (Jeske 
et al. 2019), and compiled a dataset of 30,184 substrates with 
measurements for both the turnover number and Michaelis 
constant. From these measurements we calculated catalytic 
efficiencies (turnover divided by Michaelis constant) as a 
measure of how well an enzyme catalyses a given reac-
tion (Eisenthal et al. 2007). The median turnover number 
in our dataset is 5.49 s −1 , the median Michaelis constant 
is 1.99 × 10−1 mM, and the median catalytic efficiency is 
26.0 mM−1 s −1 , which is lower than in a previous report 
(Bar-Even et al. 2011) because we also analysed non-natural 
substrates. Consistent with this report (Bar-Even et al. 2011), 
we found that the distribution of catalytic efficiencies is log-
normal (Fig. 1A).

After pre-processing and quality control steps (methods), 
our dataset contained data for 5028 enzymes with catalytic 
parameters for at least two substrates. These enzymes come 
from 1621 species from all three domains of life and from 
viruses. 2039 of these enzymes have a protein accession 
number that allows their identification in protein databases 
(methods). For each protein in this dataset, we calculated a 
promiscuity index (Nath and Atkins 2008) from the catalytic 
efficiencies of its reactions with each substrate. This index 
quantifies how similar or dissimilar an enzyme’s catalytic 
efficiencies are for multiple substrates. It ranges between 
the limits of one (reactions with all substrates are catalysed 
with very similar efficiencies) and zero (reactions with all 
but one substrate are catalysed with zero efficiency). We 
found that the distribution of promiscuity index values is 
bimodal (Fig. 1B). This bimodal distribution remains when 
we considered data for only the 2039 enzymes with a pro-
tein accession number (Online Resource 1 figure S1). 39 
percent of all promiscuity index values are based on two sub-
strates per enzyme (Fig. 1B). The average enzyme has 4.90 
known substrates ( ±6.00 standard deviation) with measured 
catalytic parameters. We considered the possibility that the 
promiscuity of an enzyme reflects how much effort has gone 
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into characterising its substrate promiscuity. However, this 
is not the case, because the number of substrates reported 
per enzyme is not associated with the promiscuity index 
(Kendall’s � = 6.01 × 10−3 , p = 0.557 , n = 5028).

We found that highly promiscuous enzymes tended to 
be slightly less efficient catalysts. Specifically, highly pro-
miscuous enzymes have lower catalytic efficiencies for the 
reactions they catalysed best than less promiscuous enzymes 
(Pearson’s r = −0.21 , p = 7.57 × 10−52 , n = 5028 ). In addi-
tion, we found that the logarithmically (base 10) transformed 
catalytic efficiencies of reactions with different substrates 
catalysed by the same enzyme were moderately similar 
(Pearson’s r = 0.617 , p = 0.00 , n = 5028 ; for enzymes with 
more than two substrates, two substrates were chosen at ran-
dom without replacement, see methods for details on this 
analysis, Fig. 1D).

We also searched for orthologs in our dataset and found 
that younger orthologs tend to have slightly more similar 
promiscuities. For the 2039 enzymes with a protein acces-
sion number, we searched for possible orthologs by down-
loading amino acid sequences from Uniprot (The UniProt 
Consortium 2023) and running a BLAST search (Drost 
et al. 2015; Camacho et al. 2009) (Online Resource 1 sec-
tion S1.10). We found 6,683 pairs of putative orthologs. 
For 6,602 of these enzyme pairs, we correlated the percent 
sequence identity from the BLAST search with the absolute 
difference in promiscuity index of the enzymes (Kendall’s 
� = −0.0318, z = −3.87, p = 1.07 × 10−4, n = 6602 ) .  We 
found that enzymes with similar sequences have weakly 
more similar promiscuities.

Based on these observations we formulated three hypoth-
eses that may explain why the empirical distribution of 

Fig. 1  The distribution of promiscuity indices for enzymes in 
BRENDA are bimodal, and the logarithm of catalytic efficiencies of 
reactions catalysed by the same enzyme are correlated. A Distribu-
tion of 30,184 catalytic efficiencies in the BRENDA dataset (Jeske 
et  al. 2019). B Distribution of the promiscuity index (Nath and 
Atkins 2008) (methods equation 1) of 5028 enzymes for which cata-
lytic parameters (Michaelis constant and turnover number) are avail-
able for at least two substrates. We estimated the promiscuity index 
of each enzyme from the catalytic efficiency (turnover divided by 
Michaelis constant) for each substrate of a reaction that the enzyme 

catalyses. C Distribution of the number of substrates (natural and 
non-natural) per enzyme used to estimate the promiscuity index for 
each of the 5028 enzymes. D The logarithm of catalytic efficiencies 
of two substrates whose reactions are catalysed by the same enzyme 
are correlated. For this analysis, we sampled at random without 
replacement two substrates for those enzymes with more than two 
substrates in the database (see methods). Each circle corresponds 
to one of the 5028 enzymes; colour indicates the promiscuity index 
(high in red and low in grey) of the enzyme for the two sampled sub-
strates
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promiscuity indices is bimodal. Our first hypothesis is that 
the distribution is the consequence of ascertainment or 
measurement bias. We modelled a scenario in which the 
discovery of new substrates of an enzyme is biased towards 
substrates with similar catalytic efficiency to those already 
known (Online Resource 1 section S1.7). In this case, as 
more substrates are discovered, the bimodality of the promis-
cuity distribution disappears. Given that our dataset contains 
catalytic parameters of about five substrates per enzyme (on 
average), this first hypothesis is not well supported (Online 
Resource 1 section S1.7). The second hypothesis, which 
we explore in the next section, is that enzyme biochemistry 
may suffice to explain the bimodality. The third, alternative 
hypothesis posits that evolutionary and biochemical factors 
may explain the bimodality of the promiscuity distribution. 
We explore these factors in the subsequent sections.

A Biophysics‑Based Null Distribution of Enzyme 
Promiscuity

In this section, we aim to establish a null distribution for the 
promiscuity index. We will employ this null distribution to 
evaluate whether enzyme promiscuity can exhibit a bimodal 
distribution solely due to inherent variation in enzymatic 
efficiencies or if additional factors are necessary to explain 
this bimodality. We sought to establish this distribution for 
a protein capable of catalysing two reactions. Using Michae-
lis–Menten kinetics, we were able to derive a formula that 
estimates the enzyme catalytic efficiencies from the acti-
vation free energy of enzymatic reactions, ΔG#

1
 and ΔG#

2
 

(see Online Resource 1 section S1.6 for details). We then 
use the promiscuity index equation (methods, equation 1) 
to calculate the promiscuity from these catalytic efficiency 
estimates.

Consequently, the distribution of enzyme promiscuity is 
conditional on the distribution of the activation free energy 
of enzymes, which is empirically known. It approximates a 
Gaussian shape with a mean spanning from −4 to −7 kcal/
mol and a standard deviation of approximately 2 kcal/mol 
(Sousa et al. 2020). We then used a sampling process and 
sampled 103 pairs of ΔG#

1
 and ΔG#

2
 from the known empiri-

cal distribution of activation free energies, and for each pair 
calculated the enzyme promiscuity. We then examined the 
distribution of enzyme promiscuity using this process by fit-
ting a beta distribution to these distributions. We selected the 
beta distribution for modelling these distributions because it 
is commonly used to represent the probability distribution of 
variables when the distribution type is unknown. This dis-
tribution involves two positive shape parameters, alpha and 
beta, whose combination determines the shape and skewness 
of the distribution.

Figure 2A demonstrates that for different values of ΔG#
1
 

and ΔG#
2
 sampled from the activation free energy distribution 

of natural enzymes, the promiscuity index distribution is 
unimodal. This suggests that the variation in enzyme kinet-
ics alone is insufficient to account for the presence of distinct 
categories of enzymes—generalist and specialist—leading 
to a bimodal enzyme promiscuity distribution. Additional 
factors are likely necessary to generate such enzyme diver-
sity. To model the impact of these factors, we augmented the 
variation in activation free energy. We assumed that mecha-
nisms contributing to a bimodal distribution achieve this by 
amplifying the variance in enzymatic free energies. Indeed, 
we observed that the distribution of enzyme promiscuity 
index adopts a bimodal shape when the variation in activa-
tion free energy is substantially heightened, at least doubling 
from �ΔG# kcal/mol to 𝜎ΔG# > 4 kcal/mol (Fig. 2B, C).

In summary, our basic biophysical model demonstrates 
that a bimodal enzyme promiscuity distribution is more 
likely to arise due to evolutionary factors, rather than being 
solely a consequence of enzyme kinetics creating a distribu-
tion where both generalist and specialist enzymes coexist.

A Selection‑with‑Constraints Model of Enzyme 
Evolution

We next explore evolutionary factors that may explain why 
the promiscuity distribution is bimodal. Specifically, we 
explore three factors that are known to influence the evolu-
tion of enzymes: Selection on enzyme activities, constraints 
on these activities, and gene duplication. Our evolutionary 
hypothesis is that selection favours enzymes with higher 
catalytic efficiencies, but catalytic efficiencies are subject 
to constraints. Gene duplication can simplify the selective 
pressures acting on an enzyme, allowing the duplicates to 
escape or bypass some of the constraints limiting the evolu-
tion of the pre-duplication enzyme. The result of these three 
factors acting together is a bimodality in promiscuity. To 
explore this hypothesis, we developed a simple phenom-
enological model, based on empirical case studies (see next 
paragraph), of how multiple activities of the same enzyme 
can interfere with one another and constrain the evolution 
of the enzyme. To start with, we identified a range of pos-
sible pairwise relationships between the catalytic ability of 
an enzyme for two reactions (Fig. 3). For simplicity, we have 
assumed that the pairwise relationships are symmetrical (i.e. 
both reactions are constrained in the same way) and cre-
ated a set of linear constraints approximating these pairwise 
relationships. These constraints limit which combinations of 
catalytic efficiencies are possible for a given enzyme, which 
produce a continuous space we termed the feasible space 
of efficiencies. Our model makes no assumptions about 
the causes of these constraints. However, based on empiri-
cal studies discussed in the next paragraphs, we interpret 
these constraints as the result of biophysical or biochemical 
limitations on catalysis. As such, we interpret the feasible 
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space outlined by these constraints to delimit all possible 
genotypes. It contains all possible sequence variants of an 
enzyme that catalyse at least one of the two reactions in 
question. In other words, it contains all catalytic efficiencies 
for the two reactions that are reachable by mutation.

Our constraints range from strongly antagonistic, where 
a high catalytic efficiency for one reaction entails low effi-
ciency for the other, to strongly synergistic, where high effi-
ciency for one reaction can only be achieved when there is 
also high efficiency for the other. These pairwise relation-
ships are based on empirical case studies of both proteins 

and ribozymes. For example, strong antagonism (Fig. 3A) 
exists amongst RNA molecules that are either self-cleaving 
or ligases, but cannot attain high efficiency for both activities 
at once (Bendixsen et al. 2019). Weaker trade-offs (Fig. 3B) 
are commonly observed in experiments where an enzyme is 
subjected to multiple rounds of selection for a promiscuous 
function (Kaltenbach and Tokuriki 2014), for example, from 
a phospotriesterase to an arylesterase (Tokuriki et al. 2012). 
In a study (Lite et al. 2020) investigating protein-protein 
binding between the anti-toxin ParD3 and two toxins that 
are closely related to each other, ParE3 and ParE2, mutations 

A B

C D

Fig. 2  Enzyme promiscuity distribution inferred from enzyme kinet-
ics. A The Michaelis–Menten kinetics and the relationship between 
enzyme promiscuity and the activation free energy of the enzy-
matic reaction. B The distribution of enzyme promiscuity for natural 
enzymes with the average activation free energy �ΔG# = −6 kcal/mol 
and �ΔG# = 2 kcal/mol. The black and red curves correspond to the 

simulated distribution and the fitted distribution with a beta distribu-
tion, respectively. C The shape parameters of fitted beta distributions 
for enzyme promiscuity values obtained from distributions of activa-
tion free energies with different standard deviation changing from 0.2 
kcal/mol (grey) to 6 kcal/mol (red). D Corresponding beta distribu-
tions to the distributions presented in panel C
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in the anti-toxin allow it to bind either one or both toxins. 
In this system, all combinations of specificities are possible 
without much of a trade-off (Fig. 3C). For some members 
of the alkaline phosphatase enzyme family (van Loo et al. 
2019), at high catalytic efficiency, the catalytic efficiency of 
one reaction can only be increased if a mutation also simul-
taneously increases the efficiency of the other reaction. In 
contrast, at lower catalytic efficiency mutations can increase 
or decrease the efficiencies independently of one another. 
This example motivates the weak synergism shown sche-
matically in Fig. 3D. Finally, enzymes like Rubisco cata-
lyse harmful side reactions whose efficiency can only be 
reduced by mutations that also reduce the efficiency of the 
main reaction (Fig. 3E; (Savir et al. 2010)). These five pair-
wise relationships (Fig. 3) are the fundamental and discrete 
units of our model.

Where a pair of catalytic efficiencies lies on the spectrum 
from antagonistic to synergistic constraints may depend on 
the similarity of the underlying reactions. However, this 
interpretation requires caution, because the ability to cata-
lyse multiple reactions is a complex trait influenced by many 
different properties of an enzyme’s active site and of the 
reactants, and there may thus be no straightforward meas-
ure of ‘reaction similarity’ (Babtie et al. 2010; Janzen et al. 
2020).

Selection with constraints is not sufficient to explain 
the bimodal distribution of promiscuity amongst empiri-
cal enzymes. As stated above, we assume in our model 

that selection favours increasing the catalytic activity of 
the enzyme with respect to the beneficial reactions. Many 
enzymes exhibit diminishing returns epistasis with regards 
to catalytic efficiency, i.e. a decrease in enzyme activity 
causes a larger fitness loss than the fitness gain resulting 
from an increase in activity (Yi and Dean 2019; Chou et al. 
2014). We include this diminishing returns epistasis in our 
model (Online Resource 1 section S1.4). Consequently, 
promiscuous enzymes catalysing multiple beneficial reac-
tions will evolve into generalists with high promiscuity. 
For example, in enzymes catalysing two reactions that are 
strongly antagonistic with respect to one another, even if 
higher catalytic efficiency could be achieved in one reaction 
by decreasing catalytic efficiency for the other reaction, such 
specialisation would cause a net decrease in fitness (see next 
section). Thus, the evolution of specialist each catalysing 
one of these beneficial reactions requires a third factor next 
to selection and constraints: Gene duplication.

Duplication is a major mode of enzyme evolution and 
can affect the fate of promiscuous enzymes, as discussed 
earlier in this work. Enzyme evolution is characterised by 
high rates of gene duplication followed by subfunctionali-
zation of the duplicates (Sikosek et al. 2012; Noda-Garcia 
and Tawfik 2020). Consequently, we modelled a scenario in 
which the single copy gene encoding a generalist ancestral 
enzyme that catalyses multiple reactions undergoes multiple 
rounds of duplication. We assumed that each duplicate is 
under positive selection to catalyse only one of the reactions 
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Fig. 3  Schematic of our constraint-based model of the range of pos-
sible relationships between two reactions catalysed by the same 
enzyme. These possible relationships range from antagonism to syn-
ergism, and are here subdivided into five possible classes: A strong 
antagonism, B weak antagonism, C no interaction/unconstrained, 
D weak synergism, and E strong synergism. Each axis denotes the 
catalytic efficiency of the enzyme for one of the two reactions. The 
grey areas contain the feasible combinations of catalytic efficiencies, 

which are delimited by constraints (thin black lines). These feasible 
spaces circumscribe the possible catalytic efficiencies of different 
sequence variants of the same enzyme. All combinations of cata-
lytic efficiencies within a feasible space are reachable by mutation, 
whereas catalytic efficiencies outside the feasible space are not. The 
pairwise relationships can be arrayed in order of increasing similar-
ity of the reactions, although reaction similarity is not necessarily the 
only factor influencing the shape of the pairwise relationships
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catalysed by the generalist. In other words, each duplicate 
is subject to selection for a different reaction and its abili-
ties to catalyse the other reactions do not affect fitness. We 
assumed that catalytic activities not under selection will 
tend to disappear due to loss-of-function mutations fixed by 
genetic drift (Force et al. 1999), resulting in subfunctionali-
zation even in the absence of selection. This inactivation can 
occur relatively quickly, within 106 generations (Force et al. 
1999). An enzyme’s ability to catalyse a given reaction will 
only remain if its loss is prevented by an interplay of selec-
tion and the constraints we model (Fig. 3). Consequently, 
we report the minimum catalytic efficiencies for each non-
functional activity permitted by constraints and selection 
on functional catalytic activities. We assumed that natural 
selection favours increasing the catalysis of every functional 
reaction. We studied whether duplicated enzymes are always 
more efficient catalysts than their generalist ancestor. We 
also asked to what extent duplication can reduce or remove 
obstacles to evolving more efficient enzymes. In addition, we 
investigated the degree of promiscuity in duplicated enzyme 
variants.

In the next two sections, we will examine some of the 
evolutionary consequences of this selection-constraints-
duplication model and then consider to what extent it may 
account for the bimodal distribution of promiscuity in 
empirical enzymes.

Catalytic Constraints can Create ‘Frustrated’ 
and Promiscuous Enzymes

We investigated how selection, constraints and duplication 
may drive the evolution of promiscuous enzymes by com-
paring the ancestors and the duplicates predicted by our 
constraint-based model. We first considered the case of an 
enzyme that can catalyse three reactions, because this is the 
lowest number of reactions where the pairwise constraints 
can interfere with one another. To simulate enzymes that can 
catalyse more than n = 2 reactions, we combined the pair-
wise relationships in Fig. 3 to form higher-dimensional fea-
sible spaces that contain all possible combinations of cata-
lytic efficiencies of the enzyme’s n reactions that can be 
reached by mutation. We investigated all feasible spaces that 
could be constructed using these five pairwise relationships. 

For enzymes with 
(

n

2

)

= k reaction pairs, we assigned 

from this set of five relationships a set of constraints for each 
of the k reaction pairs of the enzyme (methods). For an 
enzyme catalysing three reactions, there are k = 3 reaction 
pairs. Because the same pairwise relationship can occur mul-
tiple times (sampling with replacement) and the ordering is 
not important, the five possible pairwise relationships 
(Fig. 3) combine to form C(5 + 3 − 1, 3) = 35 feasible spaces 
(see also Online Resource 1 section S1.5). These 35 feasible 

spaces comprise every possible unique combination of the 
five pairwise relationships between the enzyme’s three reac-
tions (methods). For example, in one feasible space all three 
reactions may be strongly synergistic with respect to one 
another and in another strongly antagonistic. In a third fea-
sible space, one pair of reactions (a and b) may be strongly 
antagonistic, the second pair (b and c) unconstrained, and 
the third pair (a and c) weakly antagonistic. These feasible 
spaces contain every possible enzyme variant catalysing 
reactions at efficiencies permitted by the constraints set out 
by the pairwise relationships.

We then searched for those enzyme variants in every fea-
sible space that maximised fitness (methods). We did so in 
two steps. First, we identified in every feasible space those 
enzyme variants that could act as generalist ancestors. These 
enzyme variants are under selection to catalyse all three 
reactions as efficiently as possible given the constraints of 
the feasible space. Depending on the shape of the feasible 
space, multiple enzyme variants may fulfil this requirement. 
Consequently, there are more possible ancestors (41) than 
feasible spaces (35). The reason that there are more ancestor 
enzyme variants than feasible spaces is that feasible spaces 
that contain strong antagonism between at least two reac-
tions contain more than one ancestor enzyme variant with 
equivalent fitness, but different catalytic efficiencies for 
the three reactions. In our model, the fitness of an ancestor 
depends on all three reactions and is more sensitive to low 
catalytic efficiencies because we assumed a fitness function 
with diminishing returns (methods). Consequently, selec-
tion will push ancestors to preferentially catalyse one of the 
two (or three) reactions trading-off with one another, but 
without losing catalysis for the other reaction(s). Because 
all reactions are equally important for achieving high fit-
ness, which reaction is preferred is arbitrary and therefore, 
multiple enzyme variants can have equivalent fitness.

Second, we identified in every feasible space those 
enzyme variants that could act as duplicates. Every dupli-
cate is a descendant of the ancestor enzyme, a descendant 
that has come under selection to catalyse only one reaction. 
Given that there are 35 feasible spaces and three possible 
duplicates per feasible space, there are 3 × 35 = 105 pos-
sible duplicates.

We identified the constraints that permit duplicates to 
evolve into more efficient catalysts than their ancestors. We 
observed that, on average, as pairwise relationships become 
more antagonistic, ancestor enzyme variants become poorer 
catalysts (Pearson’s r = −0.718 , p = 1.25 × 10−7 , n = 41 ). 
Consequently, as the pairwise relationships become more 
antagonistic, duplication and specialisation results in 
increasingly large improvements in catalysis (Fig.  4A, 
Pearson’s r = 0.680 , p = 1.42 × 10−15 , n = 105 ). The rea-
son is that for enzymes whose constituent reactions are all 
weakly or strongly synergistic, being a generalist already 
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results in optimal catalysts. Duplication and specialisation 
entail no further improvement. Conversely, because strong 
antagonism permits high activity for one substrate only if 
another reaction is poorly catalysed, it causes adaptive con-
flict between different selection pressures. The result is that a 
generalist ancestor enzyme variant where all three activities 
are functional and strongly antagonistic to one another will 
be a suboptimal catalyst for all three reactions. By analogy to 
similar phenomena in physics and protein biochemistry we 
say that such an ancestral enzyme is in a state of frustration 
(Wolf et al. 2018; Ferreiro et al. 2014). We quantified the 
frustration of an enzyme variant before and after duplication 
as the difference between the realised catalytic efficiency and 

the maximum possible catalytic efficiency averaged across 
all reactions the enzyme is selected for. This measure of 
frustration is independent of the total number of reactions 
catalysed by the enzyme. Frustration in the form of adap-
tive conflict can in principle be resolved through duplication 
and subsequent specialisation of the duplicates. Our results 
indicate that this is indeed the case, with enzymes that have 
strong antagonism between their abilities to catalyse reac-
tions benefiting the most from duplication (Fig. 4A).

However, duplication cannot always eliminate conflict 
between different activities of the same enzyme variant. 
Even when an enzyme variant is not subject to adaptive 
conflict because selection is acting on only one reaction, 

Fig. 4  Catalytic constraints can create ‘frustrated’ and promiscuous 
enzyme variants. A As feasible spaces of enzymes contain increas-
ingly less synergistic and more antagonistic interactions, the gain in 
catalytic activity of enzyme variants due to duplication and speciali-
sation increases. Feasible spaces are constructed from combinations 
of the pairwise relationships in Fig.  3 (methods). Catalytic activity 
is scaled between zero (no activity) to one (maximum activity). We 
quantified the extent to which different feasible spaces are charac-
terised by strongly synergistic or strongly antagonistic relationships 
between their reaction pairs by quantifying how antagonistic the rela-
tionships are on average (methods). To quantify this average antago-
nism score Â , we scored each of our pairwise relationships (Fig. 3) 
with an antagonism score A ranging from one (strongly antagonis-
tic, Fig. 3A) to zero (strongly synergistic, Fig. 3E) in increments of 
0.25. The average antagonism score Â that characterises a feasible 
space is the average of the antagonism scores A of each of the pair-
wise relationships that constitute the feasible space. Consequently, 
Â = 0 denotes that all three pairwise relationships are strongly syn-
ergistic (Fig. 3E), whilst Â = 1 denotes that all pairwise relationships 
are strongly antagonistic (Fig.  3A). B Hypothetical example of the 
feasible space of a promiscuous enzyme with high frustration both 
before and after frustration. This enzyme has a feasible space (grey 
polygon) that does not permit the evolution of highly efficient cataly-
sis for any of the reactions it catalyses, i.e. the theoretical maximum 

catalytic efficiency of one is outside the feasible space. The reason 
is that the enzyme catalyses two reactions that are strongly antago-
nistic to one another but are strongly synergistic to a third reaction. 
The structure of this feasible space does not allow the elimination of 
catalytic activity for any one reaction unless the enzyme is entirely 
inactivated. Black and red circles show the two enzyme variants 
maximising fitness before duplication and after duplication, respec-
tively. C As the pairwise relationships that constitute a feasible space 
become less similar, duplication and specialisation becomes less able 
to resolve frustration. We quantify the extent of frustration as the dif-
ference between the catalytic activity of an enzyme variant that max-
imises fitness within the bounds of the feasible space and the catalytic 
activity that characterises an optimal enzyme, which equals one. If all 
reactions catalysed by an enzyme are subject to selection, we quantify 
the frustration of the enzyme as the mean frustration of all its reac-
tions. We quantify the dissimilarity D of pairwise relationships con-
stituting the feasible space of an enzyme using the antagonism scores 
A of the pairwise relationships (methods). A dissimilarity of D = 0 
means that all three pairwise relationships are the same (for exam-
ple, all are strongly synergistic), whilst D = 1 means that the pairwise 
relationships are highly dissimilar (for example, the combination plot-
ted in B). All results in A and C are shown for the 105 possible spe-
cialised enzymes predicted from feasible spaces with three reactions
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constraints from other reactions can still interfere with the 
catalysis of that reaction. For example (Fig. 4B), frustra-
tion cannot be entirely resolved in an enzyme that catalyses 
three reactions, of which two reactions strongly trade-off 
with each other but both are strongly synergistic with the 
third reaction. This feasible space does not permit much 
specialisation, because specialisation is prohibited by the 
strong synergism, nor is it possible within the feasible space 
to reach high catalytic efficiency, which would require spe-
cialisation, a requirement set by the strong antagonism. 
Thus any enzyme variant in this space will be frustrated 
and promiscuous. An interesting property of the enzyme in 
this example, and of enzymes that remain frustrated after 
duplication in general, is that it catalyses reactions whose 
pairwise relationships violate an expectation set by ‘reaction 
similarity’. Previously, we discussed the possibility that the 
relationship between two reactions is due to the similarity 
of their reaction mechanisms, with strongly synergistic pairs 
of reactions being very similar, and strongly antagonistic 
pairs of reactions being very dissimilar. For the example 
we just discussed (Fig. 4B), if reaction a is strongly antago-
nistic with regards to (i.e. very different from) reaction b, 
and reaction b is strongly synergistic with regards (i.e. very 
similar) to reaction c, then we may expect that reaction c is 
very different from reaction a and that their relationship is 
strongly antagonistic. Strong synergism between reactions a 
and c violates this expectation. Weaker violations of reaction 
similarity also result in constrained enzymes that remain 
frustrated after duplication and specialisation. Enzymes with 
less similar pairwise relations between reactions (Fig. 4C) 
are more likely to remain frustrated even after duplication. 
Overall, 71 percent of our 35 feasible spaces contained frus-
trated enzyme variants before duplication, and 17.

An important consequence of frustrated enzyme vari-
ants with a strongly constrained feasible space is that these 
enzyme variants are promiscuous and poor catalysts even for 
the reaction in which they specialise (e.g. Fig. 4B). Indeed, 
enzyme variants that are more promiscuous tend to have, on 
average, slightly lower catalytic efficiency for the reaction 
they catalyse best (Pearson’s r = −0.264 , p = 6.52 × 10−3 , 
n = 105 ). This association becomes stronger as the num-
ber of reactions per enzyme increases (Online Resource 
1 table S2). We note that the association is weak, because 
some enzyme variants that are highly promiscuous catalyse 
multiple reactions at high efficiency. For example, if all 
reactions are synergistic with respect to one another, high 
efficiency catalysis for one reaction entails high efficiency 
catalysis for the other two reactions.

Overall, these observations suggest three classes of 
enzymes. The first comprises enzymes that are not frustrated 
and highly promiscuous, where duplication is not necessary 
for the evolution of high efficiency because all reactions are 
synergistic (or unconstrained) with respect to one another. 

The second comprises enzymes that are frustrated, but where 
frustration can be resolved through duplication, for example, 
if all reactions are strongly antagonistic to one another. The 
third comprises frustrated enzymes where frustration is not 
entirely resolvable due to interfering constraints (as in the 
example of Fig. 4B).

As the number of reactions per enzyme increases, inter-
ference between constraints becomes increasingly probable 
and the proportion of enzymes with irresolvable frustra-
tion increases dramatically (Online Resource 1 figure S2). 
This occurs because the number of pairwise relationships 
increases quadratically with each additional reaction. Spe-
cifically, the number of pairwise relationships increases with 
the number of reactions n in accordance with O(n2) . Conse-
quently, the probability that an enzyme’s ability to catalyse 
a reaction has pairwise relationships with other reactions of 
the enzyme that violate the expectation of reaction similarity 
increases dramatically and therefore the probability that the 
enzyme experiences frustration.

Frustration Caused by Catalytic Constraints 
Produces Bimodal Distributions of Enzyme 
Promiscuity

In the previous section, we observed that our constraint-
based model predicts the evolution of both specialists and 
generalists. It should therefore be able to account for the 
bimodal distribution of promiscuity of empirical enzymes. 
We investigated if it could by considering the distribution 
of promiscuities predicted by our model after duplication, 
because the generalist state is often frustrated and natural 
selection will act to preserve duplicates and favour their spe-
cialisation. Consequently, we assumed that the generalist 
state is generally transient. The promiscuity distribution of 
model enzymes with fewer reactions is more similar to that 
of the empirical enzymes (Fig. 5), although the distributions 
are not the same (e.g. three reactions, two-sample Kolmogo-
rov–Smirnov test, D105,5028 = 0.4 , p = 2.36 × 10−15 ). As the 
number of reactions catalysed by an enzyme increases in our 
model, the distribution of promiscuities increasingly skews 
towards higher promiscuities.

Importantly, however, the predicted promiscuity distribu-
tion is bimodal at both low and high number of reactions per 
enzyme. In other words, enzymes preferentially have low or 
high promiscuity. At the low end of this bimodal distribution 
are highly specialised enzymes. These are enzymes whose 
reactions are sufficiently unconstrained that their promis-
cuity decays after duplication through mutation and drift 
or frustrated enzymes whose frustration can be resolved by 
duplication. At the high end are frustrated enzymes whose 
frustration cannot be resolved or promiscuous generalists in 
which specialisation yields no benefit. In sum, these results 
suggest that constraints limiting the ability of enzymes to 
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catalyse multiple reactions, and the frustration these con-
straints cause, may be an important factor in the evolution 
of promiscuous enzymes.

Discussion

We investigated the extent of enzyme promiscuity by 
studying catalytic parameters of 5028 enzymes from the 
BRENDA database (Jeske et al. 2019). Enzymes in this data 
set catalysed reactions with an average of 5 substrates. This 
number is almost certainly an underestimate. Experimental 
studies that sampled enzymatic substrates have shown that 
enzymes can catalyse reactions with a much larger num-
ber of substrates (Copley 2017; Khersonsky and Tawfik 
2010). For example, a survey assessed the ability of 217 
members of the haloalkanoic acid dehalogenase superfam-
ily to catalyse reactions with 167 substrates (Huang et al. 
2015). Whereas, only 24 percent of the enzymes were rela-
tively specialised and catalysed reactions with fewer than 6 
substrates, 47 percent were intermediate generalists (6-40 
substrates), and 23 percent were strong generalists (41-143 
substrates). We employed a promiscuity index that quantifies 
to what degree an enzyme catalyses its reactions at equal 
or unequal rates (Nath and Atkins 2008). The distribution 

of this index amongst our 5028 enzymes is bimodal, with 
enzymes either being specialists (one reaction catalysed at 
a substantial higher rate) or generalists (multiple reactions 
catalysed at similar rates), with fewer intermediates.

We investigated several hypotheses that may explain this 
bimodality. We first considered and ruled out ascertain-
ment bias, and we determined that enzyme biochemistry 
does not suffice to explain the observed biochemistry. We 
next turned to an evolutionary explanation involving natural 
selection, constraints, and gene duplication. Specifically, we 
hypothesised that mutations may constrain the evolution of 
promiscuous enzymes, so that enzymes catalysing several 
reactions can only evolve some combinations of catalytic 
activities but not other combinations. We represented these 
constraints in a qualitative model inspired by empirical case 
studies of constraints in promiscuous proteins and ribozymes 
engaged in two activities (Bendixsen et al. 2019; Kaltenbach 
and Tokuriki 2014; Tokuriki et al. 2012; Lite et al. 2020; van 
Loo et al. 2019; Savir et al. 2010).

Our model, which considers how enzymes evolve, pre-
dicts a bimodal promiscuity distribution. Specifically, our 
model predicts that the evolution of a bimodal promiscuity 
distribution requires that natural selection drives the evolu-
tion of increasing catalytic efficiency in enzymes, that gene 
duplication permits some enzymes to specialise, and that 
constraints on enzyme promiscuity exist.

Our model also makes several empirically verifiable pre-
dictions about how the relationships between different activ-
ities catalysed by the same enzyme may affect the evolu-
tion of the enzyme by duplication and subfunctionalization. 
One of them is that some enzymes catalyse sets of reactions 
that are simultaneously subject to strong trade-offs between 
them, without the ability to lose catalysis for any one of 
them. In other words, these enzymes catalyse reactions that 
are simultaneously incompatible and mutually irremovable. 
For such enzymes, our model predicts that mutation does 
not permit specialisation of the enzyme. Additionally, these 
hypothetical enzymes would not be able to catalyse any of 
the reactions with high catalytic efficiency. Given that this 
state is the result of mutually incompatible constraints and 
selection pressures, we drew an analogy to the physics of 
spin glasses (Ferreiro et al. 2014), where opposing forces 
prohibit the arrangement of atoms in the regular arrange-
ment of a crystal. Instead, the arrangement of atoms is ‘frus-
trated,’ and the atoms form an irregular glass consisting of 
many energetically equivalent arrangements, none of which 
is optimal. Examples of frustration can be found through-
out biological systems (Wolf et  al. 2018), for example, 
in the energetics of protein folding (Ferreiro et al. 2014). 
Our model suggests that frustration amongst promiscuous 
enzymes falls into two kinds. The first is frustration that can 
be resolved by duplication. The second cannot be resolved 
by duplication (Fig. 4).

Fig. 5  The constraint-based model predicts a bimodal distribution of 
promiscuities even as the number of reactions per enzyme increases. 
White dots show the median promiscuity index, boxes contain the 25 
and 75 percentiles, and vertical lines contain all promiscuity index 
values within 1.5 times the interquartile range. The violin plots are 
Gaussian kernel density estimates of the distributions of promiscu-
ity index values. The distribution of promiscuity indices of empiri-
cal enzymes from BRENDA (Jeske et al. 2019) is shown in red, the 
promiscuity indices of specialised enzyme variants predicted by our 
model for enzymes catalysing between three and eight reactions in 
grey. The number of enzymes in the BRENDA dataset is 5028. Mul-
tiple enzyme variants exist for each feasible space. For the model pre-
dictions, the number of enzyme variants is (from three to eight reac-
tions per enzyme): 105, 840, 5005, 23256, 88550, and 287680
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Unfortunately, we are not aware of any examples of frus-
trated enzymes in the literature. We believe that this absence 
is a consequence of how little is in fact known about the rela-
tionships between multiple catalytic activities of the same 
enzyme, and how mutation changes these relationships. 
However, there is some circumstantial evidence that frustra-
tion may play a role in the evolution of enzyme promiscuity 
in the way our model suggests, and our model also sug-
gests ways to test for frustration. One line of evidence comes 
from incomplete subfunctionalisation (Lynch and Force 
2000), which is common amongst moonlighting enzymes 
(Espinosa-Cantú et al. 2015) and amongst duplicated para-
logs involved in metabolism in Saccharomyces cerevisiae 
(DeLuna et al. 2008). Whilst not all these cases will be the 
result of frustration, it should be possible to identify frus-
trated proteins through deep mutational scanning (Araya and 
Fowler 2011). In such proteins, no mutation would be able 
to eliminate overlap in activities without inactivating the 
protein entirely. Another line of evidence is that our model 
predicts that frustrated, promiscuous enzymes tend to be 
slightly poorer catalysts. Indeed, we found this association 
between promiscuity and activity amongst enzymes in the 
database.

Our model implies that frustration is both a creative and 
a limiting force in the evolution of promiscuous enzymes, 
just as it is on other levels of biological organisation (Wolf 
et al. 2018). When frustration can be resolved through dupli-
cation it can be a driver of the evolution of specialised and 
efficient enzymes. Conversely, irresolvable frustration can 
limit the evolution of efficient catalysts. Our results are simi-
lar to findings in multifunctional gene regulatory networks, 
where the gain of one function by a regulatory network can 
make it more difficult for the network to gain another func-
tion (Payne and Wagner 2013).

Our results also imply that the absolute number of 
activities catalysed per enzyme may be important for 
enzyme evolution. The same reaction might be catalysed 
by different enzymes that have different constraints and 
different extents of frustration. This is plausible because 
some reactions are catalysed by enzymes with very differ-
ent active sites and evolutionary histories (Davidi et al. 
2018). We speculate that selection is likely to favour 
those enzymes that catalyse fewer reactions, namely for 
two reasons. First, our results show that enzymes that 
catalyse fewer reactions are less likely to be frustrated, 
thus permitting the evolution of specialisation and high 
catalytic efficiency. Second, whenever side reactions cata-
lysed by an enzyme are deleterious, enzymes that are frus-
trated may be unable to lose these deleterious reactions 
and remain functional. Over time, these effects may lead 
to an enrichment of enzymes that catalyse few reactions 
and are less promiscuous. This evolutionary force may 
be counteracted by the greater likelihood that enzymes 

with many promiscuous reactions are recruited into nas-
cent metabolic pathways (Glasner et al. 2020; D’Ari and 
Casadesús 1998; Newton et al. 2018; Conant and Wolfe 
2008; Peracchi 2018). Which of these two factors is more 
important for enzyme evolution is an interesting avenue 
of future research.

Like other models, ours contains several simplifying 
assumptions. First, because we aimed to explore how con-
straints affect enzyme promiscuity, we ignored other factors 
that can limit the power of selection to increase beneficial 
catalytic activities. In other words, we modelled selection 
as a process of optimization. However, selection has rarely 
produced ‘perfect’ enzymes, i.e. enzymes limited only by 
substrate diffusion (Khersonsky and Tawfik 2010; Davidi 
et al. 2018; Bar-Even et al. 2011). Most enzymes catalyse 
reactions with efficiencies orders of magnitude below the 
diffusion limit (Bar-Even et al. 2011), even though many 
enzymes could become more efficient catalysts with only 
few mutations (Davidi et al. 2018). Theoretical studies of 
selection acting on metabolic enzymes show that selection 
is strongly limited by diminishing returns epistasis (Newton 
et al. 2015, 2018; Labourel and Rajon 2021; Kacser and 
Burns 1981). We note that our assumption of selection as 
optimization does not affect our qualitative results, because 
constraints between different activities can in principle also 
affect enzymes with only moderate activity.

Second, our model assumes additive interactions between 
constraints, but constraints may often interact non-addi-
tively. Catalysis depends on the precise position of amino 
acids at an enzyme’s active site and throughout the rest 
of the protein (Wrenbeck et al. 2017) and on the motion 
of the enzyme during catalysis (James and Tawfik 2003; 
Campbell et al. 2016; Zou et al. 2015). Consequently, the 
multi-dimensional constrained spaces of possible mutations 
we modelled are at best rough approximations of real-life 
feasible spaces. In addition, the model assumes that every 
kind of constraint, and combination of constraints, is equally 
probable. In reality, some constraints may be more com-
mon than others, changing the probability of encountering 
frustration in enzyme catalysis. For example, if enzymes are 
biased towards catalysing similar reactions, then we may 
expect frustrated enzymes to be less common than predicted 
by our model. Unfortunately, we know very little about the 
constraints acting on multiple reactions at once. Few stud-
ies consider the effect of mutation on two activities at once 
(Bendixsen et al. 2019; Kaltenbach and Tokuriki 2014; 
Tokuriki et al. 2012; Lite et al. 2020; van Loo et al. 2019; 
Savir et al. 2010) and even fewer consider three or more 
activities (Wrenbeck et al. 2017; Bayer et al. 2017; Zhang 
et al. 2012; Markin et al. 2021). Given this lack of knowl-
edge we preferred to keep our model simple. Future empiri-
cal work on enzymatic constraints may reveal fascinating 
deviations from our naive expectations.
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Third, we did not include neofunctionalisation (Conant 
and Wolfe 2008; Scannell and Wolfe 2008) in our model. 
Neofunctionalisation could easily be integrated as a process 
that adds new reactions to an enzyme after a duplication 
event. However, evidence suggests subfunctionalization 
plays a substantially larger role in enzyme evolution than 
neofunctionalisation (Glasner et al. 2020), with enzymes 
already being promiscuous or multifunctional before dupli-
cation. We therefore decided to keep this study simple and 
only investigate subfunctionalization.

Fourth, we only modelled catalytic efficiencies of one 
enzyme, but other aspects of enzyme evolution may be at 
least as important to explain promiscuity (Copley 2021). 
For example, many of the initial mutations increasing the 
activity of a promiscuous enzyme occur in other genes. 
They include mutations affecting the concentrations of sub-
strates or inhibitors of the promiscuous enzyme (Kim et al. 
2019; Morgenthaler et al. 2019). Some such mutations may 
affect the activity of an enzyme competing for the same 
substrate (Kim et al. 2019) or increase the expression of an 
upstream enzyme producing the substrate in question (Mor-
genthaler et al. 2019). Such mutations may be necessary 
for low-efficiency catalytic reactions to become subject to 
selection (Copley 2021). They can also decrease the selec-
tion pressure required for the evolution of more efficient, 
specialised enzymes. In addition, changing environments 
may favour the emergence and maintenance of promiscuity. 
The uncertainty of natural environments may be one of the 
reasons why free-living organisms have more promiscuous 
enzymes than intracellular organisms (Martínez-Núñez and 
Pérez-Rueda 2016).

Finally, we have limited our model to catalytic activities 
that are beneficial, because we were interested in the extent 
to which constraints limit subfunctionalisation. However, 
many promiscuous reactions may be deleterious. For exam-
ple, metabolic enzymes catalyse side reactions whose prod-
ucts are often useless or actively harmful to a cell, and need 
to be removed (Peracchi 2018). Selection against deleteri-
ous reactions may be an important driver of specialisation 
(Noda-Garcia and Tawfik 2020), as is the case for aminoa-
cyl-tRNA synthetases (Tawfik and Gruic-Sovulj 2020).

All these limitations render our model simple, and this 
simplicity has an advantage. It means that the model can be 
easily generalised to other levels of biological organisation, 
where a given component is involved in more than one activ-
ity, and where selection favours specialisation (Rueffler et al. 
2012). Consider organismal development, which involves 
developmental modules that can undergo duplication and 
can be subject to selective pressure to engage in multiple 
activities. Examples include teeth, which have become dif-
ferentiated to serve various roles in mammals (Weiss 1990) 
and arthropod legs, which became specialised for both loco-
motion and feeding over time (Boxshall 2004). Constraints 

and frustration may play an important role in the evolution 
of biological systems on multiple levels of organisation.

Methods

BRENDA Data Curation

We downloaded enzyme kinetic data from BRENDA (Jeske 
et al. 2019) (https:// www. brenda- enzym es. org, Accessed 3 
April 2020) and wrote custom scripts to extract the sub-
strates (where available) of each enzyme, as well as the 
turnover number and Michaelis constant for each of the 
substrates. Whenever multiple estimates for the turnover 
number and Michaelis constant were available for the same 
substrate, we used the average of all estimates for that par-
ticular substrate. Because substrate names are not standard-
ised in BRENDA, multiple synonyms of the same substrate 
may be used for the same reaction. To alleviate this prob-
lem, we identified synonyms for individual substrates using 
data from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (Kanehisa and Goto 2000) and replaced 
these in our dataset with a unique substrate name. As in 
previous studies (Bar-Even et al. 2011), we removed com-
mon cofactors from our substrate list, because in most cases 
these molecules are not the primary substrates of an enzyme. 
In addition, they may be affected by different evolutionary 
pressures (Bar-Even et al. 2011). Specifically, we removed 
entries for the five most common cofactors (ATP, NAD+, 
NADPH, NADH, and NAP+) from our dataset. Unlike ear-
lier work (Bar-Even et al. 2011), we kept both natural and 
non-natural substrates, because we were interested in study-
ing the potential for both reaction and substrate promiscu-
ity. In this way, we obtained 30,184 entries from BRENDA. 
Each entry contains the turnover number and Michaelis con-
stant associated with a given substrate.

BRENDA is organised according to enzyme commission 
numbers (EC), which classify enzymes by the kind of reac-
tion they catalyse (Jeske et al. 2019). Many enzymes also 
have protein accession numbers, which allow identification 
of the enzyme in other databases, such as GenBank (Benson 
et al. 2013).

If a protein accession number was available, we used 
all catalytic efficiencies of the enzyme for further analy-
sis, including for different reactions. In rare cases (6 out of 
3899 protein accessions) a given protein accession number 
appeared in more than one species. We attributed this to a 
labelling error and discarded the data associated with these 
enzymes.

Unfortunately, 65 percent of the entries in the available 
data did not have a protein accession number and therefore 
can only be identified in terms of the reaction catalysed 
(the EC number of the reaction) and the species expressing 

https://www.brenda-enzymes.org
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the enzyme. For such enzymes, we assumed that a given 
EC number for a species in BRENDA represented a single 
enzyme, although we cannot exclude that a single BRENDA 
entry may refer to multiple enzymes or that reactions cata-
lysed by the same enzyme are represented under different EC 
numbers, unless a protein accession number was supplied.

For all enzymes where the Michaelis constant and the 
turnover number is reported for at least two substrates, we 
calculated the catalytic efficiency for each substrate (turno-
ver divided by Michaelis constant, mM−1 s −1 ). Overall, our 
dataset comprises 5028 enzymes that fulfil this criterion, of 
which 2039 have a protein accession number. From these 
catalytic efficiencies, we calculated the promiscuity index 
below (Nath and Atkins 2008) from the catalytic efficiencies 
of these 5028 enzymes.

Promiscuity Index

We calculated the promiscuity index (Nath and Atkins 2008) 
as

where n is the number of reactions with different substrates 
per enzyme and x is the catalytic efficiency of the enzyme 
with respect to a given reaction. The promiscuity index 
quantifies the similarity or dissimilarity between the cata-
lytic efficiencies of an enzyme for the reactions it catalyses. 
To do so, it draws on the concept of entropy as a way to 
quantify the ‘diversity’ of catalytic efficiencies analogous 
to the way in which entropy is used as a measure of species 
diversity in ecosystems (Nath and Atkins 2008). The maxi-
mum entropy is log n , which corresponds to an enzyme that 
catalyses all reactions with equal efficiency. To scale the 
promiscuity index between zero (only one of the reactions is 
catalysed by the enzyme) and one (all reactions are catalysed 
equally well), we divide the entropy by a factor of 1∕ log n . 
We used this index to estimate the promiscuity of empirical 
enzymes but also of simulated enzymes generated through 
random sampling (Online Resource 1 section 1.7) and of 
enzymes predicted by our constraint-based model.

Constraint‑Based Model Description

Our model takes a constraint-based approach to the relation-
ships between two or more reactions catalysed by the same 
enzyme. We described different variants of the same enzyme 
catalysing n reactions as points in an n-dimensional space 
of catalytic efficiencies. We divided this catalytic efficiency 
space into a feasible and an infeasible space. The feasible 
space contains all combinations of catalytic efficiencies 
that can be reached by mutation (i.e. all possible variants 

(1)I = −
1

log n

n
�

i=1

xi
∑n

j=1
xj
log

xi
∑n

j=1
xj
,

of the enzyme in question). The infeasible space contains 
those catalytic efficiencies that cannot be reached. A set of 
constraints defines the limits of the feasible space. In our 
model, the most basic form of these constraints describe 
the relationship between a pair of reactions. This relation-
ship can range from strongly antagonistic—high catalytic 
efficiency for one reaction entails low efficiency for the 
other—to strongly synergistic—high efficiency for one reac-
tion entails high efficiency for the other. Between these two 
extremes lies a spectrum of intermediates, with enzymes 
that can catalyse both reactions at high efficiency or only 
one of them. For simplicity, we kept pairwise relationships 
symmetrical, so that the constraints on one reaction are the 
same as on the other, although asymmetrical relationships 
may exist (e.g. (Bendixsen et al. 2019)). In addition, we 
scaled catalytic efficiencies to lie between zero (no activ-
ity) to one (maximum possible catalytic efficiency) for any 
one reaction. For some high-performing enzymes, this limit 
will correspond to the diffusion limit, corresponding to a 
catalytic efficiency of approximately 109 s −1 M −1 (Bar-Even 
et al. 2011). Details on these pairwise constraints and how 
they interact to form higher-dimensional feasible spaces are 
given in Online Resource 1 section S1.5. The constraints 
themselves are listed in Online Resource 1 table S1.

We used this model to simulate two scenarios. In the 
first scenario, all n reactions are catalysed by the same 
enzyme. Every reaction is beneficial, and we assumed that 
natural selection acts to increase the catalytic efficiency of 
the enzyme for all n reactions. In the second scenario, the 
enzyme has undergone multiple rounds of duplication and 
subfunctionalization, so that there are n duplicates. Each 
duplicate is under selection for a different reaction such that 
one reaction is subject to selection per duplicate (details in 
Online Resource 1 section S1.4). The catalytic efficiencies 
of a duplicate for the other reactions are neutral (for a case 
where selection does still act on the ability of the duplicates 
to catalyse more than one reaction, see Online Resource 1 
section S1.8). We compare the catalytic efficiencies of these 
enzyme variants before and after the duplication events.

Because we assumed that natural selection increases cata-
lytic efficiencies, we modelled the action of selection as an 
optimization problem that maximises fitness by increasing 
catalytic ability (for details see Online Resource 1 section 
S1.5). Given that for many real-life traits fitness is more 
sensitive to decreasing than to increasing activity, we chose 
a fitness function with diminishing returns (Online Resource 
1 section S1.4). We identified the enzyme variants maximis-
ing fitness within a given feasible space through non-linear 
programming (Online Resource 1 section S1.5). In addition, 
some duplicated enzyme variants catalyse reactions that are 
not under selection. For these neutral reactions, we identified 
the range of catalytic efficiencies that could evolve with-
out affecting the catalysis for the reaction that is still under 
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selection. We did so by performing a variability analysis 
(Online Resource 1 section S1.5). For enzymes that have 
undergone duplication and specialisation, we used the mini-
mum of the catalytic efficiencies predicted by the variability 
analysis for the reactions not under selection to determine 
to what extent loss-of-function mutations can erode these 
neutral activities.

To quantify the frustration in the ability of an enzyme 
variant preferred by natural selection to catalyse a reaction, 
we computed the difference between the variant’s maxi-
mum catalytic efficiency for the reaction under selection 
(predicted by optimization in the n-dimensional feasible 
space) and the maximum possible catalytic efficiency of one. 
For an enzyme variant catalysing multiple reactions before 
duplication, we reported the average of these frustration val-
ues as an indicator of the frustration of the enzyme variant 
with respect to all its reactions. For duplicated enzymes, we 
quantified the frustration of each specialised duplicate with 
regards to the reaction it was selected for. By comparing the 
average frustration before and after duplication, we could 
infer to what extent duplication can help resolve frustration.

We scored feasible spaces according to where they are 
positioned on a spectrum between pure strong synergy, 
where all pairwise relationships between reactions are 
strongly synergistic, to pure strong antagonism, where all 
relationships are strongly antagonistic. We assigned each of 
our five pairwise relationships (Fig. 3) an antagonism score 
A going from strong synergism (zero) to strong antagonism 
(one) in increments of 0.25, so that pairwise relationships 
that are unconstrained have an antagonism score of 0.5. For 
each feasible space, we calculated the average antagonism 
score Â of all pairwise relationships that constitute the fea-
sible space as

where k is the total number of pairwise relationships and Ai 
is the antagonism score of reaction pair i. The average antag-
onism score Â lies in the range between one (pure strong 
antagonism) to zero (pure strong synergism).

We also compared how dissimilar the antagonism scores 
of the pairwise relationships that constitute a feasible space 
are. We defined a dissimilarity score D of a feasible space, 
which we computed from the antagonism scores of the pair-
wise relationships A that constitute the feasible space so that

where k is the total number of pairwise relationships, and 
Ai is the antagonism score of reaction pair i. We reported 
the dissimilarity score of a given feasible space D relative 

(2)Â =
1

k

k
∑

i=1

Ai
,

(3)D =

k−1
∑

i=1

k
∑

j=i+1

∣ Ai − Aj ∣,

to the dissimilarity score Dmax of the feasible space with the 
highest dissimilarity score and the same number of reactions 
per enzyme n. This rescaling allowed us to report the dis-
similarity D on a scale of zero (all pairwise relationships are 
the same) to one (all pairwise relationships are as different 
as possible).
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