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Abstract The metabolic cycle of Saccharomyces cere-

visiae consists of alternating oxidative (respiration) and

reductive (glycolysis) energy-yielding reactions. The

intracellular concentrations of amino acid precursors gen-

erated by these reactions oscillate accordingly, attaining

maximal concentration during the middle of their respec-

tive yeast metabolic cycle phases. Typically, the amino

acids themselves are most abundant at the end of their

precursor’s phase. We show that this metabolic cycling has

likely biased the amino acid composition of proteins across

the S. cerevisiae genome. In particular, we observed that

the metabolic source of amino acids is the single most

important source of variation in the amino acid composi-

tions of functionally related proteins and that this signal

appears only in (facultative) organisms using both oxida-

tive and reductive metabolism. Periodically expressed

proteins are enriched for amino acids generated in the

preceding phase of the metabolic cycle. Proteins expressed

during the oxidative phase contain more glycolysis-derived

amino acids, whereas proteins expressed during the

reductive phase contain more respiration-derived amino

acids. Rare amino acids (e.g., tryptophan) are greatly

overrepresented or underrepresented, relative to the pro-

teomic average, in periodically expressed proteins, whereas

common amino acids vary by a few percent. Genome-wide,

we infer that 20,000 to 60,000 residues have been modified

by this previously unappreciated pressure. This trend is

strongest in ancient proteins, suggesting that oscillating

endogenous amino acid availability exerted genome-wide

selective pressure on protein sequences across evolutionary

time.

Keywords Amino acid sequence � Metabolism �
Optimization � Oxidation � Protein function � Reduction �
Yeast metabolic cycle

Introduction

Many selective pressures alter the primary amino acid

sequence of proteins: metabolic availability of biosynthetic

precursors (Tu et al. 2005), hydrophobicity and other

physicochemical properties of amino acids (Lobry and

Gautier 1994), and codon use bias (Porter 1995), among

others. A number of groups have previously studied amino
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acid compositional biases using genomic data from many

organisms (Pascal et al. 2005; Tekaia and Yeramian 2006;

Thiolouse and Lobry 1995; Nilsson et al. 2005). Amino

acid residues that engender specific catalytic activity or

constitute protein–protein interaction domains necessary

for function are often conserved during evolution, and

when these residues mutate to other amino acids they do so

in a chemically conservative manner that reflects selection.

In contrast, amino acid residues that may be substituted

during evolution without detriment to protein function per

se do not necessarily drift at random. These two examples

broadly define the conceptual framework for considering

functional constraints on protein sequence. One category of

constraints arises passively because of the structure of the

genetic code, reflecting genomic G ? C content and codon

use biases. A number of other constraints on the primary

amino acid sequence of proteins fall under the broad

heading of biosynthetic cost minimization. They are

actively governed by selection and influence amino acid

mutability independently of specific protein function.

These include translation efficiency, amino acid metabolic

cost (Akashi and Gojobori 2002; Seligmann 2003), and

depletion of cognate amino acids from the enzymes of

amino acid-biosynthetic pathways. Several groups—

including one study that documented the selective deple-

tion of sulfur-containing amino acids in highly expressed

proteins of a microorganism that dwells in a sulfur-limited

environment (Mazel and Marliere 1989), a follow-up study

that performed an analysis of intragenomic cognate

depletion in carbon-, nitrogen- and sulfur-assimilatory

pathways (Baudouin-Cornu et al. 2001), and two inde-

pendent studies that focused specifically on amino acid

biosynthetic pathways in multiple genomes (Alves and

Savageau 2005)—have examined the latter phenomenon.

In the last example, the amino acid produced by a

pathway of enzymes was selectively eliminated from the

primary amino-acid sequences of the self-same enzymes.

That observation was made possible by comparing the

frequency of each amino acid in a group of functionally

related proteins to its proteomic frequency. However, it

would be difficult, if not impossible, to determine sys-

tematically the extent to which a given amino acid in a

protein is affected by ‘‘local’’ pressures on protein function

versus ‘‘global’’ pressures imposed by cellular bioener-

getics. In an attempt to understand the effects of cellular

bioenergetics on amino acid composition, we generalized a

previous effort (Perlstein et al. 2007) that detected specific

amino acid composition bias in proteins involved in the

same cellular function, reasoning that we would detect

trends in amino acid composition operating at a systems

level, compared with the idiosyncratic functional require-

ments of individual proteins, by grouping proteins that

participate in a common cellular function.

We first show that groups of functionally related pro-

teins have highly variable biases with respect to amino acid

composition and that this variability reflects three different

amino acid properties: polarity, metabolic cost, and the

metabolic origin of the amino acid’s precursors. We then

show that this last property (metabolic origin) is uniquely

correlated with the different amino acid compositional

biases observed in periodically expressed proteins. We

finally propose that the intrinsic fluctuations in amino acid

concentrations of the yeast metabolic cycle (YMC) (Tu

et al. 2005; Richard 2003), which entails alternating oxi-

dative and reductive metabolic phases, has biased protein

sequence with respect to all amino acids during evolu-

tionary timescales.

Materials and Methods

GO gene annotations were downloaded for each species

from the European Bioinformatics Institute (http://www.

ebi.ac.uk/GOA/proteomes.html). Protein sequences were

downloaded from the Swiss Institute of Bioinformatics

(http://expasy.org/sprot/). These data files were imported

into MATLAB (MathWorks, Natick, MA) using custom

scripts. Amino acid composition biases were calculated

across GO-defined groups of proteins by pooling the amino

acids from all proteins in the group and then determining

the overrepresentation or underrepresentation of each

amino acid compared with the proteome-wide expectation.

These biases were clustered across GO-defined groups

using the UPGMA (Sneath and Sokal 1973) distance

method, which is based on a metric in which the distance

between GOs is the Euclidean distance between the bias

profiles of each GO. Clusters across amino acids were

calculated using the Fitch–Margoliash (FM) method (Fitch

and Margoliash 1967) based on a Euclidean distance

metric. Because GO and amino acid profiles are not related

by respective evolutionary processes, and the clustering

was largely for visualization, distance methods are appro-

priate. FM was our preferred clustering algorithm because

it assumes nonultrametric data and uses branch swapping

to locally optimize trees. UPGMA was used to cluster GO

biases because FM was computationally prohibitive for

more than approximately 100 terminals. All analyses and

statistical tests were performed using MATLAB using

built-in or custom scripts.

Results and Discussion

We first determined the amino acid composition biases of

each protein in the S. cerevisiae genome by dividing the

observed frequency of a given amino acid by its proteomic
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frequency. Next we grouped proteins and their amino acid

composition biases using the Gene Ontology (GO) data-

base, which can be used to cluster proteins by shared

functions (see supplementary online material and Fig. S1).

Genes sharing process GO annotations tend to be coex-

pressed (Chen and Xu 2004; Xiong et al. 2006) and are

known a priori to be functionally related. Next we deter-

mined the amino acid biases of all groups defined by shared

GO annotations compared with the proteomic average; the

resulting amino acid composition biases of each 1,240 GO

process annotation–defined functional group is a 20-

dimensional vector we refer to as a ‘‘bias profile.’’ In

determining this bias profile, we pooled the amino acids

from all proteins before counting them rather than deter-

mining the average bias on a protein-by-protein basis, an

approach that could potentially introduce artifacts if, for

example, amino acid composition varied with protein size.

In addition, by pooling protein sequence, each residue

receives equal weight in the analysis, which is appropriate

because substitutions occur on a residue-by-residue basis.

However, preliminary analyses using GO biases calculated

as the average of individual protein biases showed no

qualitative difference.

We then clustered (Eisen et al. 1998) the bias profiles of

the 221 GO groups containing at least 8 member proteins

(Fig. 1), thereby excluding GO groups with B7 members,

from which it is hard to extract statistically significant

trends in amino acid bias. Choice of this cutoff decreased

noise in the analysis, but it did not otherwise change the

qualitative aspects of our results. Inspecting the hierarchi-

cal organization of GO groups clustered by similarity in

bias profiles showed that functionally related GO groups

have similar bias profiles. The relation between amino acid

bias profile and protein function is preserved across great

evolutionary distances (Fig. S2). Moreover, amino acid

bias profiles are sufficient to predict the high-level cellular

function of a protein pathway (Fig. S2). It should be rec-

ognized that individual proteins will occur in several GO

groups; therefore, the GO groups cannot be considered

strictly independent. To control for this, we randomly

resampled the GO groups so that each protein could appear

in at most one GO group. This did not qualitatively change

the amino acid bias profiles of the 221 largest GO groups

shown in Fig. 1.

To assess the relative contribution of potential selective

pressures in addition to protein function to the variation in

bias profiles, we more closely examined the clustering of

amino acids in Fig. 1 by arranging the amino acid clus-

tering tree in two dimensions. Inspection of this tree

(Fig. 2a) showed that (with the exception of serine and

histidine) it is comprised of two nonoverlapping clusters of

amino acids, each of which has a common metabolic ori-

gin: 9 amino acids are generated by glycolysis, and 11

amino acids are generated by the tricarboxylic acid (TCA)

cycle (Fig. 2b). This separation is highly statistically sig-

nificant (p = 0.00046 by Fisher’s exact test, although it

must be noted that synthetic rates of the individual amino

acids are not strictly independent. Amino acid composition

bias cannot arise passively as a function of the genetic code

because there is no significant difference in the metabolic

origin of amino acid produced by GC- versus AT-rich

codons (p = 0.44 by Fisher’s exact test).

The coclustering of serine with amino acids derived

from TCA suggests the existence of a cryptic biosynthetic

link between serine and TCA. Indeed, such a link is sup-

ported by an alternate pathway for serine biosynthesis and

is exemplified by experiments performed using Escheris-

chia coli (Ravnikar and Somerville 1987) (and applicable

to Saccharomyces cerevisiae given the presence of yeast

orthologues of the relevant bacterial genes). The presence

of histidine among the oxidatively derived amino acids

may reflect its unique biosynthetic origin as the only amino

acid derived from the pentose phosphate shunt. Moreover,

histidine’s association with oxidative amino acids is more

sensitive to the organization of our data than that of serine

(see Fig. S1).

The major separation of amino acids shown in Fig. 2a is

congruent with amino acid metabolic source; however, this

separation is also congruent with two additional physico-

chemical properties of amino acids: metabolic cost and

polarity. First, the average metabolic cost of amino acids

on the predominantly oxidative branch of the tree is sig-

nificantly less than the average cost of amino acids on the

reductive branch (p = 0.018 by Mann-Whitney U-test).

Metabolic costs constrain proteomic sequences in all

domains of life; thus, it is not surprising that it also exerts

an influence on amino acid composition bias across GO

groups (Craig and Weber 1998; Swire 2007). Second, if

one includes in the reductive branch the amino acids

methionine, leucine, and isoleucine, then the tree signifi-

cantly separates polar versus nonpolar amino acids

(p = 0.0011 by Fisher’s exact test; Fig. 2a). The polarity

of amino acids has also been previously cited as a major

factor in amino acid use bias (Pascal et al. 2005; Nilsson

et al. 2005). In identifying these factors, we tested 15 other

amino acid properties, which exhibited no statistically

Fig. 1 Amino acid composition bias profiles of the 221 largest GO

groups. The fold abundance of each amino acid compared with the

genomic average within the largest 221 GO groups is shown. Red/

yellow indicates overrepresentation, and blue/cyan indicates under-

representation. Rows are clustered by the similarity in bias profiles of

each group, and columns are clustered by similarity in amino acid

abundance across GO groups. Distance trees indicate the similarities

of values in rows and columns, but they do not imply historic

relations. Meta-GO groups that are inferred from groups within the

GO clustering are labeled on the left

c
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significant covariation across bias profiles, including van

der Waals volume, pI, pK1, PK2, distribution of the amino

acids across intracellular pools, and amino acid degree in

the metabolic network.

We subjected the bias profiles of the 221 GO groups

shown in Fig. 1 to principal component analysis (PCA),

which yields uncorrelated eigenvectors (principal compo-

nents) that explain the most variance in highly correlated,

high-dimensional data sets, such as ours (Fig. 2c). The first

principal component (PC1) explains the greatest variance

(39%) in the data. Complementing what we observe in the

compositional bias tree, PC1 encodes the metabolic source

of amino acids. Overrepresentation of the oxidative amino

acids contributes positively to PC1; conversely, overrep-

resentation of reductive amino acids decreases PC1. The

average value of the normalized PC1 coefficients of oxi-

dative amino acids is 0.040 and that of reductive amino

acids is -0.22 (p = 0.00061 by Mann-Whitney U-test).

PC1 also encodes amino acid metabolic cost and amino

acid polarity because the metabolic cost of amino acids is

highly correlated to their PC1 coefficients (p = 0.00094 by

Spearman rank correlation), and polar amino acids have

significantly greater average PC1 coefficients than do

nonpolar amino acids (p = 0.00043 by Mann-Whitney

U-test).

We next sought to determine which of these three fac-

tors was most important in amino acid bias variability. Our

analyses determined that up to three amino acid properties,

i.e., metabolic source, metabolic cost, and polarity, could

be the predominant factors underlying amino acid com-

position bias across functionally related groups of proteins

in yeast. It has been shown that the intracellular concen-

trations of amino acid precursors (e.g, acetate) fluctuate

during the YMC (Tu et al. 2005; Ghosh and Chance 1964).

Moreover, with the exception of asparagine, amino acids

observed to have periodic intracellular concentrations are

most abundant during the middle or at end of the metabolic

phase that gives rise to their precursors (Hans et al. 2003;

Wittmann et al. 2005). Therefore, we tested the hypothesis

that composition bias may reflect an adaptive response to

putative oscillations in intracellular amino acid concen-

trations by correlating composition bias (as encoded by

PC1) to the YMC expression bias of GO groups, which was

calculated as the fraction of genes expressed in each of the

three metabolic phases: oxidative (Ox), reductive buildup

(RB), reductive charging (RC) (Tu et al. 2005).

The fraction of periodic genes expressed in RB is posi-

tively correlated (r = 0.23, p = 3.5 9 10-14 by Spearman

rank correlation) with PC1 across all 1,240 GO groups,

whereas the fraction of genes expressed in Ox is negatively

correlated to PC1 (r = -0.079, p = 0.011) (Fig. 3a, b).

Therefore, GO groups predominantly expressed during Ox

tend to be enriched in amino acids derived from the

preceding reductive metabolic phase. Conversely, GO

groups strongly expressed during RB and RC tend to be

enriched in amino acids derived from Ox. These trends are

stronger and even more statistically significant if one con-

siders only those GO groups that are expressed the least

uniformly across the YMC phases (Fig. 3b). There is no

significant relation between RC bias and PC1 (p = 0.11),

a b

c

Fig. 2 Metabolic origin determines the greatest diversity in compo-

sition bias across GO groups. a The clustering of amino acids by

similarity in bias profiles is shown in tree format. Amino acids

derived metabolically from the oxidative portion of cellular respira-

tion are yellow, whereas those derived from the reductive portion are

green. Red outlines indicate polar amino acids. b Metabolic network

of amino acid synthesis in yeast. c PCA of the bias profile across the

221 largest GO groups. Shown are the PC2 versus PC1 values of each

GO group, along with the amino acid terms contributing to each PC.

GO group points are colored according to membership in the listed

meta-GOs
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Fig. 3 Amino acid abundances in periodic proteins follow the phases

of their synthesis. a The same high-level functional groups seen in

Fig. 1 in a ternary plot indicating their YMC phase expression biases.

Color indicates PC1 value. Cell-cycle is shown for reference (blue). b
The fraction of periodic genes expressed in the Ox (red) and RB

(blue) phases are correlated with PC1 across the 75 GO groups

exhibiting the most nonuniform YMC expression; p = 0.0042 and

0.00024, respectively, by Bonferroni-corrected Spearman rank corre-

lation. c Composition bias trees (as in Fig. 2a). Yellow indicates

oxidative amino acids, green indicates reductive amino acids, and red
indicates polar amino acids. See Fig. S4 for remaining species. d

Significance of separation of amino acids by polarity, metabolic

source, and metabolic cost across divisions of the composition bias

trees. Bars indicate SEM across all trees divisions, leaving C5 amino

acids on each ‘‘half.’’ Polarity, source, and cost were tested with

Fisher’s exact, Fisher’s exact, and Mann–Whitney U-tests, respec-

tively. Asterisks indicate facultative organisms. Obligate aerobes:

Pseudomonas aeruginosa and Sulfolobus acidocaldarius. Obligate

anaerobes: Clostridium acetobutylicum, Fusobacterium nucleatum,

and M. jannaschii. Facultative species: Halobacterium salinarium and

Bacillus subtilis
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perhaps because the RC phase is intermediate to RB and Ox

with respect to amino acid concentrations. The lag between

the incorporation of TCA-derived amino acids in the

reductive phase may also reflect a metabolic trade-off

between diverting TCA intermediates from their role in

energy production to their role as biosynthetic precursors.

Critically, of the three amino acid properties encoded by

PC1, only metabolic source robustly correlates to expres-

sion timing. In particular, the correlations between the

fractions of periodic genes expressed in RB and Ox, and

the average metabolic cost of amino acids within GO

groups, are, respectively, r = -0.0011 (p = 0.97) and

r = 0.0064 (p = 0.84 by Spearman rank correlation). The

fractions of periodic genes expressed in RB and Ox cor-

relate better with the average hydrophobicity of amino

acids within GO groups: r = -0.031 (p = 0.32) and

r = 0.062 (p = 0.044), respectively, by Spearman rank

correlation. By comparison, the fraction of oxidatively

derived amino acids within GO groups is highly correlated

to RB and Ox expression biases (r = 0.13 (p = 0.000023)

and r = -0.11 (p = 0.00041), respectively, and even

correlates with RC bias with marginal statistical signifi-

cance: r = -0.062 (p = 0.045 by Spearman rank

correlation). Statistics are given for all of these tests in

Table S1. Therefore, the relation between PC1 and YMC

expression bias is almost entirely caused by the metabolic

source of amino acids.

These observations imply the following model: During

evolutionary time, the amino acid content of periodically

expressed proteins is fine-tuned by converting residues

from amino acids that are less abundant to those that are

more abundant at the time of translation. This optimization

is advantageous provided that the global rate of protein

translation decreases as a function of decreasing aminoa-

cylated tRNA concentration or that translation error rate

increases as a function of decreasing aminoacylated tRNA

concentration) (Akashi 2003). Accordingly, older groups of

proteins would have sequences better optimized to their

YMC phase than younger groups. Consistent with this

prediction, we observed that older proteins (as measured by

the number of their fungal orthologs) (Hsiang and Baillie

2005; Plotkin and Fraser 2007; Snel et al. 1999) show more

negative correlation between Ox expression bias and

sequence abundance of reductive amino acids (Fig. S3).

This relation is statistically significant with r = -0.502

(p = 0.0077 by Spearman rank correlation).

Our model also implies that in the absence of predictable

intrinsic fluctuations in amino acid concentrations, there

would be no selective pressure to optimize protein sequences

with respect to amino acid metabolic source. We repeated

composition bias analysis using GO annotations and proteo-

mic sequence data from eight ecologically and

phylogenetically diverse microorganisms (see supplementary

online material) exhibiting either obligate aerobic, obligate

anaerobic, or facultative metabolism. For this analysis, we

included only organisms with experimental (rather than bio-

informatic) evidence for their metabolic status and excluded

a priori organisms we knew to grow symbiotically with other

species or to be classified as facultatively an/aerobic on the

basis of their randomly changing growth environment (such as

E. coli, which switches between growth in and out of the gut).

Fluctuations in amino acid concentrations in such organisms

cannot correlate to their cell cycle–dependent expression

timing.

For each of eight species satisfying these criteria, we

generated composition bias trees and determined if these

trees separated amino acids according to metabolic source,

metabolic cost, or polarity (Figs. 3c, d; S4). The facultative

organisms yeast and Halobacterium salinarium (Ruepp and

Soppa 1996) showed strong variation in amino acid met-

abolic cost across GO groups; however, the obligate

organisms Methanocaldococcus jannaschii and Fusobac-

terium nucleatum did as well. Similarly, some composition

bias trees separated amino acids by polarity; however, this

was uncorrelated to metabolic lifestyle for the tested

organisms. However, none of the obligate organisms

showed any statistically significant variation in amino acid

bias with respect to metabolic source (p between 0.37 and 1

by Fisher’s exact test for the deepest binary divisions of the

composition bias trees), whereas the facultative organisms

yeast and H. salinarium did (p = 0.00046 and 0.028,

respectively; the lower significance in the latter species

may reflect a dilution of the amino acid optimization signal

because of nucleotide-level GC-content pressure) (Singer

and Hickey 2000).

Although the phylogenetic and ecologic complexity of

aerobic/reductive metabolism across microorganisms

means that this restricted set of observations cannot lead to

a definite conclusion about all microorganisms, for this

group of organisms facultative metabolism is required for a

predictive relation between amino acid composition bias

and amino acid metabolic source. In general, we would

predict that under any conditions in which fluctuations in

amino acid prevalence occur predictably with respect to

protein expression timing, there is directional pressure on

amino acid substitutions that are not specifically con-

strained by protein function. This effect is predicted to be

timescale independent: Previous work has shown that

changes in global atmospheric atomic composition may

have exerted selective pressure on proteome sequence

during geologic timescales (Acquisti et al. 2007). Our

examination of amino acid composition bias implies that

the influence of ultradian bioenergetics, a previously

unappreciated selective pressure, has exerted a subtle but

widespread effect on proteome sequence during evolu-

tionary timescales. Although not explicitly designed to test

496 J Mol Evol (2009) 68:490–497
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the selectionist hypothesis of molecular evolution, our

results, along with the prevalence of evidence for the

optimization of genomic sequences under numerous met-

abolic constraints, are inconsistent with the view that

substitution events are predominantly selectively neutral.
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