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Abstract Similarities and differences between amino

acids define the rates at which they substitute for one

another within protein sequences and the patterns by which

these sequences form protein structures. However, there

exist many ways to measure similarity, whether one con-

siders the molecular attributes of individual amino acids,

the roles that they play within proteins, or some nuanced

contribution of each. One popular approach to representing

these relationships is to divide the 20 amino acids of the

standard genetic code into groups, thereby forming a

simplified amino acid alphabet. Here, we develop a method

to compare or combine different simplified alphabets, and

apply it to 34 simplified alphabets from the scientific lit-

erature. We use this method to show that while different

suggestions vary and agree in non-intuitive ways, they

combine to reveal a consensus view of amino acid simi-

larity that is clearly rooted in physico-chemistry.

Keywords Amino acids � Simplified alphabets �
Similarity measures � Chemical properties � Protein

structure

Introduction

The relationships between the 20 amino acids of the stan-

dard genetic code are fundamentally important to the

folding (Haber and Anfinsen 1962), interactions (Lucchese

et al. 2012), and evolution (Dayhoff et al. 1978) of proteins.

One approach to understanding these relationships is to

create a simplified amino acid alphabet by grouping the full

set of 20 according to their similarity (for example, a

scheme that separates hydrophobic from hydrophilic amino

acids has simplified the alphabet from size 20 to 2). The

publication of many different simplified alphabets demon-

strates the usefulness of this approach. Such simplified

alphabets can improve topological estimation in phyloge-

netic analysis (Susko and Roger 2007) and aid in the clas-

sification of proteins (Albayrak et al. 2010; Chen et al.

2012). An appropriately simplified alphabet of size 12 has

also been shown to exhibit better selectivity and sensitivity

to predicting protein folds than the full set of 20 (Peterson

et al. 2009).

This range of practical uses has led amino acid simi-

larity to be defined in many ways such that simplified

alphabets may reflect the purpose for which they were

constructed or the methods by which they were derived.

For example, similarity measurements which focus on the

chemistry and physics of individual amino acid molecules

(Mahler and Cordes 1966; Lehninger 1970; Dickerson and

Geis 1983; Taylor 1986; Weathers et al. 2004) are likely to

be different from those which analyze the roles played by

amino acid residues within protein sequences (e.g., Day-

hoff et al. 1978; Risler et al. 1988; Riddle et al. 1997;

Murphy et al. 2000; Etchebest et al. 2007) simply because

biology’s genetic code defines how many point mutations

are required to interconvert two different amino acids

during protein sequence evolution (Fitch 1966). This

effect, which has been reported and estimated from bio-

logical sequence data (Benner et al. 1994; Yampolsky and

Stolzfus 2005; Di Giulio 2008), has no counterpart within

the chemistry of individual amino acid molecules.
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Furthermore, specific amino acids can play special roles

within the proteins in which they occur. Cysteine, for

example, pairs with itself to form disulfide bridges that

stabilize protein structures (Haber and Anfinsen 1962), and

proline’s unique structure causes natural selection to favor

its use in proteins for interrupting alpha helices. These

behaviors are difficult to identify, without the benefit of

hindsight, when considering only the chemical properties

of a single amino acid molecule. Broadening this view, it

has been estimated that around 35 % of the genetically

encoded amino acids’ potential to form secondary struc-

tures comes from non-local molecular interactions (Gu and

Bourne 2009). Such interactions can be more conserved

within structural evolution than the identity of specific

amino acid residues (Noivirt-Brik et al. 2013). Most gen-

erally of all, any specific effort to calculate an amino acid

simplification scheme will contain some degree of experi-

mental error.

To investigate these and other possible causes of

agreement and disagreement between different simplified

alphabets, we have developed a new method to compare

and combine two or more simplified amino acid alphabets.

Using this framework, we have investigated how different

simplified alphabets vary from one another and then con-

sidered whether a consensus view of the different alphabets

provides a meaningful, global measure of amino acid

similarity.

Results

Comparing Simplified Amino Acid Alphabets

In order to investigate the variability between different

simplified alphabets, we identified a comprehensive dataset

consisting of 34 amino acid simplifications published

within peer-reviewed literature and characterized them

according to their method of derivation (Table 1). Within

each simplified alphabet, amino acids are grouped together

on the basis of similarity such that each amino acid belongs

to exactly one group. An alphabet can therefore range in

size from 1 (for an approach that accepts all 20 amino acids

as similar enough to be considered equivalent) to 20 (where

the discrimination is so fine-grained that no 2 amino acids

are considered similar enough to be considered equivalent).

Converting each alphabet into an appropriate matrix

format (see ‘‘Methods’’) enabled an all-against-all pairwise

comparison of the 34 different simplification schemes.

From these comparisons, a new matrix was created to

record the proportion of amino acid pairs grouped in the

same way in both simplification schemes for all possible

pairs (Supplementary Table S1). Figure 1 shows a least

squares derived dendrogram of this similarity matrix, col-

ored according to the method by which each simplified

alphabet was derived.

This analysis demonstrates that disparate derivation

techniques can result in similar simplified alphabets and

vice versa. In particular, Fig. 1 shows that approaches

which consider physico-chemical properties of individual

amino acids are often found close to those which infer

amino acid similarity from analysis of protein sequence or

structure information.

In order to further investigate the variation within and

between simplified alphabets, the 34 9 34 alphabet com-

parison matrix (Supplementary Table S1) was reduced by

principal components analysis (Fig. 2).

Several patterns are evident in Fig. 2. For example,

structure (Risler et al. 1988; Riddle et al. 1997; Mirny and

Shakhnovich 1999; Prlic et al. 2000; Melo and Marti-

Renom 2006) and sequence (Dayhoff et al. 1978; Murphy

et al. 2000; Cannata et al. 2002; Fan and Wang 2003; Li

et al. 2003; Edgar 2004; Kosiol et al. 2004; Andersen and

Brunak 2004; Lenckowski and Walczak 2007) alignments

generally group together (although both have distant out-

liers); most simplified alphabets based upon protein blocks

(Robson and Suzuki 1976; Solis and Rackovsky 2000;

Rogov and Nekrasov 2001; Etchebest et al. 2007; Peterson

et al. 2009; Zuo and Li 2009) also associate here. Simpli-

fications based on contact potentials (Crippen 1991;

Maiorov and Crippen 1992; Thomas and Dill 1996; Wang

and Wang 1999; Cieplak et al. 2001; Liu et al. 2002) are

distributed more evenly, comprise fewer outliers, and do

not cluster with the alignment methods. This suggests that

considering amino acid similarity in terms of contact

potentials offers a genuinely fresh perspective. Simplifi-

cation schemes based on chemistry (Mahler and Cordes

1966; Lehninger 1970; Dickerson and Geis 1983; Taylor

1986; Weathers et al. 2004) straddle contact potentials and

the main alignment cluster. The mean Cartesian value of all

simplified alphabets on the first two principal components

plane is (0,0). The PC2 axis partitions most of the alphabets

derived from contact potentials from those derived from

alignments. Interestingly, the furthest outliers from this

main cluster (Solis and Rackovsky 2000; Kosiol et al.

2004; Melo and Marti-Renom 2006; Lenckowski and

Walczak 2007; Peterson et al. 2009) are dominated by later

additions to the literature. This may be because they rep-

resent new ways of clustering or that they represent sig-

nificant improvements for a given task which occupies a

distinct area of solution space. It is important to recognize

that the relative position of a study reveals nothing about its

quality; indeed we encourage future work to investigate

relationships between position and function of a simplified

alphabet.

160 J Mol Evol (2013) 77:159–169

123



For a more complete understanding of the relationships

between studies, Fig. 2 should be considered alongside

Fig. 1. Both representations have necessarily lost infor-

mation from the matrix comparisons to allow the data

to be visualized. For example, principal components 1

and 2 account for only 70.2 % of the variation between

studies.

Comparing Consensus Views

In order to further investigate the effects of derivation

method on amino acid similarity, the 34 individual sim-

plification schemes were combined (see ‘‘Methods’’) to

create a consensus tree view of amino acid similarity rather

than of alphabet similarity (Fig. 3).

Table 1 Details of 34 simplified alphabets taken from peer reviewed scientific literature

a In each case, the alphabet size was chosen according to that deemed best by the source study in question. Within each simplified alphabet,

amino acid groupings are comma delimited. Branch score distances indicate the effect of dropping each study on the overall consensus tree

(Fig. 3); b Different simplified alphabets are color coded according to the methods by which each was derived (not according to the theme of the

source manuscript)
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The robustness of the tree was checked by a jack-knife

approach which showed that no single scheme had a sig-

nificant effect on tree structure (final column in Table 1).

Several amino acids appear to be ungrouped in the den-

drogram, and each instance demands a separate explana-

tion. Histidine (H) for example is likely grouped differently

in different schemes due to its versatility in proteins. The

multiple roles it plays in protein interactions have caused it

to be labeled the most active member of the amino acids

(Liao et al. 2013). Cysteine (C) perhaps plays one of the

most vital roles in influencing 3D folding of proteins via

disulfide bond formation (Muskal et al. 1990). However, it

plays a different role when not bonded with another cys-

teine which is why it has two entries (CS–S and CS–H) in the

chemistry Venn diagram shown in Fig. 4b. Alanine (A) is

not very hydrophobic and is non-polar; it is therefore

present in many non-critical protein contexts (Betts and

Russell 2003). Because it can appropriately be clustered in

several ways, there is little consensus as to its closest

amino acid neighbors.

By grouping the most similar amino acids from the

dendrogram in Fig. 3 hierarchically, a simplified amino

acid alphabet from size 19 to 2 could be defined. However,

as discussed later, more information is maintained by

presenting the pairwise matrix than any single alphabet.

Also, the ideal size of the simplified alphabet may depend

on the task for which it will be used.

The 34 simplified alphabets shown in Fig. 1 and Table 1

were separated into 2 groups according to whether they

were derived from consideration of amino acid residues

within proteins, or from consideration of the physico-

chemical properties of individual amino acids (Table 2).

Data in Table 2a,c were then used to construct dendro-

grams (Fig. 4), which suggest a striking agreement

between each view of amino acid similarity.

The dendrogram similarity is noteworthy in that Fig. 4c

may be considered the result of dropping 29 studies: in

other words, the underlying picture of amino acid similarity

is sufficiently clear and robust that just 5 independent

studies which focus upon the physico-chemical properties

of amino acids find essentially the same picture as (i) 29

studies which focus on protein sequences and (ii) all 34

studies combined (Fig. 3).

This unified picture of amino acid similarity is particu-

larly clear when both dendrograms are compared with

Fig. 4b, a redrawn version of a widely promoted visuali-

zation of amino acid chemistries (Livingstone and Barton

1993). For example, hydrophobicity and/or polarity appear

to define the principal dimension of chemical similarity

(corresponding to the deepest branch points on dendro-

grams in Fig. 4a, c). No hydrophobic (blue) amino acid is

ever clustered with a polar (red) amino acid and vice versa,

whereas the scattered distribution of differently sized

amino acids throughout the dendrogram suggests that size

is a less important measure. Beyond this deepest level of

similarity, several other clusters within the dendrograms,

such as the distribution of positively charged amino acids,

match those found in the Venn diagram. At an even finer

level of inspection, the members of each amino acid pair

considered similar (grouped) by the majority of the studies

(Table 2) are always found in close proximity in the

chemistry space Venn diagram (Fig. 4b).

Although this pattern of agreement might be anticipated

between Fig. 4b and Fig. 4c in as much as the Venn dia-

gram (Fig. 4b) is itself derived by from consideration of

amino acid chemistry, it is more surprising for Fig. 4a

which was built exclusively from data regarding amino

acid moieties within the context of protein sequences and

structures, unconcerned with individual amino acid

properties.

To quantify the agreement between Fig. 4a and Fig. 4c,

it is tempting to measure directly the similarity of the

dendrograms; however, two reasons argue against this

approach. First, any comparison of dendrograms is a subtle

challenge that remains an area of active research (Morlini

and Zani 2012). Second and more fundamental, while these

Fig. 1 Simplified amino acid alphabets colored according to the

method by which they were derived. Dendrogram derived by least

squares from the relative similarities of 34 published simplified amino

acid alphabets, labeled by Stephenson. Longer branch lengths

indicate lower similarity between two alphabets; colors represent

method by which each simplified alphabet was derived as described in

Table 1
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dendrograms are useful for visualizing the complex web of

relationships between the set of amino acids (compare

Fig. 4 with Table 2), they are derived from information-

rich matrices that record independent estimates of the

distance between every amino acid and all others. Much of

this detailed information is lost in the process of translating

the matrix into its corresponding dendrogram. A more

accurate and straightforward quantification of the similarity

therefore comes from measuring the similarity of the two

matrices from which Fig. 4a, c was derived.

Figure 5 shows the difference between these distance

matrices alongside a corresponding distribution of differ-

ences for a large sample of alternative randomized matrices

(Mantel test Mantel 1967).

The analysis illustrated in Fig. 5, based on total infor-

mation regarding amino acid similarity, reveals a vanish-

ingly small probability that the overall degree of similarity

seen in Fig. 4 could occur by chance.

Discussion

Here, we have introduced a simple new method to compare

and combine different suggestions for grouping the 20

amino acids of the standard genetic code into simplified

alphabets. On the one hand, this method shows how indi-

vidual simplification schemes vary from one another,

Fig. 2 Principal components 1 and 2 of the 34 9 34 simplified

alphabet similarity matrix colored by derivation method. a Simplified

alphabets are shown as spheres and labeled according to the alphabet

ID numbering in Table 1. b Variance contribution of the first five

principal components of this analysis

Fig. 3 Consensus amino acid similarity dendrogram from 34 alpha-

bets. Dendrogram constructed by least squares using the similarity

data from all 34 simplified amino acid alphabets. Long branches

indicate that an amino acid is rarely grouped with any other as part of

a simplification scheme. Short path lengths between amino acids

suggest high similarity between them
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providing a single visualization (Fig. 2) that summarizes

three decades of research. On the other hand, it reveals that

a composite view of all simplified alphabets reflects a view

of amino acid similarity firmly rooted in physico-

chemistry.

Both of these observations offer useful platforms for

further research. Although previous studies have measured

how different simplified alphabets perform relative to one

another in terms of a specific bioinformatics challenge

(e.g., Dosztanyi and Torda 2001), our method measures

different simplified alphabets relative to one another,

independent of any particular application. This reveals

patterns of variability that were not intuitive (including

unexpected agreements between different approaches, and

outliers within a single approach) and thus provides a

context for future contributions to the scientific literature of

simplified alphabets. Since bioinformatics tools may rely

on which simplified alphabet is used, it will be interesting

to see whether specific regions of Fig. 2 perform better at

specific tasks. This in turn would advance meaningful

classification and rational design of simplified alphabets.

More surprising to us is that a composite of 34 diverse

simplified alphabets converges upon a view of amino acid

similarity that can be explained directly in terms of phys-

ico-chemistry. Given that only 5 out of 34 schemes directly

identify themselves as measuring physico-chemical prop-

erties of amino acids, this result was not a foregone con-

clusion. It may be intuitive that physico-chemical

properties underlie sequence evolution and protein

structure but other factors, such as the organization of the

genetic code, the peculiar roles played by specific amino

acids in specific proteins, and an unknown degree of

experimental error in the derivation of each simplified

alphabet could have combined to obscure any underlying

agreement. Instead we observe a vox populi effect (Galton

1907) whereby experimental error, individual differences

and systematic biases that divide different approaches to

generating a simplified alphabet cancel each other out.

The significance of this latter point is that until now,

most insights regarding amino acid similarity have come

from observations of the 20 amino acids of the standard

genetic code. However, two additional amino acids (sele-

nocysteine and pyrrolysine) occur in non-standard codes,

and many others result from posttranslational modifications

and non-ribosomal peptide synthesis. Connecting the

behavior of amino acids within proteins with physico-

chemical properties that can be measured for any amino

acid molecule forms an important step toward broadening

biological theory to encompass amino acids beyond those

found in the standard genetic code.

Methods

Binary Intra Group Matrices

We collated all published simplification schemes that

highlight 1, specific simplified alphabet as the most relevant

Fig. 4 Amino acid similarity relationships defined by analysis of

proteins closely resemble those derived from analysis of individual

amino acid chemistry. Dendrograms constructed by least squares

using the similarity data from a 29 studies which considered amino

acid residues within proteins sequences and structures, versus c 5

simplified alphabets which were derived from individual amino acid

physico-chemistry. Long branches indicate that an amino acid is

rarely grouped with any other as part of a simplification scheme. Short

path lengths between amino acids suggest high similarity between

them. Comparing both dendrograms with a redrawn version of a

commonly used chemical property Venn diagram b adapted from

Livingstone and Barton (1993) uncovers the physico-chemical basis

for many of the dendrogram features. The hydrophobic (blue), polar

(red), and both hydrophobic and polar (purple) amino acids are

colored to highlight this principal basis of organization within each of

the dendrograms
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to the task at hand. Converting comma-delimited simplified

alphabets (Table 1) into a uniform, matrix representation

reduced the challenge of comparing or combining different

suggested simplified alphabets into a straightforward

manipulation of their corresponding matrices. The first step

toward this goal was to construct what we term a ‘Binary

Intra Group’ (B.I.G) matrix, of 20 9 20 elements in which

to record similarity between every possible pairing of the 20

amino acids according to a specific simplified alphabet.

Within this B.I.G matrix, elements were set to 1 wherever a

grouping scheme reported two amino acids as being similar

(grouped together), and 0 otherwise (green matrices, left

most column in Fig. 6).

For example, a scheme which reports aspartic acid

(D) and glycine (G) as similar to each other but both

different from tryptophan (W) would record matrix ele-

ments [D, G], [G, D], [G, G], [D, D], and [W, W] as 1 and

all other matrix elements as 0. Since the main diagonal of

the matrix reflects whether an amino acid groups with itself

(always true) or not (never true), it was ignored. All 34

amino acid simplification suggestions (Table 1) were

converted into B.I.G matrices (Perl script available from

the corresponding author).

Comparing Simplified Alphabets

Our comparison of simplified alphabets began with the

construction of a second (empty) matrix. In this new

matrix, elements were set to 1 wherever the corresponding

elements of two B.I.G matrices matched and 0 elsewhere

Table 2 Consensus distance matrices when considering a amino acids as residues within proteins; b physico-chemical properties of individual

amino acids; and c the difference between these two approaches

a

b

c

The values shown in a and b are distances between amino acids, calculated by subtracting the similarity measurements from 1. A value of 0

indicates that an amino acid pair is always grouped together in all simplified alphabets; conversely, a value of 1 indicates that the pair is never

grouped together. The absolute differences between each cell in a and b are shown in c. All matrices are colored using the same scale from 0

(green) to 1 (red)
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(blue matrices, central column in Fig. 6): note, as before,

the main diagonal of this matrix is without information.

The similarity between two simplified alphabets was

estimated by summing the elements of the inter-alphabet

comparison matrix and dividing by the maximum total

possible (=380) to produce a single value that ranges from

0 to 1 to indicate the similarity of the two suggestions

(1 indicates identical suggestions, and 0 indicates that a

pair of simplified alphabets share nothing in common). The

comparison values were then collated into a similarity

matrix (Perl script available from the corresponding

author), showing the similarity between any pair of

alphabets (red matrix, rightmost column in Fig. 6).

Alphabet simplifications were then characterized

according to the methods by which they were derived

(Fig. 1). In particular, we distinguished approaches which

consider the physico-chemical properties of individual

amino acids from approaches which derive from analysis

of amino acid moieties within proteins. These latter studies

were further sub divided as shown in Table 1b. The dis-

tance table (Supplementary Table S1) was used to make a

dendrogram by neighbor joining followed by least squares

refinement using MEGA v5.05 (Tamura et al. 2011), with

individual branches colored according the derivation cat-

egories shown in Table 1b. The topology of the dendro-

gram was unchanged when using neighbor joining,

minimum evolution, or least squares. Our choice of

methods for deriving this dendrogram reflects the sim-

plicity of our data type (no underlying state-types). In

particular, we avoided the use of other tree-generation

methods that would introduce inappropriate assumptions

for our data (for example, unweighted pair group mean

average assumes equal rates of evolution across branches

and builds a rooted tree. These concepts are logically

inconsistent with our analysis, as we posit no evolutionary

ancestry within the amino acids).

Combining Simplified Alphabets

The data from all simplified alphabets were combined by

adding the numbers at each amino acid pair position (each

cell) from the 34 B.I.G tables and entering them into a new

20 9 20 B.I.G consensus matrix. The scores of each ele-

ment (the number of studies which suggested that the

amino acid pair should be grouped) were divided by the

total possible score (34) to calculate an amino acid simi-

larity consensus matrix (Perl script available from the

corresponding author). This B.I.G consensus matrix was

used to construct a dendrogram (Fig. 3) in MEGA v5.05

software (Tamura et al. 2011) using neighbor joining fol-

lowed by least squares refinement. Thirty-four new

dendrograms were constructed by jack-knifing the data

(i.e., systematically dropping one study at a time). The

resulting 34 new trees were compared to the original study

(built from all 34 studies) using the branch score distance

method (Kuhner and Felsenstein 1994) as implemented in

Phylip. Branch score distances are provided in the final

column of Table 1.

The data used to construct the consensus tree in Fig. 3

were split into categories (Table 2a, b) and used to make

comparable dendrograms (Fig. 4a, c). (The topology of the

dendrogram was unchanged when using neighbor joining,

minimum evolution, or least squares.) Livingstone and

Barton’s (1993) widely used Venn diagram of amino acid

similarity was redrawn as Fig. 4b to facilitate visual

comparisons between dendrograms.

Quantifying Tree Similarity

The sum of the absolute distances between corresponding

cells of the separated matrices Table 2c was used to

quantify the two groups of simplified alphabets visualized

in Fig. 4a, c. This summed distance was then calculated

between our ‘‘individual amino acid chemistry’’ distance

matrix and 1,000,000 randomizations of the ‘‘amino acids

within proteins’’ matrix and also vice versa (i.e., our

‘‘amino acids within proteins’’ distance matrix and

1,000,000 randomizations of the ‘‘individual amino acid

chemistry’’ matrix). For each test, randomized matrices

were constructed by randomizing the row order of the

compared matrix. Only the rows were randomized, as

randomizing both columns and rows would likely inflate

Fig. 5 Distance between matrices when considering amino acids

within proteins and when considering their individual amino acid

physico-chemical properties against a background of randomized

matrices. Frequency distribution of inter matrix distances between the

‘‘individual chemistry’’ matrix calculated in this study and 1,000,000

random matrices (randomizing rows only) generated from real matrix

seeds. The distance between the two matrices (Table 2a, b) was

0.1339
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the perception of similarity between our ‘‘individual amino

acid chemistry’’ and ‘‘amino acids within proteins’’ pic-

tures of amino acid similarity (because significant, struc-

tured information is present within each column or row).

Our more conservative randomization is therefore more

sensitive to recording whether these two views of amino

acid similarity genuinely concur. To check whether the

random matrices were representative of the possible solu-

tion space we ran 10 tests scoring the distances between

‘‘individual amino acid’’ matrix and 100,000 random

matrices and 10 tests of the distances between ‘‘within

protein’’ matrix and 100,000 random matrices. We found

that the 20 group means of distances differ little from each

other 0.2094–0.2095. The range of all values was

0.164–0.253 (3SF). This suggests that we have adequately

sampled the possibility space of random matrices and that

the distance between ‘‘individual amino’’ acid and ‘‘within

proteins’’ (0.1339) is exceptional. While this may be con-

sidered a small sample of the 20! (2.4 9 1018) ways of

ordering 20 objects, the degree of variation seen here gives

us confidence in these results.

Even here, the results should be treated with care. As

seen in the visualization shown in Fig. 4, there are differ-

ences in the details (e.g., as anticipated, histidine and

cysteine appear somewhat different according to whether a

simplified alphabet is derived from analysis of proteins or a

consideration of physico-chemical properties): our analysis

therefore demonstrates only that the overall perception of

amino acid similarity derived from these two different

approaches is indeed highly convergent.
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Fig. 6 Illustration of the method used to compare simplified amino

acid alphabets using a fictional 6-letter alphabet for clarity of

example. The groupings described by three simplifications, named

studies 1–3, for a fictional 6-letter alphabet are initially described as

comma-delimited text (shown above each of the green matrices, left).

The contents of the green matrices thus represent each simplified

alphabet: within each matrix, a value of 1 indicates that two amino

acids are grouped as ‘‘similar’’; a value of 0 indicates otherwise. The

blue matrices are constructed by comparing each element in the green

matrices pairwise. This time, a match between the corresponding cells

for two green matrices results in a 1 within the blue matrix (0

represents a mismatch). Summing the matched values from the blue

matrices results forms an overall similarity value, as shown in the

final rows of the ‘‘line total’’ column. These similarity values can be

assembled in a similarity matrix, shown in red, which records all

pairwise inter-alphabet similarities. In this example, alphabets from

studies 1 and 3 are the most similar and from 2 and 3 are the least

similar

J Mol Evol (2013) 77:159–169 167

123



References

Albayrak A, Out HH, Sezerman UO (2010) Clustering of protein

families into functional subtypes using relative complexity

measure with reduced amino acid alphabets. BMC Bioinformat-

ics 11:428

Andersen CAF, Brunak S (2004) Representation of protein-sequence

information by amino acid subalphabets. AI Magazine 25:97–104

Benner SA, Cohen MA, Gonnet GH (1994) Amino acid substitution

during functionally divergent evolution of protein sequences.

Protein Eng 7:1323–1332

Betts MJ, Russell RB (2003) Amino acid properties and consequences

of substitutions. Bioinformatics for geneticists. Wiley, New York

Cannata N, Toppo S, Romualdi C, Valle G (2002) Simplifying amino

acid alphabets by means of a branch and bound algorithm and

substitution matrices. Bioinformatics 18:1102–1108

Chen W, Feng P, Lin H (2012) Prediction of ketoacyl synthase family

using reduced amino acid alphabets. J Ind Microbiol Biotechnol

39(4):579–584

Cieplak M, Holter NS, Maritan A, Banavar JR (2001) Amino acid

classes and the protein folding problem. J Chem Phys 114:

1420–1423

Crippen GM (1991) Prediction of protein folding from amino acid sequence

over discrete conformation spaces. Biochemistry 30:4232–4237

Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of

evolutionary change in proteins. Atlas of protein sequence and

structure, National Biomedical Research Foundation, p 345–351

Di Giulio M (2008) The origin of the genetic code cannot be studied

using measurements based on the PAM matrix because this

matrix reflects the code itself, making any such analyses

tautologous. J Theor Biol 208(2):141–144

Dickerson RE, Geis I (1983) Hemoglobin: structure, function,

evolution, and pathology. Benjamin/Cummings, Menlo Park

Dosztanyi Z, Torda AE (2001) Amino acid similarity matrices based

on force fields. Bioinformatics 17:686–699

Edgar RC (2004) Local homology recognition and distance measures

in linear time using compressed amino acid alphabets. Nucleic

Acids Res 32:380–385

Etchebest C, Benros C, Bornot A, Camproux AC, de Brevern AG (2007)

A reduced amino acid alphabet for understanding and designing

protein adaptation to mutation. Eur Biophys J 36:1059–1069

Fan K, Wang W (2003) What is the minimum number of letters

required to fold a protein? J Mol Biol 328:921–926

Fitch WM (1966) An improved method for testing for evolutionary

homology. J Mol Biol 16:9–16

Galton F (1907) Vox populi. Nature 75:450–451

Gu J, Bourne PE (2009) Structural bioinformatics. Wiley, Hoboken,

p 681

Haber E, Anfinsen CB (1962) Side-chain interactions governing the

pairing of half-cystine residues in ribonuclease. J Biol Chem

237:1839–18441

Kosiol C, Goldman N, Buttimore NH (2004) A new criterion and

method for amino acid classification. J Theor Biol 228:97–106

Kuhner MK, Felsenstein J (1994) A simulation comparison of

phylogeny algorithms under equal and unequal evolutionary

rates. Mol Biol Evol 11:459–468

Lehninger AL (1970) Biochemistry. Worth and Co, New York

Lenckowski J, Walczak K (2007) Simplifying amino acid alphabets

using a genetic algorithm and sequence alignment. Evolute Biol

4447:122–131

Li T, Fan K, Wang J, Wang W (2003) Reduction of protein sequence

complexity by residue grouping. Protein Eng 16:323–330

Liao S-M, Du Q-S, Meng J-Z, Pang Z-W, Huang R-B (2013) The

multiple roles of histidine in protein interactions. Chem Cent J

7:44

Liu X, Liu D, Qi J, Zheng WM (2002) Simplified amino acid

alphabets based on deviation of conditional probability from

random background. Phys Rev E 66:021906

Livingstone CD, Barton GJ (1993) Protein sequence alignments: a

strategy for the hierarchical analysis of residue conservation.

CABIOS 9:745–756

Lucchese G, Sinha AA, Kanduc D (2012) How a single amino acid

change may alter the immunological information of a peptide.

Front Biosci 4:1843–1852

Mahler HR, Cordes EH (1966) Biological chemistry. Harper and

Row, New York

Maiorov VN, Crippen GM (1992) Contact potential that recognizes

the correct folding of globular proteins. J Mol Biol 227:876–888

Mantel N (1967) The detection of disease clustering and a generalized

regression approach. Cancer Res 27(2):209–220

Melo F, Marti-Renom MA (2006) Accuracy of sequence alignment

and fold assessment using reduced amino acid alphabets.

Proteins 63:986–995

Mirny LA, Shakhnovich EI (1999) Universally conserved positions in

protein folds: reading evolutionary signals about stability,

folding kinetics and function. J Mol Biol 291:177–196

Morlini I, Zani S (2012) Dissimilarity and similarity measures for

comparing dendrograms and their applications. Adv Data Anal

Classif 6(2):85–105

Murphy LR, Wallqvist A, Levy RM (2000) Simplified amino acid

alphabets for protein fold recognition and implications for

folding. Protein Eng 13:149–152

Muskal SM, Holbrook SR, Kim S-H (1990) Prediction of the

disulfide-bonding state of cysteine in proteins. Protein Eng

3(8):667–672

Noivirt-Brik O, Hazan G, Unger R, Ofran Y (2013) Non local

residue–residue contacts in proteins are more conserved than

local ones. Bioinformatics 29(3):331–337

Peterson EL, Kondev J, Theriot JA, Phillips R (2009) Reduced amino

acid alphabets exhibit an improved sensitivity and selectivity in

fold assignment. Bioinformatics 25:1356–1362

Prlic A, Domingues FS, Sippl MJ (2000) Structure-derived substitu-

tion matrices for alignment of distantly related sequences.

Protein Eng 13:545–550

Riddle DS et al (1997) Functional rapidly folding proteins from

simplified amino acid sequences. Nat Struct Biol 4:805–809

Risler JL, Delorme MO, Delacroix H, Henaut A (1988) Amino acid

substitutions in structurally related proteins. A pattern recogni-

tion approach. Determination of a new and efficient scoring

matrix. J Mol Biol 204:1019–1029

Robson B, Suzuki E (1976) Conformational properties of amino acid

residues in globular proteins. J Mol Biol 107:327–356

Rogov SI, Nekrasov AN (2001) A numerical measure of amino acid

residues similarity based on the analysis of their surroundings in

natural protein sequences. Protein Eng 14:459–463

Solis AD, Rackovsky S (2000) Optimized representations and

maximal information in proteins. Proteins 38:149–164

Susko E, Roger AJ (2007) On reduced amino acid alphabets for
phylogenetic inference. Mol Biol Evol 24(9):2139–2150

Tamura K et al (2011) MEGA5: molecular evolutionary genetics

analysis using maximum likelihood, evolutionary distance,

and maximum parsimony methods. Mol Biol Evol 28:2731–

2739

Taylor WR (1986) The classification of amino acid conservation.

J Theor Biol 119:205–218

Thomas PD, Dill KA (1996) An iterative method for extracting

energy-like quantities from protein structures. Proc Natl Acad

Sci USA 93:11628–11633

Wang J, Wang W (1999) A computational approach to simplifying

the protein folding alphabet. Nat Struct Biol 6:1033–1038

168 J Mol Evol (2013) 77:159–169

123



Weathers EA, Paulaitis ME, Woolf TB, Hoh JH (2004) Reduced

amino acid alphabet is sufficient to accurately recognize

intrinsically disordered protein. FEBS Lett 576:348–352

Yampolsky LY, Stolzfus A (2005) The exchangeability of amino

acids in proteins. Genetics 170(4):1459–1472

Zuo YC, Li QZ (2009) Using reduced amino acid composition to

predict defense in family and subfamily: integrating similarity

measure and structural alphabet. Peptides 30:1788–1793

J Mol Evol (2013) 77:159–169 169

123


	Unearthing the Root of Amino Acid Similarity
	Abstract
	Introduction
	Results
	Comparing Simplified Amino Acid Alphabets
	Comparing Consensus Views

	Discussion
	Methods
	Binary Intra Group Matrices
	Comparing Simplified Alphabets
	Combining Simplified Alphabets
	Quantifying Tree Similarity

	Acknowledgments
	References


