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Abstract
Models of amino acid replacement are central to modern phylogenetic inference, particularly so when dealing with deep 
evolutionary relationships. Traditionally, a single, empirically derived matrix was utilized, so as to keep the degrees-of-
freedom of the inference low, and focused on topology. With the growing size of data sets, however, an amino acid-level 
general-time-reversible matrix has become increasingly feasible, treating amino acid exchangeabilities and frequencies as 
free parameters. Moreover, models based on mixtures of multiple matrices are increasingly utilized, in order to account for 
across-site heterogeneities in amino acid requirements of proteins. Such models exist as finite empirically-derived amino 
acid profile (or frequency) mixtures, free finite mixtures, as well as free Dirichlet process-based infinite mixtures. All of 
these approaches are typically combined with a gamma-distributed rates-across-sites model. In spite of the availability of 
these different aspects to modeling the amino acid replacement process, no study has systematically quantified their relative 
contributions to their predictive power of real data. Here, we use Bayesian cross-validation to establish a detailed compari-
son, while activating/deactivating each modeling aspect. For most data sets studied, we find that amino acid mixture models 
can outrank all single-matrix models, even when the latter include gamma-distributed rates and the former do not. We also 
find that free finite mixtures consistently outperform empirical finite mixtures. Finally, the Dirichlet process-based mixture 
model tends to outperform all other approaches.
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Introduction

Most studies aimed at determining deep phylogenetic rela-
tionships utilize large alignments of amino acid characters. 
Phylogenetic analyses at this level traditionally invoked an 
empirical model of the amino acid replacement process, 
from the early counting-based approaches of Dayhoff et al. 
(1978), Jones et al. (1992), and others, to the maximum-
likelihood-based matrices, such as those of Whelan and 

Goldman (2001) and Le and Gascuel (2008). Biologically 
motivated by the idea that pairwise amino acid exchange-
abilities—and to a lesser extent amino acid frequencies—
could be broadly similar across many contexts, the rationale 
behind an empirical matrix was to construct a generalized 
amino acid replacement model, where the parameters were 
reliably inferred from a large data set, and thus avoiding the 
repeated fitting of 190 exchangeabilities and 20 frequencies 
on each subsequent data set. This prudent approach was war-
ranted when the alignment available for a given phylogenetic 
problem was small. Over time, as data sets grew in size, it 
became a common practice, at first, to treat the 20 amino 
acid frequencies as free parameters, combined with empiri-
cal exchangeability parameters. Eventually, data sets reached 
several thousand characters, such that a full amino acid-level 
general-time-reversible (GTR) matrix could often be reliably 
inferred, and even richer models could be considered.

These developments were generally explored in a con-
text allowing for a basic site heterogeneity of overall rates 
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(i.e., without regard to the nature of amino acid replace-
ments). The most common approach to this end has been 
to invoke site-specific rates acting as branch length multi-
pliers; these rates are treated as random variables follow-
ing a gamma distribution of mean 1, with variance gov-
erned by an additional parameter of the inference (Yang 
1993, 1994). Under this gamma-distributed rates model, 
the likelihood function at each site takes the form of an 
integral of the likelihood score over all possible rates val-
ues, weighted by the prior density under the gamma law. 
The integral has no analytical solution, however, and is 
rather approximated by discretizing the gamma law into 4 
or 8 equally weighted categories. As such, the likelihood 
function becomes an average of the likelihood score over 
4 or 8 different rate values (Yang 1994), giving a model 
form analogous to that of a finite mixture (see, e.g., Neal 
2000for an exposition on mixture models).

Other approaches to accommodating across-site heteroge-
neity in the amino acid replacement process have focused on 
utilizing different rate matrices for different classes of sites; 
the goal being to capture pattern heterogeneity, i.e., a vari-
ation across sites in the types of amino acid replacements. 
Earlier strategies consisted of either using a predetermined 
grouping of sites sharing structural features, with sites in 
each group assigned to a common rate matrix (e.g., Goldman 
et al. 1996; Liò and Goldman 1999), or using biochemi-
cally predefined rate matrices, and letting sites “choose” 
one among those available (e.g., Koshi and Goldstein 1998, 
2001). The next natural extension of amino acid replace-
ment models was to jointly explore mixture-like gamma-
distributed rates and mixtures of replacement rate matrices.

The most important subsequent development along these 
lines came with the introduction of the CAT model (Lar-
tillot and Philippe 2004). Named after its effective CAT-
egorization of amino acid frequency profiles, the approach 
represents an extreme in mixture modeling flexibility and 
computational techniques: the amino acid profiles, their 
weights, and the number of profiles, are modeled as a Dir-
ichlet process (Ferguson 1973; Antoniak 1974). Different 
perspectives to the Dirichlet process have been adopted for 
its practical implementation, using various Monte Carlo 
algorithms. A first example is the “Chinese restaurant” 
algorithm, where the number of components of the mix-
ture is a latent variable, such that the likelihood function’s 
parameterization changes over the course of the Monte Carlo 
sampling (Lartillot and Philippe 2004). Another perspec-
tive on the Dirichlet process is the “stick-breaking” process, 
with a likelihood function expressed as a weighted average 
over an infinite number of mixture components, ultimately 
truncated as part of the approximation protocol (Lartillot 
et al. 2013). The Dirichlet process is sometimes classified 
as a non-parametric approach, and is often referred to as an 
infinite mixture model.

The CAT model has had an important impact on phy-
logenetic inference, in accounting for potential homopla-
sies, which in turn make it more resistant to long-branch-
attraction artifacts (Lartillot et al. 2007). Implemented in a 
Bayesian framework relying on Markov chain Monte Carlo 
sampling, it can be computationally demanding, and is 
sometimes susceptible to convergence difficulties (Lartillot 
2020). These issues stimulated the development of simpler 
mixture modeling approaches, inspired by the rationale of 
the classic empirical amino acid replacement matrices: con-
struct a finite mixture of amino acid profiles, with a pre-
determined number of components, and infer the profiles 
and their weights from a large data set (e.g., Quang et al. 
2008; Schrempf et al. 2020). The resulting empirical mixture 
model could then be applied as-is in subsequent phyloge-
netic analyses, or given some flexibility by re-inferring the 
weights of mixture components from the data set of inter-
est. Susko et al. (2018) proposed a composite-likelihood 
approach where a finite mixture could be inferred directly 
from a specific data set of interest. In a Bayesian framework, 
free finite mixtures of amino acid profiles, with parameters 
sampled from their posterior distribution, remain virtually 
unexplored.

Evaluations of the predictive power of mixture models 
were first mainly focused on comparisons against single-
matrix approaches. Lartillot and Philippe (2004, 2006) used 
Bayes factors, and later, cross-validation (Lartillot et al. 
2007), showing that the CAT model outperforms empiri-
cal and GTR models. Quang et al. (2008) used information 
criteria to compare empirical mixtures against empirical sin-
gle matrices. More recently, Susko et al. (2018) compared 
their free finite mixture models with empirical mixtures on 
the basis of likelihood scores. Li et al. (2021) used cross-
validation to contrast CAT against a finite mixture model 
invoking 60 components. However, we still lack a compre-
hensive study of how infinite, free finite and empirical mix-
ture models compare to one another. The relative importance 
of having free exchangeability parameters in each of these 
contexts is largely unknown. Finally, while the gamma-dis-
tributed rates-across-sites approach is widely recognized as 
an important element, quantifying its contribution to the pre-
dictive power of a model in comparison with other elements, 
such mixtures of amino acids or free amino acid exchange-
abilities, is also unexplored.

Among the model comparison methods available, only 
Bayesian cross-validation is currently available in a compu-
tationally tractable framework for all the models that interest 
us here. The approach directly measures a model’s predictive 
power, that is, its ability to anticipate the features of previ-
ously unseen data, having been trained another dataset. It 
should be noted that by “predictive power” we are not actu-
ally concerned with predicting amino acid sequences for a 
particular task. One general objective of comparing models 
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is to find the best approximation of the true (unknown) 
data-generating process. This is also the general objective 
of information criteria and Bayes factors, which can also 
be framed as comparing predictive power: cross-validation 
and AIC, for instance, have an asymptotic equivalence (see 
Stone 1977) and Bayes factors correspond to ratios of prior 
predictive probabilities.

Here, we perform a detailed comparison of a wide set of 
amino acid replacement models based on Bayesian cross-
validation. Using five previously published data sets, we 
contrast all aspects of the models, including free amino 
acid exchangeabilities, empirical finite, free finite and infi-
nite mixtures of amino acid profiles, and gamma-distributed 
rates-across-sites, in all combinations.

Results and Discussion

We used a fivefold cross-validation approach, randomly 
splitting each amino acid multiple sequence alignment into 
one fifth and four fifths (of the columns), using four fifths 
as the learning set, and the other fifth as the testing set. Note 
that the test dataset consists of columns that are not nec-
essarily contiguous in the original alignment. We repeated 
such a random splitting five times. Overall, we thus per-
formed five different training/testing runs for each data set. 
We computed the cross-validation score with the testing set 
as the log-summed site-specific likelihood averages over the 
sample from the posterior distribution on the learning set, 
as implemented in the PhyloBayes software (Lartillot et al. 
2009; see material and methods section for details). The 
fivefold repetition provides a means of assessing the sam-
pling variance in cross-validation scores associated with the 
random splitting of a data set. We repeated the learning and 
testing steps under each model included in our study. Finally, 
the entire procedure was repeated on five phylogenomic data 
sets referred to as Broughton, Brown, Delsuc, Lartillot-2007, 
and Lartillot-2012 (see materials and methods). A graphi-
cal representation of the results for one data set is shown in 
Fig. 1, and the detailed results across all data sets are given 
in Table 1. Within this table, we have displayed scores in 
bold when the model concerned is top-ranking in at least one 
of the five replicates of our overall cross-validation protocol.

Empirical, Free Finite and Infinite Mixtures 
Comparisons

The infinite mixture models tend to outperform all finite 
mixture models. When comprised of a sufficiently high 
number of components—with a plateau typically reached 
between 80 and 100—the free finite mixture models CAT​f
-Poisson and CAT​f-GTR approach closely their infinite mix-
ture counterparts (Fig. 1, Table 1). However, it is difficult 

to anticipate the number of components required of a finite 
mixture model to approach the performance of the infinite 
mixture approach. The automatic shrinking effect of the 
infinite mixture model—naturally adapting to the level of 
heterogeneity under the given dataset—makes it a practical 
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Fig. 1   Cross-validation score (relative to the GTR​+Γ model) for the 
Lartillot-2007 data set, plotted as a function of the number of amino 
acid frequency components; the right-most abscissa marks show the 
results under CAT-based models. The top panel reports results for 
models without gamma-distributed rates-across-sites, whereas the 
bottom panel shows results for models with rates-across-sites. See 
materials and methods for descriptions of the models’ nomenclature
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alternative to repeated applications of finite mixtures over a 
range of component numbers.

While the fluctuations in cross-validation scores across 
the five replicates do not always allow for a clear distinc-
tion between the top-performing models (Table 1), a look 
at the replicate-by-replicate performance of the models 
shows that CAT-GTR​+Γ is most often the best-performing 
choice. As reported in Table 2, for the smallest of the data-
set (Broughton), two out five replicates have CAT-GTR​+Γ 
as the top model, two have CAT​f=100-GTR​+Γ (a free finite 
mixture with 100 components), and one has CAT​f=40-GTR​
+Γ (a free finite mixture with 40 components). The other 
datasets all have CAT-GTR​+Γ performing best for the most 
replicates, with three of the dataset having five-out-of-five.

This strong performance of the CAT-GTR​+Γ model is in 
spite of an inherent potential disadvantage under the fivefold 

cross-validation method utilized here: richer models natu-
rally require more data in order to provide reliable infer-
ences, but since we are measuring the predictive power for 
a data set based on a learning step utilizing only four fifths 
of that data set, we risk underestimating the performance 
of infinite mixture models. In other words, the true overall 
performance of CAT-GTR​+Γ may be greater than the meas-
urements we make here.

At an equal number of components, free finite mixture 
models always outperform the empirical models. The C10 to 
C60 empirical mixtures (Quang et al. 2008) never approach 
the cross-validation scores of the best-performing models 
(Table 1 reports the results of C60, the best-performing of 
these empirical mixture models, while Fig.1 shows a typical 
progression in cross-validation scores from C10 to C60). 
The UDM empirical mixtures (Schrempf et al. 2020), with 

Table 1   Cross-validation scores

Models with an instance of the highest performance in at least one replicate are displayed in bold. For empirical mixtures, only results for the 
top-performing model are displayed. For free finite mixture models, results for 100 components are displayed, as well as any free finite mixture 
having the best performance on at least one of five replicates

Broughton Brown Delsuc Lartillot-2007 Lartillot-2012

F81 − 3641.6 ± 60.4 − 22518.4 ± 96.3 − 20009.6 ± 342.4 − 24521.0 ± 482.9 − 5579.5 ± 95.9
C60-Poisson − 1520.8 ± 83.2 4341.4 ± 44.8 − 5084.2 ± 128.2 − 5881.2 ± 139.5 − 2733.2 ± 120.4
C60-GTR​ − 912.4 ± 77.2 − 2003.2 ± 207.9 − 3454.0 ± 139.0 − 3996.6 ± 240.3 − 871.5 ± 77.3
UDM

256
-Poisson − 616.7± 69.1 1227.2 ± 52.2 36.4 ± 91.0 − 95.6 ± 206.4 − 1524.5 ± 87.3

UDM
256

-GTR​ − 238.9 ± 64.7 1746.6 ± 73.4 589.2 ± 121.2 610.6 ± 249.1 − 75.0 ± 45.0
CAT​f=100Poisson − 66.7 ± 39.6 2859.8 ± 37.8 2028.2 ± 137.1 1692.6 ± 214.0 − 69.3 ± 65.4
CAT​f=90GTR​ 216.5 ± 47.7 3650.0 ± 176.8 2684.4 ± 126.0 2878.2 ± 229.5 560.4 ± 31.1
CAT​f=100GTR​ 262.4 ± 32.7 3617.4 ± 205.8 2716.8 ± 127.5 2878.0 ± 274.7 607.0 ± 18.1
CAT-Poisson − 78.3 ± 37.6 2988.8 ± 44.8 2228.2 ± 147.0 1852.8 ± 211.1 − 65.2 ± 70.1
CAT-GTR​ 251.9 ± 34.9 3315.6 ± 63.8 2961.0 ± 151.6 3096.8 ± 249.7 610.6 ± 15.8
F81+Γ − 2194.9 ± 52.5 − 15321.4 ± 215.7 − 13044.0 ± 213.4 − 16612.6 ± 441.8 − 3607.9 ± 65.3
C60-Poisson+Γ − 170.9 ± 44.7 2227.6 ± 48.5 1435.8 ± 107.5 1061.2 ± 165.0 − 1038.1 ± 84.0
C60-GTR+Γ 253.6 ± 16.6 3193.2 ± 34.0 2686.4 ± 105.2 2869.6 ± 162.8 370.5 ± 34.8
UDM

256
-Poisson+Γ − 39.9 ± 35.2 2962.8 ± 46.9 2306.0 ± 123.6 1996.4 ± 166.5 − 868.8 ± 83.7

UDM
256

-GTR+Γ 323.4 ± 20.6 3651.2 ± 41.6 3204.0 ± 139.8 3473.6 ± 169.9 427.0 ± 41.7
CAT​f=100Poisson+Γ 65.0 ± 40.1 3294.2 ± 62.7 2627.2 ± 158.6 2529.6 ± 186.3 13.7 ± 58.4
CAT​f=40GTR+Γ 353.1 ± 23.6 3599.4 ± 27.2 3237.0 ± 102.6 3563.8 ± 179.7 590.0 ± 36.4
CAT​f=100GTR+Γ 374.9 ± 20.8 3789.2 ± 43.1 3446.8 ± 109.7 3824.8 ± 203.7 624.0 ± 31.9
CAT-Poisson+Γ 57.5 ± 40.6 3404.8 ± 56.1 2820.0 ± 150.5 2638.8 ± 188.1 30.5 ± 66.5
CAT-GTR+Γ 370.9 ± 24.2 3943.2 ± 36.8 3678.6 ± 134.5 4069.8 ± 196.2 619.7 ± 36.6

Table 2   Number of replicates 
where a model had the best 
performance

Broughton Brown Delsuc Lartillot-2007 Lartillot-2012

CAT-GTR+Γ 2 5 5 5 2
CAT-GTR​ 1
CAT​f=100GTR+Γ 2 1
CAT​f=40GTR+Γ 1
CAT​f=90GTR​ 1



472	 Journal of Molecular Evolution (2022) 90:468–475

1 3

many components, perform reasonably well, and in some 
cases, come close to matching the best free mixture models, 
albeit, with many more components (Table 1 reports the 
results of UDM256, the best performing in this class, while 
Fig.1 shows the progression in cross-validation scores across 
the range of UDM-models).

Overall, these results suggest that across-site heteroge-
neity in amino acid profiles is a highly pronounced feature 
of the amino acid replacement process, one that is well-
expected from the variation in amino acid requirements 
across the sites of a protein. The results also suggest that 
there is still something elusive within the general project 
of constructing a “universal” profile mixture, since they are 
always outperformed by free mixtures.

Mixture Models Versus Single‑Matrix Models

As previously observed in several studies (e.g., Lartillot 
and Philippe 2004, 2006; Lartillot et al. 2007; Quang et al. 
2008), the use of any mixture of amino acid profiles always 
leads to an improved predictive power of the model relative 
to the single-matrix counterpart (Table 1). This is obvious 
from the increasing cv-score as the number of mixture com-
ponents grows from 1 to higher values, regardless of the type 
of finite mixture used (Fig. 1).

Interestingly, accounting for across-site pattern heteroge-
neity sometimes yields a greater improvement than account-
ing for rate heterogeneity. Specifically, for three data sets, 
a free mixture model (finite with a high number of compo-
nents or infinite) on its own (with flat amino acid exchange-
abilities and without gamma-distributed-rates) already out-
performs the GTR​+Γ model; in the other two data sets, a 
free mixture model on its own matches closely the GTR​+Γ 
model (Table 1). A comparison between F81+Γ versus CAT-
Poisson shows that the latter provides a greater performance, 
altogether suggesting that modeling pattern heterogeneity 
has a greater impact on predictive power than modeling 
overall rate heterogeneity. Given the well-known impor-
tance of the gamma-distributed-rates model, and its nearly 
universal application in modern analyses, these results sug-
gest that amino acid mixture models should perhaps also be 
considered a default choice.

Empirical Mixture Models, Gamma‑Distributed 
Rates, and Free Exchangeability Parameters

It is striking to note the extent to which the performance 
of empirical mixture models depends on coupling the 
approach to the gamma-distributed-rates and free exchange-
abilities (Fig.1, Table 1). For two data sets (Broughton and 
Lartillot 2012), the UDM mixture model only clearly sur-
passes the single-matrix GTR​+Γ model when it is combined 
with both gamma-distributed rates and free amino acid 

exchangeabilities (Table 1). Across all data sets, the differ-
ences in cross-validation scores between empirical mixtures 
and free mixtures is greatly reduced by invoking the gamma-
distributed-rates model. For instance, on the Lartillot-2007 
data set, the difference in cross-validation score between 
CAT​

60
-GTR and UDM

64
-GTR is around 5000 natural log 

units in favor of CAT​
60

-GTR, whereas the difference in score 
between CAT​

60
-GTR+Γ and UDM

64
-GTR+Γ is only around 

1000 units in favor of CAT​
60

-GTR+Γ (Fig.1).
Coupling free amino acid exchangeability parameters 

with empirical mixtures provides an important means of 
modifying the effect of different mixture components in 
reaction to the data set under analysis. We speculate that 
if an empirical mixture does not include an appropriate 
component for a sufficiently large proportion of sites of the 
alignment, the model could react by adjusting the exchange-
abilities between certain pairs of amino acids in ways that 
essentially break up few components into several; by hav-
ing rates between key pairs very low, they become virtually 
inaccessible one from the other. Though it would still techni-
cally be an ergodic process, the ergodicity is, loosely speak-
ing, impeded in the short term by the particular parameter 
configuration. Likewise, the gamma-distributed rates model 
could compensate for insufficiently specialized components 
by skewing the distribution of rates-across-sites one way 
or the other. With free mixture models, on the other hand, 
components adjust to the amino acid requirements of sites, 
sometimes in ways that implicitly capture overall rate hetero-
geneity; one way of having some sites with very low rates, 
for instance, is to have components dominated by a single 
amino acid. Indeed, for the Lartillot-2012 dataset, models 
without gamma-distributed-rates had the highest cross-val-
idation score for two replicates (Table 2). Altogether, these 
different features could explain why empirical mixtures are 
so dependent on a coupling with other modeling approaches 
in order to achieve good performance, and free mixtures 
are not.

Future Directions

Our results indicate that from the set of different modeling 
strategies, the use of mixtures of amino acid profiles to 
account for pattern heterogeneity has the highest contri-
bution to the predictive power of a model of amino acid 
replacement. Moreover, while finite mixture models, includ-
ing recent empirical mixtures, achieve strong performance, 
they still tend to be surpassed by the amino acid-level infi-
nite mixture modeling using the Dirichlet process (Lartillot 
and Philippe 2004).

Wang et al. (2008) have reasonably suggested that mix-
ture models might require fewer components when com-
bined with free exchangeability parameters. Our results 
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suggest that this is not necessarily the case. In fact, the 
improved performance across-the-board when invoking 
free exchangeability parameters suggests that even richer 
models along this direction could be warranted, perhaps 
including an independent mixture of exchangeability 
parameters.

The present study could also be extended to the com-
parison of other means of accounting for overall rate het-
erogeneity (e.g., Huelsenbeck and Suchard 2007), as well 
as partitioning approaches (Wang et al. 2019). Moreover, 
the set of models included here is limited to those assuming 
time-homogeneity, and future work should consider ways 
of comparing other models relaxing such assumptions (e.g., 
Blanquart and Lartillot 2008). A larger computational pro-
ject could be undertaken to extend our study beyond five 
phylogenomic data sets to thousands in order to establish if 
our results are generalizable.

The focus of our study has been on the predictive power 
of models of the amino acid replacement process. Much 
more work remains, however, in order to assess how the 
suite of available models behave relative to phylogenetic 
inference per se. While single-gene-based studies, compar-
ing different single-matrix models, suggest that model-fit 
does not reflect accuracy of phylogenetic inference (e.g., 
Spielman 2020), multi-gene applications of the mixture 
models considered here have known cases where higher 
model-fit translates to greater robustness against reconstruc-
tion artifacts, sometimes with profound biological implica-
tions (e.g., Lartillot et al. 2007; Feuda et al. 2017; Redmond 
and McLysaght 2021). One way of further characterizing 
such differences in phylogenetic inferences could be inspired 
by our approach of progressively scanning the finite mixture 
model space, to the point where finite mixtures converge to 
the CAT model, locating along the way the tipping-points 
of topological inferences with respect to mixture richness.

Finally, methodological work exploring different proto-
cols of Bayesian cross-validation, and other means of model 
comparison, would be pertinent in better understanding their 
conclusions in practice. Exploring means of absolute model 
performance like posterior predictive checking, rather than 
constructing a simple ranking, will also be important in 
order to uncover which aspects of the amino acid replace-
ment process require more attentive modeling.

Materials and Methods

Data

We studied five previously published datasets, which we 
refer to using the last name of the first author (adding the 
year of publication to disambiguate).

•	 Broughton: A concatenation of 20 amino acid alignments 
(6060 sites in total) from 61 species of fish, taken from 
Broughton et al. (2013).

•	 Brown: A concatenation of 159 amino acid alignments 
(43,649 sites in total) from 23 taxa from Amoebozoa and 
Opisthokonta, from Brown et al. (2013).

•	 Delsuc: A concatenation of 146 amino acid alignments 
(33,800 sites in total) from 38 taxa from deuterostomes, 
protostomes and fungi, obtained from Delsuc et  al. 
(2006).

•	 Lartillot-2007: A concatenation of 146 amino acid align-
ments (35,371 sites in total) from 37 taxa across Bilateria 
and fungi, studied in Lartillot et al. (2007).

•	 Lartillot-2012: A concatenation of 17 amino acid align-
ments (5,039 sites in total) from 78 placental mammals, 
taken from Lartillot and Delsuc (2012).

Models

The richest model we invoke, CAT-GTR​+Γ , has been 
described in detail (Lartillot and Philippe 2004, 2006). 
Briefly, it consists of the GTR​+Γ model but with multiple 
sets of amino acid frequency parameters, following a Dir-
ichlet process. The CAT-Poisson+Γ model is only different 
from CAT-GTR​+Γ in having equal amino acid exchange-
ability parameters.

Free finite mixtures of similar form are written as CAT​f
-GTR​+Γ in general, or as, say, CAT​f=100-GTR​+Γ for a free 
finite mixture with 100 components. As before, we write 
CAT​f -Poisson+Γ when simplifying the model to even 
exchangeabilities.

Our notation of empirical mixture models replaces CAT 
with, say, C60, for the empirical mixture with 60 compo-
nents proposed by Quang et al. (2008), with other elements 
of the notation as before (we say CXX to refer to this class of 
model in general). Likewise, we replace CAT with UDM256 
for the empirical mixture proposed by Li et al. (2021) with 
256 components. Note that in spite of using the empirical 
profile mixture values as provided by the respective authors, 
the weights of the mixture are treated as free parameters.

We write F81+Γ for a very simple model based on a 
single set of amino acid frequency parameters with even 
exchangeabilities (analogous to the nucleotide-level model 
proposed by Felsenstein 1981). Finally, we omit the +Γ 
to indicate that the model assumes homogeneous overall 
rates-across-sites.

Bayesian Cross‑Validation

We used a fivefold cross-validation approach. We first ran-
domly select one fifth of the (not necessarily contiguous) 
amino acid columns in the multiple sequence alignment, 
which we set aside as the testing data set. The remaining 
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four fifths of the amino acid columns then constitute the 
learning data set. We ran PhyloBayes on the learning data 
set under each model, with MCMC sampling for 2200 
cycles on the learning data, and discarded 200 cycles as 
burn-in. We repeated this random data sub-sampling, and 
posterior sampling conditional on the learning data set, 
five times.

On the post-burn-in cycles, we used PhyloBayes to 
compute site-specific likelihood values over the sample on 
the testing data set, taking the averages for each site, and 
finally summing the logarithm of these site-specific like-
lihood posterior averages to produce the cross-validation 
score of each replicate. Supposing a sample of K (post-
burn-in) parameter values drawn from the posterior distri-
bution under the learning dataset, we denote a particular 
draw as �k , where 1 ≤ k ≤ K . Writing Di for the ith column 
of the test data set, the likelihood score at site i given �k is 
written as p(Di ∣ �k) . The Monte Carlo approximation of 
the Bayesian cross-validation score is given as:

We compute the difference between the cross-validation 
score of a model of interest and the GTR​+Γ model, used as 
a reference, and report the average and standard deviation 
across the five replicates of the fivefold protocol. We also 
track the models receiving the highest cross-validation score 
for each of the five replicates.

Our choice of fivefold cross-validation, rather than two-
fold, ten-fold, or other, is arbitrary, but attempts to balance a 
trade-off. On one hand, having a large test set means that the 
richer models are placed at a more significant disadvantage, 
since this implies a small learning set: richer models tend to 
require more training data to reliably infer parameter values. 
One the other hand, a very small test set will likely lead to 
a high variance in cross-validation scores across replicates, 
potentially making it difficult to clearly distinguish between 
all models’ performances. Results suggests that we can rea-
sonably distinguish between most models with the fivefold 
protocol adopted, but more work is warranted to explore 
other protocols of data partitioning into learning and test 
sets.  
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