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Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This 
mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important 
and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate 
higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of het-
erozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. 
Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast 
strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing 
heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of 
this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.

Keywords Loss of heterozygosity · Experimental evolution · Saccharomyces · Hybrids

Introduction

Experimental evolution aids evolutionary biologists in their 
fundamental goal of connecting genotype to phenotype 
to fitness. Towards this goal, the community has identi-
fied and linked changes in ploidy, copy number variants, 
aneuploidy, and single nucleotide variants to fitness in a 
number of different organisms, but particularly in micro-
bial systems like E. coli and S. cerevisiae (Lenski 2017; 
McDonald 2019). While many experimental design setups 
of microbial systems are done in homozygous haploids or 
diploids, an increasing number of experiments have uti-
lized heterozygous intraspecific (Ament-Velásquez et al. 
2022; Burke et al. 2014; Phillips et al. 2020, 2022; Smu-
kowski Heil et al. 2017, 2019; Wing et al. 2020) and/or 
interspecific hybrids (Bautista et al. 2021; Charron et al. 
2019; Dunn et al. 2013; Peris et al. 2020; Piotrowski et al. 
2012; Smukowski Heil et al. 2017, 2019; Vázquez-García 
et al. 2017). Heterozygous strain backgrounds introduce 

more complex genetic variation and interactions, and can 
better represent dynamics relevant in a number of natural 
and anthropogenic environments. The targets of selection 
often change, and a new class of mutations known as loss of 
heterozygosity (LOH) becomes detectable. LOH describes 
a mitotic mutational event in which a heterozygous locus 
or loci become(s) homozygous. While LOH has long been 
appreciated to occur, it is receiving increased attention due 
to an appreciation of how frequently LOH occurs, the pro-
portion of the genome it impacts, and the large effect it has 
on phenotypes and fitness.

LOH is typically described based on the tract length of 
the homozygous portion of the genome. Interstitial LOH 
events, also known as gene conversions, result in short 
stretches of homozygosity (typically less than 10 kb). In 
contrast, terminal LOH events result from reciprocal cross-
overs or break-induced repair during mitotic cell division, 
often encompassing large physical stretches (often more than 
100 kb) of the chromosome extending to the telomere. LOH 
is appreciated to occur frequently in organisms with asex-
ual life cycles, including Daphnia, yeasts and other fungi, 
and clonally propagated crops (L.-Y. Chen et al. 2019; Ene 
et al. 2019; Flynn et al. 2017; James et al. 2009; Magwene 
et al. 2011; Peter et al. 2018; Schoustra et al. 2007). It is 
also a particularly important mutational event in cancers 
(Aguilera and Gómez-González 2008; Jeggo et al. 2016). 
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LOH underlies the two-hit model of tumorigenesis, which 
describes a mutation occurring in one allele of a tumor sup-
pressor gene, followed by the loss of the wild type allele 
via LOH (Hartwell and Smith 1985; Knudson 1971; Lasko 
et al. 1991).

Mutation accumulation studies in Saccharomyces cerevi-
siae have demonstrated that the rate of LOH is incredibly 
high, occurring at a rate of 0.3–5.6 ×  10−2 per cell division 
for interstitial LOH and 1.4–9.3 ×  10−3 per cell division 
for terminal LOH (Dutta et al. 2021; Sui et al. 2020). This 
translates to an average LOH rate varying between 2.6 and 
7.1 ×  10−5 per SNP per cell division, much higher than the 
rate of point mutations (1–3 ×  10−10 per base pair per cell 
division for diploids) (Dutta et al. 2017, 2021; Sharp et al. 
2018; Sui et al. 2020; Zhu et al. 2014). Distributions of inter-
stitial LOH and terminal LOH differ from each other, and 
from meiotic associated gene conversions and crossovers. 
Terminal LOH events are enriched near telomeres, whereas 
interstitial LOH are fairly evenly distributed, suggesting dif-
ferences in either the formation and/or the resolution of these 
events (Sui et al. 2020).

Rates of LOH depend on genetic background, level of 
heterozygosity, ploidy, and genomic region (Dutta et al. 
2021, 2022; Pankajam et al. 2020; Sui et al. 2020; Tutaj et al. 
2022). Particular regions of the genome are prone to LOH, 
especially the S. cerevisiae rDNA locus on chromosome XII, 
where SNPs located near the telomere have a LOH rate of 
1.6 ×  10−4 per cell division (Sui et al. 2020). The proportion 
of the genome impacted by LOH can vary dramatically; in 
one mutation accumulation experiment, an average of 15.9% 
of the genome experienced LOH, with some lines experienc-
ing near genome-wide LOH (Dutta et al. 2021). The rate 
of LOH also increases with ploidy, with triploids having 
2.2 ×  10−2 events per cell division, and tetraploids having 
8.4 ×  10−2 events per cell division, with a skewed propor-
tion of events being short and interstitial LOH compared 
to diploids (Dutta et al. 2022). While most of the mutation 
accumulation studies have focused on S. cerevisiae, rates of 
LOH have also been documented in mutation accumulation 
studies of other asexual species. In species of yeasts in the 
Saccharomycodaceae family, rates of LOH range from 2 to 
11 ×  10−6 per SNP per cell division (Nguyen et al. 2020). In 
Daphnia pulex, the rate of LOH is about 8 ×  10−8 per SNP 
per generation, and interestingly most of the LOH events are 
deletions (Flynn et al. 2017).

Population genomic surveys and mutation accumulation 
studies have thus clearly demonstrated that LOH occurs 
frequently in the lab and in nature. To understand the phe-
notypic and fitness consequences of these events, we can 
turn to the growing body of literature from experimental 
evolution. Typically laboratory evolution experiments using 
heterozygous yeasts have maintained cultures asexually, but 
a number of experiments now incorporate a sexual cycle 

(Burke et al. 2014; Leu et al. 2020; McDonald et al. 2016; 
Phillips et al. 2020, 2022). For this review, I will focus on 
detecting LOH in asexual populations, however, it is impor-
tant to note that LOH may shape the genome evolution of 
populations that have cycles of asexual and sexual repro-
duction by altering allele frequencies during the asexual 
growth phase, and through generation of LOH following 
return to growth (RTG) after abortive meiosis (Brion et al. 
2017; Dayani et al. 2011; Laureau et al. 2016; Mozzachiodi 
et al. 2021). LOH is formed during this process by return-
ing cells that had initiated meiosis to rich nutrients before 
the commitment to complete meiosis. Double-strand breaks 
formed during meiotic prophase I are unrepaired or repaired 
as crossovers or non-crossover gene conversions, and cells 
resume mitotic cell division without reducing ploidy, such 
that the cell starts with four potentially recombined chro-
mosomes that then split between mother and daughter to 
maintain diploidy (Esposito and Esposito 1974; Sherman 
and Roman 1963; Simchen et al. 1972). This can generate 
extensive LOH in intraspecific hybrids, and even in sterile 
interspecific hybrids (Laureau et al. 2016; Mozzachiodi et al. 
2021). This review will primarily focus on laboratory evolu-
tion and detection of LOH using Saccharomyces species, but 
many principles extend to other asexual organisms.

Experimental Evolution Demonstrates LOH 
Can be Adaptive and Promote Emergence 
of Numerous Phenotypes

Asexual evolution of heterozygous yeasts have added sev-
eral important insights. First, as identified in recent mutation 
accumulation studies, LOH is commonly detected in evolved 
clones and populations. One experiment found an average of 
5.2 LOH events per clone after ∼500 generations of evolu-
tion of S. cerevisiae populations (James et al. 2019). Other 
studies have found lower numbers of LOH events, but this 
may be due to an under detection of smaller LOH events, in 
addition to other factors like genetic background, number 
of replicates, and amount of heterozygosity in the ancestral 
genotype.

LOH events provide a particularly fascinating lens to 
understanding dominance of alleles in evolving populations. 
The probability of fixation of a mutation is dependent on 
its selection coefficient and dominance, and thus, mutations 
with higher dominance are more likely to establish, a con-
cept known as Haldane’s sieve. However, in asexual diploids 
where LOH is common, recessive beneficial mutations can 
escape Haldane’s sieve by becoming homozygous via LOH. 
For example, Gerstein et al. showed that recessive mutations 
for S. cerevisiae nystatin drug resistance frequently experi-
enced LOH when incubated in the presence of nystatin (Ger-
stein et al. 2014). These LOH events were advantageous and 
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rose to high frequency in populations, exhibiting a pattern 
more typical of dominant mutations. Theoretical work dem-
onstrates that LOH highly reduces the time to fixation for a 
recessive beneficial allele in asexual populations, and when 
rates of LOH are higher than the mutation rate, can equal or 
even outpace the rate of fixation in sexually evolving popu-
lations (Mandegar and Otto 2007). There is some empirical 
evidence for selection of advantageous LOH events for pre-
sumed recessive or partially recessive alleles (see below), 
although the dominance of the alleles under selection was 
not explicitly tested.

However, it’s apparent from several studies that domi-
nance is also impacting experimentally evolved populations 
in more complex ways. A recent study identified that a key 
mutation in the gene ACE2 in the route to the S. cerevisiae 
multicellularity phenotype known as “snowflake” yeast is 
underdominant. However, LOH of the underdominant geno-
type (ACE2/ace2) rapidly promotes the rise of the beneficial 
ace2/ace multicellular phenotype during laboratory evolu-
tion, facilitating the crossing of a fitness valley (Baselga-
Cervera et al. 2022). Overdominant variants, in contrast, by 
definition suffer a fitness loss if heterozygosity is lost, and 
this can constrain evolutionary trajectories for linked par-
tially dominant or recessive alleles. For example, when par-
tially dominant mutations in S. cerevisiae WHI2 are linked 
to overdominant mutations in STE4, adaptive LOH at WHI2 
is reduced, and when it does occur, promotes varied com-
pensatory copy number and point mutations (Fisher et al. 
2021). Mutations in the gene CCW12 are another potential 
example of overdominance constraining LOH occurrence 
(Johnson et al., 2021; Leu et al. 2020). Fixed mutations in 
CCW12 are enriched in evolved diploids and rarely experi-
ence LOH, despite being located in a LOH hotspot on the 
right arm of chrXII.

Recessive deleterious mutations impose more extreme 
constraints on LOH, perhaps facilitating the maintenance 
of heterozygosity in some circumstances. This is particularly 
well illustrated in a 10,000 generation evolution experiment 
of S. cerevisiae haploids and diploids (Johnson et al., 2021). 
While the founders of the populations were isogenic, many 
de novo mutations that arose and fixed as heterozygotes 
in diploids were predicted to be high impact mutations in 
essential genes, compared to this class of mutations being 
almost completely absent in fixed alleles in haploids and 
homozygous diploids. The accumulation of these likely 
recessive deleterious alleles seemingly prevented LOH 
from occurring in these regions, maintaining heterozygosity. 
Recessive lethal mutations do not appear to be segregating at 
high frequency in wild strains of Saccharomyces, in which 
spore viability is typically very high (Duan et al. 2018; Mag-
wene et al. 2011), but recessive deleterious alleles are pre-
dicted to be accumulating in domesticated strains, many of 
which have lost the ability to complete meiosis (De Chiara 

et al. 2022). In Candida albicans, which is an obligate dip-
loid, several recessive lethal alleles have been identified that 
limit specific LOH events (Feri et al. 2016). Wild isolates 
of C. albicans have notedly high heterozygosity, and this 
offers an interesting hypothesis to further examine (Bensas-
son et al. 2019).

Several studies have used genetic modifications to dem-
onstrate that some of the LOH events detected in evolved 
populations are at high frequencies due to positive selection. 
For example, in S. cerevisiae x S. uvarum hybrids evolved 
in low phosphate, we observed species-specific LOH at the 
phosphate transporter PHO84 dependent on temperature. 
Allele replacement experiments showed that loss of the 
S. cerevisiae allele results in a 39.30% fitness increase at 
15 °C, whereas the loss of the S. uvarum allele at the same 
locus increases fitness by 25.57% at 30 °C (Smukowski Heil 
et al. 2017, 2019). A complementary study crossed the S. 
cerevisiae gene deletion collection to S. uvarum to create 
a collection of hemizygous hybrids and tested their fitness 
under several nutrient limiting conditions in pooled com-
petitive fitness assays (Lancaster et al. 2019). This approach 
identified several beneficial S. uvarum hemizygous genes 
underlying two different LOH events in hybrids evolved in 
low phosphate (Smukowski Heil et al. 2017). More broadly, 
these experiments found that beneficial LOH events were 
typically specific to one environmental condition, which is 
consistent with a number of studies that have shown LOH 
events to be repeatable across replicates in the same environ-
ment, but rarely if ever across environments.

Using CRISPR-mediated LOH, James et al. found that 
a highly repeatable LOH event in a high salt environment 
encompassing the salt efflux pump ENA has a fitness advan-
tage of 27% (James et al. 2019). In this particular example, 
the favored allele is a result of historic introgression in S. 
cerevisiae from S. paradoxus, providing an example of adap-
tive introgression. James et al. also targeted MAL31, one of 
the maltose metabolism genes that experienced LOH in beer 
wort evolved strains, but identified a non-significant increase 
in fitness (4%). While clear that some LOH events are asso-
ciated with a large increase in fitness, more work is needed 
to disentangle how common these examples are. Though 
tedious, CRISPR-mediated LOH is a promising tool to be 
able to further examine fitness effects of other LOH events 
(Sadhu et al. 2016). CRISPR LOH could also help resolve 
if observed LOH result from beneficial alleles in one gene 
or multiple genes.

LOH also plays a significant role in domesticated yeast 
evolution. LOH is observed in isolates of Saccharomyces 
cerevisiae from a wide variety of ecological niches, but 
is most frequently observed in human-associated niches, 
which are more likely to be heterozygous (Duan et al. 2018; 
Magwene et al. 2011; Peter et al. 2018). Strains associated 
with beer, bread, and other fermentations often show a high 



372 Journal of Molecular Evolution (2023) 91:369–377

1 3

degree of admixture (Peter et al. 2018). Humans may have 
promoted outcrossing in these strains by bringing diverse 
strains together, and/or there may be selection for admixture 
in these environments. LOH is often identified in ale and 
lager yeasts (Libkind et al. 2011; Monerawela et al. 2015; 
Nakao et al. 2009; Saada et al. 2022; Salazar et al. 2019). 
Laboratory evolution of S. cerevisiae x S. eubayanus allo-
tetraploids, created to mimic the lager yeast S. pastorianus, 
demonstrated that LOH can produce industrially relevant 
phenotypes like acquired flocculation and loss of maltotriose 
utilization (Gorter de Vries et al. 2019). A unique experi-
ment carried out by sequencing serially repitched tetraploid 
ale yeast at several North American breweries found that 
LOH occurs independently and repeatedly on chrVIII, 
chrXII, and chrXV (Large et al. 2020). The allele frequency 
change on chrVIII is estimated to yield a 5.7% increase in 
fitness. While mutation accumulation experiments suggest 
that LOH is increased in tetraploids (Dutta et al. 2022), evi-
dence from evolution experiments is too limited to deter-
mine how this impacts tetraploid genome evolution and 
fitness. In the above examples, the LOH events identified 
were almost exclusively larger, terminal LOH, whereas in 
the mutation accumulation lines, LOH events in higher ploi-
dies were biased toward smaller, interstitial LOH. Whether 
this is due to underdetection of smaller LOH events in these 
populations, fitness effects, or other confounding factors is 
unclear. Further studies incorporating higher ploidies are 
therefore needed, particularly as polyploidy is a hallmark of 
domesticated crops (as well as fermentations) and important 
in human tumorigenesis.

Finally, LOH appears to play an important role in fungal 
pathogen phenotypes including drug resistance (Beekman 
and Ene 2020; J. Chen et al. 2017; Coste et al. 2006; Cowen 
et al. 2000; Dunkel et al. 2008; Forche et al. 2005). In vivo 
and in vitro evolution of C. albicans, a prevalent oppor-
tunistic pathogen in the human gastrointestinal tract, identi-
fied frequent LOH and a highly increased mutation rate in 
regions adjacent to LOH due to mutagenic effects of recom-
bination (Ene et al. 2018; Forche et al. 2009). Other in vitro 
studies observing in host evolution have identified recurrent 
LOH at genes including efflux pumps and drug targets (Ford 
et al. 2015). Similar associations between LOH and patho-
genic phenotypes have been identified in other fungi, includ-
ing Cryptococcus (Dong et al. 2019; Michelotti et al. 2022; 
Stone et al. 2019) and chytrid fungus Batrachochytrium den-
drobatidis (James et al. 2009).

Detecting LOH in Evolved Populations

Results from experimental evolution demonstrate that 
LOH is a frequent and important mutation event in 
heterozygous organisms. Detecting LOH in evolved 

populations is contingent on the amount of heterozygo-
sity present in the ancestor. If a goal of an experiment 
is to examine LOH, parental strains should be chosen to 
maximize heterozygosity. If heterozygosity is low, results 
should take into account that some small LOH events 
are likely to go undetected. In Saccharomyces, studies 
attempting to identify mitotic and meiotic gene conver-
sion events typically cross two haploid strains to generate a 
parent with 50,000 to 140,000 heterozygous SNPs (James 
et al. 2019; Liu et al. 2018, 2019).

The pipeline for detecting LOH in evolved clones or 
populations entails following a typical variant calling 
pipeline, then analyzing allele frequencies. Most studies 
utilize the best practices pipeline for variant calling out-
lined by GATK (McKenna et al. 2010). The first step in 
detecting LOH is to identify quality heterozygous sites 
in the ancestor that are expected to be heterozygous in 
evolved clones/populations. For many experiments, this 
will involve sequencing haploid parents, which allows 
phasing of alleles as well. Standard parameters include 
using GATK SelectVariants to focus the analysis on SNPs 
and exclude indels, and VariantFiltration parameters 
“QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 
|| ReadPosRankSum < − 8.0” and a minimum read depth 
(DP) of 20. For a haploid, the genotype (GT) should be 0/0 
(homozygous reference allele) or 1/1 (alternate reference 
allele), and for a heterozygous diploid, GT should be 0/1.

After variants are called in the evolved clones/popula-
tions, filter sites to specifically include only the ances-
tral heterozygous sites. This can be done with tools like 
BEDtools “intersect” (Quinlan and Hall 2010). Standard 
practice is to identify LOH tracts by identifying SNPs that 
deviate from the average allele frequency, then using con-
secutive SNPs with the same allele frequency to distin-
guish LOH blocks. A minimum of three consecutive SNPs 
is typically applied for detecting LOH. In a clone, this 
would be three consecutive SNPs with an allele frequency 
at or close to 0 or 1. Several studies have LOH scripts 
available (Marsit et al. 2021; Peter et al. 2018), and the 
programs  YMAP and Control-FREEC can also identify and 
plot LOH (Abbey et al. 2014; Boeva et al. 2012).

There is still considerable difficulty to call LOH events 
in the case that there are more than two heterozygous hap-
lotypes, which can frequently occur in some yeast strains 
such as the ale beer brewing yeasts. For these scenarios, 
utilizing long read sequencing technology and phasing 
tools like nPhase may be necessary (Abou Saada et al. 
2021). A number of recent successful efforts have been 
made to phase S. cerevisiae genomes (Fay et al. 2019; 
O’Donnell et al. 2022; Saada et al. 2022).
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Special Considerations with Interspecific 
Hybrids

There are a number of considerations that must be taken 
into account when working with interspecific hybrids. 
First, while different species of Saccharomyces will read-
ily mate with one another, only a small fraction results 
in viable F1s (Bendixsen et al. 2022). Selection for via-
ble F1 hybrids is facilitated using complementary auxo-
trophic or antibiotic selection (for example, ura3 MATa 
mated to lys2 MATɑ; ura3/ +  + /lys2 MATa/MATɑ selected 
on C-URA-LYS). Once successful hybrids are obtained, 
two other issues may arise. First, in the initial genera-
tions after hybridization, genomic instability may result 
in aneuploidy in the diploid hybrid. While the rate of ane-
uploidy in hybrid formation is unclear, anecdotal evidence 
suggests that it is quite common. Mutation accumulation 
experiments have demonstrated variable results, with 
some interspecific hybrids having increased point muta-
tion rates, increased ploidy, and/or increased genomic 
instability (Dong et al. 2019; Fijarczyk et al. 2021; Tattini 
et al. 2019). If a euploid hybrid genome is important to 
your experimental design, sequencing independent hybrid 
matings is recommended.

Another factor to consider is mitochondrial inheritance. 
Mitochondria are typically uni-parentally inherited, but 
go through several generations of heteroplasmy where 
mitochondrial recombination may occur. Which parental 
mitotype becomes the homoplastic mtDNA depends on 

a spectrum of known and unknown genetic and environ-
mental factors (Hewitt et al. 2020; Hsu and Chou 2017; 
Verspohl et al. 2018). In my own experience, otherwise 
isogenic S. cerevisiae x S. uvarum hybrids mated under 
the exact same environmental conditions yielded a mix 
of hybrids with either S. uvarum or S. cerevisiae mtDNA 
(Smukowski Heil et al. 2021). This is important, as mito-
type plays a crucial role in a variety of phenotypes, includ-
ing temperature tolerance and hybrid incompatibility 
(Baker et al. 2019; Jhuang et al. 2017; Lee et al. 2008; Li 
et al. 2019; Vijayraghavan et al. 2019). Species mtDNA 
can be assessed using primers (Baker et al. 2019) or whole 
genome sequencing. Note that mtDNA copy number and 
whole genome sequencing coverage is not accurately 
obtained with traditional DNA extraction methods, and a 
reference mtDNA genome does not exist for all Saccha-
romyces species. If one wants to control which species’ 
mtDNA is inherited, this is relatively easily done by creat-
ing ⍴0 mutants (lacking mtDNA) via passage on ethidium 
bromide (Fox et al. 1991).

The typical pipeline for detecting LOH in hybrids aligns 
sequencing reads to separate or concatenated parental ref-
erence genomes. This can be done in the same way as 
intraspecific hybrids, or using a pipeline designed for 
hybrid genome analysis like sppIDer (Langdon et  al. 
2018) or MuLoYDH (Tattini et al. 2019). Instead of using 
allele frequency shifts, copy number variants are used 
to identify hybrid LOH (Fig. 1B). A hybrid LOH event 
always appears as a copy number variant, either by one 
species’ allele replacing the other species (copy number 

Fig. 1  Detecting loss of heterozygosity in intraspecific diploids and 
interspecific diploids. A. An interstitial LOH event is depicted in an 
intraspecific hybrid diploid, detected by a change in allele frequency 
from 0.5 to 0 at several consecutive variants. B. A terminal LOH 
event is depicted in which an interspecific hybrid diploid (Species 1 

in blue, Species 2 in red) has a LOH event that extends to the tel-
omere. It is detected by a change in copy number from 1 copy of the 
locus in each species, to Species 1 having a copy number of 2 and 
Species 2 having a copy number of 0
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amplified from one to two in one species and lost from 
one to zero in the other species in a diploid hybrid), or the 
LOH event precedes or happens in tandem with ampli-
fication of one allele (copy number greater than two). 
Most copy number variant programs can be co-opted 
for analyzing hybrid genomes, though in most instances 
the parental sub-genomes should be analyzed separately. 
Similarly to intraspecific hybrid LOH, programs  YMAP and 
CONTROL-FREEC are common choices for copy number 
variant analysis (Abbey et al. 2014; Boeva et al. 2012), 
and sppIDer can also assess hybrid LOH (Langdon et al. 
2018).

Detecting hybrid LOH in an evolved population is 
complicated by differentiating between copy number and 
frequency of the copy number variant in the population. 
Sequencing clones from the population can help clarify 
this, and tools developed for detecting subclonal frequen-
cies in tumors like Control-FREEC can also be utilized 
(Boeva et al. 2012). Sequencing coverage for one species 
will be zero (in the case of a clone), or otherwise differ-
ing from the base coverage (in a population). Interspecific 
LOH is best visualized by identifying homologs and iden-
tifying copy number in homologous genes to account for 
translocations and other loss of synteny (Smukowski Heil 
et al. 2017, 2019).

Conclusion

While sex is rare in Saccharomyces yeasts and other faculta-
tive sexual organisms in the wild, LOH provides a mecha-
nism with some similar properties, like creating new haplo-
type combinations, accelerating adaptation, and potentially 
shedding deleterious alleles. Experimental evolution of 
heterozygous yeasts has clearly demonstrated that the LOH 
rate is quite high, can be adaptive, can accelerate adapta-
tion, and can impact many phenotypes. Using heterozygous 
strain backgrounds in evolution experiments can provide 
increased genetic variation, clarify dominance of mutations, 
and identify genetic by environment interactions. Given the 
high levels of heterozygosity found in human-associated 
niches, identifying recurrent LOH in domesticated strains 
can even identify potential novel beneficial alleles for use in 
industry. With increasing interest in interspecific hybrids, 
and availability of more diverse strains than ever before, the 
future of experimental evolution using heterozygous strain 
backgrounds holds a lot of promise.
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