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Abstract
Invariant relations are used to analyzewhile loops; while their primary application is to derive
the function of a loop, they can also be used to derive loop invariants, weakest preconditions,
strongest postconditions, sufficient conditions of correctness, necessary conditions of cor-
rectness, and termination conditions of loops. In this paper we present two generic invariant
relations that capture the semantics of loops whose loop body applies affine transformations
on numeric variables.

1 Introduction

1.1 Position of the problem

This work is part of an effort to derive the function of C-like programs, including while
loops. Given a while loop, an invariant relation thereof is a binary relation that includes
pairs of states that are separated by an arbitrary number of iterations of the loop. Invariant
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relations are shown to be useful in analyzing while loop semantics: they can be used to derive
the function of a loop [48, 49, 51], to generate loop invariants of a loop [31], to prove or
disprove the correctness of a loop [45], to compute or approximate the weakest precondition
and the strongest postcondition of a loop [19], to repair a faulty loop [18], and to compute
or approximate the termination condition of a loop [10].

But invariant relations are useful in practice only to the extent that we can generate them
automatically; to this effect, we adopt a pattern matching-based approach discussed in [10,
18, 19, 31, 45, 49, 51]. We define and store templates (which we call recognizers) that
represent commonly occuring patterns in program functions (e.g. for a particular applica-
tion domain), alongside the corresponding patterns that represent their invariant relations;
these recognizers are selected to capture the requisite programming knowledge and domain
knowledge that are needed to analyse programs in the targeted application domain. Invariant
relations are generated by matching the actual function of the guarded loop body against
formal recognizers; in case of a match, we generate an actual invariant relation for the loop
by instantiating the formal invariant relation of the recognizer with the actual variables of
the program. The success of this pattern matching approach is critically dependent on the
availability of recognizers that are generally applicable and produce a precise invariant rela-
tion pattern. In this paper, we present two generic recognizers for loops that apply affine
transformations on numeric variables; we argue that these two recognizers are sufficient to
capture the semantics of any loop that performs affine transformations on numeric variables,
regardless of their number. By extension, these two recognizers are also applicable to loops
that perform a transformation of the form X ′ = AX + B, where X and B are vectors of size
N and A is a matrix of size N × N , provided A is diagonalisable.

1.2 Related work

Loops that perform affine transformations have been the focus of some research interest
in the past [1, 21, 22, 28]. In [28] Jeannet et al. justify this level of interest by the fact
that such loops occur very often in control and digital signal processing software, due to
the presence of filters, integrators and iterative loops for solving equations or interpolating
complex functions by means of splines. The analysis of affine loops has focused on deriving
their loop invariants, and has generally been restricted to deriving loop invariants that have the
form of affine equalities (AX = B) and affine inequalities (AX ≤ B) [1, 21, 22, 28, 32]. This
has come to be known under the name Linear Relations Analysis [22] and has relied primarily
on abstract interpretation [6] and an optimized version thereof, abstract acceleration [20].
In [1] Ancourt et al. propose to automate the analysis of affine loops by approximating loop
behaviors with affine equalities and inequalities; but unlike the traditional approach that is
based on state assertions [6], Ancourt et al. focus on state transformers, and attempt to capture
approximations of the transitive closure of the function of the guarded loop body bymeans of
affine formulae; as such, their quest is similar to the derivation of invariant relations, which
we pursue in this paper.

In [12] Farzan and Kincaid present a semantic definition of C-like programs modeled by
control flow automata where edges are labeled by program statements. A semantic function
maps control flow edges to transformations of the state of the program, where the function of
a path is the relational composition of the transformations associated with the edges that form
the path. Since iteration creates an infinity of paths of unbounded length, Farzan and Kincaid
proceed by formulating iterative transformations as recurrence equations, then solving the
recurrence equation by eliminating the recurrence variable to derive relationships between
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the initial and final state variable values of iterative statements. Farzan and Kincaid make
provisions for simple recurrence, where a variable is updated iteratively according to some
recurrence formula, and stratified recurrence, where a variable that is defined by a recurrence
formula is involved in the recurrence equation of another variable.

In [26], Humenberger et al. discuss the automatic generation of polynomial form loop
invariants for a class of P-solvable loops that includes sums and products of hypergeometric
and C-finite sequences; the technique is implemented in Mathematica (©Wolfram Research)
on top of the loop invariant generator tool Aligator [24, 39]. The proposed method applies to
loops whose loop body only includes a sequence of assignments of the form

vi = fi (v1, v2, ... vn);

where v1, v2, ..., vn are scalar variables and fi are rational functions. This approach is appli-
cable under some restrictive conditions on the control structure of the loop body. These
restrictions are lifted in [27] where Humenberger et al. discuss how to derive loop invari-
ants for multi-path loops with polynomial assignments; multi-path loops arise when we have
branching logic in the loop body, rather than a single sequence of assignments. Humen-
berger et al. proceed in three steps: (i) turn the multi-path loop into a sequence of single-path
loops; (ii) generate the polynomial invariant ideal of each single-path loop; then (iii) combine
these ideals iteratively until the polynomial invariant ideal of the multi-path loop is derived.
Humenberger et al. show that this process converges in time that is linear in the number of
program variables and the number of inner loops. In our relational approach, the question of
multi-path loops is posed in relational terms: while invariant relations are closed for inter-
section, they are not closed for union. Indeed, the union of two transitive relations is not
transitive; to generate an invariant relation for a loop body that has the form of a union, say
B = B1 ∪ B2, we can generate a reflexive transitive superset of B1, say R1 and a reflexive
transitive superset of B2, say R2. In order to find an invariant relation for B, we must find
a (the smallest, if possible) reflexive transitive superset of R1 and R2; this is discussed by
Mraihi et al. in [30, 31, 50, 51].

In [25] Hrushovski et al. present an algorithm for deriving the strongest polynomial invari-
ant for an affine program, i.e. an iterative program whose loop body is made exclusively of
affine assignments to numeric variables. While other algorithms generate strongest affine
invariants, or strongest polynomial invariants of a maximal degree (affine invariants being a
special case of the latter condition for a degree 1), Hrushovski et al. present an algorithm that
computes all the polynomial invariants of an affine loop of any degree; the strongest poly-
nomial invariant is their conjunction. The proposed approach accommodates nested loops
but does not accommodate deterministic conditional statements within the loop body; they
replace such statements by non-deterministic choice, modeling a non-deterministic program.

In [35] Kincaid et al. contrast two orthogonal approaches to the analysis of while loops:
The approach exemplified by thework ofRodriguez-Carbonell andKapur [3] andKovacs [39,
40], which aims to compute the strongest invariant relation of a loop, using special-purpose
algorithms; the approach exemplified by the work of Farzan and Kincaid [12] and Kincaid
et al. [33], which uses Compositional Recurrence Analysis (CRA) to over-approximate the
semantic attributes of a broader class of loops. Whereas the first approach delivers very
accurate results for a small class of loops, the second approach delivers approximate results
for a large class of loops, including loops that have non-deterministic assignments and nested
loops; CRA can also be applied to recursive procedures. Also, CRA is applied, not to the
syntactic form of loops, but rather to their logical representation. Kincaid et al. present
extensions to the numerical-reasoning techniques available under CRA, and show how these
extensions enable them to generate non-linear numeric invariants.
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In [34] Kincaid et al. go beyond the problem of generating loop invariants for numeric
loops, to seek to derive (approximations of) the function of such loops, to which they refer
as closed forms of loops. They present an algorithm for computing the closed form of a loop
expressed using polynomials and exponentials over rational numbers. They argue that the
logic for expressing closed forms is decidable, yielding decision procedures for verifying
termination and safety of a class of numerical loops over rational numbers. They also show
how the procedure for computing closed forms of loops can be used to over-approximate the
behavior of arbitrary numeric programs, including programs with unrestricted control flow,
non-deterministic assignment, and recursive calls.

In [54] Sankaranarayanan et al. use Farkas’ Lemma to generate a loop invariant for an
affine loop whose body is made up of a deterministic or non-deterministic choice between
several affine transformations of numeric program variables; Farkas’ Lemma is used to infer
a loop invariant for the whole loop from invariants derived from each term in the form of an
affine inequality. In [5] Colon et al. investigate a method to generate linear invariant relations
by solving non-linear constraints, whose purpose is to ensure that the target is inductive.
In [44], Liu et al. build on the results of Sankaranarayanan et al. [54] and Colon et al [5]
to propose a scalable approach for the generation of tight(er) linear-invariants for affine
programs, i.e. programs with affine conditions and assignments. Whereas Sankaranarayanan
et al., and Colon et al. use Farkas’ Lemma to generate linear invariants of affine loops in
the form of equalities and inequalities of linear expressions of program variables, Liu et
al. generalize their results by addressing the scalability of the original algorithms. The first
measure they deploy to achieve scalability is to separately generate several invariants at the
same location, thereby enabling parallel computations and a better control of combinatorial
explosion. The second measure they deploy is a more effective algorithm for identifying
subsumption relations between clauses of invariants, hence faster convergence; they prove
that this gain in efficiency does not cause a loss of precision in the generated invariants.
Experimental evidence on representative benchmarks show orders of magnitude gains in
run-time efficiency.

Farkas’s Lemma is also used by Ji et al. [29] to generate linear invariants for multi-path
affine unnested loops. The method proposed by Ji et al. completely addresses the constraints
derived from Farkas’ Lemma using matrix algebra. When the guard of the loop is an affine
inequality or equality, the invariants can be generated by means of matrix inversion, and
when the guard is TRUE (in non-terminating control loops, for example), the invariants can
be generated by means of eigenvalue calculations.

Given how complex it is to generate loop invariants, some researchers have focused on
obviating the need for loop invariants. In [36] Kondratyev and Nepomniaschy discuss a
method for proving the correctness of iterative programs without using loop invariants. To
this effect, they consider iterative programs written in a subset of C (C-light), which they
characterize as definite iteration of sequences of data, where each iteration processes one
element of the data sequence. To represent the semantics of definite iteration of the form

for x in S do v=body(v,x) end,

where S is a sequence of data, x is of type element of S, v is a vector of variables, and
body is assumed to change v but leave x intact. Kondratyev and Nepomniaschy define the
replacement operator rep inductively as follows:

– rep(0, S, v, body) = v0, the initial state of state variables.
– rep(i, S, v, body) = body(rep(i − 1, S, v, body), si), for i ≥ 1.
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To the extent that this recurrence can be resolved or a closed form of rep() can be derived in
some way, then one can reason about the semantics of the loop without recourse to its loop
invariants.

Another effort to reason about iterative programs without resorting to loop invariants
is attempted by Chakraborty et al. in [4]; not only does the proposed method analyze the
semantics of iterative programs without using loop invariants, but it does so for an arbitrary
number of iterations, including possibly nested iterations. It achieves this goal by using an
inductive argument, not on the control structure of the program, as mandated by approaches
that are based on loop invariants, but rather by induction on the size of the data the program
operatoes on. The method of Chakratorty et al., known as full-program induction, applies
to programs that manipulate arrays of parametric size, and can be used to prove a class of
quantified aswell as quantifier-free program specifications, in the form of pre/post conditions.
If we let N be the size of the arrays manipulated by the program, then the proof of correctness
proceeds by induction on N : the basis of induction is generated for N = 0, and the induction
step aims to prove that if the program satisfies its specification for N − 1, then it does for N .
This requires that we characterize the processing that is required to derive a solution for N
from a solution for (N−1). The derivation of the code that defines this transformation (called
difference program) and the specification that this code must satisfy for the induction step to
hold (called the difference precondition) are not always possible, nor easy even when they
are possible. The characterization of the difference program is actually reminiscent of the
operator of relational division introduced by Desharnais et al. [8] (which means that quotient
program is perhaps a better name than difference program, since this operator is the inverse
of relational product).

In [52] Myreen and Gordon report on a program verification tool that verifies the cor-
rectness of imperative programs by mapping them into a functional representation in the
logic of a theorem prover; total correctness and partial correctness are then mere theorems to
prove in the target logic. While statements are represented by recursive function definitions,
according to the semantic identity:

while (t) {b;} = if (t) {b;} while (t) {b;}

Among the benefits of the approach, the authors cite the following: proofs of correctness
are readily applicable, once we formulate the pre/post specification of the program; the
verification problem is reduced to its essence, the computation; it enables proof reuse, in the
form of lemmas (proofs of subprograms can be used in proofs of encompassing programs);
it is easier to implement than a verification condition generator. The tool is implemented
in the HOL4 theorem prover and compared against alternative approaches on a number of
illustrative examples.

In [43] Lefaucheux et al. consider the reachability problem for multi-path affine loops
over the integers. They define the problem in the following terms: We consider a integer
linear dynamical system that consists of a an initial vector x0 ∈ Z

d , for some natural number
d , and a set of update functions f1, f2,... fn on Zd , which represent the functions applied by
paths of a multi-path loop.We consider a set Y and we ponder the question of whether we can
ensure that the iterative application of the multi-path loop does not yield an element of Y ; in
practice, Y may represent a set of unsafe states and the reachability question is to check that
no state generated by the loop is unsafe. To this effect, Lefaucheux et al. define an inductive
invariant I as a set that satisfies the condition fi (I ) ⊆ I for all i . Then the reachability
query defined by the pair (x0, Y ) can be solved by searching an inductive invariant I such
that x0 ∈ I and Y ∩ I = ∅. Lefaucheux et al. consider a set of affine forms (redundant,
counter-like, growing, inverting, etc) and present corresponding invariant forms. Then they
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discuss a tool that generates such invariants and addresses the question of unreachability, and
illustrate the operation of the tool on a wide range of combinations of function types.

In [13] Frohn et al. discuss means to prove or disprove termination of triangular weakly
non-linear loops (twn loops), which are loops of the form:

while(φ){x ← a(x)},
where x = (x1, x2, ..., xd) is the vector of program variables in some ring S (Z, Q, or R),
and a(x) has the following form:

a(x) =

⎡
⎢⎢⎣
c1x1 + p1
c2x2 + p2

...

cd xd + pd

⎤
⎥⎥⎦ ,

where each pi is a possibly non-linear polynomial in variables xi+1, xi+2, ...xd (whence
the qualifier triangular) and ci is a constant in S. Frohn et al. are interested in proving or
disproving termination, and they define non termination by means of the following formula,
where an represents the application of a n times:

∃c ∈ S
d : ∀n ∈ N : φ(an(c)).

Such a c, if it exists, is called a witness to non-termination. To adjudge termination, Frohn et
al. derive a closed form expression of an(c), then the polynomial φ(an(c)), which enables
them to reason about the asymptotic behavior of this polynomial with respect to n.

1.3 Scope of the approach

Our approach differs from theworks cited above inmanymeaningful ways; in this section, we
characterize our approach (and distinguish it from others) in terms of its goals and premises;
in Sect. 7.3, we distinguish it from related work in terms of its results (which we can only do
after we present these results).

– Invariant relations versus invariant assertions Whereas much of the research on ana-
lyzing while loops has focused on generating and using their loop invariants (re: [7, 11,
12, 14, 24–26, 35, 37, 38, 41, 46, 47, 51, 57], to cite a few), our approach is geared
towards generating and using their invariant relations. In [51], Mraihi et al. prove that all
invariant assertions (aka loop invariants) stem from invariant relations, hence the search
of invariant relations subsumes the search of invariant assertions, in the following sense:
if all we do is search for invariant relations then convert them into invariant assertions
using the formula of [51], we do not miss any invariant assertion.

– Derivation of invariant relations Our goal is to derive the invariant relations of while
loops, where the invariant relation of a while loop is a binary relation that holds between
two program states s and s′ that are separated by an arbitrary number of iterations.

– Context-independence Whereas loop invariants depend on the loop and its context (as
defined by the precondition and the postcondition), invariant relations depend exclusively
on the loop. Hence, whereas the generation of loop invariants juggles consideration of
the precondition, the postcondition, and the loop, the generation of invariant relations
focuses exclusively on the loop.

– Precise semanticsWhereas much of linear relation analysis is geared towards the deriva-
tion of over-approximations of program behavior by means of convex polyhedra, our
goal is to capture the semantics of loops programs in all its details. Also, many recent

123



Invariant relations for affine loops

efforts focus explicitly on deriving approximations of the loop function, and overlook
loop conditions and the branching logic of conditional statements; as a consequence, they
do not analyze the program per se, but rather a non-deterministic approximation thereof.

– Free form invariant relations Whereas much of linear relation analysis is focused on
deriving loop invariants of a prespecified form (e.g. affine equalities and inequalities,
polynomial forms, polynomial forms of a prespecified degree, etc), our invariant relations
are not restricted to any specific form; in fact the two invariant relation templates that we
introduce in this paper are neither affine nor polynomial. The transformations that are
applied by the guarded loop body are affine (more precisely: have affine clauses), but the
corresponding invariant relations are not necessarily.

– Loops may have non-affine partsOur approach is not restricted to loops that only perform
affine transformations; rather it is applicable to any loop that has an affine transformation,
possibly alongside other non-affine transformations. We apply the formulas presented in
this paper to the affine transformations of the loop, and apply other formulas to the other
transformations.

– Loops may have non-numeric data types. Our approach is not restricted to numeric data
types. We can handle any data type, provided:

– We capture the semantics of the operations applied to the data type by means of
relevant recognizers.

– The equations that are generated by the recognizers can subsequently be solved or
reasoned about to analyze the loop.

We can also handle programs that mix numeric data types with non-numeric data type;
see recognizer 2R3 in Table 1 as an example.

– Affine transformations may be hidden Our pattern matching algorithm is not applied to
the source code of the program, but rather to itsmathematical representation as a function.
Hence we may have a clause of the form (x ′ = a × x + b) in the function of the loop
body, even when no statement of the loop body has the form {x=a*x+b}:

– {x=a*x; x=x+b;}. Affine clause: x ′ = ax + b.
– {y=a*x+b; x=c*y+d;}. Affine clause: x ′ = acx + cb + d .
– {y=x*x; x=(x+a)*(x+a)-y;}. Affine clause: x ′ = 2ax + a2.
– {y=b; for (int k=a;k>0;k=k-1) {y=y+x}; x=y}.Affine clause: x ′ =

ax + b, assuming a is a positive integer.

Incidentally, we can also have an affine statement in the loop body, yet not have an affine
clause in the function of the loop body:

{x = a ∗ x + b; ...;x = x ∗ x; }.
– Extension to matrices Whenever we have a loop body that performs an affine transfor-

mation of the form (X ′ = AX + B), where X is a vector of size N , A is a matrix of
size N × N and B is a vector of size N , and where A is a diagonalisable matrix, we can
perform a change of variable Y = V × X in such a way that the transformations of Yi
take the form (Y ′

i = a′
i × Yi + b′

i ); we discuss this case in Sect. 4.3.
– Invariant Generation Algorithm. All the related work cited above, as well as virtually

all the work we know of on loop invariant generation, generates loop invariants on the
fly, at run-time, by seeking to restrict the class of loops under consideration or the form
of loop invariants under consideration. By contrast, we generate invariant relations by
pattern matching against pre-stored code patterns for which we know invariant relation
patterns. So while we may use similar techniques to other approaches (e.g. recurrence
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analysis), we use these techniques to generate the pattern matching templates off-line,
not to generate invariant relations at run-time; at run-time, all we do is matching clauses
of the program against prestored code patterns.

– Broader context Our work on affine loops is part of a broader effort to compute the
function of C-like programs, including iterative programs. Our interest in affine loops
stems from the fact that the semantics of affine loops can be captured by only two invariant
relation templates, from which we generate two generic recognizers.

We assume the reader is familiar with simple relational mathematics [2, 56]; in Sect. 2
we briefly introduce some relational definitions and notations that we use in this paper. In
Sect. 3 we discuss the concept of invariant relations, and show what they are useful for and
how we can generate them. Section4 presents the core ideas of this paper, in the form of
explicit formulas for invariant relations that stem from affine transformations on scalar and
vector variables of a loop. In Sect. 5 we discuss in what way and to what extent the invariant
relations we generate in Sect. 4 are sufficient to capture the semantics of affine loops. These
results are illustrated in Sect. 6 and assessed / critiqued in Sect. 7.

2 Definitions and notations

2.1 Relational definitions and notations

A relation on set S is a subset of the Cartesian product S × S. Among the constant relations
on set S, we cite the identity relation I and the universal relation, L . Among the operations
on relations we cite, in addition to the set theoretic operations of union (∪), intersection
(∩) and complement R: The converse of relation R is denoted by R̂ and defined by: R̂ =
{(s, s′)|(s′, s) ∈ R}. The product of two relations R and R′, is denoted by R ◦ R′, or simply
RR′, and defined by: RR′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}. The transitive
closure of relation R, denoted by R+, and defined by: R+ = {(s, s′)|∃i ≥ 1 : (s, s′) ∈ Ri },
where R1 = R, and Ri+1 = R ◦ Ri . The reflexive transitive closure of relation R, denoted
by R∗, is defined by: R∗ = I ∪ R+. The domain of relation R is denoted by dom(R) and
defined by: dom(R) = {s|∃s′ : (s, s′) ∈ R}. The range (or codomain) of relation R is the
domain of R̂.

A relation R is said to be reflexive if and only if I ⊆ R; a relation R is said to be transitive
if and only if R2 ⊆ R; and a relation R is said to be deterministic if and only if R̂R ⊆ I ;
deterministic relations are referred to as functions. A vector T is a relation that satisfies
the condition T L = T ; given a predicate t on S, we denote by T the vector defined as
T = {(s, s′)|t(s)}; vectors are relational representations of subsets of S. Given a relation
R and a vector T , we let the pre-restriction (resp. post-restriction) of R to T be defined as
T ∩ R (resp. T̂ ∩ R).

We conclude this sectionwith a simple Proposition from relationalmathematics [2], which
we present without proof, and will use throughout the paper.

Proposition 1 Two functions F and F ′ are equal if and only if F ⊆ F ′ and dom(F ′) ⊆
dom(F).

Generally, to prove that two relations are equal, we must prove inclusion in both directions;
if they are deterministic, it suffices to prove inclusion in one direction, and inclusion of their
domains in the opposite direction.
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2.2 Program semantics

If we declare space S by means of variable declarations

xType x; yType y;

then we mean that S is the Cartesian product of the sets of values taken by types xType and
yType. An element of space S is referred to as a state, is usually denoted by lower case s and
represents the tuple s = 〈x, y〉; we will usually let s stand for all the variables of the space,
and we apply the same decoration to s and to the corresponding variables (e.g. s′ = 〈x ′, y′〉,
s′′ = 〈x ′′, y′′〉, etc). Given a program p on state space S, the function of program p is denoted
by P and defined as the set of pairs of states (s, s′) such that if p starts execution in state
s it terminates normally (i.e. after a finite number of steps, without attempting any illegal
operation) in state s′. As a result, the domain of P is the set of states s such that if p is
executed on state s it terminates normally. By abuse of notation, we may sometimes denote
a program p and its function P by the same symbol, P .

3 Invariant relations

In this section, we briefly present a definition of invariant relations, then we discuss in turn:
what we use invariant relations for; then how we generate invariant relations.

Definition 1 Given a while loop w of the form {while (t) {b}}, an invariant relation
of w is a reflexive transitive superset of (T ∩ B), where T is the vector that represents
condition t and B is the function of {b}.

The following properties stem readily from the definition of invariant relations.

Proposition 2 Given a while loop w: {while (t) {b;}} on space S,

– The intersection of invariant relations of w is an invariant relation of w.
– (T ∩ B)∗ is an invariant relation of w.
– (T ∩ B)∗ is the smallest invariant relation of w: it is a subset of any invariant relation of

w.

Proof The first clause is a consequence of the property that the intersection of reflexive
transitive relations is reflexive and transitive. The second and third clauses are properties of
the reflexive transitive closure of a relation. ��

For illustration, we consider space S defined by natural variables n, f , k, and we let w be
the following program:

w: {while (k!=n+1) {f=f*k; k=k+1;}}

For this programwefind (using s as a stand-in for 〈n, f , k〉 and s′ as a stand-in for 〈n′, f ′, k′〉):
T = {(s, s′)|k �= n + 1},
B = {(s, s′)|n′ = n ∧ f ′ = f × k ∧ k′ = k + 1}.

We leave it to the reader to check that the following are invariant relations for w:

R0 = {(s, s′)|n′ = n},
R1 = {(s, s′)|k ≤ k′},
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R2 =
{
(s, s′)| f

(k − 1)! = f ′

(k′ − 1)!
}

.

Since these are invariant relations of w, so is their intersection R = R0 ∩ R1 ∩ R2.

3.1 Using invariant relations

Invariant relations can be used for a wide range of applications in the analysis of loops; in this
section we briefly discuss two applications, namely the derivation of the function of the loop,
and the derivation of invariant assertions (aka loop invariants) of the loop. As background,
the following Proposition gives a formula for the function of a loop.

Proposition 3 The function of the while loop w: {while (t) {b}} on space S is: W =
(T ∩ B)∗ ∩ T̂ , where T is the vector that represents condition t and B is the function of {b}.

A proof of this Proposition is given in [51]. The following Proposition is a simple corollary
of Proposition 3; it stems readily from the property that any invariant relation R of w is a
superset of (T ∩ B)∗.
Proposition 4 Given a while loop of the form w: {while (t) {b}} on space S, and an

invariant relation R of w the following inequality holds: W ⊆ R ∩ T̂ .

As an illustration, we consider the factorial program above and we compute the proposed
upper bound W ′ of W :

W ′ = R ∩ T̂ =
{
(s, s′)|k ≤ n + 1 ∧ n′ = n ∧ k′ = n + 1 ∧ f ′ = n! × f

(k − 1)!
}

.

According to Proposition 4, W is a subset of W ′ (given above). On the other hand, the loop
converges for all s that satisfy the condition (k ≤ n + 1), hence dom(W ′) ⊆ dom(W ). Since
W ′ is deterministic, we can apply Proposition 1, which yields W = W ′. This is indeed the
function of the (uninitialized) loop.

Invariant relations can also be used to derive loop invariants, as per the following Propo-
sition.

Proposition 5 Due to [51]. If vector A represents a precondition of the loop w: {while
(t) {b}} and relation R is an invariant relation thereof, then R̂A is a loop invariant of
the loop w

We consider a typical precondition of this factorial loop, namely: A = {(s, s′)|n =
n0 ∧ f = 1 ∧ k = 1}, and we compute the resulting loop invariant.

R̂ A

= {inverting R, substituting A}{
(s, s′)|n′ = n ∧ k ≥ k′ ∧ f

(k − 1)! = f ′

(k′ − 1)!
}

◦ {(s, s′)|n = n0 ∧ f = 1 ∧ k = 1}
= {relational product, substitution}

{(s, s′)|n = n0 ∧ k ≥ 1 ∧ f = (k − 1)!}.
This is clearly a loop invariant for this loop for the precondition A.

Note that by construction, R̂ A is a vector since A is a vector; hence R̂ A is a subset of the
state space; it is in fact a relational representation of a set (the invariant set).
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3.2 The elementary invariant relation

The followingProposition gives a constructive / explicit formula for a trivial invariant relation,
which we call the elementary invariant relation.

Proposition 6 Due to [31]. Given a while loop of the form w: {while (t) {b}} on
space S, the following relation is an invariant relation for w:

E = I ∪ T (T ∩ B)

where T is the vector that represents the loop condition and B is the function of the loop
body.

This relation includes pairs of states (s, s′) such that s = s′, reflecting the case when the
loop does not iterate at all, and pairs of states (s, s′) when the loop iterates at least once, in
which case s satisfies t and s′ is in the range of (T ∩ B).

As an illustration, we consider the factorial loop introduced above, in which we change
the condition from t:(k!=n+1) to t’:(k<n+1):

v: {while (k<n+1) {f=f*k; k=k+1;}}

This change does not affect the loop’s invariant relations. If we apply the formula of
Proposition 4 to the invariant relation R = R0 ∩ R1 ∩ R2, where

R0 = {(s, s′)|n′ = n},
R1 = {(s, s′)|k ≤ k′},
R2 =

{
(s, s′)| f

(k − 1)! = f ′

(k′ − 1)!
}

,

we find the following upper bound of V :

R ∩ T̂ ′

= {Substitutions}{
(s, s′)|k ≤ k′ ∧ n′ = n ∧ f

(k − 1)! = f ′

(k′ − 1)! ∧ k′ ≥ n + 1

}
.

This is not a deterministic relation: unlike in the previous example (where we had k′ = n+1)
we do not have sufficient information to derive the final value of k′. The elementary invariant
relation will help us derive the missing information:

E = I ∪ T ′(T ′ ∩ B)

= {Substitutions}
I ∪ {(s, s′)|k < n + 1 ∧ ∃s′′ : k′′ < n′′ + 1 ∧ n′ = n′′ ∧ k′ = k′′ + 1 ∧ f ′ = f ′′ × k′′}

= {Simplification}
I ∪ {(s, s′)|k < n + 1 ∧ k′ < n′ + 2 ∧ ∃ f ′′ : f ′ = f ′′ × (k′ − 1)}.
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Applying Proposition 4 with the new invariant relation R′ = R ∩ E yields the following
upper bound V ′ for V , where we abbreviate (∃ f ′′ : f ′ = f ′′ × (k − 1)) by mult( f ′, k′ − 1):

V ′ = R0 ∩ R1 ∩ R2 ∩ E ∩ T̂ ′

= {Factoring E}
I ∩ R0 ∩ R1 ∩ R2 ∩ T̂ ′

∪ R0 ∩ R1 ∩ R2 ∩ {(s, s′)|k < n + 1 ∧ k′ < n + 2 ∧ mult( f ′, k′ − 1)} ∩ T̂ ′

= {Substitutions, Simplifications}
I ∩ T ′

∪ {(s, s′)|k < n + 1 ∧ n′ = n ∧ k′ ≥ n + 1

∧ f

(k − 1)! = f ′

(k′ − 1)! ∧ k′ < n + 2 ∧ mult( f ′, k′ − 1)}
= {Simplifications, making mult( f ′, k′ − 1) redundant}

{(s, s′)|k ≥ n + 1 ∧ n′ = n ∧ k′ = k ∧ f ′ = f }
∪
{
(s, s′)|k < n + 1 ∧ n′ = n ∧ k′ = n + 1 ∧ f ′ = n! × f

(k − 1)!
}

.

We see that V ′ is deterministic; on the other hand, the loop converges for all initial states,
hence dom(V ) = S, from which we infer vacuously: dom(V ′) ⊆ dom(V ). By Proposition 1,
we inferV ′ = V ; the elementary invariant relationwas instrumental in enabling us to compute
the function of the loop.

3.3 Generation of invariant relations

The elementary invariant relation is the only invariant relation we get for free, so to speak:
we derive it constructively from the features of the loop, T and B; not surprisingly, it gives
very little (yet sometimes crucial) information about the function of the loop. All the other
invariant relations can only be derived by a meticulous analysis of T and B. The following
Proposition is the basis of our approach to the generation of invariant relations.

Proposition 7 Given a while loop of the form w:{while (t) {b}} on space S, and a
superset B ′ of (T ∩ B), then B ′∗ is an invariant relation for w.

Proof If B ′ is a superset of (T ∩ B), then so is B ′∗; on the other hand, B ′∗ is by construction
reflexive and transitive. ��

To generate invariant relations, it suffices to isolate supersets of the function of the guarded
loop body, andmatch them against recognizer patterns. In particular, if we decompose (T∩B)

as the intersection of several terms, say:

(T ∩ B) = B1 ∩ B2 ∩ B3... ∩ Bn,

then we can compute the reflexive transitive closure (say Ri ) of each Bi then we take their
intersection to find an invariant relation for the loop as: R =⋂n

i=1 Ri .
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3.4 A database of recognizers

In order to automate the process of invariant relation generation, we create a database of
recognizers, where each recognizer is made up of four components:

– Formal Space Declaration, σ . This includes C-like variable declarations and constant
declarations (as needed). These are intended to be matched against actual variable dec-
larations of the loop.

– Condition of Application, α. Some recognizers can be applied only under some condi-
tions, which we formulate in this column.

– Formal Clause, γ . This includes clauses that are formulated in terms of the variables
declared above, and are intended to be matched against the function of the guarded loop
body.

– Invariant Relation Template, ρ. This represents a superset of the reflexive transitive
closure of the formal clause γ (above).

The following pattern-matching algorithm is deployed to generate invariant relations of a
loop, using the database of recognizers:

– For each recognizer in the database,

– For each type-compatible mapping m from the formal variable declarations of the
recognizer to the actual variable declarations of the program,

• We check whether condition m(α) holds (i.e. the recognizer is applicable) and
whether F logically implies m(γ ) (i.e. the function of the guarded loop body
matches the formal clause of the recognizer, in which formal variable names are
replaced by actual variable names).

• In case of success, we generatem(ρ); in other words, we instantiate the invariant
relation template (formulated in formal variable names) with actual variable
names. This gives us an invariant relation of the loop.

Table 1 shows some sample recognizers, for purposes of illustration, where ⊗ represents list
concatenation and also (by abuse of notation) the operation of appending an element to a
list; and Fib() represents the Fibonacci function. We distinguish between 1-recognizers, 2-
recognizers and 3-recognizers, depending on the number of conjuncts in their Formal Clause
component (γ ); in practice we find that we seldom need to match more than three conjuncts
at a time.

As an illustration, we consider the following loop on integer variables i and x , due to
Kincaid et al. [34], where we assume, for simplicity, that i ≥ 0:

while (i!=10 && x<100) {i=i+1; x=x+i;}

The loop condition and the function of the loop are represented by the following relations:

T = {(s, s′)|i �= 10 ∧ x < 100},
B = {(s, s′)|i ′ = i + 1 ∧ x ′ = x + i + 1}.

The elementary invariant relation of this while loop is derived from T and B as follows:
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E

= {Definition}
I ∪ T (T ∩ B)

= {Substitution}
I ∪ {(s, s′)|i �= 10 ∧ x < 100

∧(∃s′′ : i ′′ �= 10 ∧ x ′′ < 100 ∧ i ′ = i ′′ + 1 ∧ x ′ = x ′′ + i ′′ + 1)}
= {Simplification}

I ∪ {(s, s′)|i �= 10 ∧ x < 100 ∧ i ′ �= 11 ∧ x ′ − i ′ < 100

∧(∃s′′ : i ′ = i ′′ + 1 ∧ x ′ = x ′′ + i ′′ + 1)}
= {Removing vacuous clause}

I ∪ {(s, s′)|i �= 10 ∧ x < 100 ∧ i ′ �= 11 ∧ x ′ − i ′ < 100}.
Application of recognizer 1R2 (with a ≡ 1) and recognizer 2R4 (with f (i) ≡ i + 1) to this
loop yields the following invariant relation:

R =
{
(s, s′)|i ≤ i ′ ∧ x − �i−1

k=0k + 1 = x ′ − �i ′−1
k=0 k + 1

}
.

We simplify this relation into:

R =
{
(s, s′)|i ≤ i ′ ∧ x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2

}
.

According to Proposition 3, the following relation W ′ is a superset of (an approximation of)
the function W of the loop: -

W ′

= {Proposition 3}
E ∩ R ∩ T̂

= {Distributing R ∩ T̂ over E}
I ∩ R ∩ T̂

∪
{
(s, s′)|i �= 10 ∧ x < 100 ∧ i ≤ i ′ ∧ x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2
∧ i ′ �= 11

∧x ′ − i ′ < 100 ∧ (i ′ = 10 ∨ x ′ ≥ 100)

}

= {Since R is reflexive, I ∩ R = I ; also, I ∩ T̂ = I ∩ T }
{(s, s′)|(i = 10 ∨ x ≥ 100) ∧ i ′ = i ∧ x ′ = x}
∪
{
(s, s′)|i �= 10 ∧ x < 100 ∧ i ≤ i ′ ∧ x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2
∧ i ′ �= 11

∧x ′ − i ′ < 100 ∧ (i ′ = 10 ∨ x ′ ≥ 100)

}

= {Distributing the clause (i ′ = 10 ∨ x ′ ≥ 100)over the second term}
{(s, s′)|(i = 10 ∨ x ≥ 100) ∧ i ′ = i ∧ x ′ = x}
∪
{
(s, s′)|i �= 10 ∧ x < 100 ∧ i ≤ i ′ ∧ x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2
∧ i ′ �= 11
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∧x ′ − i ′ < 100 ∧ i ′ = 10

}

∪
{
(s, s′)|i �= 10 ∧ x < 100 ∧ i ≤ i ′ ∧ x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2
∧ i ′ �= 11

∧x ′ − i ′ < 100 ∧ x ′ ≥ 100

}

= {Simplifying the second term}
{(s, s′)|(i = 10 ∨ x ≥ 100) ∧ i ′ = i ∧ x ′ = x}
∪
{
(s, s′)|i < 10 ∧ x < 100 ∧ i ′ = 10 ∧ x ′ = x + 55 − i(i + 1)

2
∧ x ′ < 110

}

∪
{
(s, s′)|i �= 10 ∧ x < 100 ∧ i ≤ i ′ ∧ x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2
∧ i ′ �= 11

∧x ′ − i ′ < 100 ∧ x ′ ≥ 100

}

= {Replacing x ′ and i ′ in (x ′ − i ′ < 100) by their expressions}
{(s, s′)|(i = 10 ∨ x ≥ 100) ∧ i ′ = i ∧ x ′ = x}
∪
{
(s, s′)|i < 10 ∧ x < 100 ∧ x <

i(i + 1)

2
+ 45 ∧ i ′ = 10 ∧ x ′ = x + 55 − i(i + 1)

2

}

∪
{
(s, s′)|i �= 10 ∧ x < 100 ∧ i ≤ i ′ ∧ x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2
∧ i ′ �= 11

∧x ′ − i ′ < 100 ∧ x ′ ≥ 100

}

= {The clause (x < 100) is now redundant}
{(s, s′)|(i = 10 ∨ x ≥ 100) ∧ i ′ = i ∧ x ′ = x}
∪
{
(s, s′)|i < 10 ∧ x <

i(i + 1)

2
+ 45 ∧ i ′ = 10 ∧ x ′ = x + 55 − i(i + 1)

2

}

∪
{
(s, s′)|i �= 10 ∧ x < 100 ∧ i ≤ i ′ ∧ i ′ �= 11

∧x − i(i + 1)

2
= x ′ − i ′(i ′ + 1)

2
∧ x ′ − i ′ < 100 ∧ x ′ ≥ 100

}
.

We use the three last clauses of the third term to derive an explicit expression of i ′ and x ′;
to this effect, we replace x ′ by

x − i(i + 1)

2
+ i ′(i ′ + 1)

2

in the inequations x ′ − i ′ < 100 and x ′ ≥ 100, which yields:

x − i(i + 1)

2
+ i ′(i ′ + 1)

2
− i ′ < 100,

x − i(i + 1)

2
+ i ′(i ′ + 1)

2
≥ 100.

Isolating the term in i ′ we rewrite this as:
i ′(i ′ − 1)

2
< 100 − x + i(i + 1)

2
,
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i ′(i ′ + 1)

2
≥ 100 − x + i(i + 1)

2
.

The non-negative integer solution in i ′ of these two inequations is the ceiling of the non-
negative root of the quadratic equation:

i ′(i ′ + 1)

2
= 100 − x + i(i + 1)

2
.

Solving this quadratic equation and taking its ceiling yields the following expression for i ′,
from which we derive the expression of x ′:

i ′ =
⌈√

200.25 − 2x + i(i + 1) − 0.5

⌉
.

x ′ = x + (i ′ − i)(i ′ + i + 1)

2
.

We show briefly that i ≤ i ′ is redundant with this equation of i ′, hence it can be discarded
from the formula:

i ′

= {hypothesis}⌈√
200.25 − 2x + i(i + 1) − 0.5

⌉

≥ {property of ceiling}√
200.25 − 2x + i(i + 1) − 0.5

> {clause x < 100}√
0.25 + i(i + 1) − 0.5

> {quadratic formula}√
(i + 0.5)2 − 0.5

= {simplification}
i .

We rewrite i ′ �= 11 as (i ′ < 11 ∨ i ′ > 11), and decompose the third term into two terms,
which yields after simplification:

W ′ =
{(s, s′)|(i = 10 ∨ x ≥ 100) ∧ i ′ = i ∧ x ′ = x}
∪
{
(s, s′)|i < 10 ∧ x <

i(i + 1)

2
+ 45 ∧ i ′ = 10 ∧ x ′ = x + 55 − i(i + 1)

2

}

∪
{
(s, s′)|i < 10 ∧ 45 + i(i + 1)

2
≤ x < 100

∧i ′ =
⌈√

200.25 − 2x + i(i + 1) − 0.5

⌉
∧ x ′ = x + (i ′ − i)(i ′ + i + 1)

2

}

∪ {(s, s′)|i �= 10 ∧ x < 100 ∧ i ′ > 11

∧i ′ =
⌈√

200.25 − 2x + i(i + 1) − 0.5

⌉
∧ x ′ = x + (i ′ − i)(i ′ + i + 1)

2

}
.
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To increase the reader’s confidence in our results we have run this program by varying i
between 0 and 1000 and x between -990 and 110, and testing its function against an oracle
derived verbatim from the formula of W ′ above; all 1,102,101 tests returned TRUE.

bool oracle(int i, int x, int iP, int xP)
{return ((i==10 || x>=100) && iP==i && xP==x)

|| (i<10 && x<45+(i*(i+1))/2 && iP==10
&& xP==x+55-(i*(i+1))/2)

|| (i<10 && x<100 && x>=45+(i*(i+1))/2
&& iP==ceil(sqrt(200.25-2*x+i*(i+1))-0.5)
&& xP==x+((iP-i)*(iP+i+1))/2)

|| (i!=10 && x<100 && iP>11
&& iP==ceil(sqrt(200.25-2*x+i*(i+1))-0.5)
&& xP==x+((iP-i)*(iP+i+1))/2);}

Table 1 Sample recognizers

ID Formal space, σ Condition, α Formal clause, γ Invariant relation template, ρ

1R1 AnyType x; True x ′ = x x ′ = x

1R2 int i; True i ′ = i + 1 i ≤ i ′

1R3
int x;
const int a

a �= 0 x ′ = x + a
ax ≤ ax ′∧
x mod |a| = x ′ mod |a|

2R0
int x, y;
const int a, b

True
x ′ = x + a
∧y′ = y + b

ay − bx = ay′ − bx ′

2R2 listType v,w Length(v) > 0
v′ = tail(v)∧
w′ = w ⊗ head(v)

v′ ≤ v∧
w ⊗ v = w′ ⊗ v′

2R3
listType v;
int x;
const int a

a �= 0
v′ = tail(v)∧
x ′ = x + a

x + a × length(v)

= x ′ + a × length(v′)

2R4
int f(int i);
int i,x;

i ≥ 0
i ′ = i + 1∧
x ′ = x + f (i)

x − �i−1
k=0 f (k)

= x ′ − �i ′−1
k=0 f (k)

2R5
atype x;
atype f(atype i);
int i;

i ≥ 0
i ′ = i − 1∧
x ′ = f (i)

f i (x) = f i
′
(x ′)

3R1
const int N;
real x, a[N];
int i

N ≥ 0
x ′ = x + a[i]
∧i ′ = i − 1
∧a′ = a

x + �i
k=0a[k]

= x ′ + �i ′
k=0a

′[k]

3R2 int x, y, i True
x ′ = x + y∧
y′ = x∧
i ′ = i + 1

x ′ = x × Fib(i ′ − i + 1)
+y × Fib(i ′ − i)

y′ = x × Fib(i ′ − i)
+y × Fib(|i ′ − i − 1|)
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Fig. 1 Achieving (T ∩ B)∗ ∩ T̂ = R ∩ T̂ does not require R = (T ∩ B)∗

3.5 Condition of sufficiency

Given awhile loopw:{while (t) {b;}} that wewish to analyze, we compute its invari-
ant relation E = I ∪ T (T ∩ B), then we use recognizers such as those of Table 1 to generate
further invariant relations, take their intersection with E , say R, then use Proposition 4 to
derive a superset (approximation) W ′ of the function W of w. As we find more and more
invariant relations and take their intersection, the resulting invariant relations grows smaller
and smaller. The question we ask is: how small does R have to be to ensure that we actually
find the exact functionW . It is tempting to think that in order to derive the function of the loop

(W = (T ∩ B)∗ ∩ T̂ ) by means of the approximation given in Proposition 4 (W ′ = R ∩ T̂ ),
it is necessary to derive the smallest invariant relation (R = (T ∩ B)∗). According to the
following Proposition, this is not necessary.

Proposition 8 Given a while loop w:{while (t) {b;}} on space S and an invariant

relation R of w, the function W of w equals R ∩ T̂ if and only if:

– R ∩ T̂ is deterministic.
– dom(R ∩ T̂ ) ⊆ dom(W ).

Proof Necessity is trivial. For sufficiency, consider that because of the first hypothesis, we

can use Proposition 1, since R ∩ T̂ andW are both deterministic. The conditionW ⊆ R ∩ T̂

stems from Proposition 4; the condition dom(R ∩ T̂ ) ⊆ dom(W ) is given by hypothesis. By

Proposition 1, W = R ∩ T̂ . ��
Henceforth we use W to designate the function of the loop and W ′ to designate the

approximation W ′ = R ∩ T̂ that we can derive from some invariant relation R; we rename
W ′ as W once we ensure that W ′ does satisfy the conditions of Proposition 8.

Given that we are approximating W = (T ∩ B)∗ ∩ T̂ by W ′ = R ∩ T̂ for some invariant
relation R of w, it is tempting to think that we can achieve the condition W = W ′ only
with the invariant relation R = (T ∩ B)∗. But this Proposition makes no mention of such
a condition, and the following (counter-) example, due to [9], shows that we can achieve

W = R ∩ T̂ while R is not equal to (T ∩ B)∗, but is a superset thereof.

– Space, S = {0, 1, 2}.
– Loop Condition, T = {1, 2} × S. Whence, T̂ = S × {0}.
– Loop Body Function, B = {(1, 0), (2, 0)}.
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– Invariant Relation, R = {(0, 0), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
We can easily check:

T ∩ B = {(1, 0), (2, 0)};
whence

(T ∩ B)+ = (T ∩ B),

from which we infer

(T ∩ B)∗ = I ∪ (T ∩ B) = {(0, 0), (1, 0), (1, 1), (2, 0), (2, 2)}.
Taking the intersection with T̂ , we find:

W = (T ∩ B)∗ ∩ T̂ = {(0, 0), (1, 0), (2, 0)}.
Now we consider the approximation W ′ = R ∩ T̂ derived from relation R; first, we must
check that R is indeed an invariant relation. Clearly, it is reflexive; on the other hand, we
verify easily that R2 ⊆ R, hence R is transitive; finally it is also a superset of (T ∩ B), hence
R is an invariant relation. We compute:

W ′ = R ∩ T̂

= {Substitutions}
{(0, 0), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} ∩ {(0, 0), (1, 0), (2, 0)}

= {Inspection}
(T ∩ B)∗ ∩ T̂ .

Hence we have shown on this example that the function of the loop W = (T ∩ B)∗ ∩ T̂ can

be equal to the approximation derived from an invariant relation R, namely W ′ = R ∩ T̂
even though R is not equal to (T ∩ B)∗, but is a superset thereof:

(T ∩ B)∗ = {(0, 0), (1, 0), (1, 1), (2, 0), (2, 2)},
R = {(0, 0), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

Figure1 shows in stark, plain terms why this is hardly surprising: just because two sets have
the same intersection with a third set does not mean they are equal.

The practical implication of this result is that we can compute the function of a while
loop without having to compute the reflexive transitive closure of its guarded loop body; in
other words, we do not need to find the smallest invariant relation of a while loop; rather it
suffices to find a small enough invariant relation R to satisfy the conditions of Proposition 8
(both of which impose upper bounds on R). This suggests that authors that approximate
the function of a loop by computing the transitive closure of its loop body function may be
aiming unnecessarily high, i.e. setting a goal that is unnecessarily difficult to achieve.

4 Recognizers for affine Loops

The success and effectiveness of our approach is contingent on our ability to capture as much
programming and domain knowledge as possible, in as few recognizers as possible. The gist
of our paper is that we can capture the semantics of any number of affine transformations in
while loops with just two recognizers, which we present in this section.
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4.1 A unary recognizer

We consider a while loop w of the form w:{while (t) {b}} and we assume that the
function of its guarded loop body (T ∩ B) is a subset of a relation of the form:

B ′ = {(s, s′)|x ′ = a × x + b ∧ a′ = a ∧ b′ = b},
for some variables x , a and b (or variable x and constants a and b). In the remainder of
this paper, we will refer to a and b as constants, regardless of whether they are declared
as constants or declared as variables but are unmodified by the loop; also, for the sake of
convenience we skip the clauses a′ = a and b′ = b.

Proposition 9 We consider a while loop w of the form w:{while (t) {b}} and we
assume that the function of its guarded loop body (T ∩ B) is a subset of a relation of the
form:

B ′ = {(s, s′)|x ′ = a × x + b},
for some variable x, and constants a and b such that a is different from 0 and 1. Then the
following is an invariant relation for w:

R0 =
{
(s, s′)|fr(log|a|

(
|x ′ + b

a − 1
|)
)

= fr

(
log|a|

(∣∣∣∣x + b

a − 1

∣∣∣∣
))}

,

where fr(x) is the fractional part of x, |x | is the absolute value of x, and loga(x) is the log
base a of x.

Proof Relation R0 is clearly reflexive and transitive. That it is a superset of (T ∩ B) can be
easily verified by considering a pair (s, s′) in (T ∩ B) and proving that it is in R0:

fr

(
log|a|

(∣∣∣∣x ′ + b

a − 1

∣∣∣∣
))

= {replacing x ′ by ax + b, since (s, s′) ∈ T ∩ B}
fr

(
log|a|

(∣∣∣∣ax + b + b

a − 1

∣∣∣∣
))

= {common denominator, simplification}
fr

(
log|a|

(
|a| ×

∣∣∣∣
(
x + b

a − 1

)∣∣∣∣
))

= {property of log|a|}
fr

(
1 + log|a|

(∣∣∣∣x + b

a − 1

∣∣∣∣
))

= {property of f r}
fr

(
log|a|

(∣∣∣∣x + b

a − 1

∣∣∣∣
))

.

Hence (s, s′) is in R0. ��
From this Proposition, we derive the following recognizer:

In order to derive relation R0, we had to assume that a is different from 0 and 1; of course,
if a = 1 then the job is even easier, we simply get:

R′
0 =

{
(s, s′)|fr

( x
b

)
= fr

(
x ′

b

)}
,
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ID Formal Space, σ Formal Clause, γ Condition, α Invariant Relation Template, ρ

1R0
real x;
const real a,b

x ′ = ax + b
a �= 0
∧a �= 1

fr(log|a|(|x + b
a−1 |))

= fr(log|a|(|x ′ + b
a−1 |))

assuming b �= 0. If b = 0 ∧ a �= 1 then relation R0 applies, and if b = 0 ∧ a = 1 then x is
just preserved (x ′ = x).

4.2 A binary recognizer

Now we consider the case where we have two supersets of (T ∩ B) that have an affine form.

Proposition 10 We consider a while loop w of the form w:{while (t) {b}} and we
assume that the function of its guarded loop body (T ∩ B) is a subset of two affine relations
of the form:

B ′ = {(s, s′)|x ′
0 = a0 × x0 + b0},

B ′′ = {(s, s′)|x ′
1 = a1 × x1 + b1},

for some variables x0, x1, and constants a0, a1 and b0, b1 such that a0, a1 are different from
0 and 1. Then the following is an invariant relation for w:

R1 =
{
(s, s′)|log|a0|

(∣∣∣∣x ′
0 + b0

a0 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣x ′

1 + b1
a1 − 1

∣∣∣∣
)

= log|a0|
(∣∣∣∣x0 + b0

a0 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣x1 + b1

a1 − 1

∣∣∣∣
)}

.

Proof It is plain that R1 is reflexive and transitive; it is an equivalence, in fact. To prove
that (T ∩ B) is a subset of R1, we consider a pair (s, s′) in (T ∩ B) and we show that it is
necessarily in R1.
To prove that (s, s′) is in R1, we consider the expression log|a0|(|x ′

0 + b0
a0−1 |) − log|a1|(|x ′

1 +
b1

a1−1 |) and show that it is equal to: log|a0|(|x0 + b0
a0−1 |) − log|a1|(|x1 + b1

a1−1 |).

log|a0|
(∣∣∣∣x ′

0 + b0
a0 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣x ′

1 + b1
a1 − 1

∣∣∣∣
)

= {hypothesis : (s, s′) ∈ (T ∩ B)}
log|a0|

(∣∣∣∣a0 × x0 + b0 + b0
a0 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣a1 × x1 + b1 + b1

a1 − 1

∣∣∣∣
)

= {arithmetic simplifications}
log|a0|

(∣∣∣∣a0 ×
(
x0 + b0

a0 − 1

)∣∣∣∣
)

− log|a1|
(∣∣∣∣a1 ×

(
x1 + b1

a1 − 1

)∣∣∣∣
)

= {property of log}
1 + log|a0|

(∣∣∣∣x0 + b0
a0 − 1

∣∣∣∣
)

− 1 − log|a1|
(∣∣∣∣x1 + b1

a1 − 1

∣∣∣∣
)

= {arithmetic simplification}
log|a0|

(∣∣∣∣x0 + b0
a0 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣x1 + b1

a1 − 1

∣∣∣∣
)

.
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Hence (s, s′) ∈ R1. ��

From this Proposition, we derive the following recognizer:

ID Formal Space, σ Formal Clause, γ Condition, α Invariant Relation Template, ρ

2R1
real x0, x1;
const int
a0,a1,b0,b1

x ′
0 = a0x0 + b0

∧
x ′
1 = a1x1 + b1

a0, a1 �= 0
∧
a0, a1 �= 1

log|a0|(|x0 + b0
a0−1 |)

−log|a1|(|x1 + b1
a1−1 |)

= log|a0|(|x ′
0 + b0

a0−1 |)
−log|a1|(|x ′

1 + b1
a1−1 |)

In order to derive R1, we had to assume that a0 �= 1 and a1 �= 1. If both a0 and a1 are
equal to 1, then we get the following invariant relation:

R′
1 = {(s, s′)|b0x1 − b1x0 = b0x

′
1 − b1x

′
0}.

If only one coefficient is equal to 1 (e.g. a1 = 1) then we get the following equations:

log|a0|
(∣∣∣∣x ′

0 + b0
a0 − 1

∣∣∣∣
)

= i + log|a0|
(∣∣∣∣x0 + b0

a0 − 1

∣∣∣∣
)

,

x ′
1 = x1 + i × b1.

Extracting i from the second equation and replacing it in the first equation, we derive the
following invariant relation:

R′′
1 =

{
(s, s′)|b1 × log|a0|

(∣∣∣∣x ′
0 + b0

a0 − 1

∣∣∣∣
)

− x ′
1 = b1 × log|a0|

(∣∣∣∣x0 + b0
a0 − 1

∣∣∣∣
)

− x1

}
.

This is clearly a reflexive and transitive relation; to check that it is a superset of (T ∩ B),
consider that if we replace x ′

0 by a0x0 +b0 and x ′
1 by x1 +b1 in the expression on the left, we

find b1 × (1+ log|a0|(|x0 + b0
a0−1 |))− x1 − b1, which cancels out to yield b1 × (log|a0|(|x0 +

b0
a0−1 |)) − x1.

The following corollary stems readily from Proposition 10, and is given without proof.

Corollary 1 We consider a while loopw of the form w:{while (t) {b}} and we assume
that the function of its guarded loop body (T ∩ B) is a subset of two affine relations of the
form:

B ′ = {(s, s′)|x ′
0 = a0 × x0 + b0},

B ′′ = {(s, s′)|x ′
1 = a1 × x1 + b1},

for some variables x0, x1, and constants a0, a1 and b0, b1 such that a0, a1 are different from
0 and 1. Then the following equation holds:

log|a0|
(∣∣∣∣x ′

0 + b0
a0 − 1

∣∣∣∣
)

− log|a0|
(∣∣∣∣x0 + b0

a0 − 1

∣∣∣∣
)

= log|a1|
(∣∣∣∣x ′

1 + b1
a1 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣x1 + b1

a1 − 1

∣∣∣∣
)

.
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The following Proposition offers an interesting interpretation of this corollary: The two
sides of this equation are equal because they both represent the number of iterations of the
loop.

Proposition 11 We consider a while loop w of the form w:{while (t) {b}} and we
assume that the function of its guarded loop body (T ∩ B) is a subset of an affine relation of
the form:

B ′ = {(s, s′)|x ′ = a × x + b},
for some variable x, and constants a, b such that a is different from 0 and 1. Then the
expression

log|a|
(∣∣∣∣x ′ + b

a − 1

∣∣∣∣
)

− log|a|
(∣∣∣∣x + b

a − 1

∣∣∣∣
)

represents the number of affine applications of B′ that are needed to derive x ′ from x.

Proof This Proposition can be easily proved by induction on the number of iterations. For
zero iterations we have x ′ = x , hence the formula returns zero. If x ′ is derived from x by n
iterations and x ′′ is derived from x ′ by one more iteration then the formula returns:

log|a|
(∣∣∣∣x ′′ + b

a − 1

∣∣∣∣
)

− log|a|
(∣∣∣∣x + b

a − 1

∣∣∣∣
)

= {by hypothesis : x ′′ = ax ′ + b}
log|a|

(∣∣∣∣ax ′ + b + b

a − 1

∣∣∣∣
)

− log|a|
(∣∣∣∣x + b

a − 1

∣∣∣∣
)

= {reduction to common denominator, simplification}
log|a|

(
|a| ×

∣∣∣∣x ′ + b

a − 1

∣∣∣∣
)

− log|a|
(∣∣∣∣x + b

a − 1

∣∣∣∣
)

= {property oflog()}
1 + log|a|

(∣∣∣∣x ′ + b

a − 1

∣∣∣∣
)

− log|a|
(∣∣∣∣x + b

a − 1

∣∣∣∣
)

= {induction hypothesis}
n + 1. ��

Hence Corollary 1 is merely saying that the affine transformations B ′ and B ′′ are applied the
same number of times, since each side of the equation is counting the number of times that
the corresponding affine transformation is applied.

4.3 Extensions

In this section we consider two extensions of the results of the previous sections: first, the
case of an arbitrary number of affine transformations; second, the case of a transformation
of the form X = AX + B, where X and B are vectors of arbitrary size (say, N ) and A is a
diagonalisable matrix of size N × N .

Proposition 12 We consider a while loop w of the form w:{while (t) {b}} and we
assume that the function of its guarded loop body (T ∩ B) is a subset of N affine relations
of the form:

Bi = {(s, s′)|x ′
i = ai × xi + bi },
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where 0 ≤ i ≤ N − 1, for some variables xi , and real constants ai and bi such that ai are
different from 0 and 1. Then the following is an invariant relation for w:

R =
N−1⋂
i=0

Ri ,

where

R0 =
{
(s, s′)|fr

(
log|a0|

(∣∣∣∣x ′
0 + b0

a0 − 1

∣∣∣∣
))

= fr

(
log|a0|

(∣∣∣∣x0 + b0
a0 − 1

∣∣∣∣
))}

,

and for 1 ≤ i ≤ N − 1,

Ri =
{
(s, s′)|log|a0|

(∣∣∣∣x ′
0 + b0

a0 − 1

∣∣∣∣
)

− log|ai |
(∣∣∣∣x ′

i + bi
ai − 1

∣∣∣∣
)

= log|a0|
(∣∣∣∣x + b0

a0 − 1

∣∣∣∣
)

− log|ai |
(∣∣∣∣xi + bi

ai − 1

∣∣∣∣
)}

.

Proof This invariant relation is obtained by applying Proposition 9 to B0 and Proposition 10
to (B0, Bi ), for 1 ≤ i ≤ N − 1. ��

As a generalization of Proposition 12, we want to derive invariant relations for while loops
whose loop body has a function that is a subset of

{(s, s′)|X ′ = A × X + B}
for some vector X of size N , some matrix A of size N × N , and some vector B of size N .

Proposition 13 We consider a while loop w of the form w:{while (t) {b}} and we
assume that the function of the guarded loop body of w is a subset of a relation of the form
{(s, s′)|X ′ = A × X + B} for some vector X of size N, some matrix A of size N × N, and
some vector B of size N. We further assume that A is diagonalizable, i.e. A = V−1 × D×V
for some invertible matrix V , and that all the (diagonal) entries of D are real values different
from 0 and 1. Then the following is an invariant relation for w:

R =
N⋂
i=0

Ri ,

where

R0 =
{
(s, s′)|fr

(
log|a0|

(∣∣∣∣y′
0 + b0

a0 − 1

∣∣∣∣
))

= fr

(
log|a0|

(∣∣∣∣y0 + b0
a0 − 1

∣∣∣∣
))}

,

and for 1 ≤ i ≤ N,

Ri =
{
(s, s′)|log|a0|

(∣∣∣∣y′
0 + b0

a0 − 1

∣∣∣∣
)

− log|ai |
(∣∣∣∣y′

i + bi
ai − 1

∣∣∣∣
)

= log|a0|
(∣∣∣∣y0 + b0

a0 − 1

∣∣∣∣
)

− log|ai |
(∣∣∣∣yi + bi

ai − 1

∣∣∣∣
)}

,

where vector Y =

⎛
⎜⎜⎝

y0
y1
..

yN−1

⎞
⎟⎟⎠ is defined by the equation Y = V × X.

123



Invariant relations for affine loops

Proof The equation X ′ = A × X + B can be rewritten as X ′ = V−1 × D × V × X + B.
Multiplying by V on the left and right and simplifying, we get V ×X ′ = D×V ×X+V ×B;
by making the change of variables Y = V × X , Y ′ = V × X ′ and C = V × B, we find an
equation of the form Y ′ = D × Y + C , which satisfies the conditions of Proposition 12; the
proposed loop invariant stems from the application of this Proposition. ��

If a matrix is not diagonalisable then we can always apply R0 and R1 to its diagonal parts,
i.e. transformations of the form x ′ = ax + b; for other transformations, we have to apply
other recognizers, as appropriate; for illustration, see the example of Sect. 6.2.

5 Minimality properties

To say that some relation R is an invariant relation for some while loop w: {while (t)
{b;}} is not big news; the universal relation L is reflexive and transitive, and it is a superset
of any loop body function, but it does not tell us much of anything about any loop; what is
important about an invariant relation is that it is small enough to give us useful information
about the semantic properties of the loop. Proposition 8 provides the condition under which
an invariant relation is small enough to derive the exact function of a loop. In this section,
we show that the invariant relations given in Propositions 9 and 10 do satisfy the conditions
of Proposition 8, hence are sufficient to compute the exact function of an affine loop.

5.1 One affine transformation

In this subsection we resolve to prove that the invariant relation given in Proposition 9 is
sufficient to compute the function of an affine loop on a single variable; since we cannot
prove this result for an arbitrary loop guard, we do so for a sample loop guard that tests the
condition (x<c) for some constant c. We consider the following affine loop on variable x ,
where a, b and c are constants, and we assume that a is different from 0 and 1:

w0: while (x<c) {x=a*x+b;}.

Note that if this loop is executed on x = −b
a−1 where −b

a−1 < c then it does not terminate,
since:

a × −b

a − 1
+ b = −ab + ab − b

a − 1
= −b

a − 1
.

In other words, if this program is executed on an initial value of x equal to −b
a−1 that is less

than c, it will remain less than c irrespective of the number of iterations, hence this loop
would fail to terminate. Since x cannot be equal to −b

a−1 , we must choose it either greater

than, or less than −b
a−1 . We assume, for the sake of argument, that a is greater than 1, then

we find that x < −b
a−1 is equivalent to ax + b < x . In other words, if we start with x less

than −b
a−1 and less than c, then each iteration of the loop brings x farther from c, hence the

loop will fail to terminate; if x = −b
a−1 is greater than c, then the loop terminates vacuously

without changing x .
The following Proposition provides that if a is greater than 1, then the invariant relation

of Proposition 9 enables us to compute the function of the loop above; cases when a is not
greater than 1 are discussed subsequently.
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Proposition 14 We consider the following affine loop on variable x, where a, b and c are
constants, and we assume that a is greater than 1:

w0: while (x<c) {x=a*x+b;}.

Then the function W0 of w0 is:

W0 = E ∩ R0 ∩ T̂ .

Proof We use Proposition 8.

Proof that W ′
0 is deterministic. For the loop to terminate, we need ax +b > x , or x > − b

a−1 .

Interestingly, this means that (x + b
a−1 ) is positive, hence we can remove the absolute values

from the formula of R0. The relations R0 and the elementary invariant relation E imply

x ′ + b

a − 1
= aN

(
x + b

a − 1

)
, and (1)

x ′ ≥ c,
x ′ − b

a
< c (2)

respectively. From (1), we get x ′ = xaN + (baN − b)/(a − 1). Substituting this in (2), we
have

x ′ ≥ c ⇒ xaN + baN − b

a − 1
≥ c

⇒ xaN (a − 1) + baN − b ≥ c(a − 1)

⇒ aN ≥ c(a − 1) + b

x(a − 1) + b
≡ F

⇒ N ≥ loga F,

and

x ′ − b

a
< c ⇒ xaN + baN − b

a − 1
< ac + b

⇒ aN [x(a − 1) + b) < (ac + b)(a − 1) + b = a(c(a − 1) + b)

⇒ aN < a · (c(a − 1) + b)

x(a − 1) + b
= aF

⇒ N < 1 + loga F .

Hence, with constants a, b, c, we have N a function of x , specifically N = ceiling(loga F).
With N , x ′ can be obtained with (1). Hence W ′

0 is deterministic.

Proof of dom(W ′
0) ⊆ dom(W0). W ′

0 is written as:

W ′
0 = {(x, x ′)|x ≥ c ∧ x ′ = x}

∪
{
(x, x ′)| −b

a − 1
< x < c ∧ x ′ = a

�loga
(
c(a−1)+b
x(a−1)+b

)
� ×

(
x + b

a − 1

)
− b

a − 1

}
.

The domain of W ′
0 can then be written as:

dom(W ′
0) =

{
x |x ≥ c ∨ x < c ∧ x >

−b

a − 1

}
.
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If x ≥ c then clearly the loop terminates vacuously; if x is less than c but strictly greater
than −b

a−1 then, per the discussion above, each iteration of the loop increases x , eventually
bringing it over the value of c. ��

If 0 < a < 1, then, without the constraint x < c, x will converge to −b
a−1 , regardless

of the starting value. Thus, if c is less than −b
a−1 , the loop will terminate in N steps, with

N = ceiling(loga F), following arguments similar to the above.
In the case (a < 1), we note that N is also a function of x . If c > x > −b

a−1 , then N is the

even number between log|a| F (inclusive) and 2+ log|a| F (exclusive), whereas if x < −b
a−1 ,

N is the maximum of 1 and the odd number between log|a| |F | (inclusive) and 2+ log|a| |F |
(exclusive).

For −1 < a < 0, the sequence x = ax + b without constraints will also converge to b
1−a ,

like for 0 < a < 1. However, unlike for 0 < a < 1, for −1 < a < 0, the sequence oscillates
around the limit b

1−a . Let’s call this limit X . So, if x > X , then either the loop doesn’t iterate
(if c ≤ x), or it fails to converge (if c > x). On the other hand, (if x < X ), then either the
loop doesn’t iterate (if c ≤ x), or the loop fails to converge, (if c ≥ ax + b) or it terminates
after one iteration (if x < c < ax + b).

5.2 Two affine transformations

In this section, we consider a loop with two affine transformations.

Proposition 15 We consider the following affine loop on variables x0, x1, where a0, a1, b0,
b1 and c are constants, and we assume that a0 is greater than 1:

w1: while (x0<c){x0=a0*x0+b0; x1=a1*x1+b1;}.

Then the function W1 of w1 is:

W1 = E ∩ R0 ∩ R1 ∩ T̂ ,

where E is the elementary invariant relation (Proposition 6) and R0 is the unary invariant
relation of affine loops (Proposition 9).

Proof We letW ′
1 be defined as:W

′
1 = E∩R0∩R1∩ T̂ , and wemust prove thatW1 = W ′

1.We
proceed the same way as for the proof of Proposition 14. The proofs thatW1 is a subset ofW ′

1
and the proof that dom(W ′

1) is a subset of dom(W1) is the same as the proof of Proposition 14,
since R1 is an invariant relation, and the termination of this loop is dependent exclusively
on x0. To prove that W ′

1 is deterministic, we must prove that the equations of W ′
1 uniquely

determine the values of x ′
0 and x ′

1. For x
′
0, the proof is the same as in Proposition 14. For x ′

1,
we consider the equation that stems from relation R1:

log|a0|
(∣∣∣∣x ′

0 + b0
a0 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣x ′

1 + b1
a1 − 1

∣∣∣∣
)

= log|a0|
(∣∣∣∣x0 + b0

a0 − 1

∣∣∣∣
)

− log|a1|
(∣∣∣∣x1 + b1

a1 − 1

∣∣∣∣
)

.
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From this equation we derive:

log|a1|
(∣∣∣∣x ′

1 + b1
a1 − 1

∣∣∣∣
)

= log|a0|
(∣∣∣∣x ′

0 + b0
a0 − 1

∣∣∣∣
)

−log|a0|
(∣∣∣∣x0 + b0

a0 − 1

∣∣∣∣
)

+ log|a1|
(∣∣∣∣x1 + b1

a1 − 1

∣∣∣∣
)

.

From this equation we can extract the value of
(∣∣∣∣x ′

1 + b1
a1 − 1

∣∣∣∣
)

.

If we can determine the sign of (x ′
1 + b1

a1−1 ), then we can remove the absolute value from the
equation above and uniquely determine x ′

1. To this effect, we consider the equation:(
x ′
1 + b1

a1 − 1

)
= aN1

(
x1 + b1

a1 − 1

)
.

If a1 is positive then (x ′
1 + b1

a1−1 ) has the same sign as (x1 + b1
a1−1 ); and if a1 is negative then

whether (x ′
1 + b1

a1−1 ) and (x1 + b1
a1−1 ) have the same sign depends on the parity of N . In all

cases, the absolute value can be removed and the equation can be solved in x ′
1. Hence W

′
1 is

deterministic. ��

5.3 Multiple affine transformations

If we have more than two affine transformations, then we can apply R0 to the variable that
appears in the loop condition (let it be called the pivot variable), and we apply R1 to the pair
made up of the pivot and every non-pivot variable.

Proposition 16 We consider a while loop w of the form

wN: {while (x0<c)
{x0 = a0*x0+b0;
x1 = a1*x1+b1;
... ... ...
xN = aN*xN+bN;}}

where a0 is greater than 1. Then the function WN of wN is:

W1 = E ∩
(

N⋂
i=0

Ri

)
∩ T̂ ,

where

R0 =
{
(s, s′)|fr

(
log|a0|

(∣∣∣∣x ′
0 + b0

a0 − 1

∣∣∣∣
))

= fr

(
log|a0|

(∣∣∣∣x0 + b0
a0 − 1

∣∣∣∣
))}

,

and for 1 ≤ i ≤ N,

Ri =
{
(s, s′)|log|a0|

(∣∣∣∣x ′
0 + b0

a0 − 1

∣∣∣∣
)

− log|ai |
(∣∣∣∣x ′

i + bi
ai − 1

∣∣∣∣
)

= log|a0|
(∣∣∣∣x + b0

a0 − 1

∣∣∣∣
)

− log|ai |
(∣∣∣∣xi + bi

ai − 1

∣∣∣∣
)}

.
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Proof This proof is the same as that of Proposition 15, except that the invariant relation of
Proposition 10 is applied to each pair of variables (x0, xi ), for 1 ≤ i ≤ N . ��

6 Illustrative examples

We present three illustrative examples in this section: The first example will merely illustrate
Propositions 9 and 10 bymeans of a loop that has two affine assignments; the second example
serves to illustrate that the proposed results apply to loops that are not made up exclusively
of affine assignments, but may include other types of instructions as well; the third example
illustrates Propositions 12 and 13.

6.1 Two linear statements

We consider the following program on float variables x , y:

float x, y; // we assume x and y non-negative
p: {x=0; y=90;

w: while (x<200) {x=5*x+3; y=3*y+5;}}

We propose to compute the function of w, the function of p, and an invariant assertion
(loop invariant) ofw. According to Propositions 9 and 10, the following are invariant relations
for w:

R0 =
{
(s, s′)|fr

(
log5

(∣∣∣∣x ′ + 3

4

∣∣∣∣
))

= fr

(
log5

(∣∣∣∣x + 3

4

∣∣∣∣
))}

,

R1 =
{
(s, s′)|log5

(∣∣∣∣x ′ + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y′ + 5

2

∣∣∣∣
)

= log5

(∣∣∣∣x + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y + 5

2

∣∣∣∣
)}

.

Because x and y are non-negative, we also have the following invariant relation:

R2 = {(s, s′)|x ≤ x ′ ∧ y ≤ y′}.
Finally, we use the elementary invariant relation:

E = I ∪ {(s, s′)|x < 200 ∧ x ′ < 1003}.
Adopting the invariant relation R = R0 ∩ R1 ∩ R2 ∩ E and applying Proposition 3, we find:

W = {(s, s′)|x ≥ 200 ∧ s′ = s}
∪
{
(s, s′)|x < 200 ∧ x ′ = 5

�log5
(
200.75
x+3/4

)
�
(
x + 3

4

)
− 3

4
∧

y′ = 3
�log5

(
200.75
x+3/4

)
�
(
y + 5

2

)
− 5

2

}
.

The function of program p can be computed by replacing x and y by their initial values in
W , which yields:

P = {(s, s′)|0 ≥ 200 ∧ s′ = s}

∪

⎧⎪⎨
⎪⎩

(s, s′)|0 < 200 ∧ x ′ = 5

⌈
log5

(
200.75
0+3/4

)⌉ (
0 + 3

4

)
− 3

4
∧
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y′ = 3

⌈
log5

(
200.75
0+3/4

)⌉ (
90 + 5

2

)
− 5

2

⎫⎪⎬
⎪⎭

= {the first term is empty, and 0 < 200 is a tautology}{
(s, s′)|x ′ = 54

(
3

4

)
− 3

4
∧ y′ = 34

(
90 + 5

2

)
− 5

2

}

= {arithmetic}
{(s, s′)|x ′ = 468 ∧ y′ = 7490}.

The same invariant relation R = R0 ∩ R1 ∩ R2 ∩ E can be used to generate a loop invariant
for w, using Proposition 5 with precondition A = {(s, s′)|x = 0 ∧ y = 90}. According to
this Proposition, we derive a loop invariant (in the form of a vector) as:

V = R̂ A

= {substitution}{
(s, s′)|fr

(
log5

(∣∣∣∣x + 3

4

∣∣∣∣
))

= fr

(
log5

(∣∣∣∣x ′ + 3

4

∣∣∣∣
))

∧

log5

(∣∣∣∣x + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y + 5

2

∣∣∣∣
)

= log5

(∣∣∣∣x ′ + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y′ + 5

2

∣∣∣∣
)

∧
x ≥ x ′ ∧ y ≥ y′ ∧ ((x = x ′ ∧ y = y′) ∨ (x ′ < 200 ∧ x < 1003))

}

◦{(s, s′)|x = 0 ∧ y = 90}
= {performing the product, simplifying}{

(s, s′)|fr
(
log5

(∣∣∣∣x + 3

4

∣∣∣∣
))

= fr

(
log5

(
3

4

))
∧

log5

(∣∣∣∣x + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y + 5

2

∣∣∣∣
)

= log5

(
3

4

)
− log3

(
90 + 5

2

)
∧

x ≥ 0 ∧ y ≥ 90 ∧ ((x = 0 ∧ y = 90) ∨ (x < 1003))} .

Table 2 (transcribed from an excel file) bears out all the clauses of this loop invariant:
its columns represent, respectively, the ordinal of the iteration, then the values of x , y,
log5(x + 3

4 ), fr(log5(x + 3
4 )), log3(y + 5

2 ), fr(log3(y + 5
2 )), and log3(y + 5

2 ) − log5(x + 3
4 ).

The invariance of R0 can be observed in the columns of fr(log5(x + 3
4 )) and fr(log3(y+ 5

2 ));
the invariance of R1 can be observed in the column of log3(y+ 5

2 )−log5(x+ 3
4 ).We also note

that the last row of columns x and y show the values indicated by function P , thereby further
bearing out the correctness of our calculations. To further enhance the reader’s confidence,
we have executed ten thousand versions of this loop, by varying the initial values of x and
y from 1 to 100, and tested the invariants at each iteration; all tests of the loop invariant
returned true.

For further illustration, we consider four versions of this small program, by varying the
initial values of x and y as well as the coefficients of the affine transformations; the results
of our analysis are summarized in Tables 3, 4, 5 and 6. These tables are all transcribed from
Excel (©Microsoft) files; their columns represent, respectively:

C1: The ordinal of the iteration (the number of times that the affine transformation has been
applied),

C2: Variable x .
C3: Variable y.
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Table 2 Invariant relation highlights

Iter. ord. x y log5(x + 3
4 ) f r (log5(x + 3

4 )) log3(y + 5
2 ) f r (log3(y + 5

2 )) log3(y + 5
2 ) −

log5(x + 3
4 )

0 0 90 − 0.1787469 0.821253078 4.120842895 0.120842895 4.29959

1 3 275 0.8212531 0.821253078 5.120842895 0.120842895 4.29959

2 18 830 1.8212531 0.821253078 6.120842895 0.120842895 4.29959

3 93 2495 2.8212531 0.821253078 7.120842895 0.120842895 4.29959

4 468 7490 3.8212531 0.821253078 8.120842895 0.120842895 4.29959

Table 3 {x=0;y=50; while(t) {x=5*x+3;y=3*y+5;}}

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Iter.
ord.

x y log|a|
(|x + b

a−1 |)
log|c|
(|y + d

c−1 |)
fr(C4) fr(C5) C4 − C5 C4−

C4 (x0)
C5−
C5 (x0)

0 0 50 − 0.178746922 3.605287516 0.821253078 0.605287516 −3.784034438 0 0

1 3 155 0.821253078 4.605287516 0.821253078 0.605287516 −3.784034438 1 1

2 18 470 1.821253078 5.605287516 0.821253078 0.605287516 −3.784034438 2 2

3 93 1415 2.821253078 6.605287516 0.821253078 0.605287516 −3.784034438 3 3

4 468 4250 3.821253078 7.605287516 0.821253078 0.605287516 −3.784034438 4 4

5 2343 12,755 4.821253078 8.605287516 0.821253078 0.605287516 −3.784034438 5 5

6 11,718 38,270 5.821253078 9.605287516 0.821253078 0.605287516 −3.784034438 6 6

C4: The value of log|a|(|x + b
a−1 |).

C5: The value of log|c|(|y + d
c−1 |).

C6: The value of fr(log|a|(|x + b
a−1 |)).

C7: The value of fr(log|c|(|y + d
c−1 |)).

C8: The value of log|a|(|x + b
a−1 |) − log|c|(|y + d

c−1 |).
C9: The value of log|a|(|x + b

a−1 |) log|a|(|x0 + b
a−1 |), where x0 is the initial value of x .

C10: The value of log|c|(|y + d
c−1 |) log|c|(|y0 + d

c−1 |), where y0 is the initial value of y.

These tables bear out the results of Sect. 4:

– Proposition 9 is borne out by the fact that columns C6 and C7 are uniform.
– Proposition 10 is borne out by the fact that column C8 is uniform.
– Corollary 1 is borne out by the fact that columns C9 and C10 are identical.
– Proposition 11 is borne out by the fact that columns C9 and C10 are identical to column

C1.

6.2 A hybrid loop

In this section we generate the invariant relation of a loop whose loop body function includes
affine transformations to which R0 and R1 can be applied, alongside other transformations
for which we apply other recognizers. We consider the following loop on space S defined by
float variables x , y, z and w:
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Table 4 {x=-40;y=50; while(t){x=5*x+3;y=3*y+5;}}

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Iter.
ord.

x y log|a| (|x + b
a−1 |) log|c| (|y + d

c−1 |) fr(C4) fr(C5) C4 − C5 C4−
C4 (x0)

C5−
C5 (x0)

0 −40 50 2.28026904 3.605287516 0.28026904 0.605287516−1.325018476 0 0

1 −197 155 3.28026904 4.605287516 0.28026904 0.605287516−1.325018476 1 1

2 −982 470 4.28026904 5.605287516 0.28026904 0.605287516−1.325018476 2 2

3 −4907 1415 5.28026904 6.605287516 0.28026904 0.605287516−1.325018476 3 3

4 −24,532 4250 6.28026904 7.605287516 0.28026904 0.605287516−1.325018476 4 4

5 −122,657 12,755 7.28026904 8.605287516 0.28026904 0.605287516−1.325018476 5 5

6 −613,282 38,270 8.28026904 9.605287516 0.28026904 0.605287516−1.325018476 6 6

Table 5 {x=-40;y=50; while(t){x=-5*x+3;y=3*y+5;}}

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Iter.
ord.

x y log|a|
(|x + b

a−1 |)
log|c|
(|y + d

c−1 |)
fr(C4) fr(C5) C4 − C5 C4−

C4 (x0)
C5−
C5 (x0)

0 −40 50 2.29974822 3.605287516 0.29974822 0.605287516 −1.305539296 0 0

1 203 155 3.29974822 4.605287516 0.29974822 0.605287516 −1.305539296 1 1

2 −1012 470 4.29974822 5.605287516 0.29974822 0.605287516 −1.305539296 2 2

3 5063 1415 5.29974822 6.605287516 0.29974822 0.605287516 −1.305539296 3 3

4 −25,312 4250 6.29974822 7.605287516 0.29974822 0.605287516 −1.305539296 4 4

5 126,563 12,755 7.29974822 8.605287516 0.29974822 0.605287516 −1.305539296 5 5

6 −632,812 38,270 8.29974822 9.605287516 0.29974822 0.605287516 −1.305539296 6 6

Table 6 {x=-40;y=50;while(t){x=-5*x+3;y=-3*y+5;}}

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Iter.
ord.

x y log|a|
(|x + b

a−1 |)
log|c|
(|y + d

c−1 |)
fr(C4) fr(C5) C4 − C5 C4−

C4 (x0)
C5−C5
(x0)

0 −40 50 2.29974822 3.537831533 0.29974822 0.537831533 −1.238083313 0 0

1 203 −145 3.29974822 4.537831533 0.29974822 0.537831533 −1.238083313 1 1

2 −1012 440 4.29974822 5.537831533 0.29974822 0.537831533 −1.238083313 2 2

3 5063 −1315 5.29974822 6.537831533 0.29974822 0.537831533 −1.238083313 3 3

4 −25,312 3950 6.29974822 7.537831533 0.29974822 0.537831533 −1.238083313 4 4

5 126,563 −11,845 7.29974822 8.537831533 0.29974822 0.537831533 −1.238083313 5 5

6 −632,812 35,540 8.29974822 9.537831533 0.29974822 0.537831533 −1.238083313 6 6

while (x<y)
{x=5*x+3; y=3*y+5; w=3*z+w; z=z+6;}

We define the following supersets of the guarded loop body:

– B0 = {(s, s′)|x ′ = 5 × x + 3}.
– B1 = {(s, s′)|y′ = 3 × y + 5}.
– B2 = {(s, s′)|w′ = 3 × z + w}.
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– B3 = {(s, s′)|z′ = z + 6}.
Application of Proposition 9 to B0 yields the following invariant relation:

R0 =
{
(s, s′)|fr

(
log5

(∣∣∣∣x + 3

4

∣∣∣∣
))

= fr

(
log5

(∣∣∣∣x ′ + 3

4

∣∣∣∣
))}

.

Application of Proposition 10 to (B0, B1) yields the following invariant relation:

R1 =
{
(s, s′)|log5

(∣∣∣∣x + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y + 5

2

∣∣∣∣
)

= log5

(∣∣∣∣x ′ + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y′ + 5

2

∣∣∣∣
)}

.

In [17] Ghardallou presents a recognizer (recognizer 2R2, page 119) which, when applied to
(B2, B3), yields the following invariant relation:

R2 =
{
(s, s′)|w − 3z(z − 6)

12
= w′ − 3z′(z′ − 6)

12

}
.

In [17] Ghardallou presents a recognizer (recognizer 2R4, page 119) which, when applied to
(B0, B3), yields the following invariant relation

R3 =
{

(s, s′)|4x + 3

5
z
6

= 4x ′ + 3

5
z′
6

}
.

Recognizer 1R2 (Table 1) applied to B3 yields the following invariant relation:

R4 = {(s, s′)|z ≤ z′ ∧ z mod 6 = z′ mod 6}.
We further introduce the elementary invariant relation:

E = I ∪
{
(s, s′)|x < y ∧ x ′ − 3

5
<

y′ − 5

3

}
.

The invariant relation we generate for this loop is the intersection of all these relations:

R = R0 ∩ R1 ∩ R2 ∩ R3 ∩ R4 ∩ E .

From this invariant relation we derive a loop invariant for initial state s0 = 〈x0, y0, z0, w0〉:

fr

(
log5

(
|x0 + 3

4
|
))

= fr

(
log5

(
|x + 3

4
|
))

∧ 4x0 + 3

5
z0
6

= 4x + 3

5
z
6

∧log5
(∣∣∣∣x0 + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y0 + 5

2

∣∣∣∣
)

= log5

(∣∣∣∣x + 3

4

∣∣∣∣
)

− log3

(∣∣∣∣y + 5

2

∣∣∣∣
)

∧w0 − 3z0(z0 − 6)

12
= w − 3z(z − 6)

12
∧ z0 ≤ z ∧ z mod 6 = z0 mod 6

∧
(

(x = x0 ∧ y = y0 ∧ z = z0 ∧ w = w0) ∨
(
x0 < y0 ∧ x − 3

5
<

y − 5

3

))
.

To increase the reader’s confidence in this result, we test this loop invariant repeatedly by
varying the initial values of the program variables (x0, y0, z0, w0); all the tests (for all the
initial conditions and all the iterations of each initial condition, a total of 650 000 calls to the
loop invariant) return true.

For the sake of comparison, we tried to run several published loop invariant generation
tools on the same loop, to compare their results with ours.
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– Aligator. When we run Aligator [37] on the same program, it declares that there no
P-solvable solutions to this search, and returns no result, because it searches for loop
invariants as polynomials.

– Daikon. Whereas our loop invariants can be parameterized in terms of the initial state,
Daikon requires that we specify the initial values of the program variables. We initial-
ize the program variables as follows: {x=0;y=90;z=0;w=1;}. Daikon returns the
following loop invariant:

x < y ∧ x �= w ∧ y > z ∧ y > w ∧ z �= w.

Note that the first conjunct (x < y) should not be part of the loop invariant, since it is
the loop condition.

– Sting. When we run Sting [54] on this loop, with the same initialization as above, we
find:

x ≤ 1003 ∧ y ≥ 90 ∧ −185x + 403y ≥ 36270.

Multiple attempts to run other tools such as InvGen [23], ESMBC [15], and Dynamate [16]
have failed.

6.3 Matrix transformation

In this section we briefly present an example that illustrates the application of Propositions 12
and 13: We consider a loop whose space S is defined by a vector X of size 4, whose body
performs a transformation of the form X ′ = A × X + B where B is a vector of size 4 and A
is a diagonalisable 4× 4 matrix whose diagonal form has coefficients that are different from
0 and 1. Specifically, we let A and B be defined as follows:

A =

⎛
⎜⎜⎝

0.634762 0.0347619 −0.0380953 0.127143
0.177143 0.577143 0.142857 −0.0342857

−0.0919048 0.108095 0.795238 0.0871429
0.211905 0.0119048 0.104762 0.692857

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

−3
5

−4
6

⎞
⎟⎟⎠ .

We find that A can be written as A = V−1 × D × V , where:

V =

⎛
⎜⎜⎝

5/12 −1/12 −1/3 1/4
−5/14 1/7 −1/7 3/14
−1/4 −1/4 0 1/4
4/21 4/21 10/21 2/7

⎞
⎟⎟⎠ D =

⎛
⎜⎜⎝
0.8 0 0 0
0 0.4 0 0
0 0 0.6 0
0 0 0 0.9

⎞
⎟⎟⎠ .

The product of V by B yields the following vector:

C =

⎛
⎜⎜⎝

1.16667
3.64286

1
0.190476

⎞
⎟⎟⎠ .

According to Proposition 13, the following is an invariant relation of this loop:

R =
3⋂

i=0

Ri ,
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where

R0 =
{
(s, s′)|fr

(
logD[0,0]

(∣∣∣∣Y ′[0] + C[0]
D[0, 0] − 1

∣∣∣∣
))

= fr

(
logD[0,0]

(∣∣∣∣Y [0] + C[0]
D[0, 0] − 1

∣∣∣∣
))}

,

and for 1 ≤ i ≤ 3,

Ri =
{
(s, s′)|logD[0,0]

(∣∣∣∣Y ′[0] + C[0]
D[0, 0] − 1

∣∣∣∣
)

− logD[i,i]
(∣∣∣∣Y ′[i] + C[i]

D[i, i] − 1

∣∣∣∣
)

= logD[0,0]
(∣∣∣∣Y [0] + C[0]

D[0, 0] − 1

∣∣∣∣
)

− logD[i,i]
(∣∣∣∣Y [i] + C[i]

D[i, i] − 1

∣∣∣∣
)}

where Y = V × X , Y ′ = V × X ′ and C = V × B. We spare the reader the full expression
of the loop invariant that can be generated from this invariant relation for the precondition
X = X0; it can be obtained by replacing Y and Y ′ by their expressions as a function of X
and X ′ in the formulas of R; then we replace X by X0 (the initial state) and X ′ by X (the
current state); this yields a unary predicate in X , where X0 represents the initial state (as a
parameter of the loop invariant).

7 Conclusion

7.1 Summary

This work is part of a broader effort to derive the function of a C-like program through static
analysis of its source code. To this effect, we map the source code onto an abstract syntax
tree (AST) using a standard language parser; then we perform a recursive descent on the AST
to derive an equation between the initial state and the final state of the program written in
the syntax of a symbolic equation solver (specifically: Mathematica, ©Wolfram Research);
then we invoke the symbolic equation solver to compute the final state of the program as a
function of the initial state, thereby deriving the function of the program.

Not surprisingly, the most challenging aspect of this effort is the derivation of the function
of iterative constructs, such as while loops, for loops, repeat loops, etc. We capture the
semantics of loops by means of invariant relations, which are relations that hold between
pairs of states (s, s′) such that s′ stems from s by an arbitrary number of iterations of the loop.
To derive the function of a loop, we use a pattern matching algorithm which matches the
clauses of the functional representation of the loop body against prespecified code patterns, for
which we have the corresponding invariant relation pattern. This pattern-matching approach
works best if we can analyze the broader possible set of loops with the smallest possible
set of recognizers; hence we are very interested in recognizers that have a wide scope of
application.

In this paper, we present two recognizers that are sufficient to analyze loops that apply
affine transformations to numeric variables.We find that these two recognizers apply to loops
that include an arbitrary number of affine transformations; also, we find that these recognizers
are sufficient to derive the function of the while loop. Once we have the function of a loop,
we can answer any question one may have about its semantic properties.
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In particular, once we have the function W of a while loop w: {while (t) {b;}},
we can use it to generate the loop invariant

inv(s, s0) ≡ (W (s) = W (s0)),

where s0 is the state of the program before execution of the loop. This loop invariant is
strong enough to prove the correctness of the loop with respect to the following pre/post
specification:

– Pre: s = s0.
– Post: s = W (s0).

7.2 Extensions: branching logic and breaks

The approachwe advocate in this paper for generating invariant relations relies on identifying
supersets of the function of the loop body; this approach works best if we write the function
of the loop body as an intersection of terms, such as:

(T ∩ B) = B0 ∩ B1 ∩ B2... ∩ Bk .

When (T ∩ B) is written in this form, each term of the intersection is a candidate for Propo-
sition 9 and each pair of terms is a candidate for Proposition 10 (if these terms have the form
x ′ = a × x + b and a satisfies the conditions of these Propositions). But we do not get to
decide what form the function of (T ∩ B) has: if the loop body has branching logic (if-then
statements, if-then-else statements, nested while loops) then the outer structure of the loop
body’s function is a union of terms, not an intersection.

For the sake of argument, let us assume that the function of the loop body is the union of
two terms, say

(T ∩ B) = B0 ∪ B1.

Let R0 be a reflexive transitive superset of B0 and R1 be a reflexive transitive superset of
B1; then clearly R = R0 ∪ R1 is a reflexive superset of B0 ∪ B1. Unfortunately, R is not
necessarily transitive, as the union of transitive relations is not necessarily transitive. Hence
the derivation of an invariant relation in such cases is not straightforward: In [50] Mraihi
investigates a number of heuristics for computing or approximating the smallest transitive
superset of transitive relations; we envision to refine and specialize these heuristics for the
case when R0 and R1 stem from affine transformations (B0 and B1).

The derivation of loop invariants becomes significantlymore complexwhenwe are dealing
with break statements in the body of the loop [36]. All the mathematics we have developed
for invariant relations are based on the assumption that a loop has a single exit, controlled by
an explicit loop condition. Having break statements in the loop body means that the function
of the loop is the union of several terms, one term for each break statement. Because such
statements may be located anywhere in the body of a loop, we have to roll the statements
of the loop body for each break statement in such a way that it is the last statement in the
sequence. Also, each break statement is necessarily controlled by a condition (else the loop
exits at the first iteration), hence we need to combine the condition of the break with the
condition of the loop (unless the condition of the loop is TRUE). All of this adds complexity
to the generation of invariant relations.
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7.3 Comparison to related work

Our work partakes on four distinct research efforts, which we briefly discuss in this section:
invariant relations, loop invariants, linear relationship analysis, and compositional recurrence
analysis. We compare our work to these, in turn, below.

Invariant relations The closest thing we could find to invariant relations is the concept of
transition invariants, which are transitive asymmetric supersets of the function of the guarded
loop body [42, 53]; these are used to analyze termination properties of loops. Whereas tran-
sition invariants are transitive and asymmetric, invariant relations are transitive and reflexive;
consequently, no relation can be a transition invariant and an invariant relation since asymme-
try and reflexivity are mutually exclusive. Whereas transition invariants are used to capture
termination properties of loops, invariant relations are used to capture the function of loops.

Loop invariant generation The automated generation of loop invariants has been an active
research area for as long as loop invariants have been known, because this has been the
main bottleneck/ obstacle to the automated correctness verification of software [7, 11, 12,
14, 24–26, 35, 37, 38, 41, 46, 47, 51, 57]; we discuss some of them in Sect. 6.

Linear relationship analysis Another area of research that is related to our work is the gen-
eration of loop invariants for loops that take the form of affine assignments and guards [1,
21, 22, 28]. This line of work, known under the name Linear Relation Analysis, differs from
our approach in several important ways.

– ScopeMost linear relation analysis is applicable to loops whose source code is restricted
to specific syntactic forms of the loop body and the loop condition. In our approach, we
impose no restriction on the loop condition, and we analyze the function of the guarded
loop body, not its syntax. Also, our approach is applicable to any affine part of a loop
body, alongside non-affine parts.

– Application Linear relation analysis usually aims to derive loop invariants in the form of
affine equations and inequations; we have no such restriction, and we aim to capture all
the semantic details of the loop, regardless of their form.

– Goal To the best of our understanding, the goal of linear relation analysis is to verify
conditions that ensure the safe execution of affine loops; our goal is to capture all the
semantic attributes of a loop, including its safe (abort-free) execution [10].

– Method Many of the techniques of linear relation analysis originally relied on abstract
interpretation [6] to derive verification conditions of safety; abstract acceleration was
subsequently used to enhance the precision of the generated formulas [1, 22, 28]. In our
approach, we use a pattern-matching algorithm which attempts to match clauses of the
function of the guarded loop body against code patterns for which we know an invariant
relation template. Of course, this is restrictive, in the sense that we can only handle
loops for which we have the necessary code patterns (recognizers); but we argue in this
paper that with two recognizers (1R0, derived from Proposition 9, and 2R1, derived from
Proposition 10), we can capture the semantics of any scalar affine transformation, as well
as any matrix transformation of the form (X ′ = A × X + B) that can be amenable to
scalar affine transformations.

Compositional recurrence analysis (CRA) Recurrence analysis is used in [12, 25, 26, 35] to
generate loop invariants and in [34] to generate the function of a loop (referred to as closed
form of the loop, or its loop summary). This line of research differs from our approach in
several different ways, which we discuss below; we refer to our approach as FX, acronym
for Functional Extraction.
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• In the use of recurrence In compositional recurrence analysis, the algorithm extracts the
recurrence equations defined by the loop, then resolves it by eliminating the recurrence
variable, to infer a relationship between program variables; the relationship derived in
this manner is exactly the invariant relation that we are interested in. In the FX approach,
recurrence analysis may be used to generate recognizers, but this is done off-line, not
at run-time; at run-time, invariant relations are generated by pattern matching against
pre-stored recognizers.

• Scope A consequence of the foregoing discussion is that whereas the CRA approach is
restricted to loops that can be analyzed by compositional recurrence, the FX approach
is not; as an example, consider recognizers 2R3, 2R4, 3R2. Of course, the consequence
of this is that FX works only on loops for which it has applicable recognizers, whereas
CRA works for any loop whose recurrence equation can be solved at run-time.

• On the role of recurrence The contrast between CRA and FX in terms of whether recur-
rence is deployed online or offline is not the only distinction. Most importantly, whereas
recurrence is the core mechanism for loop analysis in CRA, it plays a minor role in gen-
erating recognizers in FX; very few recognizers are derived by recurrence analysis; most
are derived by taking the reflexive transitive closure of selected code patterns. It is not
difficult to verify that a generated recognizer is valid, but the generation of recognizers
is a creative process that is difficult to automate.

• Top down versus bottom up Compositional Recurrence Analysis proceeds top-down, in
the sense that it defines a general model of affine programs, then analyzes the programs
that fall under that model; as with all modeling decisions, this involves a tradeoff between
generality and precision. If the model is too general, it is difficult to derive precise results;
if the model is too specific, it has limited scope of applicability. By contrast, FX proceeds
by bottom up analysis of programs: we do not need to assume any specific structure
of the program; we generate invariant relations by inspecting a few clauses of the loop
body’s function at a time, a process that operates on a local scale. A global perspective is
needed to analyze the equations generated from the invariant relations, not to generate the
invariant relations. As an example, consider the following program on a space S defined
by a variable v of type float and a variable x of type float:

while (! v.empty())
{v=v.tail();
x=a*x+b;}

Using the invariant relations E and R0, alongside the following invariant relation that
connects the two assignments:
{
(s, s′)| log|a|

(∣∣∣∣x + b

a − 1

∣∣∣∣
)

+ length(v) = log|a|
(∣∣∣∣x ′ + b

a − 1

∣∣∣∣
)

+ length(v′)
}

enables us to compute the function of the loop as:

W =
{
(s, s′)|v′ = () ∧ x ′ = alength(v) ×

(
x + b

a − 1

)
− b

a − 1

}
.

The program does not have to fit anymodel; we just need to have all its invariant relations,
which in turn requires that we have the proper recognizers to this effect.

Multi-Path Loops. Multi-path loops of affine transformations lend themselves to special
solutions, such as Farkas’ Lemma [5, 29, 44, 54] or Porous Invariants [43]. In our approach,
multi-path loops are addressed by means of a general solution, which makes no assumption
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on the form of the loop, nor the form of the loop invariant. This general solution aims to
compute a small reflexive transitive superset of two (or more) reflexive transitive relations.
Note that Propositions 9 and 10 give general formulas for invariant relations for affine loops,
and Propositions 14 and 15 establish that these invariant relations are minimal, i.e. that they
capture all the semantic information of the loop (since they enable us to compute the function
of the loop). Since the invariant relations provided in Propositions 9 and 10 are not affine, we
can infer that all the invariant generation methods that aim to generate affine loop invariants
are, by construction, bound to generate suboptimal solutions, since they restrict their search
space to a domain that is known not to contain optimal solutions.

We consider two possible solutions to the general problem of multi-path loops, which we
interpret in relational term as the problem of generating a reflexive transitive superset of two
or more reflexive transitive relations:

– We consider two reflexive transitive relations Q and Q′ and we assume that each is the
intersection of reflexive transitive relations:

Q = Q1 ∩ Q2 ∩ ... ∩ Qn,

Q′ = Q′
1 ∩ Q′

2 ∩ ... ∩ Q′
n′ .

For each Qi , 1 ≤ i ≤ n, we check whether Q′ is a subset of Qi ; if it is, we select Qi . We
do the same for each term of the decomposition of Q′. Then we let R be the intersection
of all the selected components as a reflexive transitive superset of Q and Q′. In particular,
if Q and Q′ are invariant relations of two paths in a loop body, then R is an invariant
relation of the loop. This is briefly illustrated in the following example:

int x, y, z; // we assume y>=0
while (y!=0)

{if (y%2==0) {y=y/2; x=2*x;}
else {y=y-1; z=z+x;}}

We write the following reflexive transitive supersets of the first and second branch of the
loop body:

Q = {(s, s′)|xy = x ′y′} ∩ {(s, s′)|y′ ≤ y} ∩ {(s, s′)|z′ = z}.
Q′ = {(s, s′)|x = x ′} ∩ {(s, s′)|y′ ≤ y} ∩ {(s, s′)|z + xy = z′ + x ′y′}.

If we let Q′
1, Q

′
2, Q

′
3 be the three terms of Q′ (in the order in which they are listed) then

we find:

Q ⊆ Q′
2

Q ⊆ Q′
3,

from which we infer that R = Q′
2 ∩ Q′

3 is an invariant relation of the loop.

R = {(s, s′)|y′ ≤ y ∧ x + yz = x ′ + y′z′}.
The reader can easily check that this is an invariant relation of the loop: it holds for any
two states (s, s′) that are separated by an arbitrary number of iterations, regardless of
which branch of the if-else statement is executed at each iteration.

– The second option is to use a relational identity that characterizes the reflexive transitive
closure of a union of relations [2, 55]:

(Q ∪ Q′)∗ = Q∗(Q′Q∗)∗ = (Q∗Q′)∗Q∗.
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Here, since Q and Q′ are both reflexive and transitive, they equal their own reflexive
transitive closure, hence we get the simplified version:

(Q ∪ Q′)∗ = Q(Q′Q)∗ = (QQ′)∗Q.

If we have recognizers against which we can match QQ′ or Q′Q, we can replace the
transitive closures by the formula that is retrieved by the recognizer, and derive the
invariant relation of the whole loop. The case when we have more than two terms of the
union can be resolved by breaking down the union in two, but the logistics are certainly
very onerous.

Termination Analysis. Given that we are interested to derive the function of a while loop,
rather than its correctness with respect to a given specification, we do not analyze termination
separately; rather, the condition of termination of a loop, or more generally a program, is
merely the domain of the program function. To compute the termination condition of a loop,
we generate its invariant relations, take their intersection to compute the function of the
loop, then derive the domain of the computed function; in [10] we use invariant relations
to integrate the analysis of termination with the analysis of abort conditions. Some of the
developments of Frohn et al [13] perform a transformation that is similar to the generation
of an invariant relation: when they give a closed form for an(c) as a polynomial in n, it is
possible to use this form to derive an invariant relation as:

R = {(c, c′)|∃n ≥ 0 : c′ = an(c)}.
Relation R is clearly reflexive, since a0(c) = c; it is also transitive, since an(am(c)) =
an+m(c); also, it is a superset of the function of the loop body since the function of the loop
body is obtained by taking n = 1.

7.4 Threats to validity

A significant limitation of our approach is that it can only handle loops for which we have
pre-stored recognizers. We argue that it is impossible to analyze program semantics without
some way to deploy the required programming knowledge and domain knowledge, and these
recognizers are our way to capture this knowledge. Also, when our algorithm fails to capture
the function of a loop in full, we have a way to identify the missing recognizers, so as to
guide us in filling the missing gap.

The most severe threat to the validity of the FX approach remains the difficulty of gener-
ating invariant relations from loop body functions that are not structured as intersections but
as unions. The heuristics proposed in [30, 31, 51] are useful, in that they generate invariant
relations that subsume terms of the union, but they are not guaranteed to generate smallest
invariant relations. Alternatives and extensions are currently under investigation.

A comparative study

To give some sense of how the invariant relations approach to loop analysis compares with
existing methods, we consider a number of sample programs from the SV-Comp benchmark.
Whereas invariant relations of a loop can be used for a variety of purposes (deriving the
function of the loop, its termination condition, its weakest preconditions, its strongest post-
conditions, etc), most other tools and methods are focused exclusively on generating loop
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Table 7 Supplemental recognizers

ID Formal space, σ Condition, α Formal clause, γ Invariant relation template, ρ

2R5
real x, y;
const real a, b;

a �= 1
x ′ = ax∧
y′ = bx + y

y + bx
1−a = y′ + bx ′

1−a

2R6
real x, y;
const real a, b;

True
x ′ = x + a∧
y′ = bx + y

2ay − bx(x − a)

= 2ay′ − bx ′(x ′ − a)

2R7
real x, y;
const real a, b;

a, b �= 0
x ′ = x + a∧
y′ = by

y

b
x
a

= y′

b
x ′
a

2R8 int x, y; x mod 2 = 0
x ′ = x/2∧
y′ = y + 1

y + log2(x)= y′ + log2(x
′)

2R9 int x, y; x mod 4 = 0
x ′ = x/4∧
y′ = y + 2

y + log2(x)= y′ + log2(x
′)

invariants (aka invariant assertions); hence for the purposes of this experiment we use invari-
ant relations solely to generate invariant assertions of the loops, to have a sound basis for
comparison.

We have selected six sample programs from the SV-Comp benchmark; some of them were
so trivial that we added lines to them, to make them more complex and more interesting. For
each program, we derive the loop invariant that is generated from recognizers presented in
this paper (1R0 to 1R3; 2R0 to 2R9; 3R1, 3R2); then we deploy four loop invariant generators
that are available online, namely:Duet, Sting, Aligator andDaikon; for lack of a better name,
we refer to our approach as InvRel (for: Invariant Relation). To accommodate these examples,
we have added some recognizers, listed in Table 7.

Duet and InvRel do not require that the loop be initialized, and can refer to the initial state
symbolically (by subscripting the program variables with zero, as in x0, y0, etc). Hence, for
the sake of generality, we run them on uninitialized loops; we run the other tools on initialized
loops, hence we will specify, for each sample program, the initialization that we use to this
effect.

A demo of InvRel’s operation on these six sample programs can be seen at:
http://web.njit.edu/~mili/actademo.mp4.

Note that InvRel is usually deployed to compute the function of programs, in particular
the function of loops, and is optimized to that effect. For the purposes of this experiment, we
had to alter it to compute loop invariants instead. The process to generate invariant relations
is the same, using a pattern-matching algorithm against pre-stored recognizers; but whereas
loop functions are computed by means of the formula

W = R ∩ T̂ ,

loop invariant assertions are computed by means of the formula

A = R̂ P,

where R is the loop’s invariant relation, T is the (vector representing) the loop’s condition,W
is the loop’s function, P is the loop’s precondition and A is the corresponding loop invariant
[51]. Because of this transition, we could not process examples of nested loops, because
whereas the function of an inner loop can be used to compute the function of an outer loop,
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the invariant assertion of an inner loop cannot be used to infer the invariant assertion of an
outer loop.

A.1 Sample 1: overflow

A.1.1 Source code

#include<stdio.h>
extern void abort(void);
extern void
__assert_fail(const char *,
const char *, unsigned int,
const char *) __attribute__
((__nothrow__ , __leaf__))
__attribute__
((__noreturn__));
void reach_error() {
__assert_fail("0",
"overflow_1-2.c", 3,
"reach_error"); }
void __VERIFIER_assert(int
cond) {
if (!(cond)) {
ERROR:
{reach_error();abort();}
}
return;
}
int main(void) {
unsigned int x = 10;
while (x >= 10) {
x += 2;
}
__VERIFIER_assert(x % 2);
}

Initialization: x=0;

A.1.2 InvRel

Mod[x0,2] == Mod[x,2]
&&
2x0 <= 2x
&&
Forall[{h},x0<=h<x && Mod[(h-x0),2]==0,MinUInt<=h+2<=MaxUInt]

A.1.3 Duet

(declare-const K Int)
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(declare-const rem Int)
(declare-const |x| Int)
(assert (and (or (not (<= (- K) 0)) (= (+ |x| (* -2 K) -10) 0))

(or (and (= K 0) (= (+ (- |x|) 10) 0))
(and (<= (+ (- K) 1) 0) (<= (+ (- |x|) 12) 0)))

(<= (- K) 0) (<= (+ (- |x|) 1) 0) (<= (+ |x| -9) 0)
(not (or (<= |x| 0)

(and (<= (- rem) 0)
(or (<= (+ rem 1) 0) (<= (+(- rem)1)0))
(or (<= (+ rem -1) 0) (<= (+ rem 1) 0))
(is_int (/ (+ |x| (- rem)) 2)))))))

(check-sat)

A.1.4 Sting

1*x -10 >= 0

A.1.5 Aligator

{}

A.1.6 Daikon

Empty

A.1.7 Porous

The Porous Invariant Builder and Reachability Checker applies to integer linear dynamical
systems and formulates loop invariants as sets of reachable states from some initial state; the
tool takes as input an initial state x0, a specification of the target set whose reachability is
being considered Y , the loop condition, and a set of affine transformations that are applied
by non-deterministic choice (defined by constants a, b in the transformation x ′ = ax + b).
Because of this last requirement, this sample loop (which has only one variable and only one
affine transformation) is the only example to which we can apply Porous as defined. Below
are some of the sample executions we tried:

---------Test 1----------
10 10 True
1 2
ENDS
-->
invariant: (10+2N)
reachability: reachable

---------Test 2----------
0 10 True
1 2
ENDS
-->
invariant: (0+2N)
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reachability: reachable

---------Test 3----------
1 10 True
1 2
ENDS
-->
invariant: (1+2N)
reachability: unreachable
--------------------------

A.2 Sample 2: loop sum

A.2.1 Source code

extern void abort(void);
#include <assert.h>
void reach_error() {
assert(0); }
void __VERIFIER_assert(int
cond) { if (!(cond)) {ERROR:
{reach_error();abort();}}
return;}
#define a (2)
#define SIZE 8
int main() {
int i, sn=0;
for(i=1; i<=SIZE; i++) {
sn = sn + a;
x=2*x-4*y; //added code
y=-3*y; //added code
z=y+2*z; //added code
}
__VERIFIER_assert(sn==SIZE*a
|| sn == 0);
}

Initialization: sn=0; a=2; i=1; size=8; x=5; y=2; z=2;

A.2.2 InvRel

sn-a*i == sn0-a*i0
&&
Mod[sn,Abs[a]]==Mod[sn0,Abs[a]]
&&
i >= i0
&&
2*Abs[y0]/5 <= 2*Abs[y]/5
&&
Abs[z0-3y0/5] <= Abs[z-3y/5]

123



Invariant relations for affine loops

&&
Abs[x0-4y0/5] <= Abs[x-4y/5]
&&
Log3[Abs[y0/5]]-Log2[Abs[z0-3y0/5]] == Log3[Abs[y/5]]-Log2[Abs[z-3y/5]]
&&
(z0-3y0/5)(x-4y/5)==(z-3y/5)(x0-4y0/5)

A.3 Duet

(declare-const |sn| Int)
(declare-const |y| Int)
(declare-const K Int)
(declare-const |z| Int)
(declare-const |i| Int)
(declare-fun pow (Real Real) Real)
(declare-const |x| Int)
(assert (and (or (not (and (<= (- K) 0) (<= K 0)))

(= (+ (* -4 (pow 2 K))
(* -6

(ite (=(mod K 2)0)(pow 3 K) (-(pow 3 K))))
(* 5 |z|)) 0))

(or (not (<= (+ (- K) 1) 0))
(= (+ (* -4 (pow 2 K))

(* -6
(ite (= (mod K 2) 0) (pow 3 K)

(- (pow 3 K)))) (* 5 |z|)) 0))
(or (not (and (<= (- K) 0) (<= K 0)))

(= (+ (* 5 |x|) (* -17 (pow 2 K))
(* -8

(ite (= (mod K 2) 0) (pow 3 K)
(- (pow 3 K))))) 0))

(or (not (<= (+ (- K) 1) 0))
(= (+ (* 5 |x|) (* -17 (pow 2 K))

(* -8
(ite (= (mod K 2) 0) (pow 3 K)

(- (pow 3 K))))) 0))
(or (not (and (<= (- K) 0) (<= K 0)))

(= (+ |y|
(* -2

(ite (= (mod K 2) 0) (pow 3 K)
(- (pow 3 K))))) 0))

(or (not (<= (+ (- K) 1) 0))
(= (+ |y|

(* -2
(ite (= (mod K 2) 0) (pow 3 K)

(- (pow 3 K))))) 0))
(or (not (and (<= (- K) 0) (<= K 0))) (= (+ |i| (- K)-1)0))
(or (not (<= (+ (- K) 1) 0)) (= (+ |i| (- K) -1) 0))
(or (not (and (<= (- K) 0) (<= K 0))) (=(+|sn|(* -2 K))0))
(or (not (<= (+ (- K) 1) 0)) (= (+ |sn| (* -2 K)) 0))
(or (and (= K 0) (= (+ (- |z|) 2) 0) (= (+ (- |y|) 2) 0)

(= (+ (- |x|) 5) 0) (= (- |sn|) 0)
(= (+ (- |i|) 1) 0))

(and (<= (+ (- K) 1) 0) (= (+ |sn| (* -2 |i|) 2) 0)
(= (+ (* -7 |y|) (* -4 |x|) (* 17 |z|)) 0)
(<= (+ |i| -9) 0) (<= (+ (- |i|) 2) 0)))

(<= (- K) 0) (<= (- |sn|) 0) (<= (+ (- |i|) 1) 0)
(= (+ |sn| (* -2 |i|) 2) 0)
(= (+ (* -7 |y|) (* -4 |x|) (* 17 |z|)) 0)
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(<= (+ |i| -8) 0) (not (<= (+ (- |i|) 1) 0))))
(check-sat)

A.2.4 Sting

12*x -13*y -17*z = 0
5*x -4*y -17 >= 0

A.2.5 Aligator

i-1=0
-4x-7y+17z=0
sn=0

A.2.6 Daikon

x != y
x != z
4 * x + 7 * y - 17 * z == 0

A.3 Sample 3: linear1

A.3.1 Source code

#include <assert.h>
void reach_error(void)
{assert(0);}
extern int
__VERIFIER_nondet_int(void);
extern _Bool
__VERIFIER_nondet_bool(void);
void __VERIFIER_assert(int cond) {
if (!cond) {
reach_error();
}
}
int main() {
int x =
__VERIFIER_nondet_int();
int y =
__VERIFIER_nondet_int();
int z ;
if (!(x<y)) return 0;
while(x<y) {
x=x+1;
z= a*z ; //added code
}
__VERIFIER_assert(x==y);
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return 0;
}

Initialization: x=10; y=20; z=3; a=2;

A.3.2 InvRel

x0 <= x
&&
y == y0
&&
z*aˆ(-x) == z0*aˆ(-x0)

A.3.3 Duet

(declare-const |z| Int)
(declare-const havoc0 Int)
(declare-const havoc Int)
(declare-const z0 Int)
(declare-const |x| Int)
(declare-const K Int)
(assert (and (<= (+ (- havoc0) havoc 1) 0)

(or (not (<= (- K) 0)) (= (+ |x| (- K) (- havoc)) 0))
(or (and (= K 0) (= (+ (- |z|) z0) 0) (= (+ (-|x|) havoc)0))

(and (<= (+ (- K) 1) 0) (<= (+ (- havoc0) havoc 1) 0)
(<= (+ |x| (- havoc0)) 0))) (<= (- K) 0)

(<= (+ (- |x|) havoc0) 0) (not (= (+ |x| (- havoc0)) 0))))
(check-sat)

A.3.4 Sting

1*z -3 >= 0
1*x -10 >= 0

A.3.5 Aligator

Not P-solvable loop! No algebraic dependencies among
exponentials!

A.3.6 Daikon

y == 20
y > x

A.4 Sample 4: Gauss sum

A.4.1 Source code

#include "assert.h"
int main() {

123



W. Ghardallou et al.

int n, sum, i, j, k;
n = __VERIFIER_nondet_int();
if (!(1 <= n && n <= 1000))
return 0;
sum = 0;
for(i = 1; i <= n; i++)
{ sum = sum + i;
j = j+a ; // added code
k = k-b*j; //added code
}
__VERIFIER_assert(2*sum
==n*(n+1));
return 0;}

Initialization: sum=0; i=1; n=10; j=4; a=3; b=7; k=2;

A.4.2 InvRel

sum0-i0(i0-1)/2 == sum-i(i-1)/2
&&
a*i-j=a*i0-j0
&&
i0<=i
&&
k0+b*j0*(j0-a)/2*a == k+b*j*(j-a)/2*a

A.4.3 Duet

(declare-const |sum| Int)
(declare-const havoc Int)
(declare-const a Int)
(declare-const |j| Int)
(declare-const b0 Int)
(declare-const k0 Int)
(declare-const K0 Int)
(declare-const |i| Int)
(declare-const j0 Int)
(declare-const |k| Int)
(assert (and (<= (+ (- havoc) 1) 0) (<= (+ havoc -1000) 0)

(or (not (<= (- K0) 0)) (= (+ (- j0) |j| (- (* a K0))) 0))
(or (not (<= (- K0) 0)) (= (+ |i| (- K0) -1) 0))
(or (not (<= (- K0) 0))

(= (+ (* 2 |sum|) (- (* K0 K0)) (- K0)) 0))
(or (not (<= (- K0) 0))

(= (+ (* -2 k0) (* 2 |k|) (* b0 a (* K0 K0)) (* b0 a K0)
(* 2 (* b0 j0 K0))) 0))

(or (and (= K0 0) (= (+ k0 (- |k|)) 0) (= (+ j0 (- |j|)) 0)
(= (+ (- |i|) 1) 0) (= (- |sum|) 0))

(and (<= (+ (- K0) 1) 0) (<= (+ (- havoc) 1) 0)
(<= (+ (- |sum|) |i| -1) 0)
(<= (+ |i| (- havoc) -1) 0)
(<= (+ (- |i|) 2) 0))) (<= (- K0) 0)

(<= (- |sum|) 0) (<= (+ (- |i|) 1) 0) (<= (+ (- havoc) 1) 0)
(<= (+ (- |i|) havoc 1) 0)
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(not (= (+ (* 2 |sum|) (- (* havoc havoc)) (- havoc)) 0))))
(check-sat)

A.4.4 Sting

-1*sum +10*i -10 >= 0
-1*i + 11 >= 0
1*i -1 >= 0

A.4.5 Aligator

b*(-1 + i)*(8 + a*i) + 2 (-2 + k) = 0
&&
-4 + a - a*i + j=0
&&
i - iˆ2 + 2*sum=0

A.4.6 Daikon

n == 10
n >= i
j > k

A.5 Sample 5: jm2006

A.5.1 Source code

#include "assert.h"
int main() {
int i, j;
i = __VERIFIER_nondet_int();
j = __VERIFIER_nondet_int();
if (!(i >= 0 && j >= 0))
return 0;
int x = i;
int y = j;
while(x != 0) {
x--;
y--;
z=z+a; //added code
t = b*t; //added code
}
if(i==j){__VERIFIER_assert(y
== 0);
}
return 0; }

Initialization: i=10; j=10; x=i; y=j; a=2; b=6; z=2; t=8;
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A.5.2 InvRel

x0-y0 == x-y
&&
z0+ax0==z+ax
&&
x0>=x
&&
y0>=y
&&
t0/(bˆ(z0/a)) == t/(bˆ(z/a))

A.5.3 Duet

(declare-const havoc Int)
(declare-const |z| Int)
(declare-const a0 Int)
(declare-const |x| Int)
(declare-const K0 Int)
(declare-const |y| Int)
(declare-const |t| Int)
(declare-const havoc0 Int)
(declare-const z0 Int)
(declare-const t0 Int)
(assert (and (<= (- havoc) 0) (<= (- havoc0) 0)

(or (not (<= (- K0) 0)) (= (+ |y| K0 (- havoc0)) 0))
(or (not (<= (- K0) 0)) (= (+ (- z0) |z| (- (* a0 K0))) 0))
(or (not (<= (- K0) 0)) (= (+ |x| K0 (- havoc)) 0))
(or (and (= K0 0) (= (+ (- |y|) havoc0) 0)

(= (+ (- |x|) havoc) 0) (= (+ z0 (- |z|)) 0)
(= (+ (- |t|) t0) 0))

(and (<= (+ (- K0) 1) 0) (<= (+ (- havoc) 1) 0)
(<= (- |x|) 0))) (<= (- K0) 0) (<= (- |x|) 0)

(<= (- |x|) 0) (<= |x| 0) (= (+ (- havoc0) havoc) 0)
(not (= |y| 0))))

(check-sat)

A.5.4 Sting

2*x +1*z -22 = 0
1*x -1*y = 0
-1*x + 10 >= 0
1*t -8 >= 0
1*x + 1 >= 0

A.5.5 Aligator

Not P-solvable loop! No algebraic dependencies among
exponentials!

A.5.6 Daikon

i == 10
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j == 10
x <= i
y <= j

A.6 Sample 6: Fibonacci

A.6.1 Source code

# include <iostream>
#include <list>
using namespace std;
int main ()
{const int cN,
int i,fb,nc, np;
while (i!=cN)
{
nc=fb;
fb=np+nc;
np=nc;
i=i+1;
}}

Initialization: cN=100; i=1; fb=1; np=1;

A.6.2 InvRel

fb == fb0*Fibonacci(i+1-i0)+ np0*Fibonacci(i- i0)
&&
np == fb0*Fibonacci(i-i0)+np0*Fibonacci(i-i0-1)
&&
i0<=i

A.6.3 Duet

(declare-const fb0 Int)
(declare-const |fb| Int)
(declare-const cN0 Int)
(declare-const i0 Int)
(declare-const np0 Int)
(declare-const |np| Int)
(declare-const |i| Int)
(declare-const K0 Int)
(declare-fun |(-1 + (-1 * q) + q ˆ 2) ˆ -1| (Real) Real)
(assert (and (or (not (<= (- K0) 0))

(= (+ (- (* (|(-1 + (-1 * q) + q ˆ 2) ˆ -1| (+ K0 1)) np0))
(* np0 (|(-1 + (-1 * q) + q ˆ 2) ˆ -1| K0))
(- (* (|(-1 + (-1 * q) + q ˆ 2) ˆ -1| K0) fb0))
(- fb0) |fb|) 0))

(or (not (<= (- K0) 0))
(= (+ |np|
(* (|(-1 + (-1 * q) + q ˆ 2) ˆ -1| (+ K0 1)) np0)
(- np0)
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(* -2 (* np0 (|(-1 + (-1 * q) + q ˆ 2) ˆ -1| K0)))
(- (* (|(-1 + (-1 * q) + q ˆ 2) ˆ -1| (+ K0 1))

fb0))
(* (|(-1 + (-1 * q) + q ˆ 2) ˆ -1| K0) fb0)) 0))

(or (not (<= (- K0) 0)) (= (+ (- i0) |i| (- K0)) 0))
(or (and (= K0 0) (= (+ (- |np|) np0) 0) (= (+ fb0 (- |fb|))0)

(= (+ i0 (- |i|)) 0)) (<= (+ (- K0) 1) 0))
(<= (- K0) 0) (<= (+ cN0 (- |i|)) 0) (<= (+ (- cN0) |i|) 0)
(not (= (+ (- cN0) |i|) 0))))

(check-sat)

A.6.4 Sting

-1*i + 101 >= 0
1*i -1 >= 0

A.6.5 Aligator

-1 + i=0
&&
-25 (-1 + fbˆ4 - 2 fbˆ3 np - fbˆ2 npˆ2 + 2 fb npˆ3 + npˆ4)=0
&&
nc - np=0

A.6.6 Daikon

nc != fb
nc % np == 0
nc <= np
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