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Abstract
The phrase “survival of the fittest” has become an iconic descriptor of how natural selection works. And yet, precisely 
measuring fitness, even for single-celled microbial populations growing in controlled laboratory conditions, remains a chal-
lenge. While numerous methods exist to perform these measurements, including recently developed methods utilizing DNA 
barcodes, all methods are limited in their precision to differentiate strains with small fitness differences. In this study, we rule 
out some major sources of imprecision, but still find that fitness measurements vary substantially from replicate to replicate. 
Our data suggest that very subtle and difficult to avoid environmental differences between replicates create systematic vari-
ation across fitness measurements. We conclude by discussing how fitness measurements should be interpreted given their 
extreme environment dependence. This work was inspired by the scientific community who followed us and gave us tips as 
we live tweeted a high-replicate fitness measurement experiment at #1BigBatch.
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Introduction

Measuring the relative fitness of mutant microbial strains 
has revolutionized our understanding of functional genom-
ics and basic cell biology. For example, comparing the fit-
ness of microbial strains with different gene deletions taught 
us about the function of thousands of genes (Giaever et al. 
2002; Breslow et al. 2008; Gresham et al. 2011), which 
genes work together (Costanzo et al. 2016), and about the 
genetic programs that allow cells to respond to challenges 
like drugs, high temperature, or nutrient deprivation (Gasch 
et al. 2000; Slavov and Botstein 2011; She and Jarosz 2018). 

Precisely quantifying the fitness of microbial populations is 
also of interest to evolutionary biologists, for example, those 
surveying the fitness effects of adaptive mutations (Levy 
et al. 2015; Venkataram et al. 2016; Kinsler et al. 2020), 
deleterious mutations (Wloch et al. 2001; Geiler-Samerotte 
et al. 2011; Johnson et al. 2019), or combinations of muta-
tions (Flynn et al. 2020; Aggeli et al. 2021; Bakerlee et al. 
2022). Further, measuring fitness of infectious microbial 
populations is of interest in evolutionary medicine (Brown 
et al. 2010; Nichol et al. 2019; Dunai et al. 2019) and meas-
uring the fitness of engineered microbes is critical in indus-
tries focused on bioproduct production (Chubukov et al. 
2016).

Given the importance of measuring microbial fitness in 
diverse fields, it is frustrating that we cannot measure fit-
ness more precisely. Reported precision remains capped at 
detecting fitness differences on the order of 0.1–1% (Gallet 
et al. 2012; Leon et al. 2018; Duveau et al. 2018). Achieving 
this level of precision requires averaging results across many 
replicates. If replicates suffer from common reproducibility 
issues (Lithgow et al. 2017; Kinsler et al. 2020; Worthan 
et al. 2023), the resulting estimates of precision may be 
inflated (Box 1). On the other hand, natural selection can 
distinguish fitness differences that are orders of magnitude 
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smaller than we can measure in the laboratory, depending 
on effective population size (Ohta 1973; Lynch and Con-
ery 2003). This creates a problem for scientists: how do we 
understand the fitness effects of mutations if many of these 
effects are too small for us to measure precisely?

Methods to Measure Fitness and Limitations 
on Their Precision

There are many reasons why the methods we use to measure 
fitness are limited in their precision. One common way to 
compare fitness across microbial strains is to measure each 
strain’s growth rate, in other words, the rate at which cells 
divide to make more cells. The change in cell density over 
time is often measured by the increase in optical density of 
liquid culture (Ram et al. 2019) or the increase in colony size 
on an agarose plate (She and Jarosz 2018) or a glass bottom 
plate (Levy et al. 2012; Sartori et al. 2021). This method 
often has limitations on precision, one being that measuring 
cell density is not as precise as counting individual cells and 
another being that each microbial strain is usually grown 
separately and is separately affected by any biological or 
technical noise. A less common method to measure micro-
bial growth rate is to track the level of a protein or transcript 
that controls growth, rather than measuring growth itself 
(Brauer et al. 2008; Geiler-Samerotte et al. 2013; Scott et al. 
2014; Wu et al. 2022), although this method suffers the same 
limitations as those above.

Many consider the gold standard for measuring fitness 
to be an experiment where strains are competed in the same 
vessel (Hegreness et  al. 2006; Kao and Sherlock 2008; 
Geiler-Samerotte et al. 2011; Ram et al. 2019). A benefit of 
this method over others is that all strains are grown simul-
taneously in the same well-mixed media in the same vessel 
and thus subject to the same exact environment. Further, 
fitness is defined more broadly than population growth rate 
because it includes differential survival in conditions where 
growth is not proceeding exponentially or is halted (Ram 
et al. 2019). Finally, another benefit of competition experi-
ments is that, in many implementations of this method, indi-
vidual cells are counted. This is more precise than tracking 
changes in cellular density over time using crude parameters, 
like optical density, as long as enough cells are sampled.

Despite their advantages, fitness competitions still suffer 
from noise. For example, some competitions label competing 
strains with fluorescent proteins or genetic markers distin-
guishable in the presence of a drug or carbon source. Then, 
the fraction of cells labeled with each marker are counted as 
they change over time (Hegreness et al. 2006; Breslow et al. 
2008; Kao and Sherlock 2008; Geiler-Samerotte et al. 2011; 
Gallet et al. 2012; Lenski 2017). These methods report per-
cent error ranging from 0.01 to 1%. Sources of noise include 
sampling noise, which worsens when fewer cells from each 

fraction are counted, and cell assignment noise, which wors-
ens, for example, when fluorescent reporters are chosen that 
are more difficult to distinguish from each other (Gallet et al. 
2012). More recent methods utilize “DNA Barcodes” to dis-
tinguish strains (Levy et al. 2015; Venkataram et al. 2016; 
Kinsler et al. 2020; Bakerlee et al. 2021). These are short 
regions of the genome that are unique to a given strain and 
flanked by consensus sequences such that all barcodes can 
be amplified using the same primer pair. Next-generation 
sequencing allows for tracking the frequency of each DNA 
barcode over time with incredibly high throughput such that 
millions of individual cell barcodes can be counted at each 
timepoint. This high throughput can reduce sampling noise.

Here, we examine fitness estimates that were generated in 
previous studies by quantifying how the DNA barcode that 
labels a particular strain changes in frequency over time rela-
tive to a reference (Venkataram et al. 2016; Li et al. 2018b; 
Kinsler et al. 2020). This may yield more precise fitness 
estimates than deep mutational scanning methods that meas-
ure the fold change in a barcode’s frequency, rather than 
inferring fitness by modeling a barcode’s rate of change over 
many time points (Li et al. 2018a). As in fitness compe-
titions utilizing fluorescent markers, inadequate sampling 
can increase noise. In the data we present here, this type of 
sampling noise has been minimized by sequencing barcodes 
at very high coverage.

Even with High Sequence Coverage, We Observe 
“Noisy” Fitness Data

In this study, we investigate some sources of noise that con-
tribute to variation in fitness measurements of barcoded 
strains. We focus on barcodes that received extremely high 
sequencing coverage to minimize sampling noise arising at 
the sequencing step. This allows us to dissect other poten-
tial sources of noise in barcoded fitness competitions in S. 
cerevisiae. We start by studying two sources of technical 
noise: (1) noise introduced while barcodes are prepared for 
sequencing and (2) index misassignment during barcode 
sequencing (Sinha et al. 2017). Despite common intuition 
(Levy et al. 2015; Venkataram et al. 2016; KerryGeiler-
Samerotte 2018a), we find that only the latter is a major 
source of noise. We suggest an index scheme to help reduce 
this type of error. Next, we turn our focus to distinguish 
noise that affects barcode frequencies within a single com-
petition experiment from noise across replicate experiments. 
We find higher variation in fitness across replicate experi-
ments, particularly those performed on different days. For 
example, certain adaptive mutants have fitnesses that range 
from 180% of the reference in one replicate to 220% in oth-
ers (Fig. 1). This type of variation is often called “batch 
effects,” i.e., systematic differences that arise between very 
similar experiments performed at different times. These 
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batch effects may reflect biologically relevant but subtle 
changes in environmental conditions that influence fitness, 
for example, slight differences in temperature, media com-
position, humidity, shape of the culture vessel, and shaking 
speed.

This observation that fitness may be extremely sensitive 
to environmental context makes us question how to obtain 
and interpret fitness measurements. Should we focus on min-
imizing replicate and batch effects, perhaps using incubators 
with extremely low variation in temperature or ultra-precise 
scales for media preparation? Or should we embrace varia-
tion in fitness and search for new insights about genotype-
by-environment interactions by studying the way fitness 
varies across replicates and batches (Kinsler et al. 2020)? 
We argue that both approaches have value. We hope the find-
ings of our open-science endeavor to generate more precise 
fitness measurements (KerryGeilerSamerotte 2017; Kinsler 
2017) will act as a user’s guide for others quantifying fitness 
with DNA barcodes. We also hope it will inspire important 
questions about how to measure and report fitness given its 
sensitivity to subtle environmental change and will fuel the 
larger discussion on how to conduct reproducible and precise 
laboratory studies.

Results

Choosing Focal Yeast Strains to Study Noise 
in Barcoded Fitness Competitions

Our goal is to dissect the sources of noise that contribute to 
variation in fitness beyond sources that are easy to under-
stand such as the sampling noise that is introduced when bar-
codes are sequenced at low coverage. Thus, when possible, 

we focus on variation in fitness for barcoded mutants that 
(1) are strongly adaptive and (2) have been sequenced at 
extremely high coverage. We focus on strongly adap-
tive mutants because these increase in frequency over the 
course of a competition experiment, thus sequencing cover-
age continues to improve over time. Previous experimental 
evolutions utilizing DNA barcodes discovered two types of 
strongly adaptive mutants that commonly arise in baker’s 
yeast in response to glucose limitation: nonsense mutations 
to the IRA1 gene and missense mutations to GPB2 (Levy 
et al. 2015; Venkataram et al. 2016). We previously meas-
ured the fitness of these adaptive mutants, when pooled 
with at least 400 others, in 28 replicate experiments (Kin-
sler et al. 2020). In these studies, barcodes representing 
lineages possessing adaptive mutations in either IRA1 or 
GPB2 are sequenced an average of 37,690 or 13,321 times 
per timepoint, respectively. For comparison, previous bar-
coded fitness competitions aim for coverage thresholds that 
are smaller by orders of magnitude (100 to 200 reads per 
mutant per timepoint) (Venkataram et al. 2016; Kinsler 
et al. 2020). Despite very high sequencing coverage, we see 
a lot of variation in the fitness estimates for these mutants 
(Fig. 1). This inspired us to think about the major sources of 
noise that affect fitness estimation in barcoded competition 
experiments like the ones we performed previously (Kinsler 
et al. 2020).

Motivation and Design for Studying Noise 
Introduced by DNA Extraction or Amplification

One source of noise that seemed like a potentially large con-
tributor to variation in fitness is introduced when subsets of 
cells and molecules are sampled during preparation of bar-
codes for sequencing. In order to infer fitness from changes 

Fig. 1  Each panel represents 3 to 4 replicate fitness competition 
experiments (labeled A, B, C, or D on the horizontal axis) that were 
performed in the same “batch” (i.e., on the same date following the 
same protocol). Any known batch-specific protocol modifications 
are listed in parentheses, although it is likely that minor differences 
exist between every batch due to the nature of wet lab work. Each 
point represents the fitness of a uniquely barcoded yeast lineage with 
a mutation in the IRA1 (blue) or GPB2 (green) gene or a reference 
strain possessing no mutations (black). Boxplots summarize the dis-

tribution across all lineages possessing mutations to the same gene, 
displaying the median (center line), interquartile range (IQR) (upper 
and lower hinges), and highest value within 1.5 × IQR (whiskers). 
Purple diamonds represent the average fitness difference, per repli-
cate, between all lineages possessing IRA1 vs. GPB2 mutations. Dot-
ted blue lines in the first two panels guide the eye to observe what we 
define as a “batch effect,” whereby the fitness of lineages possessing 
nonsense mutations in the IRA1 gene differs across experiments per-
formed on different days (Color figure online)
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in barcode frequency over time, one must first extract DNA 
from a large number of cells at many timepoints (Kerry-
GeilerSamerotte 2018b). Next, one must amplify the bar-
code region with primers that attach sequencing indices. 
Both of these steps can introduce imprecision into a fitness 
measurement. For example, if DNA is extracted from too 
few cells, or extracted in a biased way such that cells with 
certain mutations contribute an unfair quantity of DNA, fit-
ness estimates may be imprecise or skewed. Similarly, if 
PCR is inefficient such that only a small number of bar-
codes are amplified in the early cycles, these barcodes will 
become overrepresented in a way that does not reflect their 
true abundance (i.e., PCR jackpotting). We utilize special 
DNA extraction and PCR protocols that are designed to 
avoid these issues (Levy et al. 2015; Venkataram et al. 2016; 
Kinsler et al. 2020). Still, previous work (Levy et al. 2015; 
Venkataram et al. 2016), as well as a poll of 100 scientists 
(KerryGeilerSamerotte 2018a), suggested that stochastic 
events during barcode extraction and amplification may be 
large contributors to noise in barcoded fitness competitions. 
On a personal note, when performing these tricky steps of 
sample preparation in the lab, we found ourselves constantly 
considering what, if any, noise or bias they were introduc-
ing into our data. Therefore, we were strongly motivated to 
investigate this potential source of noise.

To understand the contribution of these two sources of 
imprecision, we performed dozens of technical replicate 
experiments (KerryGeilerSamerotte 2018c; Kinsler 2018a) 
where we split cells from a single timepoint and either per-
formed multiple replicate PCRs (Fig. 2A) or multiple rep-
licate DNA extractions (Fig. 2B). Then, we compared the 
barcode frequencies from pairs of technical replicates to see 
how much noise (measured via  R2) is introduced by PCR and 
by DNA extraction.

An important complicating factor is that we measure fit-
ness as the log-linear rate of change in a barcode’s frequency 
over 5 time points (Venkataram et al. 2016; Li et al. 2018b, 
a; Kinsler et al. 2020). Previous work suggests this results 
in more accurate fitness estimates than does measuring 
the fold change in a barcode’s frequency across two time 
points (Li et al. 2018a). Unfortunately, we cannot estimate 
noise contributing to fitness measurements using the same 
well-established models as those that have been previously 
used to study fold change (Robinson et al. 2014). Our pairs 
of technical replicates only let us measure reproducibility 
at single time points. Understanding variation in fitness 
requires the additional step of understanding how noise 
introduced across all timepoints aggregates.

DNA Extraction and Amplification do not Introduce 
Enough Noise to Explain Observed Fitness Variation

We found that stochasticity during PCR amplification usu-
ally contributes only a small amount of noise (Fig. 2C). In 
total, we compared 45 pairs of technical replicate PCRs. In 
some of these, both replicates included 27 PCR cycles; in 
others one replicate included fewer total cycles (22 v. 27). 
These deviations in cycle number did not appear to lead to 
greater imprecision (Fig. 2C) or bias (Fig. 2A). The typically 
high reproducibility we saw between PCR technical repli-
cates could indicate that the two-step PCR protocol often 
used in barcoded fitness competitions is robust to effects like 
PCR jackpotting (Levy et al. 2015; Venkataram et al. 2016; 
Li et al. 2018b; Kinsler et al. 2020).

We found that stochasticity during DNA extraction also 
contributes only a small amount of noise (Fig. 2C). In total, 
we compared 34 pairs of technical replicate DNA extrac-
tions. In some of these, both replicates were performed 
following the exact same protocol. In others, one replicate 
was performed following a protocol that involved either a 
harsher treatment (i.e., adding phenol to help cells release 
their DNA) or a milder treatment (i.e., omitting glass beads 
that are used to break the cells). These modifications did not 
appear to affect reproducibility (Fig. 2C) or introduce bias 
(Fig. 2B). The high reproducibility we saw between techni-
cal replicates could indicate that our protocol is effective at 
extracting DNA from a very large number of yeast cells in 
an unbiased way (Kinsler et al. 2020).

Because DNA extraction is necessarily followed by PCR, 
any noise detected in our DNA extraction replicates also 
includes noise contributed during the PCR step (Fig. 2B). 
Therefore, we expected DNA extraction replicates to be 
either as noisy or noisier than PCR replicates. However, we 
observed the opposite. The reason is as follows. For a few 
of our technical replicates, we observed lower reproducibil-
ity  (R2 < 0.9 for 6/45 pairs of PCR replicates). This lower 
reproducibility seems more common in cases where one rep-
licate of the pair happened to receive low (on average < 20 
reads per barcode) or moderate (on average 20–600 reads 
per barcode) sequencing coverage (Fig. 2C). These cases 
of lower coverage artificially reduce the average reproduc-
ibility among technical replicate PCRs relative to technical 
replicate DNA extractions.

While our data are suggestive that the DNA extraction 
and PCR steps do not introduce enough noise to explain the 
observed variation in fitness (Fig. 1), they do not allow us 
to directly estimate how much noise these sources contrib-
ute. Next, we wanted to roughly estimate how the aggregate 
noise introduced across many timepoints by these proce-
dures would affect fitness estimates. To do so we studied 



297Journal of Molecular Evolution (2023) 91:293–310 

1 3

frequency trajectories from the experiment where we per-
formed DNA and PCR technical replicates on the largest 
number of timepoints (4 out of 5 timepoints) (Fig. 2D). 

We found similar fitness measurements were inferred from 
the barcode frequency trajectories comprising each set of 
technical replicates. This suggests that, when following the 

Fig. 2  Stochastic noise generated during barcode extraction and 
amplification appear to contribute little noise to fitness estimation. A 
Schematic showing how we divided a sample to perform a PCR rep-
licate and comparison of barcode frequencies for a pair of replicates 
where every point represents one of ~ 500 barcodes. B Schematic 
showing how we divided a sample to perform an extraction replicate 
and comparison of barcode frequencies for a pair of replicates where 
every point represents one of ~ 500 barcodes. C Reproducibility  (R2) 
is greater than 0.9 for most pairs of PCR and extraction replicates. 
Modifications to the PCR or extraction procedure did not seem to 
affect reproducibility. Low sequencing coverage did often result in 
lower reproducibility. Boxplots summarize the distribution across 

all PCR or extraction replicates, displaying the median (center line), 
interquartile range (IQR) (upper and lower hinges), and highest value 
within 1.5 × IQR (whiskers). D Barcode frequency trajectories where 
each line represents the frequency of 1 of ~ 500 barcoded mutants 
through time. The trajectories labeled “Extraction Rep 1” and 
“Extraction Rep 2” look similar despite being composed of differ-
ent technical replicates. When fitness is inferred from the log-linear 
slope of these trajectories, the inferences are also similar for strains 
possessing mutations in either IRA1 or GPB2. Boxplots summarize 
the distribution across mutant lineages of the same type, displaying 
the median (center line), interquartile range (IQR) (upper and lower 
hinges), and highest value within 1.5 × IQR (whiskers)
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protocols we use here, developed in earlier work (Levy et al. 
2015; Venkataram et al. 2016; Kinsler et al. 2020), noise 
from PCR amplification and DNA extraction has a minor 
effect on fitness precision (Fig. 2D).

Motivation and Design for Studying Noise 
Introduced by Index Misassignment

Another source of noise we investigated comes from index 
misassignment during next-generation sequencing. In order 
to combine several samples on a single lane of sequenc-
ing, researchers often make use of index primers that label 
each sample on the lane. In the past, combinatorial indexing 
schemes have been used to identify samples such that each 
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pair of indices uniquely labels a sample (Fig. 3A). However, 
previous work, with relatively diverse RNASeq libraries, 
has shown platforms with patterned flow cells that utilize 
Illumina’s ExAmp chemistry (e.g., HiSeq 4000, HiSeqX, 
NovaSeq) have substantial rates of misassigned indices such 

that 5–10% of sequencing reads are misassigned (Sinha 
et al. 2017). This means that a substantial number of reads 
from one sample can appear to belong to another sample, 
causing errors with downstream analysis. These errors are 
especially problematic for analyses relying on quantitative 
measurements of abundances (e.g., barcode sequencing, 
RNASeq, or other amplicon-based sequencing, such as 16S, 
deep mutational scanning, and massively parallel reporter 
assays). Unfortunately, most previous studies of index mis-
assignment have focused on RNASeq, rather than barcode 
sequencing.

Until recently, most of our barcoded fitness competi-
tions were being sequenced on non-patterned flow cells 
(e.g., Nextseq) (Venkataram et al. 2016) that have not been 
reported to suffer from high rates of misassigned indices. 
However, patterned flow cells that utilize ExAmp chemistry 
allow for much greater throughput at lower cost per read. 
Thus, we were strongly motivated to switch technologies. 
We designed an experiment to understand the frequency of 
index misassignment in barcode sequencing, as well as the 
underlying mechanisms and potential solutions. All of the 
data reported in Fig. 1 were generated either using an unpat-
terned flow cell or after implementing our solution to the 
index misassignment problem. Although index misassign-
ment is thus not a major contributor to the fitness variation 
reported in Fig. 1, we still report our findings about the rate 
of misassignment on patterned flow cells and our solution 
to the problem below.

In order to quantify the extent to which this misassign-
ment affects amplicon libraries, we devised a nested dual-
indexing approach that combines the use of inline indices 
and Illumina index primers. Specifically, we carry out two 
steps of PCR, the first of which attaches inline indices 
(denoted by F and R in Fig. 3A) to each side of the ampli-
con, followed by a second step which attaches Illumina index 
primers (denoted by N and S in Fig. 3A) which also contain 
the P5 and P7 sequences which bind to the flow cell. In this 
scheme, we ensure that each inline index is only paired with 
a specific Illumina index on the other side of the molecule 
(i.e., R1 is always paired with S1, F1 with N1, R2 with S2, 
etc.) (Fig. 3A). This allows us to detect index misassignment 
events when one or more of the inline indices do not match 
their paired Illumina index.

Template Switching on Patterned Flow Cells 
Appears to be a Major Source of Noise

First, we ran a single pooled library of 95 samples (con-
sisting of all allowed combinations of primers except one) 
on one lane of NextSeq (unpatterned) and one of HiSeq 
X (patterned). After demultiplexing the reads and map-
ping the reads to the template sequence, we find that only 
1% of mapped NextSeq reads were assigned to incorrect 

Fig. 3  Template switching is a major source of incorrect sam-
ple assignment for barcode sequencing. A This panel shows three 
schemes for multiplexing samples onto the same sequencing lane. 
The first, “combinatorial indexing” assigns samples to many com-
binations of primers, allowing for many samples to be labeled with 
a relatively small number of indices. This scheme allows for index 
misassignment to incorrectly assign samples. There are several 
alternatives that reduce the effect of index misassignment and allow 
researchers to remove incorrect swaps from data. The most common 
scheme is “unique dual indexing,” where each sample uses a unique 
combination of forward and reverse indices. In this case, 192 prim-
ers are needed to label 96 samples. Another possible scheme, used in 
this paper, is nested unique dual indexing, where inline and Illumina 
indices are combined such that each inline index corresponds with 
a unique Illumina index on the other side of the amplicon molecule. 
This allows you to achieve unique dual indexing of 96 samples with 
40 total primers. B Rates of incorrect sample index assignment are 
much higher on a HiSeq X (patterned flow cell) sequencing machine 
than NextSeq (non-patterned flow cell) for this set of 95 samples. C 
Undetected index misassignment can alter frequency trajectories and 
result in incorrect fitness inference. When index misassignment is 
detected using unique dual indexing (left panel), frequency trajecto-
ries show a more dramatic change in frequency, especially for neutral 
lineages (black lines). In contrast, if combinatorial indexing were to 
be used, index misassignment would fail to be detected, resulting in 
diminished changes in barcode frequency over time (middle panel). 
The right panel shows the fitness values inferred under each sce-
nario. The colored dots denote the inferred fitness for each barcoded 
mutant. The open circle shows the mean across all mutants for a par-
ticular genotype, with the error bar denoting standard error. D There 
are two primary mechanisms for index misassignment. One mecha-
nism (depicted on left) is “index hopping” due to misincorporation 
of free-floating index primers present in the library. This results in 
reads that differ by a single index from correct index combinations. 
Another mechanism (depicted on right) is “template switching” due 
to switching of the template molecule during the amplification step 
of sequencing. This results in chimeric reads, where each end of the 
molecule matches a correct index combination but do not belong 
together. If the template switching event occurs in the middle of the 
amplicon (~ 67% of the time if the events are uniformly distributed), 
then we will observe combinations of otherwise correct pairs. If the 
template switching event occurs between the Illumina and inline indi-
ces (~ 33% of the time), then we will identify a “single swap” readout 
indistinguishable from the product generated via “index hopping.” 
E For a library of 8 samples utilizing a nested unique dual-indexing 
scheme (panel A) consisting of 32 individual indices (such that each 
index was only used once), we can analyze which mechanisms caused 
index misassignment by looking at whether incorrectly indexed 
reads have one or more misplaced indices. The top stacked bar plot 
shows the proportion of reads where there was no index misassign-
ment (black) and the proportion where indices were misassigned 
(colored). The bottom stacked bar plot shows the proportion of reads 
with misassigned indices that belong to each category of index mis-
assignment. We find that template switching (red) is the most com-
monly observed mechanism of index misassignment, followed by 
single-index swaps of Illumina indices (dark blue) and double swaps 
(green). Single-index swaps of inline indices (light blue) occur at 
extremely low rates  (Color figure online)

◂
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combinations of indices. In contrast, 43% of mapped HiSeq 
X reads were assigned to incorrect combinations of indices 
(Fig. 3B). This is much larger than the previously reported 
value of 5–10% of reads misassigned for diverse RNASeq or 
WGS libraries (Illumina 2017; Sinha et al. 2017).

These very high rates of index misassignment can result 
in substantial effects on fitness measurement experiments. 
For example, if reads from a late timepoint are misassigned 
as coming from an early time point, lineages with high fit-
ness (and thus high frequency in later time points) can have 
underestimated fitness effects, because their early time point 
frequency will be overestimated (Fig. 3C). Additionally, high 
rates index misassignment can result in frequency trajecto-
ries that “zig-zag” instead of reflecting constant frequency 
change overtime, resulting in very noisy fitness estimates 
(KerryGeilerSamerotte 2018d; Kinsler 2018b).

Why is it that our barcode libraries have much higher 
rates of index misassignment than previous reports focus-
ing on RNASeq? There are two main mechanisms by which 
index misassignment could occur. First, free-floating indi-
ces present in the library could become incorporated into 
molecules initially tagged with another index, resulting in 
“index-hopping” (Fig. 3D; left). This mechanism has been 
identified as the primary driver of index misassignment in 
diverse libraries by Illumina (2017), with the recommended 
solution being to ensure libraries are free of unincorporated 
primers prior to sequencing in addition to unique dual index-
ing. Our experimental design can distinguish this type of 
index misassignment because this process should primar-
ily occur through swapping of the Illumina index primers 
(which contain the flow cell-binding sequences; S and N in 
Fig. 3A rightmost panel), rather than inline indices (F and R 
in Fig. 3A rightmost panel). Therefore, we can identify these 
events by observing reads where all of the indices match an 
included sample except a single S or N Illumina index—we 
will refer to these events as “single swaps” (Fig. 3D; left).

A second mechanism may be that index misassignment 
occurs via “template switching” events, where the polymer-
ase jumps between two homologous sequences to create 
chimeric sequences where each end is from distinct original 
molecules (Fig. 3D; right). Given that the diverse barcodes 
sequenced in amplicon libraries often include a homologous 
region that is identical between all molecules (Levy et al. 
2015; Wong et al. 2016; Adamson et al. 2016; Najm et al. 
2017; Gordon et al. 2020), this mechanism of swapping 
could represent a more severe problem for barcoders. In the 
case of our experimental design to detect index misassign-
ment, if the swap occurs in the 167-bp homologous region 
between the inline indices, we would expect to find mis-
matched index pairs. In other words, the index pair on one 
end of the molecule (i.e., S and F) would match one sample 
while index pairs on the other end of the molecule (R and N) 
would match a different sample (Fig. 3D; right). However, if 

the template switching event occurs in one of the two 40-bp 
regions between the inline and Illumina indices, we cannot 
distinguish whether these events are due to template switch-
ing or index hopping, as these will also appear in our data 
as “single swaps.”

To understand which of these possible mechanisms drives 
increased index misassignment in our study, we deeply 
sequenced a library of 8 samples that were uniquely indexed 
using our nested unique dual-index scheme (Fig. 3A) such 
that each individual index was used with only a single sam-
ple (Kinsler 2018c). By examining the frequencies of each 
type of unexpected index combination (Fig. 3D), we gain 
insight about the mechanism underlying index misassign-
ment. However, an important note is that, while this experi-
mental design can tease out the mechanism of index misas-
signment, it is underpowered to measure the rate of index 
misassignment. The reason is that when only a few expected 
combinations of indices are used (e.g., 8), many index swap-
ping events will occur between two sequences with the same 
indices. These swapping events go undetected in our experi-
ment. While these events do not result in index misassign-
ment, swapping within samples that have identical indices 
can represent a major problem in other studies (Box 2).

Sequencing this pooled library on a HiSeq X machine, 
we found that 88% of our mapped reads had correct com-
binations of indices (Fig. 3E). Again, we suspect the rea-
son this experiment found only 12% of reads were misas-
signed, as opposed to 43% in our previous experiment is 
that this experiment is underpowered to measure the rate of 
index misassignment. Of the 12% misassigned reads, 55% 
(6.6% of the total mapped reads) were likely products of 
template switching events (Fig. 3D; right), while 29% of 
the misassigned reads (3.5% of total mapped reads) were 
the product of single swaps of an Illumina index (Fig. 3D; 
left). These single swaps are either due to incorporation of 
free-floating indices or template switching in the constant 
region between the inline and Illumina indices. Interest-
ingly, the ratio of observed single swaps to definitive tem-
plate switching events (29%/55% = 52%) is close to the 
ratio you would expect if template switching was the only 
mechanism of index misassignment and the location of the 
template switching event is equally likely across the entire 
amplicon sequence (49%). This suggests that most of these 
single swaps may be due to template switching events rather 
than “index hopping” events driven by incorporation of 
errant primers. In addition to these two prominent swapping 
events, 1.2% of total reads were double swaps (likely reflect-
ing either multiple independent swapping events resulting in 
incorrect index combinations or residual contamination of 
some kind) and 0.5% of the total mapped reads were single 
swaps of an inline index.

These data suggest that template switching (Fig. 3D; 
right) is a dominant driver of index misassignment when 
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sequencing barcode libraries and could explain why mis-
assignment rates are higher for amplicon sequencing than 
sequencing more diverse libraries, e.g., RNASeq or whole 
genomes. This makes sense given template switching relies 
on shared regions of homology between swapped reads, 
which are prevalent in amplicon sequencing (Box 2). This 
finding reinforces the recommended best practice of using 
unique dual indexing (or nested unique dual indexing) for 
barcode libraries, even in cases where you are confident 
there are few unincorporated primers remaining in the 
library, as these cause index hopping (Fig. 3D; left) but not 
template switching (Fig. 3D; right).

Motivation and Design for Studying Noise 
Introduced by Environmental Differences

Although we have shown that index misassignment on pat-
terned flow cells can be a major source of noise, this did 
not cause the variation in fitness observed in Fig. 1. All 
experiments comprising Fig. 1 were performed either on an 
unpatterned flow cell or using the nested unique dual-index 
approach outlined above (Fig. 3A; right panel). Therefore, 
we continued investigating additional sources of noise that 
might cause the observed variation in fitness in Fig. 1.

There is evidence that the fitness variation in Fig. 1 might 
be caused by subtle environmental differences across rep-
licates and batches. First, we know that there were slight 
differences in the setup of some of the 9 “batches” of exper-
iments delineated by vertical lines (Fig. 1). For example, 
the set of replicates from 5/9/15 was uniquely performed 
without including an ancestral yeast strain, and the set on 
8/17/15 was performed without one of the growth steps that 
precede the fitness measurement. Second, even when there 
are no documented differences in the experimental setup, 
there are bound to be minor differences that might affect 
how these yeast strains grow, especially considering that the 
experiments were performed by 4 different researchers, in 2 
different buildings, and over a time span of 4 years. Third, 
the differences in fitness across replicates and batches do 
not appear to represent random noise as would be expected 
if they were caused by the stochastic sampling that happens 
independently for every replicate. Instead, IRA1 and GPB2 
lineages go up or down in fitness together across replicates 
such that the difference in their fitness is more consistent 
across replicates (Fig. 1; std dev across purple diamonds is 
0.032, while std. dev. across boxplot medians is 0.117 for 
IRA1 and 0.09 for GPB2). This may imply that both types 
of mutant respond the same way to whatever environmental 
difference is most salient across these replicates. Additional 
evidence that the fitness variation across these 9 batches rep-
resents a response to environmental differences comes from 
our previous work (Kinsler et al. 2020). Here, we were able 
to predict fitness variation across these batches by modeling 

how mutant fitness changes across more intentional envi-
ronmental perturbations. This provides support for the idea 
that batch effects represent subtle genotype-by-environment 
interactions, rather than random technical noise.

Despite how obvious it may be that some of the variation 
in fitness reported in Fig. 1 reflects environmental differ-
ences between these 28 experiments, we were surprised that 
the differences across replicates and batches are substan-
tial enough that they are visible by eye. For example, in the 
batch of fitness competitions performed on 12/10/17, the 
average fitness advantage of IRA1 mutations is significantly 
smaller than in the batch of competitions performed on 
5/9/15 (Fig. 1; compare panels 1 v. 2). And in the 3 replicate 
fitness competitions performed on 5/1/15, the average advan-
tage of IRA1 nonsense mutations differs, with this advantage 
being significantly lower in replicate ‘C’ (Fig. 1; compare 
replicates within panel 3). Having often made meticulous 
efforts to reproduce important aspects of the experimental 
conditions across replicates and batches, we thought other 
sources of variation would be more prominent than so-called 
“batch effects.” A minor comfort is that others have strug-
gled with the same difficulties (Lithgow et al. 2017; Worthan 
et al. 2023). A second reason we were surprised these batch 
effects were so salient is that they are so often overlooked 
when researchers average across replicates and batches to 
get more accurate fitness estimates. Doing so may inflate 
estimates of precision, and can even lead to erroneous con-
clusions (Box 1).

Given our surprise at the magnitude of these batch effects, 
we wanted to better understand how much of the variation 
in Fig. 1 is likely due to environmental differences between 
replicates and batches, as opposed to stochastic differences 
(sampling noise) that can be introduced at many stages of 
the experimental pipeline (e.g., when a subset of cells are 
sampled to start a liquid culture, when a subset of cells are 
sampled for DNA extraction, when a subset of barcodes are 
sampled for amplification via PCR, when a subset of bar-
codes are sampled for sequencing). Our strategy for disen-
tangling these two types of noise is as follows. Variation in 
the fitness of identical mutants competing within the same 
vessel can be caused by all the aforementioned sources of 
sampling noise, but not by environmental differences. Thus, 
in order to understand how much additional noise environ-
mental differences contribute, we compared variation in fit-
ness of identical mutants competing within the same vessel 
(Fig. 4A) to variation in fitness of identical mutants across 
replicate competition experiments (Fig. 4B).

To study identical mutants competing within the same 
vessel, we utilized strains that were engineered to possess 
identical mutations in the IRA1 gene, but were given differ-
ent barcodes (Kinsler et al. 2020). We studied 6 such strains 
that each possess a frameshift AT to ATT insertion at bp 
4090 in IRA1 (referred to herein as ‘IRA1non*’) as well as 
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8 such strains that each possess a G to T mutation at bp 
3776 in IRA1 (called ‘IRA1mis*’) (Fig. 4A). We also utilized 
strains with adaptive mutations in GPB2, because previous 
work found that different mutations to this gene had similar 
effects on fitness, regardless of their position within the open 
reading frame (Levy et al. 2015; Venkataram et al. 2016).

We Observe More Variation in Fitness Between 
Experiments than Within Experiments

Our fitness inference method yields different fitness esti-
mates for identical mutants competing against one another 
in the same vessel (Fig. 4C; leftmost boxplot). For example, 
each red point in Fig. 4C represents the standard deviation 
in fitness across 6 barcoded yeast strains possessing identical 
frameshift mutations in the IRA1 gene. Since these mutants 
were only included in each of the four replicate experiments 
performed on 12/10/17, there are 4 red points. Each green 
point in the leftmost boxplot of Fig. 4C represents the stand-
ard deviation in fitness across 13 barcoded yeast strains pos-
sessing different mutations in the GPB2 gene. These line-
ages are included in all 28 replicates, so there are 28 points. 
While some of these 28 experiments seem to have suffered 
higher levels of sampling noise than others, on average the 

amount of noise observed across lineages competing within 
the same environment tends to be less than the amount of 
variation observed across lineages competing in different 
environments (Fig. 4C; notches indicate roughly 95% con-
fidence intervals around the median). Across all replicate 
experiments and more so across replicates performed on dif-
ferent days (i.e., in different batches), we see additional vari-
ation in fitness beyond what we observed among identical 
mutants competing within the same vessel. In other words, 
batch effects are prevalent in our study. This observation of 
strong batch effects highlights how strongly the impact of 
mutations depends on context, including even subtle contex-
tual changes that are present across replicates and batches 
(Eguchi et al. 2019; Geiler-Samerotte et al. 2020; Kinsler 

Fig. 4  How fitness is estimated and how these estimates vary. A 
This panel clarifies how we study variation within an experiment by 
comparing the fitness of identical genotypes competing within the 
same vessel. We studied 6 strains that each possess a frameshift AT 
to ATT insertion at bp 4090 in IRA1 (red) as well as 8 strains that 
each possess a G to T mutation at bp 3776 in IRA1 (orange). The 
standard deviation on the fitness across these 6 or 8 identical geno-
types is shown in panel C. B This panel clarifies how we study vari-
ation in fitness between batches and replicate experiments. To do 
so, we calculate how much variation exists in fitness estimates for 
a single unique barcode when measured in different experiments. 
C Each point represents the standard deviation across multiple fit-
ness measurements. Standard deviations were calculated as follows: 
We calculate the standard deviation on fitness within an experiment 
for all lineages carrying any mutation in GPB2 (green), carrying an 
AT to ATT insertion at bp 4090 of IRA1 (red), or carrying a G to 
T mutation at bp 3776 of IRA1 (orange). We do this for each of 28 
replicate experiments in which multiple GPB2 lineages are present, 
and 4 experiments in which multiple IRA1non* or IRA1mis* line-
ages are present (for a total of 28 + 4 + 4 = 36 observations in this cat-
egory). We calculate the standard deviation on fitness across replicate 
experiments for each of 21 barcoded lineages possessing mutations 
to IRA1 and 13 barcoded lineages with mutations to GPB2. We did 
this 9 times each (since there are 9 batches of replicates) for a total 
of 21 × 9 + 13 × 9 = 306 observations in this category. We calculate 
the standard deviation on fitness across batches by grouping meas-
urements from all 28 replicate experiments whether or not they were 
performed in the same batch. The fitness of 21 barcoded lineages pos-
sessing mutations to IRA1 was calculated, as was the fitness of 13 
barcoded lineages with mutations to GPB2 (34 observations in this 
category). For each category listed on the horizontal axis, boxplots 
summarize the same features as Fig.  1, with notches representing a 
roughly 95% confidence interval around the median calculated as 
1.58 × IQR/√n

▸
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et al. 2020). It also reinforces the importance of a careful 
experimental design where the effects of treatment are not 
confounded with the effects of batch (Box 1).

The prevalence of batch effects in our study begs ques-
tions about to what extent they are present in other stud-
ies. One could argue that here we are comparing apples to 
oranges because there are known differences between some 
of our batches. For example, some experiments were per-
formed without a pre-culturing step or have other differ-
ences (Fig. 1 & Table S1) (Kinsler et al. 2020). Perhaps, 
had the experiment been reproduced without deviation, 
the batch effects would be less salient. However, variation 
across experiments would not disappear. Even across identi-
cal replicate experiments performed on the same day, we see 
significantly more variation than observed within an experi-
ment (Fig. 4C; compare leftmost and middle boxplots). 
This highlights that fitness is sensitive to subtle differences 
between putatively identical experiments that are difficult to 
control. Similarly, when we omit the 3 batches that involved 
the protocol modifications described in Fig. 1, batch effects 
are just as severe (median standard deviation remains at 0.12 
as it is in the rightmost boxplot on Fig. 4C). These observa-
tions make it difficult to pinpoint what causes replicate and 
batch effects in our study. When we consider the laundry 
list of tiny ways an experiment might differ from one day to 
the next (see methods & Table S1), it seems like many of 
these sources of variation are present in other studies. Thus, 
our goal is to generate discussion on how to best proceed 
given our finding that fitness may be extremely sensitive to 
environmental and/or procedural differences between experi-
ments that are difficult to avoid. Perhaps our finding inspires 
new best practices in experimental evolution that include 
better reporting (and adhering to) an invariant experimental 
pipeline. Or perhaps, we might embrace the idea that differ-
ences between experiments are bound to happen and think 
about what we might gain by explicitly studying how fitness 
changes across replicates and batches (see discussion).

One caveat is that, in addition to environmental differ-
ences between batches, another potential source of batch 
effects may be variation in the frequency of baseline refer-
ence strains used by the inference method to calculate the fit-
ness of each mutant (Venkataram et al. 2016; Li et al. 2018a; 
Kinsler et al. 2020). One key step of the fitness inference 
method determines either the mean fitness of the popula-
tion (Venkataram et al. 2016; Li et al. 2018a) or the fitness 
of spiked in reference strains (Kinsler et al. 2020). Then, it 
sets all other fitnesses by these initial baseline inferences 
(Box 3). If these initial inferences differ across replicates 
or batches, for example, due to stochastic sampling noise 
that affected the reference strains, it could lead to variation 
in inferred fitness values that preserve their rank order, as 
observed in Fig. 1 where IRA1 mutants are always more 
fit than GPB2. Thus, another way to improve precision in 

fitness estimation may be to improve the accuracy of these 
initial inferences by spiking in a larger number of reference 
strains. However, differences in mean fitness inference are 
unlikely to entirely explain batch effects. If they did, we 
might expect to see the same amount of variation across 
replicates and batches. However, variation across batches 
tends to be greater (Fig. 4C). Also, previous work suggests 
that the batch effects we study here indeed reflect subtle 
genotype-by-environment interactions (Kinsler et al. 2020).

In sum, batch effects, and to a lesser degree, replicate 
effects, appear to be prevalent in barcoded fitness measure-
ments (Fig. 4C). They are likely caused by environmental 
differences (e.g., subtle differences in the media, equipment, 
strain composition, and/or protocol). On one hand, batch 
effects may represent a latent opportunity to learn new biol-
ogy, e.g., which mutants are most sensitive to which environ-
mental perturbations. On the other hand, batch effects can 
be extremely problematic in some circumstances. For exam-
ple, they can make typically reported measures of precision, 
such as percent error across replicates, difficult to interpret 
(Box 1). And they can unfairly exaggerate fitness differences 
between environments that were studied on different days or 
conversely, they can obscure these differences (Box 1). The 
severity of the problem depends on the magnitude of the 
fitness differences that the researcher is hoping to capture. 
In the field of experimental evolution, where researchers 
are often interested in understanding subtle fitness differ-
ences across environments (Venkataram et al. 2016; Li et al. 
2018b, 2019; Jerison et al. 2020; Kinsler et al. 2020; Boyer 
et al. 2021; Bakerlee et al. 2021), batch effects may represent 
an important and previously underappreciated confounding 
factor.

Discussion

Here, we analyzed sources of noise that contribute to varia-
tion in barcoded fitness measurements. We found that techni-
cal noise due to DNA extraction and PCR amplification had 
small contributions to measurement noise when they were 
performed via the methods we used (Fig. 2). And we found 
that another technical source of noise, template switch-
ing between sequencing reads from different samples, can 
provide a more major source of noise (Fig. 3). One of our 
most upsetting observations was that fitness varies so much 
across replicates and batches (Fig. 4). Taken at face value, 
the observation that the fitness of an organism can change so 
much between replicate experiments raises questions about 
our ability to obtain and interpret fitness measurements. This 
concern is relevant in many fields, including experimental 
evolution (Levy et al. 2015; Li et al. 2019; Boyer et al. 2021; 
Aggeli et al. 2021; Bakerlee et al. 2021), deep mutational 
scanning (Fowler and Fields 2014), and high-throughput 
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genetic engineering systems (Sharon et al. 2018; Bakerlee 
et al. 2022).

One way to contend with this concern is by reducing com-
parisons across replicates and especially batches as much as 
possible. For example, the fitness of all mutations could be 
measured at the same time in the same flask to eliminate rep-
licate and batch effects. In cases where this is not possible, 
for example, when comparing across two or more different 
environments, all experiments could be performed in the 
same batch, with as many factors held constant as possible 
(incubator, flask shape, base media, etc.). Indeed, this is how 
we performed the #1BigBatch experiment that inspired this 
manuscript. But performing all experiments in one big batch 
is difficult and further, does not address the issue of repro-
ducibility across labs. Should scientists studying fitness con-
sider investing in ultra-precise scales for use during media 
prep or incubators with tight temperature control to ensure 
that others can more accurately recreate their work? Should 
the methods sections of relevant articles be greatly expanded 
to include details like whether fresh media was made each 
time and warmed up before adding cells to it? We hope that 
the results reported here, particularly the large amount of 
variation in fitness observed across batches, inspires deeper 
discussion of this important reproducibility issue.

On the other hand, perhaps batch effects need not be 
reduced. If the variation in fitness across replicates and 

batches does not reflect imprecise measurements, and instead 
results from small environmental differences between exper-
iments, perhaps this is a time to turn lemons into lemonade. 
Perhaps we should consider fitness as a parameter that inher-
ently varies and can never be fully replicated even in the 
same experiment. If we embrace this context dependency 
and report this variation instead of merely averaging away 
this signal, we might begin to glean new insights about these 
sensitive systems.

The observation that fitness is sensitive to subtle envi-
ronmental changes across batches contributes to a growing 
mountain of evidence that context dependency is pervasive 
in biological systems (Eguchi et al. 2019; Liu et al. 2020; 
Kinsler et al. 2020; Bakerlee et al. 2021). This rampant con-
text dependency raises many philosophical issues about how 
to define an ‘environment.’ Should we think of each batch 
as a new environment or each replicate? When we perform 
an evolution experiment, do we expose our evolving popu-
lation to a new environment every time we transfer them 
into new media? Is the environment also defined by which 
other genotypes are present and at what frequencies? Step-
ping outside of laboratory experiments, how should we think 
of the fitness of an organism if it is extremely sensitive to 
the small changes in the environment that happen over the 
course of the day? In particular, should we re-evaluate the 
use of models in which an organism has a single selection 
coefficient and perhaps define a range of coefficients that 
pertain to the relevant range of environments it experiences?

In sum, improvements in our ability to measure fitness 
have allowed us to detect rampant context dependency 

Fig. B1  Problems introduced by batch effects. This figure shows a toy 
example using simulated data that reflects how aggregating across 
measurements from different batches (e.g., measurements performed 
on different days) can ignore batch-to-batch variation leading to an 
overestimate of measurement precision. Each of the 3 dots represents 
replicate fitness measurements of a single genotype. In this example, 
batch effects are at least as strong as the effect of the drug on fitness. 
Since both drug and control conditions were included in each batch, 
the aggregate panel accurately captures the fitness difference between 
the drug and control, but overestimates the precision of this measure-
ment. Had the experiment been designed differently, with drug and 
control conditions being surveyed on different days (dotted box), the 
effect of the drug on fitness may have been obscured by batch effects

Fig. B2  Template switching can scramble internal associations on 
different ends of the read. This figure shows a schematic of a tem-
plate switching event occurring between two reads belonging to the 
same sample for an application where barcodes are associated with 
guide RNAs (i.e., barcoded CRISPR screen). In this case, template 
switching (denoted by the red dashed line) that occurs in the homolo-
gous region in the middle of the read would cause the gRNA-barcode 
associations to be scrambled. This would not be identified as a swap-
ping event using unique dual indices because both reads belong to the 
same sample and have the same indices
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hiding in a high-replicate dataset. Ironically, high-repli-
cate datasets are often generated to improve measurement 
precision rather than reveal the inherent imprecision. The 
revelation that fitness is inherently varied across replicate 
experiments inspires new goals for fitness measurements 
going forward. In addition to measuring fitness precisely 
by eliminating technical sources of noise, the community 
must think carefully about how to measure an extremely 
context-dependent parameter in a reproducible way, how 
to report precision on these measurements, and how to use 
these measurements to understand and model processes, 
such as natural selection, which can detect fitness differences 
orders of magnitude smaller than those we observe in the lab 
and thus may be even more sensitive to small environmental 
fluctuations.

Boxes

Box 1—Improving Precision by Adding more 
Replicates can Lead to Erroneous Conclusions

Improving fitness measurement precision by adding more 
replicates makes several assumptions that may not be 
true, especially if replicates were performed on different 
days (i.e., in different “batches”). For example, this 
method assumes that between-replicate (or between-
batch) variation is uncorrelated technical noise, rather 
than variation in fitness due to environmental differences. 
For example, consider a case where fitness has been 
measured in a control condition and in the presence of a 
drug (Fig. B1). If we fail to consider the effect of hidden 
variables that vary from batch to batch, then in this case 
we would correctly infer that the fitness is higher in the 
control condition when we take the average across all 
replicates and batches (Fig. B1; rightmost ‘aggregate’ 
panel). Our confidence in the precision of our fitness 
measurements (as measured by standard error— �

√

n

 ), 
would be fairly high, given the relatively large number of 
replicates across all batches. However, if we had meas-
ured fitness in the drug condition only in batch one and 
the control condition only in batch two (Fig. B1; dotted 
box), we would have incorrectly observed that the drug 
has no effect on fitness. In this case as well, our confi-
dence in this fitness measurement would be fairly high, 
given we performed 3 replicates for each condition. In 
both cases, our confidence in the measurement is over-
stated, given the standard error may be over-representing 
how precisely fitness can be measured, as there are 
uncontrolled factors that vary from batch to batch that 

change the fitness effects of the mutant across the envi-
ronments (Fig. B1).

Box 2—The Consequences of Template Switching 
on Barcoded Competition Experiments

Given that template switching seems to occur more in 
barcoded libraries than in RNASeq or WGS data, we 
suspect that it is facilitated by homology among reads. 
Because of how barcode regions are synthesized and 
cloned, there are often fairly long stretches of homology 
flanking the barcode region. Thus, one potential area of 
future study is to assess the extent to which the length of 
homology contributes to the prevalence of index misas-
signment due to template switching. Furthermore, future 
barcoding designs may want to consider reducing the 
amount of constant sequence both in the barcode con-
struct itself and the primer sequences used to reduce the 
rates of template switching (Hegde et al. 2018; Johnson 
et al. 2023). Doing so is important not only to avoid wast-
ing sequencing reads on swapped samples, but also to 
minimize swapping in cases where unique dual indexing 
cannot detect it.

While unique dual indexing allows removal of tem-
plate switching events between timepoints or samples, it 
does not detect swapping events between within the same 
sample. These “hidden” swapping events result in chi-
meric reads and can cause issues for certain applications. 
For example, in some methods including massively paral-
lel reporter assays, barcoded or combinatorial CRISPR 
screens, and double-barcode systems, it is important to 
associate information from one side of the read with the 
other (Fig. B2) (Wong et al. 2016; Adamson et al. 2016; 
Najm et al. 2017; Gordon et al. 2020). Researchers car-
rying out experiments that rely on these internal associa-
tions should utilize sequencing platforms with reduced 
template switching rates (e.g., Illumina non-patterned 
flow cell machines like NextSeq or MiSeq) and/or experi-
ment with reducing homology among reads. Additionally, 
researchers may want to include explicit known barcode-
gRNA pairs that allow for the detection of these “hidden” 
swapping events within a sample.

Box 3—Inference of a Fitness Benchmark 
is Critical to Reproducible Measurements

During a fitness competition experiment, a strain’s change 
in frequency depends on its fitness relative to the fitness 
of the other strains in the population (Li et al. 2018a). 
Thus, benchmarking the fitness of a population is a cru-
cial step to properly normalizing fitness measurements 
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and ensuring reproducibility across environments and 
batches.

There are two common methods to calculate a fit-
ness benchmark. One method directly calculates the 
mean fitness of an entire population using the inferred 
fitnesses and frequencies of strains in the population (Li 
et al. 2018a). This method is commonly used in screens 
where many mutations are being simultaneously assayed 
(Fowler and Fields 2014; Sharon et al. 2018; Liu et al. 
2020), as it is assumed that most mutations have little to 
no effect on fitness such that this average is representa-
tive of the fitness of an unmutated strain. Another method 
for benchmarking fitness is the use of reference strains. 
With this approach, a reference strain/s is spiked into the 
population, and fitnesses of other strains are explicitly 
calculated relative to this reference. This approach allows 
fitnesses to be easily compared across environments, 
because they are always relative to the same reference 
strain. When studying the fitness of adaptive mutations, 
the reference strain is often the unmutated ancestor of an 
evolution experiment (Venkataram et al. 2016; Kinsler 
et al. 2020). Because this normalization affects the fitness 
of all other measurements, it is important that the ances-
tor’s change in frequency is measured well, otherwise 
it can serve as an additional source of noise and batch 
effects across experiments. Measuring the ancestor’s 
fitness can be difficult because this ancestor will often 
receive lower sequencing coverage as it falls in frequency 
while the adaptive mutants rise in frequency. Thus, it is 
advisable to spike in the ancestor at a high concentration 
to ensure adequate coverage (and low sampling noise) 
and to include many uniquely barcoded copies to contend 
with variation in fitness arising from technical sources. 
Because of the potential advantages and disadvantages 
of both methods of benchmarking fitness, the field could 
benefit from future theoretical and experimental work 
to understand which methods are preferred for different 
types of experiments.

Methods

Fitness Measurements

The 28 replicate fitness measurements presented in Fig. 1 
were described in a previous study (Kinsler et al. 2020). 
Briefly, growth competitions were setup between a pool of 
barcoded mutants and a reference strain. These 28 competi-
tions were performed in 9 batches, which each were per-
formed on a different date in one of two locations. Table S1 
contains a list of the known differences between batches, 
including the number of barcoded yeast strains competing 

in each pool. But in any type of study, there are countless 
things that may differ between putatively identical experi-
ments. A partial list of things that may (or may not) differ 
between fitness competition experiments includes the incu-
bator used to keep cultures warm, the scale used to measure 
media components, the number of cycles used during PCR 
amplification, the number of barcoded strains in the com-
petition, the number of reference strains used, the person 
performing the experiment, how fast that person transferred 
cultures from one time point to the next, the lab in which the 
experiment was performed, the humidity and temperature 
that day, whether or not fresh media was warmed or taken 
straight from the refrigerator when initiating a culture, the 
length of the preculture, and the number of timepoints for 
which barcode frequencies were tracked. Some of these dif-
ferences may arise unintentionally due to stylistic differences 
between researchers and others can arise intentionally as 
researchers hone and improve their protocols.

These fitness competition experiments were monitored 
by sequencing the entire populations’ barcodes at 3 or more 
timepoints. The change in the frequency of each barcode 
over time reflects the fitness of the adaptive mutant pos-
sessing that barcode relative to the reference strain. After a 
growth competition is complete, DNA was extracted from 
frozen samples and resuspended in Elution Buffer to a final 
concentration of 50 ng/μL for later use in PCR reactions. A 
two-step PCR was used to amplify the barcodes from the 
DNA. The first PCR cycle used primers with inline indi-
ces to label samples. Attaching unique indices to samples 
pertaining to different conditions or timepoints allows us to 
multiplex these samples on the same sequencing lane. Each 
primer also contained a Unique Molecular Identifier (UMI) 
which is used to determine if identical barcode sequences 
each represent yeast cells that were present at the time the 
sample was frozen or a PCR amplification of the barcode 
from a single cell. The second step of PCR used standard 
Nextera XT Index v2 primers (Illumina #FC-131-2004) to 
further label samples representing different conditions and 
timepoints with unique identifiers that allow for multiplexing 
on the same sequencing lane. Samples were uniquely dual-
indexed following the nested scheme in Fig. 3. Pooled sam-
ples were then sent to either Novogene (https:// en. novog ene. 
com/) or Admera Health (https:// www. admer aheal th. com/) 
for quality control (qPCR and either Bioanalyzer or TapeSta-
tion) and sequencing. Data were processed by first using 
the index tags to de-multiplex reads representing different 
conditions and timepoints. Then, reads were mapped to a 
known list of barcodes, PCR duplicates were removed using 
the UMIs, and the frequency of each barcode was measured 
at each time point. Fitness was inferred from changes in 
barcode frequency over time using a modified version of 
fitness assay python (https:// github. com/ barco ding- bfa/ fitne 
ss- assay- python) available at https:// github. com/ grant kinsl 

https://en.novogene.com/
https://en.novogene.com/
https://www.admerahealth.com/
https://github.com/barcoding-bfa/fitness-assay-python
https://github.com/barcoding-bfa/fitness-assay-python
https://github.com/grantkinsler/BarcodersGuide
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er/ Barco dersG uide, along with the rest of the code used in 
this study.

Technical Replicates

To create technical replicates of the DNA extraction proce-
dure, frozen cell samples from a given timepoint of a pooled 
fitness competition were divided in half prior to DNA extrac-
tion. The halved samples were then treated separately for all 
downstream steps. All sample preparation was conducted as 
described above and as detailed in Kinsler et al 2020, except 
in a few cases. In some of these exceptional cases, marked by 
a triangle in Fig. 2C, we omitted glass beads from one sam-
ple in the pair of technical replicates. In other exceptional 
cases, marked by a diamond in Fig. 2C, we added phenol to 
one sample in the pair of technical replicates. These modi-
fications did not seem to affect reproducibility between the 
pair of samples (Fig. 2C). Similarly, for technical replicates 
of the PCR procedure, we divided samples in half after DNA 
was extracted and diluted to 50 ng/μL. These samples were 
processed independently for all downstream steps, follow-
ing identical procedures as described in Kinsler et al 2020 
with a few exceptions. In some samples, marked by a circle 
in Fig. 2C, we reduced the cycle time for one sample in the 
pair of technical replicates from 27 to 23 cycles. This did not 
affect reproducibility between a pair of samples (Fig. 2C). 
All technical replicates were performed on samples from the 
batch of pooled fitness competitions initiated on 12/10/17; 
this was the batch of experiments that we live tweeted about 
at #1BigBatch.

Quantifying the Effects of Index Misassignment

Below, we describe the methods we used to index samples, 
identify index misassignments, and understand the mecha-
nisms underlying index misassignment. Note that other 
than the section Template switching on patterned flow cells 
appears to be a major source of noise, results presented 
throughout the rest of the study were sequenced to minimize 
the amount of index misassignment as possible. In particu-
lar, we included only samples that were sequenced on non-
patterned flow cell technology (HiSeq 2000, HiSeq 2500, or 
NextSeq) or were sequenced on patterned flow cell technol-
ogy (patterned flow cell HiSeq X) with nested unique dual 
indexing.

We performed nested unique dual indexing following 
the method we developed in previous work (Kinsler et al. 
2020). Briefly, this approach uses a combination of inline 
indices attached during the first step of PCR (12 forward 
and 8 reverse), as well as Illumina indices (12 Nextera i7 
and 8 Nextera i5) attached during the second step of PCR. 
The latter indices are not part of the sequencing read (they 
are read in a separate Index Read). To uniquely label each 

sample, we use combinations of the Illumina and inline 
primers such that each of the 12 forward inline (F) indices 
is used solely with one Nextera i7 (N) index and each of the 
8 reverse inline (R) indices is used solely with one Nextera 
i5 (S) index. We can then combinatorially utilize these 12 
F/N combinations with the 8 R/S combinations to uniquely 
label up to 96 samples (Fig. 3).

To estimate the magnitude of index misassignment for 
a large set of samples across different sequencing plat-
forms, we first constructed a library by pooling 95 samples 
that were uniquely dual indexed in this manner. We then 
sequenced this same library on two lanes, one a NextSeq 
lane and the other a HiSeq X lane. During the process-
ing of the sequencing data, we mapped reads to all pos-
sible combinations of indices and counted the number of 
mapped reads to each index combination. Any reads which 
mapped to incorrect index combinations were then classified 
as misassigned.

To demonstrate an example of the effect that unidentified 
index misassignment can have on frequency trajectories and 
the calculation fitness, we used samples from replicate D of 
the experiment conducted on 12/10/17. The results depicting 
nested dual indexing use the reads to these samples from the 
HiSeq X run. To show what would happen if only combina-
torial indexing were used, we ignored the inline indices and 
added up all the mapped reads to each barcode that mapped 
to the proper Illumina indices (N and S) alone. We then 
calculated fitness using these new reads.

To quantify whether index misassignment occurs most 
frequently via template switching or single swaps, we sepa-
rately pooled a set of 8 samples, each containing their own 
unique index at all positions (except on particular S index—
see note below) and sequenced this on a lane of HiSeq X. We 
then mapped these reads to every possible index combina-
tion. Reads were classified as a template switching event if 
the indices on both sides of the molecule matched proper 
samples but should not exist together (Fig. 3D). Reads were 
classified as a single swap if all indices matched a true sam-
ple except one. If the incorrect index was an Illumina index 
(N or S), it was classified as a single Ilumina swap, other-
wise, if the incorrect index was in the read, it was classified 
as an inline single swap. Finally, if two indices were incor-
rect but the index combination was not due to a template 
switching event in the middle of the molecule, it was classi-
fied as a double swap.

Note that during the library creation for these samples, 
S513 was incorrectly used instead of S517 for four sam-
ples and S517 was used instead of S513 for four samples. 
For analysis about the general rate of index misassignment 
for amplicons, this may slightly decrease our estimated rate 
of index hopping, as single swaps between S513 and S517 
would not be detected for the samples where the index was 
incorrectly used (likewise, single inline swaps between the 
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corresponding inline R301 and R304 indices that are sup-
posed to be uniquely associated with these samples). Note 
that this only applies to a small number of the total combina-
tions that can arise via index misassignment, so the impact 
of this error should be minor. Only one of these samples 
was included in the library used to identify the mechanisms 
underlying index misassignment for amplicons. This resulted 
in the S517 index represented twice in this sample rather 
than only once. This could result in a slight under-estimation 
of the number of single swap events with Illumina primers 
(as again a single swap between the S517 index of these 
two samples would not be distinguished). Additionally, this 
error results in two primer combinations which could be 
either the result of single inline swaps or template switch-
ing. As template switching events are over 10 × more likely 
than single inline swaps according to our data, we assigned 
these ambiguous combinations as template switching events. 
Because these events are much more common and this only 
applies to 2 of the 56 possible combinations that result from 
template switching, this should result in only a minor mis-
estimation of the template switching and inline single swap 
rates.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00239- 023- 10114-3.

Acknowledgements We are grateful to Sasha Levy, Marc Salit and the 
members of the Geiler-Samerotte and Petrov labs for helpful discus-
sions. This work was supported by a National Institutes of Health grant 
R35GM133674 (to KGS), an Alfred P Sloan Research Fellowship in 
Computational and Molecular Evolutionary Biology grant FG-2021-
15705 (to KGS), a National Science Foundation Biological Integration 
Institution grant 2119963 (to KGS), a National Institutes of Health 
grant R35GM118165 (to DP), a Chan Zuckerberg Investigator Award 
(to DP), and a Stanford Center for Computational, Evolutionary, and 
Human Genomics predoctoral fellowship (to GK).

Declarations 

Conflicts of interest There are no conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Adamson B, Norman TM, Jost M et al (2016) A multiplexed single-cell 
CRISPR screening platform enables systematic dissection of the 
unfolded protein response. Cell 167:1867-1882.e21

Aggeli D, Li Y, Sherlock G (2021) Changes in the distribution of fitness 
effects and adaptive mutational spectra following a single first step 
towards adaptation. Nat Commun 12:5193

Bakerlee CW, Phillips AM, Nguyen Ba AN, Desai MM (2021) Dynam-
ics and variability in the pleiotropic effects of adaptation in labo-
ratory budding yeast populations. Elife. https:// doi. org/ 10. 7554/ 
eLife. 70918

Bakerlee CW, Ba ANN, Shulgina Y et al (2022) Idiosyncratic epistasis 
leads to global fitness–correlated trends. Science 376:630–635

Boyer S, Hérissant L, Sherlock G (2021) Adaptation is influenced by 
the complexity of environmental change during evolution in a 
dynamic environment. PLoS Genet 17:e1009314

Brauer MJ, Huttenhower C, Airoldi EM et al (2008) Coordination of 
growth rate, cell cycle, stress response, and metabolic activity in 
yeast. Mol Biol Cell 19:352–367

Breslow DK, Cameron DM, Collins SR et al (2008) A comprehensive 
strategy enabling high-resolution functional analysis of the yeast 
genome. Nat Methods 5:711–718

Brown KM, Costanzo MS, Xu W et al (2010) Compensatory mutations 
restore fitness during the evolution of dihydrofolate reductase. 
Mol Biol Evol 27:2682–2690

Chubukov V, Mukhopadhyay A, Petzold CJ et al (2016) Synthetic and 
systems biology for microbial production of commodity chemi-
cals. NPJ Syst Biol Appl 2:16009

Costanzo M, VanderSluis B, Koch EN et al (2016) A global genetic 
interaction network maps a wiring diagram of cellular function. 
Science. https:// doi. org/ 10. 1126/ scien ce. aaf14 20

Dunai A, Spohn R, Farkas Z et al (2019) Rapid decline of bacterial 
drug-resistance in an antibiotic-free environment through pheno-
typic reversion. Elife. https:// doi. org/ 10. 7554/ eLife. 47088

Duveau F, Hodgins-Davis A, Metzger BP et al (2018) Fitness effects 
of altering gene expression noise in Saccharomyces cerevisiae. 
Elife. https:// doi. org/ 10. 7554/ eLife. 37272

Eguchi Y, Bilolikar G, Geiler-Samerotte K (2019) Why and how to 
study genetic changes with context-dependent effects. Curr Opin 
Genet Dev 58–59:95–102

Flynn JM, Rossouw A, Cote-Hammarlof P et al (2020) Comprehensive 
fitness maps of Hsp90 show widespread environmental depend-
ence. Elife. https:// doi. org/ 10. 7554/ eLife. 53810

Fowler DM, Fields S (2014) Deep mutational scanning: a new style of 
protein science. Nat Methods 11:801–807

Gallet R, Cooper TF, Elena SF, Lenormand T (2012) Measuring selec-
tion coefficients below 10–3: method, questions, and prospects. 
Genetics 190:175–186

Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression 
programs in the response of yeast cells to environmental changes. 
Mol Biol Cell 11:4241–4257

Geiler-Samerotte KA, Dion MF, Budnik BA et al (2011) Misfolded 
proteins impose a dosage-dependent fitness cost and trigger a 
cytosolic unfolded protein response in yeast. Proc Natl Acad Sci 
USA 108:680–685

Geiler-Samerotte KA, Hashimoto T, Dion MF et al (2013) Quantify-
ing condition-dependent intracellular protein levels enables high-
precision fitness estimates. PLoS ONE 8:e75320

Geiler-Samerotte KA, Li S, Lazaris C et al (2020) Extent and context 
dependence of pleiotropy revealed by high-throughput single-cell 
phenotyping. PLoS Biol 18:e3000836

Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Sac-
charomyces cerevisiae genome. Nature 418:387–391

https://doi.org/10.1007/s00239-023-10114-3
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.70918
https://doi.org/10.7554/eLife.70918
https://doi.org/10.1126/science.aaf1420
https://doi.org/10.7554/eLife.47088
https://doi.org/10.7554/eLife.37272
https://doi.org/10.7554/eLife.53810


309Journal of Molecular Evolution (2023) 91:293–310 

1 3

Gordon MG, Inoue F, Martin B et al (2020) lentiMPRA and MPRA-
flow for high-throughput functional characterization of gene regu-
latory elements. Nat Protoc 15:2387–2412

Gresham D, Boer VM, Caudy A et al (2011) System-level analysis of 
genes and functions affecting survival during nutrient starvation 
in Saccharomyces cerevisiae. Genetics 187:299–317

Hegde M, Strand C, Hanna RE, Doench JG (2018) Uncoupling of sgR-
NAs from their associated barcodes during PCR amplification of 
combinatorial CRISPR screens. PLoS ONE 13:e0197547

Hegreness M, Shoresh N, Hartl D, Kishony R (2006) An equivalence 
principle for the incorporation of favorable mutations in asexual 
populations. Science 311:1615–1617

Illumia, 2017 Illumina Effects of index misassignment on multiplexing 
and downstream analysis. URL: www. illum ina. com

Jerison ER, Nguyen Ba AN, Desai MM, Kryazhimskiy S (2020) 
Chance and necessity in the pleiotropic consequences of adapta-
tion for budding yeast. Nat Ecol Evol 4:601–611

Johnson MS, Martsul A, Kryazhimskiy S, Desai MM (2019) Higher-
fitness yeast genotypes are less robust to deleterious mutations. 
Science 366:490–493

Johnson MS, Venkataram S, Kryazhimskiy S (2023) Best practices in 
designing, sequencing, and identifying random DNA barcodes. J 
Mol Evol. https:// doi. org/ 10. 1007/ s00239- 022- 10083-z

Kao KC, Sherlock G (2008) Molecular characterization of clonal inter-
ference during adaptive evolution in asexual populations of Sac-
charomyces cerevisiae. Nat Genet 40:1499–1504

KerryGeilerSamerotte (2017) Super precise measurements reveal day-
to-day variation (i.e. batch effects) in the fitness of mutant yeast 
lineages. To understand how fitness varies across subtly differing 
environments, we perform one giant experiment! Follow @Grant-
Kinsler, @PetrovADmitri and I at #1BigBatch. In: Twitter. https:// 
twitt er. com/ KSame rotte/ status/ 93924 74822 81738 240?s= 20& t=_ 
Wy9Dp Tb- JEUOG gAHl5 sjQ. Accessed 5 Jun 2022

KerryGeilerSamerotte (2018a) Update on #1BigBatch: we tested how 
different sources of technical variation influence our ability to 
estimate the relative frequencies of 500 barcoded yeast lineages. 
Want to bet which source contributes most noise? #1BigBet @
GrantKinsler @PetrovADmitri. In: Twitter. https:// twitt er. com/ 
KSame rotte/ status/ 10045 52963 20385 4336. Accessed 1 Aug 2022

KerryGeilerSamerotte (2018b) Variation across experiments from dif 
weeks was getting us down, so we did all experiments in #1Big-
Batch Still more variation than expected given counting noise, but 
we are honing in! This movie shows stages of sample prep that 
may add noise w/ @GrantKinsler & @PetrovADmitri pic.twitter.
com/4wcjyIXkC3. In: Twitter. https:// twitt er. com/ KSame rotte/ sta-
tus/ 10634 92341 60703 0784?s= 20& t=_ Wy9Dp Tb- JEUOG gAHl5 
sjQ. Accessed 5 Jun 2022

KerryGeilerSamerotte (2018c) #1BigBatch update: We are investigat-
ing which steps of protocol introduce the most technical variation 
by performing nested technical replicates. This will distinguish 
effect of subtle environmental changes on yeast growth rates from 
technical noise. @GrantKinsler @PetrovADmitri pic.twitter.com/
HBUVG054F7. In: Twitter. https:// twitt er. com/ KSame rotte/ status/ 
96573 85120 78094 336?s= 20& t=_ Wy9Dp Tb- JEUOG gAHl5 sjQ. 
Accessed 5 Jun 2022

KerryGeilerSamerotte (2018d) We think most noise in prelim #1Big-
Batch data is from uneven coverage across samples + index hop-
ping. Here are the results of our analysis so far. @grantkinsler @
PetrovADmitri @skryazhi @gsherloc @conTAMInatedsci 1/6. 
In: Twitter. https:// twitt er. com/ KSame rotte/ status/ 10098 96919 
00547 8912?s= 20& t=_ Wy9Dp Tb- JEUOG gAHl5 sjQ. Accessed 
5 Jun 2022

Kinsler G, Geiler-Samerotte K, Petrov DA (2020) Fitness variation 
across subtle environmental perturbations reveals local modular-
ity and global pleiotropy of adaptation. Elife. https:// doi. org/ 10. 
7554/ eLife. 61271

Kinsler G (2017) Starting #1BigBatch experiment today with @
KSamerotte and @PetrovADmitri. We’re using DNA barcodes 
to measure fitness of evolved yeast mutants in 33 conditions 
simultaneously. In: Twitter. https:// twitt er. com/ Grant Kinsl er/ sta-
tus/ 93924 74615 28301 568?s= 20& t=_ Wy9Dp Tb- JEUOG gAHl5 
sjQ. Accessed 5 Jun 2022

Kinsler G (2018a) Step 1 PCRs to assess technical variation of #1Big-
Batch in progress! We’re running multiple PCRs of some DNA 
extractions to assess how PCR stochasticity impacts frequency 
inference. @KSamerotte @PetrovADmitri pic.twitter.com/
GIG04LICWi. In: Twitter. https:// twitt er. com/ Grant Kinsl er/ sta-
tus/ 96616 00566 00248 320?s= 20& t=_ Wy9Dp Tb- JEUOG gAHl5 
sjQ. Accessed 5 Jun 2022

Kinsler G (2018b) We re-sequenced one of our pooled libraries on 
the Illumina Nextseq machine (which has lower switching rates). 
Removes some of the “zig-zag” pattern observed in timepoint 3 
on HiSeq X, suggesting #indexswitching may be to blame. #1Big-
Batch @PetrovADmitri @KSamerotte @skryazhi pic.twitter.
com/6oB7dCpKQr. In: Twitter. https:// twitt er. com/ Grant Kinsl 
er/ status/ 10204 22663 00348 8256?s= 20& t=_ Wy9Dp Tb- JEUOG 
gAHl5 sjQ. Accessed 5 Jun 2022

Kinsler G (2018c) First #1BigBatch data is back! We sequenced 8 
samples on 1 lane of HiSeq X, each with unique set of prim-
ers. For each primer, ~10% of reads were in pairs not included, 
showing high rates of #indexswitching, which could impact fre-
quency estimates. @KSamerotte @PetrovADmitri pic.twitter.
com/j8RTiZHdUX. In: Twitter. https:// twitt er. com/ Grant Kinsl 
er/ status/ 98344 42049 06012 672?s= 20& t=_ Wy9Dp Tb- JEUOG 
gAHl5 sjQ. Accessed 5 Jun 2022

Lenski RE (2017) Experimental evolution and the dynamics of adap-
tation and genome evolution in microbial populations. ISME J 
11:2181–2194

Leon D, D’Alton S, Quandt EM, Barrick JE (2018) Innovation in an E. 
coli evolution experiment is contingent on maintaining adaptive 
potential until competition subsides. PLoS Genet 14:e1007348

Levy SF, Ziv N, Siegal ML (2012) Bet hedging in yeast by heterogene-
ous, age-correlated expression of a stress protectant. PLoS Biol 
10:e1001325

Levy SF, Blundell JR, Venkataram S et al (2015) Quantitative evolu-
tionary dynamics using high-resolution lineage tracking. Nature 
519:181–186

Li F, Salit ML, Levy SF (2018a) Unbiased fitness estimation of pooled 
barcode or amplicon sequencing studies. Cell Syst 7:521-525.e4

Li Y, Venkataram S, Agarwala A et al (2018b) Hidden complexity of 
yeast adaptation under simple evolutionary conditions. Curr Biol 
28:515-525.e6

Li Y, Petrov DA, Sherlock G (2019) Single nucleotide mapping of trait 
space reveals Pareto fronts that constrain adaptation. Nat Ecol 
Evol 3:1539–1551

Lithgow GJ, Driscoll M, Phillips P (2017) A long journey to reproduc-
ible results. Nature 548:387–388

Liu Z, Miller D, Li F et al (2020) A large accessory protein inter-
actome is rewired across environments. Elife. https:// doi. org/ 10. 
7554/ eLife. 62365

Lynch M, Conery JS (2003) The origins of genome complexity. Sci-
ence 302:1401–1404

Najm FJ, Strand C, Donovan KF et al (2017) Orthologous CRISPR–
Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol 
36:179–189

Nichol D, Rutter J, Bryant C et al (2019) Antibiotic collateral sensitiv-
ity is contingent on the repeatability of evolution. Nat Commun 
10:334

Ohta T (1973) Slightly deleterious mutant substitutions in evolution. 
Nature 246:96–98

http://www.illumina.com
https://doi.org/10.1007/s00239-022-10083-z
https://twitter.com/KSamerotte/status/939247482281738240?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/939247482281738240?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/939247482281738240?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/1004552963203854336
https://twitter.com/KSamerotte/status/1004552963203854336
https://twitter.com/KSamerotte/status/1063492341607030784?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/1063492341607030784?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/1063492341607030784?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/965738512078094336?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/965738512078094336?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/1009896919005478912?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/KSamerotte/status/1009896919005478912?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://doi.org/10.7554/eLife.61271
https://doi.org/10.7554/eLife.61271
https://twitter.com/GrantKinsler/status/939247461528301568?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/939247461528301568?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/939247461528301568?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/966160056600248320?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/966160056600248320?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/966160056600248320?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/1020422663003488256?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/1020422663003488256?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/1020422663003488256?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/983444204906012672?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/983444204906012672?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://twitter.com/GrantKinsler/status/983444204906012672?s=20&t=_Wy9DpTb-JEUOGgAHl5sjQ
https://doi.org/10.7554/eLife.62365
https://doi.org/10.7554/eLife.62365


310 Journal of Molecular Evolution (2023) 91:293–310

1 3

Ram Y, Dellus-Gur E, Bibi M et al (2019) Predicting microbial growth 
in a mixed culture from growth curve data. Proc Natl Acad Sci 
USA 116:14698–14707

Robinson DG, Chen W, Storey JD, Gresham D (2014) Design and 
analysis of bar-seq experiments. G3 G3(4):11–18

Sartori FMO, Buzby C, Plavskin Y, Siegal ML (2021) High-throughput 
live imaging of microcolonies to measure heterogeneity in growth 
and gene expression. J Vis Exp. https:// doi. org/ 10. 3791/ 62038

Scott M, Klumpp S, Mateescu EM, Hwa T (2014) Emergence of robust 
growth laws from optimal regulation of ribosome synthesis. Mol 
Syst Biol 10:747

Sharon E, Chen S-AA, Khosla NM et al (2018) Functional genetic 
variants revealed by massively parallel precise genome editing. 
Cell 175:544-557.e16

She R, Jarosz DF (2018) Mapping causal variants with single-nucleo-
tide resolution reveals biochemical drivers of phenotypic change. 
Cell 172:478-490.e15

Sinha R, Stanley G, Gulati GS et al (2017) Index switching causes 
“spreading-of-signal” among multiplexed samples in Illumina 
HiSeq 4000 DNA sequencing. bioRxiv. https:// doi. org/ 10. 1101/ 
125724

Slavov N, Botstein D (2011) Coupling among growth rate response, 
metabolic cycle, and cell division cycle in yeast. Mol Biol Cell 
22:1997–2009

Venkataram S, Dunn B, Li Y et al (2016) Development of a compre-
hensive genotype-to-fitness map of adaptation-driving mutations 
in yeast. Cell 166:1585-1596.e22

Wloch DM, Szafraniec K, Borts RH, Korona R (2001) Direct estimate 
of the mutation rate and the distribution of fitness effects in the 
yeast Saccharomyces cerevisiae. Genetics 159:441–452

Wong ASL, Choi GCG, Cui CH et al (2016) Multiplexed barcoded 
CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acd 
Sci USA 113:2544–2549

Worthan SB, McCarthy RDP, Behringer MG (2023) Case studies in 
the assessment of microbial fitness: seemingly subtle changes can 
have major effects on phenotypic outcomes. J Mol Evol. https:// 
doi. org/ 10. 1007/ s00239- 022- 10087-9

Wu C, Balakrishnan R, Braniff N et al (2022) Cellular perception of 
growth rate and the mechanistic origin of bacterial growth law. 
Proc Natl Acad Sci USA 119:e2201585119

https://doi.org/10.3791/62038
https://doi.org/10.1101/125724
https://doi.org/10.1101/125724
https://doi.org/10.1007/s00239-022-10087-9
https://doi.org/10.1007/s00239-022-10087-9

	Extreme Sensitivity of Fitness to Environmental Conditions: Lessons from #1BigBatch
	Abstract
	Introduction
	Methods to Measure Fitness and Limitations on Their Precision
	Even with High Sequence Coverage, We Observe “Noisy” Fitness Data

	Results
	Choosing Focal Yeast Strains to Study Noise in Barcoded Fitness Competitions
	Motivation and Design for Studying Noise Introduced by DNA Extraction or Amplification
	DNA Extraction and Amplification do not Introduce Enough Noise to Explain Observed Fitness Variation
	Motivation and Design for Studying Noise Introduced by Index Misassignment
	Template Switching on Patterned Flow Cells Appears to be a Major Source of Noise
	Motivation and Design for Studying Noise Introduced by Environmental Differences
	We Observe More Variation in Fitness Between Experiments than Within Experiments

	Discussion
	Boxes
	Box 1—Improving Precision by Adding more Replicates can Lead to Erroneous Conclusions
	Box 2—The Consequences of Template Switching on Barcoded Competition Experiments
	Box 3—Inference of a Fitness Benchmark is Critical to Reproducible Measurements

	Methods
	Fitness Measurements
	Technical Replicates
	Quantifying the Effects of Index Misassignment

	Anchor 23
	Acknowledgements 
	References


