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Abstract
Background Throughout its illustrious history, plastic surgery has searched for novel regenerative therapies and procedures. 
Recently, interest has emerged in using adipose tissue-derived stem cells (ASCs) in an ethical, easy, and reproducible manner. 
ASCs are generally not administered alone but as a constituent of the stromal vascular fraction (SVF) in clinical practice. 
Herein, we searched for innovative fat collection and ASC isolation technologies and applications and evaluated each study’s 
relevance to plastic surgery.
Methods A narrative literature review was carried out using the MEDLINE/PubMed databases. Studies published from 
January 1993 to August 2020 and written in English, Portuguese, or Spanish were considered.
Results The selection process yielded 33 articles for subsequent review, involving exploratory, selective, and interpretive 
reading, material choice, and text analysis. Twenty-three articles employed enzymatic dissociation methods to isolate ASCs, 
and 25 employed liposuction as the plastic surgery technique. Moreover, articles describing new devices (n = 2), techniques 
(n = 4), computational models (n = 1), tissue scaffolds (n = 21), and therapies and/or treatments (n = 5) were identified.
Conclusions Given the importance of fat tissue for plastic surgery purposes, innovative ASC isolation and liposuction 
technologies could change how the surgeon conducts surgeries and improve surgical outcomes. Furthermore, many articles 
investigating tissue scaffolds demonstrate the importance of this area of research and development in plastic surgery and 
regenerative medicine. Continued efforts in the identified research areas will eventually bring in vivo human plastic surgery 
applications and regenerative medicine into the operating room. Level of evidence: Not gradable.
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Introduction

Fat tissue, like bone marrow, is derived from the mesen-
chyme and contains a stroma that is easily isolated, thus 
making it a potential source of regenerative cells [1, 2]. 
It has been shown that the lipoaspirate is naturally a rich 
source of mesenchymal and stromal cells, exhibiting stable 
growth and kinetic proliferation in specific culture media 
[1, 3]. When processed, these cells tend to concentrate in 
the stromal vascular fraction (SVF), which is the infrana-
tant of the lipoaspirate [1]. When cultured in vitro, ASCs 

can differentiate into osteogenic, adipogenic, myogenic, and 
chondrogenic lineages when subjected to specific lineage 
factors [1]. On the other hand, the non-cultured heterogene-
ous population of cells, known as stromal cells (SCs) or SVF 
cells, contain ASCs, hematopoietic stem cells, progenitor 
cells, endothelial cells, red blood cells (RBCs), fibroblasts, 
lymphocytes, monocytes/macrophages, pericytes, and other 
cell types [4].

In clinical practice, adipose tissue-derived mesenchy-
mal cells are generally not administered alone but as a 
constituent of the SVF, a heterogeneous mixture of cells 
resulting from aspirated adipose tissue processing [1]. 
Notably, the adipose tissue SVF has become the focus of 
mesenchymal cell research, regenerative medicine, and 
fat grafting, with new processing equipment and meth-
ods being developed worldwide. Indeed, the engineering 
associated with SVF cells represents an exciting field of 

 * Hebert Lamblet 
 hebert@drhebertlamblet.com

1 Plastic Surgery Division at Universidade Federal de São 
Paulo (Unifesp), São Paulo, SP, Brazil

/ Published online: 11 March 2022

European Journal of Plastic Surgery (2022) 45:701–731

http://orcid.org/0000-0002-0090-4048
http://orcid.org/0000-0003-4587-509X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00238-022-01951-4&domain=pdf


1 3

research for different diseases, including degenerative, 
congenital, or traumatic conditions and bone, joint, and 
soft tissue defects. These cells are primarily used in plastic 
surgery to supplement fat grafts, improving graft retention 
and long-term results [5–7].

The SVF can be dissociated and isolated from the adi-
pose tissue using enzymatic and nonenzymatic methods, 
manually, or in an automated closed system. The most 
used isolation protocol involves washing the lipoaspirate, 
digesting it with collagenase enzyme, centrifugation, and 
RBC lysis [1]. It should be pointed out that despite the 
frequent use of this technique, there are challenges and 
barriers associated with collagenase, making it currently 
only appropriate for in vitro and in vivo animal studies. 
This observation opens up the perspective for more inno-
vative techniques that can be utilized in humans.

In 2009, the concept of nonenzymatic dissociation 
was proposed and investigated to circumvent these colla-
genase-related obstacles [8]. However, in 2013, Shah et al. 
(2013) observed that cells acquired from a nonenzymatic 
method proliferated more slowly in culture [9]. Several 
authors have demonstrated that the composition of cell 
populations recovered by simple centrifugation and other 
nonenzymatic methods contains more significant propor-
tions of peripheral blood mononuclear cells (PBMCs) and 
substantially fewer progenitor cells [7, 9–11]. Despite this 
apparent drawback, unique devices have been created to 
separate and concentrate the ASC and SVF cells from the 
adipose tissue stroma. These systems circumvent the need 
for manual and external manipulation, consequently facili-
tating fat incorporation and improving grafting results [12, 
13]. Currently, there are several devices at various stages 
of development for the isolation of SVF cells. Each device 
is distinct in terms of complexity, automation, cost, effi-
ciency, and effectiveness [14].

Considering that an invention is a discovery or a new way 
of doing something, identifying innovation can transform 
the invention into a product. Some examples of innovation 

include using new devices in existing procedures, introduc-
ing new procedures that use new devices, and using exist-
ing devices in new procedures [15]. When an innovation 
changes the way people usually perform a procedure, it can 
become disruptive.

Technical innovation is essential for plastic surgeons 
because it stimulates basic and clinical research to develop 
novel procedures and treatments. Unique plastic surgery 
niches that have significantly benefited from innovations 
and inventions include fat transfer, microsurgery, muscle 
flaps, tissue expansion, craniofacial surgery, transplantation, 
liposuction, and laser technologies [16]. Indeed, innovation 
makes plastic surgery different and distinct and is vital for 
the specialty’s survival [15].

Even though innovation has constantly fueled the plastic 
surgery field, studies evaluating the innovative and poten-
tially disruptive technologies in this specialty are scarce. 
Herein, we conducted a narrative review to inform plastic 
surgeons about emerging and potentially disruptive tech-
nologies involving adipose tissue-derived SVF cell-based 
therapies (i.e., ASCs and the SVF). We hope this article will 
open up new frontiers, develop ideas, and raise the aware-
ness of physicians that want to utilize these cells in clinical 
practice [14].

Methods

Study design

This study consisted of a narrative literature review. Data 
collection was performed using works published from 
January 1993 to August 2020, in English, Portuguese, and 
Spanish, in the MEDLINE/PubMed databases. The search 
strategies to identify relevant studies describing innovative 
plastic surgery procedures and technological applications 
employed five search strategies, summarized in Table 1. 
Strategy #1 used the following terms or combinations 

Table 1  Search strategy using the MEDLINE/PubMed database

MH, mesh terms; applied filters, human, English, Portuguese, and Spanish

Strategy Terms or combination of terms used

#1 "mesenchymal stem cells"[MeSH Terms] OR ("mesenchymal"[All Fields] AND "stem"[All Fields] AND "cells"[All Fields]) OR 
"mesenchymal stem cells"[All Fields]

#2 "stromal cells"[MeSH Terms] OR ("stromal"[All Fields] AND "cells"[All Fields]) OR "stromal cells"[All Fields]
#3 bodyweight [tw] OR obesity OR skinfold thickness [tw] OR bariatrics OR lipectomy OR lipoaspiration OR plastic surgery)
#4 Cloud computer OR Machine learning OR Big data OR Bussiness Intelligence Virtual reality OR Augmented reality OR Artificial 

intelligence OR Robotics
#5 diffusion of innovation OR inventions OR Knowledge Management OR information dissemination OR change management OR 

culturally appropriate technology OR patents OR patents as topic OR intellectual property OR tecnolog* OR economic develop-
ment OR cost–benefit analysis

(#1 OR #2) AND #3 AND (#4 OR #5)
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of terms "mesenchymal stem cells"[MeSH Terms] OR 
("mesenchymal"[All Fields] AND "stem"[All Fields] AND 
"cells"[All Fields]) OR "mesenchymal stem cells"[All 
Fields]; Strategy #2 used "stromal cells"[MeSH Terms] OR 
("stromal"[All Fields] AND "cells"[All Fields]) OR "stromal 
cells"[All Fields]; Strategy #3 used (bodyweight [tw] OR 
obesity OR skinfold thickness [tw] OR bariatrics OR lipec-
tomy OR lipoaspiration OR plastic surgery); Strategy #4 
used Cloud computer OR Machine learning OR Big data OR 
Bussiness Intelligence Virtual reality OR Augmented real-
ity OR Artificial intelligence OR Robotics; and Strategy #5 
used diffusion of innovation OR inventions OR Knowledge 
Management OR information dissemination OR change 
management OR culturally appropriate technology OR pat-
ents OR patents as topic OR intellectual property OR tec-
nolog* OR economic development OR cost–benefit analysis. 
Additionally, we utilized a combination of Strategies #1 OR 
#2 AND #3 AND #4 OR #5.

Eligibility criteria

Review articles and articles that did not use human cells 
were not considered. The following eligibility criteria were 
used for the inclusion of articles:

1. Obtained adipose-derived cells (ADCs)
2. Obtained ASCs and SVF cells
3. Used plastic surgery procedures that remove and collect 

fat
4. Demonstrated potential for technological innovation in 

the processing or use of ASCs.
5. Original article or review

After selecting articles, an exploratory reading was car-
ried out based on the titles and abstracts, and then a full 
reading of the selected article, contemplating the objectives 
of this study and interpretation of the text, was performed.

Results

The MEDLINE/PubMed database search was conducted 
on September 21, 2020, and retrieved 553 potential articles 
published between 1993 and 2020. Applying filters and 
reducing the timeframe only to include articles published 
from 2001 to 2020 reduced the sample to 296 articles. 
The organization chart in Fig. 1 shows the number of arti-
cles included and excluded from the study. Separating the 
214 tentatively selected articles based on whether it was a 
human or mixed study, further subdividing these articles 
as plastic surgery-related or other, and then evaluating 
each article demonstrated that a total of 33 articles (17 
human and 16 mixed) presented innovation in their area of 
research and development. Figure 2 displays the number 
and distribution of the identified articles. A summary of 
the selected articles for this study is presented in alpha-
betical order in Table 2.

As shown in Table 3, the most used method for isolat-
ing ASCs was enzymatic dissociation (n = 21), followed 
by mixed methodologies (n = 3), using manual isolation 
by enzymatic and mechanical dissociation in the same 
work. Furthermore, one study used a mechanical tech-
nique, and six studies did not report the ASC isolation 
method. Concerning the preferred plastic surgery pro-
cedure, most of the studies used liposuction (n = 22) or 
abdominoplasty (n = 4). Four studies used more than one 
technique, and three did not report the surgical proce-
dure (Table 3). Notably, the most observed innovative 
technologies were associated with scaffold development. 
Additionally, studies utilized and/or developed innovative 
equipment, such as a mechanical system for cell sepa-
ration, 3D printers, bioreactors, and other procedures, 
for tissue collection, grafting, and therapeutic purposes 
(Table 3).

Fig. 1  Distribution of results 
from the MEDLINE/PubMed 
database. The organization chart 
shows the number of articles 
found in each research phase 
divided between inclusion and 
exclusion. The filters used were 
human, English, Portuguese, 
and Spanish
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Discussion

We are just now experiencing the beginning of a scientific 
revolution. Recent scientific advances have facilitated the 
sequencing of the human and other genomes and the creation 
of genetically modified plants and animals. The rapid growth 
in scientific research and development resulting from inno-
vative and sometimes disruptive technologies has changed 
how we function at work and as a society.

In medicine, disruptive technologies are currently driven 
by biotechnology and digital processing. Indeed, bridging 
science and technology to convert signs and symptoms 
into information for Big Data and Machine Learning could 
improve health and society [17]. In plastic surgery, tissue 
manipulation, especially adipose tissue and adipose-derived 
cells (ADCs), has demonstrated regenerative potential, 
bringing innovation and technology to the daily life of plas-
tic surgeons. Therefore, the field has been forced to embrace 
biomolecular medicine and tissue engineering, which some-
times requires the surgeon to bring the laboratory into the 
operating room.

Technology-based innovation leads to the development of 
new designs, materials and products, and/or procedures. It 
can include equipment, components, and/or processes that 
introduce novel techniques, describe new layouts, or improve 
existing procedures or methods. Indeed, innovative pro-
cesses facilitate the efficient production of quality products 
at the lowest possible cost [18]. The main characteristic of 
innovation is its novelty and the possibility of different inter-
pretations [19–21]. Several scholars have recognized that the 
criterion “novelty” cannot be the only criterion for innova-
tion because inventions or ideas only become innovative as 
they are transformed and applied in practice [22–24]. In its 
simplest sense, innovation is an ongoing creative process 
that occurs with continuous research and development [25].

Another important aspect related to innovation is the 
creation of a niche. It involves a genuinely trivial change 

in the technology, which impacts production systems. The 
technical knowledge associated with this type of innovation 
is incremental, creating disruptive technology and opening 
up new market categories and applicability [26]. Thus, tech-
nological innovations and/or cutting-edge products in the 
cell and tissue biotechnology and bioengineering fields that 
directly involve plastic surgery bring plastic surgeons into 
this environment.

Plastic surgeons actively obtain adipose tissue in the form 
of lipoaspirate during liposuction, tissue block, or abdomi-
noplasty procedures. Thus, innovations that significantly 
improve any physical equipment, technique, and organiza-
tional system, including information technology, hardware, 
and software, associated with these processes could change 
how plastic surgeons work, improving patient outcomes and 
quality of life.

The present review revealed that the most frequently 
performed plastic surgery procedure in the selected articles 
was liposuction (n = 22) followed by an abdominoplasty 
(n = 4). Liposuction can also be combined with abdomino-
plasty or other procedures for body contouring, as in a few 
articles [27]. This observation is not entirely unexpected 
because liposuction and lipoaspirate are the best sources for 
obtaining ADCs. Additionally, liposuction is a mechani-
cal maneuver that dissociates the adipose stroma from the 
ADCs, partially breaking the extracellular matrix (ECM) 
that strongly binds adipocytes to each other and maintains 
the intimacy of these cells in this compartment. In addition 
to its usefulness for purely aesthetic purposes, liposuction is 
an essential adjuvant in reconstructive surgery, during which 
the collected fat is reinjected (autologous) into other regions 
of the body, like the breasts, buttocks, or face [28]. Plas-
tic surgeons cannot ignore that liposuction is a mechanical 
dissociative method that precedes chemical and/or nonen-
zymatic dissociation. Thus, liposuction-related innovations 
represent a niche for potentially disruptive technologies in 
the plastic surgery field. Abdominoplasty is used to restore 

Fig. 2  Distribution of results included in the study. The organization 
chart shows the number of articles included in the study and later 
divided into human (used stem cells derived from adipose tissue) and 

mixed (used stem cells derived from adipose tissue associated with 
nonhuman models). The groups were subdivided to locate innovative 
plastic surgery procedures
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Table 2  Selected studies

Study number Reference

1 Aronowitz JA, Lockhart RA, Hakakian CS, Birnbaum ZE. Adipose stromal vascular fraction isolation: a head-to-head compari-
son of 4 cell separation systems #2. Annals of plastic surgery. 2016;77(3):354–62

2 Bi HS, Zhang C, Nie FF, Pan BL, Xiao E. Basic and clinical evidence of an alternative method to produce Vivo nanofat. Chinese 
medical journal. 2018;131(5):588–93

3 Chen J, Ren S, Duscher D, Kang Y, Liu Y, Wang C, et al. Exosomes from human adipose-derived stem cells promote sciatic 
nerve regeneration via optimizing Schwann cell function. Journal of cellular physiology. 2019;234(12):23,097–110

4 Chen L, Mou S, Li F, Zeng Y, Sun Y, Horch RE, et al. Self-assembled human aipose-derived stem cell-derived extracellular vesi-
cle-functionalized biotin-doped polypyrrole titanium with long-term stability and potential psteoinductive ability ACS applied 
materials & interfaces. 2019;11(49):46,183–96

5 Güven S, Karagianni M, Schwalbe M, Schreiner S, Farhadi J, Bula S, et al. Validation of an automated procedure to isolate 
human adipose tissue-derived cells by using the Sepax® technology. Tissue engineering Part C, Methods. 2012;18(8):575–82

6 Haskett DG, Saleh KS, Lorentz KL, Josowitz AD, Luketich SK, Weinbaum JS, et al. An exploratory study on the preparation 
and evaluation of a “same-day” adipose stem cell-based tissue-engineered vascular graft. The Journal of thoracic and cardio-
vascular surgery. 2018;156(5):1814–22.e3

7 Hu L, Yang G, Hägg D, Sun G, Ahn JM, Jiang N, et al. IGF1 Promotes adipogenesis by a lineage bias of endogenous adipose 
stem/progenitor cells. Stem Cells. 2015;33(8):2483–95

8 Kiiskinen J, Merivaara A, Hakkarainen T, Kääriäinen M, Miettinen S, Yliperttula M, et al. Nanofibrillar cellulose wound dress-
ing supports the growth and characteristics of human mesenchymal stem/stromal cells without cell adhesion coatings. Stem 
cell research& therapy. 2019;10(1):292

9 Kim KJ, Joe YA, Kim MK, Lee SJ, Ryu YH, Cho DW, et al. Silica nanoparticles increase human adipose tissue-derived stem 
cell proliferation through ERK1/2 activation. International journal of nanomedicine. 2015;10:2261–72

10 Krawiec JT, Liao HT, Kwan LL, D'Amore A, Weinbaum JS, Rubin JP, et al. Evaluation of the stromal vascular fraction of adi-
pose tissue as the basis for a stem cell-based tissue- engineered vascular graft. Journal of vascular surgery. 2017;66(3):883–90.
e1

11 Li S, Poche JN, Liu Y, Scherr T, McCann J, Forghani A, et al. Hybrid synthetic-biological hydrogel system for adipose tissue 
regeneration. Macromolecular bioscience. 2018;18(11):e1800122

12 Lin YC, Brayfield CA, Gerlach JC, Rubin JP, Marra KG. Peptide modification of polyethersulfone surfaces to improve adipose-
derived stem cell adhesion. Acta biomaterialia. 2009;5(5):1416–24

13 McMaster R, Hoefner C, Hrynevich A, Blum C, Wiesner M, Wittmann K, et al. Tailored melt electrowritten scaffolds for the 
generation of sheet-like tissue constructs from multicellular spheroids. Advanced healthcare materials. 2019;8(7):e1801326

14 Meyers CA, Xu J, Zhang L, Asatrian G, Ding C, Yan N, et al. Early immunomodulatory effects of implanted human perivascular 
stromal cells during bone formation. Tissue engineering Part A. 2018;24(5–6):448–57

15 Meyers CA, Xu J, Asatrian G, Ding C, Shen J, Broderick K, et al. WISP-1 drives bone formation at the expense of fat formation 
in human perivascular stem cells. Scientific reports. 2018;8(1):15,618

16 Mineda K, Feng J, Ishimine H, Takada H, Doi K, Kuno S, et al. Therapeutic potential of human adipose-derived stem/stromal 
cell microspheroids prepared by three-dimensional culture in non-cross-linked hyaluronic acid gel. Stem cells translational 
medicine. 2015;4(12):1511–22

17 Mou S, Zhou M, Li Y, Wang J, Yuan Q, Xiao P, et al. Extracellular vesicles from human adipose-derived stem cells for the 
improvement of angiogenesis and fat-grafting application. Plastic and reconstructive surgery. 2019;144(4):869–80

18 Nyberg E, Farris A, O'Sullivan A, Rodriguez R, Grayson W. Comparison of stromal vascular fraction and passaged adipose-
derived stromal/stem cells as point-of-care agents for bone regeneration. Tissue engineering Part A. 2019;25(21–22):1459–69

1 Park IS, Rhie JW, Kim SH. A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic 
tissue. Cytotherapy. 2014;16(4):508–22

20 Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized 
extracellular matrix bioink. Nature communications2014;5:3935

21 Rath SN, Brandl A, Hiller D, Hoppe A, Gbureck U, Horch RE, et al. Bioactive copper- doped glass scaffolds can stimulate 
endothelial cells in coculture in combination with mesenchymal stem cells. PloS one. 2014;9(12):e113319

22 Schellenberg A, Ross R, Abagnale G, Joussen S, Schuster P, Arshi A, et al. 3D non-woven polyvinylidene fluoride scaffolds: 
fibre cross section and texturizing patterns have impact on growth of mesenchymal stromal cells. PloS one. 2014;9(4):e94353

23 Schellenberg A, Joussen S, Moser K, Hampe N, Hersch N, Hemeda H, et al. Matrix elasticity, replicative senescence and DNA 
methylation patterns of mesenchymal stem cells. Biomaterials. 2014;35(24):6351–8

24 Sesé B, Sanmartín JM, Ortega B, Matas-Palau A, Llull R. Nanofat cell aggregates: a nearly constitutive stromal cell inoculum 
for regenerative site-specific therapies. Plastic and reconstructive surgery. 2019;144(5):1079–88

25 Tang H, Husch JFA, Zhang Y, Jansen JA, Yang F, van den Beucken J. Coculture with monocytes/macrophages modulates osteo-
genic differentiation of adipose-derived mesenchymal stromal cells on poly(lactic-co-glycolic) acid/polycaprolactone scaffolds. 
Journal of tissue engineering and regenerative medicine. 2019;13(5):785–98
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the abdomen’s contour and shape, tighten the skin, correct 
rectus abdominis diastasis, and remove adiposity [27]. When 
used for obtaining ADCs, abdominoplasty produces a com-
pact block of adipose tissue, making dissociation difficult, 
usually requiring an enzymatic and chemical treatment to 
obtain a liquefied material before starting dissociation.

Adipose tissue, like bone marrow, is derived from the 
mesenchyme and contains a stroma, thus making it a poten-
tial source of mesenchymal stem cells (MSC). Therefore, 
human lipoaspirate is an easy to isolate source of adult stem 
cells that exbibit stable growth and kinetic proliferation in 
specific culture media [1]. A previous in vitro study showed 
that ASCs and bone marrow MSCs can differentiate into 
osteogenic, adipogenic, myogenic, and chondrogenic line-
ages when subjected to specific lineage factors [29]. Due to 
the ease of collecting and processing ASCs, these cells have 
exciting potential in regenerative medicine. Indeed, fresh 
adipose tissue containing ASCs increases vascularization 
and graft take [5]. Moreover, ASCs have vast application 
potential in cell therapies and tissue engineering. For exam-
ple, wound healing, reconstruction of bone defects in the cal-
varia, tissue regeneration with an anti-inflammatory effect, 
homeostasis, immunosuppression treatment in transplant-
versus-host and transplant diseases, and neovascularization 
have all been reported following ASC administration [30]. 
Notably, to utilize ASCs for healing or reconstructive pur-
poses, the adipose tissue must be processed, representing 
another plastic surgery niche that could produce innovative 
and perhaps disruptive technologies.

In the present review, we found that most of the selected 
studies used enzymatic dissociation, making it the most 
used method for adipose tissue processing and ASC isola-
tion. However, most of the studies were conducted in the 

laboratory using in vitro or in vivo experimental animals. 
These ASC collection protocols require enzymatically 
digesting (i.e., chemical dissociation) the adipose tissue to 
separate the cellular components of that tissue. Zuk et al. 
(2001) introduced chemical dissociation as the gold standard 
method for isolating ASCs [1]. However, the methods for 
this procedure typically employ collagenase type I, limiting 
the therapeutic potential of ASCs in humans. Collagenase 
type I isolated from mammalian tissue components [31] 
increases the risk of patient contamination because some 
lots of this enzyme may contain infectious pathogens (e.g., 
prions), thus inhibiting the immediate use of autologous 
ASCs in fat grafting.

The US Food and Drug Administration (FDA) has set up 
contrasting regulatory pathways for “human cells, tissues, 
or cellular or tissue-based products” (HCT/P). An HCT/P 
that meets specific criteria of the regulatory requirements 
21 CFR 1271 Sect. 361, including being minimally manipu-
lated, intended for homologous use only, does not involve 
the combination of the cells or tissues with other substances; 
besides, water, crystalloids, or a sterilizing, preserving, or 
storage agents, are considered “361” and do not require FDA 
approval for release. On the other hand, other HCT/Ps that 
do not meet the regulatory requirements are classified as 
“351” and must be approved as a Biologics License Appli-
cation (BLA). In most cases, mechanical and nonenzymatic 
dissociation methods that produce SVF or ADSCs are clas-
sified as “361,” while chemical dissociation methods are 
typically considered “351” because of the use of collagenase 
to digest the tissue.

After dissociation, ASCs are then collected in a pellet, 
known as SVF cells. The SVF contains a heterogeneous 
population of cells, including ASCs, endothelial progenitor 

Table 2  (continued)

Study number Reference

26 Tawonsawatruk T, West CC, Murray IR, Soo C, Péault B, Simpson AH. Adipose derived pericytes rescue fractures from a failure 
of healing–non-union. Scientific reports. 2016;6:22,779

27 Tong J, Mou S, Xiong L, Wang Z, Wang R, Weigand A, et al. Adipose-derived mesenchymal stem cells formed acinar-like struc-
ture when stimulated with breast epithelial cells in three-dimensional culture. PloS one. 2018;13(10):e0204077

28 Vezzani B, Gomez-Salazar M, Casamitjana J, Tremolada C, Péault B. Human adipose tissue micro-fragmentation for cell pheno-
typing and aecretome characterization. Journal of visualized experiments: JoVE. 2019(152)

29 Vindigni V, Tonello C, Lancerotto L, Abatangelo G, Cortivo R, Zavan B, et al. Preliminary report of in vitro reconstruc-
tion of a vascularized tendonlike structure: a novel application for adipose-derived stem cells. Annals of plastic surgery. 
2013;71(6):664–70

30 Wang CC, Wang CH, Chen HC, Cherng JH, Chang SJ, Wang YW, et al. Combination of resveratrol-containing collagen with 
adipose stem cells for craniofacial tissue-engineering applications. Int Wound J. 2018;15(4):660–72

31 Wang Y, Zhao L, Hantash BM. Support of human adipose-derived mesenchymal stem cell multipotency by a poloxamer-octa-
peptide hybrid hydrogel. Biomaterials. 2010;31(19):5122–30

32 Weyand B, Israelowitz M, Kramer J, Bodmer C, Noehre M, Strauss S, et al. Three-dimensional modelling inside a differential 
pressure laminar flow bioreactor filled with porous media. BioMed research international. 2015;2015:320,280

33 Yu Z, Cai Y, Deng M, Li D, Wang X, Zheng H, et al. Fat extract promotes angiogenesis in a murine model of limb ischemia: a 
novel cell-free therapeutic strategy. Stem cell research & therapy. 2018;9(1):294
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cells, growth factor-producing cells, leukocytes, red blood 
cells (RBCs), macrophages, fibroblasts, and vascular smooth 
muscle cells [29]. Thus, innovations that provide alternatives 
or improvements to existing protocols for isolating these 
cells for human use would significantly impact the research 
and development (R&D) in the regeneration field and be of 
great interest to plastic surgeons.

As an alternative to chemical dissociation, mechanical 
methods, including topics related to the isolation of MSCs 
within the operating room, were reported publicly from 
2006 to 2011. These methods rely on subjecting the tissue 
to disruptive dissociative forces, resulting in the release of 
adipocytes and ADCs from the ECM without the need for 
collagenase, minimizing contamination risks and providing 
a safer alternative to chemical dissociation, all within the 
operating room setting.

This protocol described by Lamblet is divided into two 
parts: shear force and pellet collection. The shear force por-
tion involves collecting the lipoaspirated tissue in 50 mL 
syringes and subjecting it to mechanical dissociation via a 
Luer-Lock transpacer (Grams Medical, Costa Mesa, CA, 
USA) that provides a 0.5-inch channel firmly connected 
to another empty 50-mL syringe, allowing the connection 
between the two lumens of the syringes and facilitating mate-
rial collection. The lipoaspirated tissue is subjected to shear 
forces that liberate the ADCs from the adipocytes and ECM 
from the tissue cluster when passed through the straight chan-
nel between the two syringes. The final product contains 
digested adipocytes, ADCs, and connective tissue that could 
be applied directly to the patient for regenerative purposes. 
In tissue augmentation, this product could be incorporated 
into the fresh lipoaspirate to be grafted, increasing retention.

The second part of the protocol involves collecting the 
mechanically digested material into a pellet to isolate all 
the ADCs. The digested fat is washed with PBS and then 
centrifuged at 1100 × g. The infranatant is collected and 
washed one more time with PBS and centrifuged a second 
time at 1100 × g. The infranatant is collected and passed 
through a 100-nm filter that retains cells and debris greater 
than this diameter. The filtrate is collected and centrifuged a 
third time. The button of the centrifuge tube contains a pel-
let with all ADCs, including RBCs. At this point, it should 
be pointed out that this product could be used in patients 
by incorporating this pellet into the fresh adipose tissue to 
be grafted for autologous fat tissue augmentation purposes. 
Alternatively, ASCs can be isolated from this heterogeneous 
mixture of cells using a 100-nm filter followed by a 20-nm 
filter and RBC lysis buffer, as in the chemical dissociative 
method, and following the appropriate sorting and expansion 
protocols. However, despite not using collagenase in this 
final process, the presence of the RBC lysis buffer limits the 
use of this product to in vitro or in vivo laboratory animal 
studies.Ta
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Notably, the author presented the shear force part of the 
protocol at conferences since 2006 but was published and 
referred to as nanofat by different authors [32]. However, 
the nanofat study only described the mechanical part of this 
process and never developed the second part (Pellet collec-
tion), which was never presented publicly. This omission 
consequently generated confusion in the field, especially 
since the author did not disclose Lamblet’s protocol or that 
this was an alternative mechanical method to chemical dis-
sociation, probably in an attempt to not correlate it with the 
protocol described above.

Since then, few protocols using mechanical dissociation 
for obtaining and isolating cells have been established com-
pared to chemical methods [28]. From Romanov et al. 2005 
to Gentile et al. 2015, the alternative methods to chemical 
dissociation were based on washing, vibration, shaking and 
filtration, or combined with centrifugation and were not even 
mentioned as mechanical methods. This approach is suffi-
cient for isolating some progenitor cells but is not adequate 
when comparing the results to chemical methods.

Of the 33 articles identified in this review, only one used 
only mechanical dissociation [33], and three used a combi-
nation of mechanical and enzymatic dissociation techniques 
[31, 32, 34]. The lack of nonenzymatic methods and their 
previous credibility is partially attributed to nonenzymatic 
dissociation processes yielding significantly fewer nucleated 
cells than chemical methods [7, 11]. These methods gen-
erally involve washing and agitating the liposuction prod-
uct or combining these processes followed by filtration or 
centrifugation to concentrate the SVF ADCs. It has been 
reported that the composition of cell populations recovered 
by simple centrifugation and other nonenzymatic methods 
contains higher amounts of peripheral blood mononuclear 
cells (PBMCs) and lower amounts of progenitor cells than 
obtained with chemical dissociation [7, 9, 10]. It has been 
suggested that ASCs are concentrated in small and medium 
adipose tissue vascular structures. Without enzymatic deg-
radation of the ECM, many progenitor cells remain trapped 
in the vascular endothelial layers and connective tissue frag-
ments of the liposuction product.

Indeed, immunohistochemical and immunofluorescent 
experiments revealed that ASCs and pericytes are primar-
ily located in perivascular niches [35, 36]. Since there is no 
ECM disruption, some nonenzymatic isolation methods fail 
to release the progenitor cells from the perivascular spaces, 
leaving many desired cells trapped in larger tissue fragments 
and eventually discarded. Notably, it has been reported that 
reduced progenitor cell populations and CD34 + expression 
are the contributing factors for cultures requiring longer 
incubation times to reach 80–90% confluence [9]. Further-
more, these nonenzymatic dissociation studies are based on 
one or two methods using an apparatus or laboratory device 
used separately, without synergy or considering the intimacy 

between the ADCs and collected adipose tissue in human 
lipoaspirate (HLA).

The HLA comprises fat tissue clusters (FTCs), and ADCs 
are released during the liposuction maneuver, a mechanical 
dissociative force. The FTCs contain adipose tissue matrix, 
adipose cells, mature adipocytes, blood vessels, smooth vas-
cular cells, and trapped ADCs, including adult stem cells 
(ASCs), growth factor producing cells (GFPC), endothelial 
progenitor cells, lymphocytes, macrophages, red blood cells 
(RBCs), fibroblasts, plasma, and derivatives.

Unlike chemical dissociation, the beauty of mechanical 
dissociative force, as in Lamblet’s protocol, is that when 
you apply shear stress forces to the FTC, it releases and 
at the same time retains substantial amounts of cytokines 
and GFPCs in the dissociated tissue, which are subsequently 
grafted along with the ADSCs and fresh collected tissue, 
which is essential for the graft to take in vivo. Interestingly, 
when grafted together, these released cells create an environ-
ment that promotes repair and regeneration through multi-
ple mechanisms, known as the immunomodulatory response 
[30]. Notably, in the last year, several clinical trials evaluat-
ing the efficacy of ADCs as a COVID-19 therapy have also 
emerged.

It is important to point out that TGF-β has been shown 
to stimulate collagen production, and vitamins B1, B2, and 
B3 stimulate fibroblast collagen and glycosaminoglycan pro-
duction, increase fibronectin synthesis, inhibit matrix deg-
radation, and facilitate cell chemotaxis [30]. Additionally, 
PDGF stimulates collagenase glycosaminoglycan fibroblast 
production, angiogenesis, and wound contraction and facili-
tates cell chemotaxis. GM-CSF improves white blood cell 
function, activates neutrophils, eosinophils, and monocytes/
macrophages, and stimulates the proliferation and differen-
tiation of hematopoietic cell lines [30]. Furthermore, it is 
well-known that interleukins (ILs) regulate cell homeosta-
sis. For example, IL-3 and IL-6 stimulate the proliferation 
and differentiation of hematopoietic cell lines, and IL-7 and 
IL-8 augment neutrophil functions, act as anti-inflammatory 
agents and stimulate wound healing [30]. These effects are 
easily detected by performing a complete blood count, plate-
lets, and coagulogram 1 week after a fat graft is performed. 
However, the cells cannot be washed or separated after the 
mechanical dissociative process, as publicly described by 
Lamblet in 2011.

Expanding a single-cell type requires first isolating, 
characterizing, and expanding it in a specific culture 
media. On the other hand, cells and cell aggregates pro-
duced with mechanical dissociation do not need to be iso-
lated. Thus, if we use a mechanical maneuver that pays 
attention to the breakdown of the ECM and the release of 
this strong adhesion between adipocytes and the ADCs, a 
final count of nucleated cells is very similar or even higher 
than chemical dissociation will likely yield. Notably, the 
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therapeutic potential has been reported to be optimized 
when cell conglomerates and/or aggregates are transferred 
together. When discussing cell conglomerates, we refer to 
all the cells in the collected tissue, including RBCs, some-
times considered contaminants in ADC transfer. Indeed, 
these cells are contaminants when attempting to isolate a 
single cell (i.e., ASCs) in the laboratory. However, when 
transferring the pool of cells, the RBCs can contribute to 
wound healing and, in some cases, compensate for blood 
loss in more extensive liposuction cases, where the RBCs 
are transferred to the third space, functioning as an auto 
hemotransfusion process. We hope that our patent-pend-
ing surgical device will offer the convenience and yield 
required to make this process a reality.

As mentioned, 25 articles employed liposuction as the 
plastic surgery technique, and 23 used enzymatic dis-
sociation methods to isolate ASCs. Moreover, articles 
describing new devices (n = 2), techniques (n = 4), com-
putational models (n = 1), tissue scaffolds (n = 21), and 
therapies and/or treatments (n = 5) were major areas of 
research and development identified in the present study. 
In the following paragraphs, these innovative studies 
and their possible clinical applicability are described. 
The potential applications of these inventions in terms 
of ASC procedures employed during plastic surgery are 
also discussed. While six articles did not report the cell 
isolation method (enzymatic or mechanical), innovation-
related observations and possible clinical applicability 
are described. A summary of the characteristics and 
relevance of these studies are presented in Table 3. We 
will begin with innovative devices designed for ASC 
isolation.

Devices

Aronowitz et al. (2016) compared the performance of four 
SVF cell isolation systems [11]. The authors found that 
despite the innovation and technology of these devices, 
their clinical applicability still bumps into the regulatory 
barrier with collagenase (see above). Furthermore, the 
cost of the devices and associated disposables makes their 
large-scale clinical applicability unfeasible.

Güven et al. (2012) developed an automated procedure to 
isolate ASCs from adult human liposuctions in a closed clin-
ical-grade device based on Sepax technology [37]. However, 
the Sepax system does not do all the processing in a closed 
system since the digestion is conducted outside the device with 
an adapted kit. Although the device's value should be lower 
compared to existing ones, the cost–benefit was not declared. 
In addition to devices, our search also identified alternative 
techniques that could improve downstream applications using 
ASCs.

Techniques

For example, in a different type of study, Vindigni et al. 
(2013) combined the great facility of ASCs to differentiate 
by applying an external mechanical stimulus that success-
fully creates a tendon-like structure reconstructed in vitro 
with a microcapillary network [38]. This study shows 
that physical factors influence the activity of ASCs, and 
mechanical stimuli, generated in vitro by bioreactors, can 
produce a transplantable vascularized tendon, represent-
ing an inexhaustible source of possibilities in tissue repair 
clinically.

Sesé et al. (2019) evaluated cell yields obtained from 
the generation of nanofat particles compared to traditional 
enzymatic dissociation methods [39]. Comparing the two 
methods showed that mechanical disaggregation provided a 
better cell inoculum than conventional enzymatic dissocia-
tion methods, using ten times less adipose tissue as starting 
material and providing a higher cell yield. The technology 
and products developed by Tulip Medical allow researchers 
and medical doctors to mechanically break down the adipose 
tissue into small fat particles, known as nanofat, immediately 
after the fat tissue is removed from the patient. The study 
compared chemical dissociation with mechanical but had 
two significant limitations. The first was that the authors 
used different fat tissue collection processes for each dis-
sociation method. For more reliable and acceptable results, 
the same collection procedure should have been performed. 
The second concerns mechanical digestion, which discarded 
fluids after the liposuction process, eliminating a substantial 
percentage of the cell precipitate.

Vezzani et al. (2019) [34] performed cellular pheno-
typing and characterized mechanically fragmented human 
liposuction material. The authors found that mechani-
cal dissociation of liposuctions resulted in the production 
of micro-fragmented adipose tissue (MAT), consisting of 
adipocyte aggregates with a microvascular network. They 
found that the mechanical micro-fragmentation process 
did not affect the perivascular cell compartment due to the 
presence of perivascular cells, both pericytes and adventi-
tia, which were confirmed by flow cytometry. Furthermore, 
cytokines and angiogenic factors produced by both MAT 
and the SVF were more abundant in the MAT supernatants. 
Consequently, MAT digested with collagenase and placed in 
culture produced a secretome similar to conventional SVF. 
These results demonstrate that MAT is therapeutically ben-
eficial and amenable to phenotypic and functional investiga-
tions. Additionally, the small size of the MAT clusters allows 
researchers to measure culture secretory activity, which is 
more challenging with larger adipose tissue pieces. It is 
important to point out that identifying specific cells in the 
fragmented lipoaspirate promoted the development of this 
innovative technology.

725European Journal of Plastic Surgery (2022) 45:701–731



1 3

The study of Bi et al. (2018) compared mechanical dis-
sociation (i.e., nanofat) with slight chemical dissociation 
(0.2 mg/mL collagenase type I for 15 min), referred to as 
Vivo nanofat [40]. The size of the transplanted nanofat graft 
was smaller than Vivo nanofat. The authors also observed 
that the number of viable adipocytes, colony formation, and 
MSCs expression was more remarkable in Vivo nanofat. 
However, the authors reduced the collagenase concentration 
and incubation period (0.2 mg/ml for 15 min) for the chemi-
cal dissociation compared to standard methods for isolating 
MSCs from adipose tissue (0.075% for 30 min). Notably, the 
experiments should have been limited to the animal model 
and not used in humans since even small concentrations 
of collagenase could harm the patient. Moreover, only the 
supernatant is collected after digestion, and the infranatant 
is apparently discarded. As previously mentioned, ASCs are 
concentrated in the SVF, which is the infranatant following 
enzymatic digestion.

Computational model

Our search also identified a 3D computational fluid dynam-
ics model based on a differential pressure laminar flow bio-
reactor prototype developed to examine the performance 
of constant changes in the culture environment [41]. This 
model characterizes the flow and pressure distribution within 
a perfusion bioreactor prototype, uniting biotechnology with 
computational Big Data, resulting in more precise control of 
the culture media. Next, we will discuss articles that reported 
innovative approaches for incorporating ASCs into tissue 
scaffolds, a theme observed in most of the selected articles.

Tissue scaffolds

In the study by Tang et al. (2019), the effect of monocytes/
macrophages on the osteogenic differentiation of adipose 
tissue-derived mesenchymal stromal cells (MSCs) in three 
dimensional (3D) cocultures was evaluated [42]. The authors 
showed that monocytes and macrophage subtypes inhibit 
the osteogenic differentiation of ASCs in 3D PLGA/PCL 
structures. More specifically, the cocultured monocytes/mac-
rophages decreased the expression of osteogenic markers 
such as ALP, BSP, and RUNX2. These results highlight the 
overlooked fact that inflammation can regulate osteoblasts 
from MSC-based bone constructs within the bone microen-
vironment. In this sense, the tight control of inflammation 
may be necessary to create an anabolic environment and 
improve cell-based bone construct performance.

McMaster et al. (2019) demonstrated that melt electrow-
riting (MEW) could be adapted for seeding multicellular 
spheroids [43]. The authors manufactured this scaffold in 
sheet form and produced spheroids containing 1000–2000 
ASC aggregates inside each pore. The cultures are easy 

to handle and can be transferred to other sites for mixed 
implants containing living organic and inorganic elements, 
augmenting implant grip and adaptation. This purely inno-
vative and applied technology was due to the utility of 3D 
printers and the new electro-engraving by fusion technique.

In the study by Pati et al. (2014), the authors developed 
a method of biological imprinting with laden cells incorpo-
rated into a decellularized extracellular matrix (dECM) [44]. 
The bioink provides a favorable microenvironment for 3D 
tissue growth. The ability to print analog tissue structures 
by providing living cells with the appropriate material in a 
defined and organized way, in the right place, in sufficient 
numbers, and in the right environment, is critical for many 
emerging technologies. The concept of tissue and organ 
printing or bioprinting is performed in a liquid medium, 
making it useful for in vivo tissue engineering experiments 
and in vitro experiments with drugs and tissue models and 
tumor growth.

In the study by Rath et al. (2016), stem cells from ASCs 
or bone marrow MSCs were tested for their ability to differ-
entiate into highly porous 3D 45S5 Bioglass® scaffolds [45]. 
Interestingly, after five passages, ASCs differentiate into a 
bioactive glass, even without any means of differentiation. 
This technology, based on Bioglass scaffolds, opens up new 
possibilities for use in bone tissue engineering.

The study by Tong et al. (2018) was the first to evaluate 
the effect of breast epithelial cells on human ASCs in 3D 
culture [46]. This study revealed that ASCs form structures 
similar to acinar cells and exhibit characteristics of epithe-
lial differentiation when stimulated by the HBL-100 mam-
mary epithelial cell lineage in 3D. In the clinical context, 
the findings show that ASC characteristics are beneficial for 
cell-assisted lipotransfer for breast reconstruction since they 
can promote mammary gland growth. However, care must 
be taken when ASCs are cultured and expanded in vitro and 
then transplanted because little is known about the interac-
tions between exogenous ASC and the breast epithelium.

An innovative 3D cell mass (3DCM) based on cell adhe-
sion was described by Park et al. (2014). This study evalu-
ated the therapeutic potential of 3DCMs composed of ASCs 
[47]. The 3DCM culture promoted efficient vascular stem 
cell differentiation. Additionally, 3DCM transplantation 
resulted in direct vascular regeneration of the injected cells 
and improved therapeutic efficacy. The authors also showed 
that 3D cell aggregates prevent cell apoptosis and promote 
cell stabilization. In ischemia models, stem cell spheroids 
improved therapeutic efficacy through enhanced cell viabil-
ity and paracrine effects.

Other tissue scaffold-related articles described spe-
cific supplements that could serve as therapies or improve 
surgical outcomes. For example, the effects of exosomes 
derived from human ASC (ASC-Exos) on the regeneration 
of peripheral nerves in vitro and in vivo were investigated 
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by Chen et  al. (2019) [48]. The authors observed that 
human ASC-Exos promoted the axonal growth of neu-
rons. This study represents a potential treatment for nerve 
regeneration and nerve tissue engineering.

In the study by Wang et al. (2018), collagen scaffolds 
and ASCs were combined for bone regeneration of the oral 
and calvaria mucosa using resveratrol (RSV) [49], which 
affects the differentiation of mesenchymal stem cells. The 
experiment proves to be innovative since it aimed to iden-
tify active substances like RSV that can activate the cel-
lular potential of ASCs.

The study by Mou et al. (2019) showed that extracel-
lular vesicles from adipose tissue-derived MCSs improve 
the vascularization of fat grafts and increase their retention 
rate [50]. The innovative aspect of this study is that the 
authors used adipose tissue MCSs and the extracellular 
vesicles, a by-product of the cell culture. Furthermore, 
using tissue engineering in which a Matrigel scaffold was 
colonized with umbilical vein endothelial cells supple-
mented with extracellular vesicles, the authors evaluated 
the angiogenic retention regenerative potentials of the 
transplanted adipose tissue. This complex but simultane-
ously simple and innovative process has great potential for 
clinical applicability.

In the study by Lin et al. (2009), it was hypothesized 
that polyethersulfone (PES) surfaces modified with the 
fibronectin-based Arg-Gly-Asp (RGD) peptide sequence 
would increase ASC adhesion compared to the unmodified 
cells [51]. By evaluating ASC fixation and proliferation on 
PES surfaces modified with different fibronectin-derived 
peptide sequences and using cutting-edge biotechnology to 
evaluate RGD-treated surfaces to attach a more significant 
number of ASCs, the authors were able to develop a model 
that bridges bioreactor technology to in vitro 3D cell cultures 
and prospective studies of 3D tissues with fluid mechanics.

Hu et al. (2015) microencapsulated insulin growth fac-
tor-1 (IGF1) in poly(lactic-co-glycolic acid) scaffolds and 
implanted them into mice. The authors found that IGF1 
positively regulates Axin2 and PPARc and simultaneously 
attenuates Wnt/b-catenin under adipogenic conditions, pro-
moting a lineage bias towards CD31( −)/34( +)/146( −) cells 
at the expense of CD31( −)/34( +)/146( +) cells and leading 
to adipogenesis in vitro and in vivo [52]. This innovative 
study has direct implications related to obesity and adipose 
regeneration.

In the study by Kim et al. (2015), the effect of different 
sized silicon dioxide particles on the growth of and mitogen-
activated protein kinase signaling in ASCs was verified [53]. 
This study demonstrated that only nanoparticles (NPs) with 
a 50–120 nm diameter are beneficial, while microparticles 
can induce apoptosis. Silica-based scaffolds and coated 
plates have hydrophilic properties, and it was also shown 
that only silica NPs entered cells, and some were clustered 

in vesicles, suggesting that silica NPs enter cells partly by 
endocytosis.

The effect of continuously expanding MSCs in parallel 
culture on tissue culture plastic (TCP) or polydimethylsi-
loxane gels (PDMS) of different elasticity was reported by 
Schellenberg et al. (2014) [54]. In this study, the authors 
showed that PDMS elasticity had no sustained effect on 
replicative senescence, intrinsic cell lineage impairment, 
or mDNA profiles of cells continuously cultured on these 
substrates.

Schellenberg et al. (2014) developed scaffolds of polyvi-
nylidene fluoride (PVDF) non-tissue with round, trilobal, or 
snowflake fiber cross section and different fiber crimp pat-
terns (10, 16, or 28 needles per inch) to evaluate the effect 
of the biomaterial’s 3D scaffold architecture on cell behavior 
and fate [55]. Due to their complex 3D conformation, they 
can provide interesting perspectives for some surgical inter-
ventions. For example, non-tissue PVDF scaffolds can be 
used as meshes in hernia repair. Notably, MSCs mediate and 
promote the wound healing process, supporting vasculari-
zation and differentiation into many cell types. The in vitro 
study of interactions between PVDF and MSCs could stimu-
late implant cellularization in vivo. The biotechnology used 
to fabricate non-tissue scaffolds with polymeric PVDF gran-
ules involves a completely labor-intensive and innovative 
method with three main processing steps: texturing, web 
forming, and gluing. It is plausible that additional innova-
tions could be developed specifically for each step.

Li et al. (2018) decellularized adipose tissue and com-
bined it, in variable concentrations, with a fraction of thiol-
acrylate to produce hydrogels [56]. Incorporating bioactive 
molecules into a hydrogel system can increase the cell pro-
liferation rate and improve the adipogenic differentiation 
performance of stromal stem cells. However, this approach 
suffers from high costs and can also cause cytotoxicity due 
to the light/heat used for curing (i.e., polymerization). The 
innovation associated with this study comes from apply-
ing polyethylene glycol (PEG) MEC without modifying 
it and encapsulating ASCs at various hydrogel/PEG/MEC 
concentrations. The authors reported that 1% is the ideal 
concentration for stimulating adipogenesis. Bioengineering 
and biotechnology were fundamental for fabricating ECM 
PEG hydrogel scaffolds and the encapsulation of the human 
ASCs.

In the study by Wang et al. (2010), the characteristics of 
a hybrid hydrogel framework composed of poloxamer 407 
and the self-assembly oligopeptide EFK8 in vitro and in vivo 
were examined [57]. The hybrid hydrogel containing ASCs 
has great promise as a 3D scaffold for stem cell-based soft 
tissue engineering.

Interestingly, one article reported the identification of 
a new scaffolding material. Kiiskinen et al. (2019) dem-
onstrated the potential use of wood-derived nanofibrillar 
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cellulose (NFC) as a wound dressing and cell scaffolding 
material for ASCs. The authors developed an animal-derived 
component-free cell transplantation method for wound care 
[58]. This study proved to be innovative in developing a bio-
technological dressing that allowed the adhesion of MSCs 
and did not interfere with their cell viability and function.

Nyberg et al. (2019) explored the bone formation poten-
tial of clinically relevant SVF cells obtained from human 
liposuction samples [59]. This study harvested the SVF, 
combined it with 3D-printed osteoinductive supports, and 
implanted it in the bone defect to stimulate regeneration 
in the same surgical procedure. This process reduces the 
number of operations required for the patient and elimi-
nates the cost and practical limitations of handling ex vivo 
cells. Moreover, it leverages the regulatory feasibility of an 
intraoperative versus multi-operative procedure and enables 
administering the SVF intraoperatively.

Mineda et al. (2015) showed the therapeutic potential 
of stromal/stem cell microspheroids derived from human 
adipose tissue prepared by 3D culture in non-cross-linked 
hyaluronic acid gel [60]. The delivery system from cells 
to organs and tissues is promising, and the involved tech-
nology and subsequent innovation have been continuously 
improved. Furthermore, hyaluronic acid, which is already 
being used on a large scale in plastic surgery and other spe-
cialties as fillers, is a perfect candidate for this purpose.

In the study by Haskett et al. (2018), the tissue-engineered 
vascular graft (TEVG) models were seeded with SVF for 
8 weeks in vivo [61]. The approach shows that bioengineer-
ing combined with surgery and methods for obtaining and 
isolating SVF from adipose tissue allows its later use in the 
laboratory and immediate use in vivo.

Krawiec et  al. (2017) evaluated the use of the SVF 
from adipose tissue as a vascular graft developed based on 
stem cells in producing a urethane polyester scaffold that 
had been previously shown to be effective with other cell 
types [33]. This study demonstrated the possibility of using 
freshly obtained stromal SVFs for seeding polyester urethane 
scaffolds rather than adipose tissue-derived stem cells that 
required culturing for 2–3 days. It brought innovation, dem-
onstrated clinical applicability of a tissue bioengineering 
technology, and opened the door to new studies in vascular 
graft fabrication in tissue engineering with these polyester 
urethane scaffolds.

Therapies/treatments

Beyond describing and discussing some innovative and 
exciting emerging technologies in the field, other articles 
provided insights into novel therapies and treatments. For 
example, the immunomodulatory effect of purified human 
perivascular stromal cells (PSCs) implanted during bone for-
mation was reported by Meyers et al. (2018) [34]. The study 

demonstrated that differentiated cells from the perivascular 
region of the adipose stroma have a different phenotypic 
differentiation from the total cells of the SVF. These obser-
vations are particularly relevant to bone induction and differ-
entiation and open up several lines of research investigating 
PSC versus SVF bone differentiation.

In another study by Meyers et al. (2018), high WISP-1 
expression was observed in human PSCs in vivo after puri-
fication and transplantation into a bone defect [62]. Previ-
ously, WISP-1 was defined for its role as a bone matrix 
protein and its upregulation of osteoblastogenic differ-
entiation into other types of osteoblastic cells. However, 
this study demonstrated a new role for WISP-1 signaling 
in stromal progenitor cells in the perivascular niche of 
human adipose tissue. Moreover, the authors implicated 
WISP-1 in promoting angiogenesis, especially tumor-
associated angiogenesis. This study complemented the 
previous one and built upon it by showing the relationship 
of perivascular adipose stromal cells with the WISP-1e 
activity of the osteogenic marker, implicating these cells 
as progenitors of osteogenic activity and opening up sev-
eral research paths with these differentiated cells that do 
not need expansion.

In the study by Chen et al. (2019), a new method which 
is immobilization method by self-assembly of biotinylated 
MSC-EVs on the surface of biotin-doped polypyrrole tita-
nium (Bio-Ppy-Ti) was reported to improve in vitro and 
in vivo biofunction that could be applied to bone regenera-
tion [63]. In this study, human fat ASC-derived exosomes 
were stably anchored in a scaffold produced by the elec-
tropolymerization of a biotin-doped polypyrrole film on 
titanium EV-Bio-Ppy-Ti and incorporated into the dif-
ferentiation process of cultured osteoblasts. The authors 
assessed osteoinduction and found it to be 185 times 
greater than the control cells [48]. This technology is par-
ticularly relevant to individuals requiring metallic titanium 
implants.

Tawonsawatruk et al. (2016) investigated the capacity 
of human bone marrow-derived MSCs and human adipose 
tissue-derived pericytes percutaneously administered to the 
bone fracture gap to prevent pseudarthrosis [64]. In this study, 
innovation and technology came together to create a method 
for measuring bone healing of non-atrophic fracture union, 
from mathematical methods for measuring bone callus to 
the use of Micro-CT to assess bone density and thickness of 
trabeculae, histological evaluations and mechanical tests to 
determine final load and tension and ending with radioiso-
tope cell tracking tests to track and display the contribution 
of transplanted cells to repair and remodeling. Thus, it shows 
the preparation and scientific rigor in detecting functional evi-
dence using state-of-the-art technology from different tech-
nological sectors. It also brought an immense contribution to 
clinical applicability.
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A novel physical approach was also identified to pro-
duce a cell-free aqueous extract of human adipose tis-
sue [65]. The therapeutic potential of fat extract (FE) 
was investigated in the hindlimb of nude mice following 
ischemia. This study is extraordinarily innovative and 
uses a different mechanical dissociation from those pre-
viously demonstrated. The in vitro and in vivo experi-
ments showed that endothelial cells assume a tubular 
formation and are induced with and without FE when 
combined with Matrigel scaffold formation. A significant 
advantage of this technology is that no immunological 
rejection should occur when using cell-free FE, meaning 
that FE could be marketed as an “off-the-shelf” product 
for treating ischemic disorders. This study, in particular, 
supports the idea that no fluid should be discarded from 
the chemical or mechanical dissociation of adipose tis-
sue without fully understanding its properties since it 
is possible that these “waste products” contain valuable 
material with regenerative potential. The innovative adi-
pose tissue dissociative methods and all of the currently 
available information could attenuate the waste of cells 
and derivatives and generate different products from the 
human lipoaspirate.

Based on the results of this review article, it is clear 
that biotechnology, Big Data, and technological disruption 
have entered the plastic surgeon’s world and have started to 
change our way of thinking, guiding us to a horizon of new 
ideas and innovation.

Conclusions

Innovation and technology are linked to plastic surgery and 
procedures that use adipose tissue as a source of ASCs and 
the SVF. Of the 33 selected articles, the isolation of ASCs 
was primarily performed using an enzymatic dissociation 
method. It was also determined that liposuction was the most 
performed plastic surgery procedure, while most innovative 
technologies were tissue scaffold related. These reoccurring 
themes possess enormous potential in innovative areas and 
introduce plastic surgeons to regenerative medicine, trans-
forming them from a supporting role to the leading actor 
in this scenario of disruptive technological innovation. We 
conclude that these experimental research and development 
areas could facilitate utilizing ASCs for in vivo human plas-
tic surgery and regenerative medicine applications.
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