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Abstract
In this paper, we present an encoding of the λ-calculus in a multiset rewriting system and
provide a few applications of the construction. For this purpose, we choose the calculus
named String MultiSet Rewriting, which was introduced in Barbuti et al. (Electron Notes
Theor Comput Sci 194:19–34, 2008) by Barbuti et al. With the help of our encoding, we give
alternative proofs for the standardization and the finiteness of developments theorems in the
λ-calculus.

1 Introduction

In past years, many formalisms have appeared in order to model biological systems based
on interacting components. Most of these systems are high-level abstractions of biological
phenomena aiming to describe the organization of the components of a biological system
and the possible interactions between the components. For example, we would mention the
κ-calculus of Danos and Laneve [11], which is a formal systemmodeling protein interaction,
and the biochemical Stochastic π -calculus [16], which allows qualitative and quantitative
investigations of composite systems. TheBraneCalculus defined byCardelli [8] is an efficient
tool for the exact presentation of cell-level processes, and the same is true for the Calculus of
Looping Sequences [3]. Many of the systems mentioned are based on multiset rewriting, and
the same is true for membrane systems [10], chemical reaction systems [15] and Petri nets
[9]. There are recent investigations concerning the introduction of regulating mechanism to
reduce the extent of non-determinism and to enhance the expressive power of these systems
[20]. A significant part of the attention devoted to these investigations is due to the effort
of providing manageable but general enough modeling frameworks for biologically inspired
computational systems [18].
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Aformofmultiset rewriting,which is theCalculus of Looping Sequences,was proposed in
[14] offering a simple and easy to implement toolwith a clear semantics tomodel biochemical
processes. Translating higher-level systems to this calculus turned out to be difficult, however.
Hence, the calculus of StringMultiSet Rewriting (SMSR)was developed [4], which proved to
be an appropriate intermediate solution: its main invention is the maximal matching operator,
which facilitates the representation of higher-level languages. The underlying idea of that
calculus is that, by grabbing the tree-like structures of terms of a formal system, a multiset
of strings can describe the index paths from root to leaves in a given term and, consequently,
substitutions with terms are encoded as replacement of a whole multiset of strings having a
common prefix with another multiset in a single step.

In this paper, we introduce first the SMSR system following [4]. Then, we show how
to represent λ-terms with multisets and define the multiset rewriting rule corresponding to
β-reduction. We prove that this multiset calculus correctly simulates the λ-calculus equipped
with β-reduction. With this in hand, we present two applications of the construction:We give
a proof of the standardization theorem of the λ-calculus and a demonstration of the finiteness
of developments theorem. The proofs benefit from the fact that strings in multisets can be
considered index sequences identifying subterm occurrences in the corresponding λ-terms;
hence, the statements concerning subterms, contractums and residuals can be formulated in a
precise and natural way based on the multiset calculus. The proofs give some insight into the
original λ-calculus notions: For example, we can address every subterm occurrence by some
string and, hence, by giving an appropriate ordering to these strings, we can show that a β-
reduction sequence is standard if and only if the sequence of index strings is non-decreasing.
That is, the phrase “from left to right” used to explain standardness obtains itsmeaning. By the
proof of the finiteness of developments theorem, we make use of a separation lemma applied
in [21], the proof of which can possibly be presented in a more intuitive and clearer way when
we resort tomultisets. The present encoding can open theway for approaching theorems of the
λ-calculus from a different perspective: It offers a computationally complete “index calculus”
that may be the source of further investigations. It seems to be flexible enough to encode
different evaluation semantics of the lambda calculus, or, possibly, resource lambda calculus
[7], or symmetric lambda calculi [17] or non-deterministic calculi like, for example, the
chemical programming model of Bânatre et al [2]. On the other hand, the calculus appears
to be simple enough to serve as the foundation for implementations. There is already an
ongoing research on the implementation of a multiset rewriting calculus [20] very similar
to SMSR calculus. To sum it up, the multiset rewriting calculus provides a powerful tool in
the study of rewriting systems, which is capable of both underpinning precise mathematical
arguments and of permitting the creation of tools for real-life applications.

2 StringMultiSet Rewriting

In this section, we provide a brief overview of the StringMultiSet Rewriting (SMSR) calculus
following the treatment in [4].

2.1 Strings andmultisets

In what follows, we present the String MultiSet Rewriting (SMSR) calculus. Prior to this,
we briefly recall the main notions regarding multisets.
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Let N denote the set of natural numbers and N
+ denote the set of positive integers,

respectively, and letU be a finite non-empty set. A multiset M overU is a pair M = (U , f ),
where the mapping f : U → N gives the multiplicity of each element a ∈ U . If f (a) = 0
for each a ∈ U , then M is the empty multiset. The number of elements in a multiset M ,
that is, the elements a ∈ U with positive multiplicity, is denoted by |M |, and we refer to
this number as the cardinality of M . In our case, the cardinality of a string multiset M is the
number of strings in M .

Next, we define some elementary operations concerning multisets. Let M1 = (U , f1),
M2 = (U , f2). Then, (M1 �M2) = (O, f )where f (a) = min{ f1(a), f2(a)}; (M1 �M2) =
(O, f ′), where f ′(a) = max{ f1(a), f2(a)}; (M1⊕M2) = (O, f ′′), where f ′′(a) = f1(a)+
f2(a); (M1 � M2) = (O, f ′′′) where
f ′′′(a) = max{ f1(a) − f2(a), 0}; and M1 	 M2, if f1(a) ≤ f2(a) for all a ∈ O .
String MultiSet Rewriting (SMSR) is a term rewriting calculus. Firstly, we will define

the syntax of terms, which are the strings and their multisets, and then a structural congru-
ence relation on them. Afterward, a rewrite rule will be introduced which constitutes the
instructions for the evolution of terms.

In the sequel, we will assume that an infinite alphabet E is given.

Definition 1 (Terms) Multisets M and strings S over an alphabet E are defined by the fol-
lowing Backus–Naur form:

M = S
∣
∣ (M | M)

S = ε
∣
∣ e

∣
∣ (S · S)

where ε is the empty string, e is a generic element of the alphabet E , · denotes string
concatenation, and | stands for multiset union. The set of all multisets over E is denoted by
M(E), or byM if E is clear from the context. Similarly for S(E), which is the set of all strings
over E . We denote an arbitrary element of S either by the letters P, Q, S, . . . possibly with
indexes, or by smaller case Greek letter ξ , η, ν, etc. Let |M | denote the cardinality of M as
a multiset, while let lh(M) denote the total number of occurrences of symbols of E in M
counted with multiplicities.

We introduce a structural congruence relation expressing the associativity of · and |,
commutativity of |, and we make sure that ε is an identity element either considered a string
or a multiset.

Definition 2 Let ξ, ξ1, ξ2, ξ3 be strings and M, M1, M2, M3 be multisets. The structural con-
gruence relation≡ is the least congruence relation onmultisets with the following properties:

(ξ1 · (ξ2 · ξ3)) ≡ ((ξ1 · ξ2) · ξ3) (ξ · ε) ≡ ξ

(M1 | M2) ≡ (M2 | M1) (M1 | (M2 | M3)) ≡ ((M1 | M2) | M3) (M | ε) ≡ M

Applying this congruence, we abbreviate expressions by omitting parentheses if possible.
The outermost parentheses will be frequently omitted. In the sequel, we implicitly understand
multiset equality modulo that congruence. We use standard equality to express that on the
left- and right-hand side there stand the same objects (in most of the cases by virtue of
some definition). Having the syntax and the structural congruence of terms at hand, we can
now introduce the concept of patterns. We will assume an infinite set of variables V =
VE ∪ VS ∪ VM , where VE = {x, y, z, . . .} denotes the infinite set of element variables,
VS = {̃x, ỹ, z̃, . . .} denotes the infinite set of string variables andVM = {X , Y , Z , . . .} stands
for the infinite set of multiset variables. The definition below defines multiset patterns.
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Definition 3 (Patterns) Multiset patterns and string patterns over an alphabet E are defined
applying the following Backus–Naur form:

MP = SP
∣
∣ MP | MP

∣
∣ {|SP|}X

∣
∣

{|SP|}X �e {|SP|}Y
SP = ε

∣
∣ e

∣
∣ SP · SP ∣

∣ x̃
∣
∣ x

In the sequel, we denote byMP the set ofmultiset patterns and by SP the set of string patterns,
respectively.

The above definition of multiset patterns differs from that applied in [4]. Namely, we
augmented it with the construction {|SP1|}X � {|SP2|}Y for arbitrary string patterns SP1, SP2.
This construction could be circumvented in the original string multiset calculus; however, by
this, the encoding of λ-terms seemed to be more natural and smooth.

Multiset patterns are used to construct rewrite rules, which define the evolution of SMSR
terms. A rewrite rule is a pair of multiset patterns, where the first pattern matches the term to
be modified by the rule, while the second pattern matches the result of the rule application,
which is the new term. Element variables of multiset patterns are substituted by elements of
E and string variables by strings during the reduction.

We call a function σ : VE ∪ VS → S an instantiation. Given an instantiation σ , we can
extend it to a function σ ′ : SP → S in an obvious way, by letting σ ′ agree with σ on
VE ∪VS and by demanding that σ ′(SP1 · SP2) = σ ′(SP1) · σ ′(SP2) for any SP1, SP2 ∈ SP
and σ ′(e) = e if e ∈ E . In the sequel, we use the notation σ for σ ′ as well and call σ ′ an
instantiation, also. Hence, to define an instantiation σ : SP → S, it is enough to determine
the values assigned by σ to the set of element and string variables, respectively. To define the
meaning of a multiset pattern, besides the instantiation σ : SP → S, we need a function ρ :
VM → N

+ and a pattern expansion function 〈_〉−_ : MP× (VM → N
+) × (SP → S) → M.

The pattern expansion function transforms multiset patterns into multisets. Particularly,
it assigns to a multiset pattern of the form {|SP|}X a finite union of multisets all having
the same prefix, namely, the common prefix is obtained after evaluating SP with the help
of ρ and σ , where SP ∈ SP is arbitrary. The patterns of the form {|SP1|}X �e {|SP2|}Y
are evaluated to some “cross-product” of the multisets obtained by evaluating {|SP1|}X and
{|SP2|}Y (SP1, SP2 ∈ SP). The subsequent definitions will provide the exact notions.

Given multisets M1, M2 and element e ∈ E , we define the operation of substituting the
multiset M2 in M1 in place of e when the underlying occurrence of e is the rightmost element
of a string in M1.

Definition 4 The multiset substitution function .[. ← .] : M × E × M → M acts in the
following way.

1. S1[e ← S2] =
{

S′
1 · S2, if S1 = S′

1 · e,
S1 otherwise.

2. (M1 | M2)[e ← S] = (M1[e ← S] | M2[e ← S])
3. M1[e ← (M2 | M3)] = (M1[e ← M2] | M1[e ← M3])

Now, we are in a position to define the pattern expansion itself.

Definition 5 Let SP, SP1, SP2 ∈ SP andMP1, MP2 ∈ MP. The pattern expansion function
〈_〉−_ : MP × (VM → N

+) × (SP → S) → M is recursively defined as follows:

1. 〈SP〉σρ = σ(SP),
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2. 〈{|SP|}X 〉σρ = (

σ(SP) · σ (̃x1) | . . . | σ(SP) · σ (̃xn)
)

where x̃ ∈ VS and ρ(X) = n,

3. 〈{|SP1|}X �e {|SP2|}Y 〉σρ = 〈{|SP1|}X 〉σρ [e ← 〈{|SP2|}Y 〉σρ ],
4. 〈MP1 | MP2〉σρ = (〈MP1〉σρ | 〈MP2〉σρ

)

.

Observe that the operator�e acts as a replacement with respect to the occurrences of ewhich
are final occurrences of a string in 〈{|SP1|}X 〉σρ . We illustrate this in the next example.

Example 6 LetE = {a, b, c, d, e}, let SP1 = a, SP2 = ε. Letρ : VM → N
+ andσ : SP → S

in the multiset pattern {|SP1|}X �c {|SP2|}Y be defined as ρ(X) = ρ(Y ) = 2 and σ(x̃1) = b,
σ(x̃2) = c and σ(ỹ1) = d , σ(ỹ2) = e. Then,

〈{|SP1|}X �c {|SP2|}Y 〉σρ ≡ (a · b | a · c) �c (d | e)
≡ (a · b | a · c)[c ← (d | e)]
≡ ((a · b)[c ← (d | e)] | (a · c)[c ← (d | e)])
≡ ((a · b)[c ← d] | (a · b)[c ← e] |

(a · c)[c ← d] | (a · c)[c ← e])
≡ (a · b | a · b | a · d | a · e).

2.2 The rewrite rules

We give an account, based on [4], of the reduction rule in the SMSR calculus. Before giving
a full-fledged formal description of SMSR reduction, we try to grab the intuition behind it in
the next definition.

Definition 7 1. Let M, N ∈ M. We apply the notation N ∈ M if ∃ P : M ≡ N | P .
2. A rewrite rule is a pair (MP1, MP2) of multiset patterns such that MP1 is non-empty. As

before, we call a function σ : SP → S an instantiation. We denote the set of rewrite rules
by R.

3. Let M and M ′ ∈ M. Then, M , M ′ can be matched by the rule (MP1, MP2) if 〈MP1〉σρ ≡
M and 〈MP2〉σρ ≡ M ′, where ρ : VS → N and σ is an instantiation. Assume M ∈ N and
M , M ′ can be matched by (MP1, MP2) ∈ R. Then, M can be exchanged for M ′ only if
there is no stringU in N \ M such that there is a prefixU ′ ofU which is a common prefix
of all the strings in M .

We have to deal with some technical questions first. Namely, we make sure that rule
applications always generate fresh names.With this aim,we introduce some auxiliary notions.
The definition below is based on [4].

Definition 8 1. Let Var(MP) denote the set of variables appearing in the multiset pattern
MP with the proviso that Var({|SP|}X ) is understood as Var(SP) ∪ {̃xi | i ∈ N}. For
example, Var(a · x̃ | y | {|ε|}Y ) = {̃x, y} ∪ {ỹi | i ∈ N}.

2. Let Symbols(U ) denote the set of elements of E that appear in the multiset pattern or
multisetU . For instance, Symbols(a ·x |a ·b|{|d|}X ) = {a, b, d}.We assume that Symbols
extends to a set of multiset patterns or multisets and we define the set of fresh names for
a multiset M as E \ Symbols(M).

3. A multiset pattern MP is ground if and only if Var(MP) = ∅. A rule R = (MP, MP ′)
is ground if and only if both MP and MP ′ are ground. We write Var(R) = Var(MP)∪
Var(MP ′) and Symbols(R) = Symbols(MP) ∪ Symbols(MP ′).

4. Let R = (MP, MP ′). Then, Fv(R) = {v | v ∈ Var(MP ′)\Var(MP)} and Bv(R) =
Var(R)\Fv(R).
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Now, we define the rewrite rules.

Definition 9 Let R = (MP1, MP2) ∈ R. An application of R can be described as follows.
Assume M, M ′ are multisets such that 〈MP1〉σρ ≡ M and 〈MP2〉σρ ≡ M ′ for some ρ and
instantiation σ .

1. Assume Symbols(σ (Bv(R)) ∪ Symbols(R)) ∩ Symbols(σ (Fv(R))) = ∅. Then, we
write

({σ(SP)|〈{|SP|}X 〉σρ ∈M},Symbols(σ (Fv(R)))−−−−−−−−−−−−−−−−−−−−−−−−−−→ M ′. (1)

2. If M
(ξ,ζ )−−−→ M ′ and (∀S ∈ ξ)(�S′ ∈ S)((S · S′) ∈ M ′′) and Symbols(M ′′) ∩ ζ = ∅, then

M ′′ | M (ξ,ζ )−−−→ M ′′ | M ′. (2)

The first rule expresses the fact that each submultiset of M with a common prefix must be
taken into account in the course of the reduction. The second rule ensures that only maximal
submultisets with a common prefix can be exchanged.

The next example illustrates the definition.

Example 10 Let M ≡ b | b · c | b · d . Let R1 = ({|b|}X , a) and R2 = (b · x̃ | {|b|}X , a) be
two rules. Then,

1. M →(ξ1,ζ1) a is a correct application of R1 with ρ1(X) = 3 and σ1(̃x1) = ε, σ1(̃x2) = c
and σ1(̃x3) = d . Regarding the label: (ξ1, ζ1) = ({b},∅).

2. Furthermore, M →(ξ2,ζ2) a with σ2 (̃x) = ε, ρ2(X) = 2 and σ2(̃x1) = c, σ2(̃x2) = d is a
correct derivation applying R2. Regarding the label: (ξ2, ζ2) = ({b},∅).

3. On the contrary,

b | b · c | b · d →R1 a | b · d, b | b · c | b · d →R2 b | a
would be incorrect derivations, since they violate the stipulation that 〈{|b|}X 〉σρ should be
the maximal subterm of M the strings of which begin with the prefix b.

In general, rewriting affects the maximal submultisets beginning with the common prefix
σ(SP) for some SP . This ensures that in encodings, where submultisets correspond to
subterms, multisets denoting subterms are replaced as a whole. The next subsection clarifies
this idea.

3 Encoding of the �-calculus in SMSR

In this section, we present an encoding of the λ-calculus in SMSR. The main idea behind the
encoding is to make use of the tree-like representation of λ-terms. We create an SMSR string
for every branch of the syntax tree of a λ-term. Leaf elements of strings represent variables
or constants in the original λ-terms. We lean on the fact that in the SMSR calculus we can
identify submultisets of strings by the pattern expansion function. The next function inserts
a string in front of each element of a string multiset.

Definition 11 The injection function � : S × M → M is defined recursively as follows:

1. ξ1 � ξ2 = ξ1 · ξ2
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2. ξ � (M1 | M2) = (ξ � M1) | (ξ � M2)

Observe that� extends the · operator on strings. In the sequel, by abusing notation, we write
ξ · M instead of ξ � M even when M is a multiset consisting of more than one string. We
assume that � associates to the right.

Using the injection function, we can now easily construct SMSR strings representing
paths in the syntactic tree. Prior to this, following [5], we provide the inevitable notions for
formulating λ-calculus terms. Given a set of variablesVλ, a λ-term is defined by the following
Backus–Naur form:

� = Vλ | (λVλ �) | (��).

We may agree on the usual ways of applying parentheses in the λ-calculus: Abstraction
associates to the right, while application associates to the left. The dot notation indicates the
weakest operation in the subterm surrounded by parentheses. The outermost parentheses can
be omitted. Hence, λxλy.xy ≡ (λx(λy(x y))), or λx .xy(λz z) ≡ (λx((x y)(λz z))). With
this in hand, we can now encode terms by a multiset of strings as the next definition shows.

Definition 12 Let Vλ be the set of λ-variables. Let Eλ = Vλ ∪ {l, r} ∪ {λx | x ∈ Vλ}. The
encoding function � _� : � → M(Eλ) is defined recursively as follows:

1. �M N� = (l · �M� | r · �N�)
2. �λx .M� = λx · �M�
3. �x� = x

In what follows, we mean by strings the elements of the set S(Eλ) and by multisets the
elements of the set M(Eλ), respectively. Since we identify congruent multisets according to
Definition 2, several possible representations are equivalent for the sameλ-termM . Definition
12, however, prescribes a certain order of the strings of a multiset. We call the multiset
�M� obtained by Definition 12 the canonical representation of the λ-term M or, simply, the
representation ofM . Moreover, if N is amultiset obtained fromM bymeans of this encoding,
then N is said to be a λ-multiset.

Example 13 As a short example, we present the encoding of the well-known term
(λx .xx)(λx .xx):

�(λx .xx)(λx .xx)� ≡ l · λx · l · x | l · λx · r · x | r · λx · l · x | r · λx · r · x

3.1 b-reduction

After establishing the encoding of λ-terms, we proceed with presenting the multiset rewrite
rule corresponding to β-reduction in λ-calculus. Prior to this, we present the β-reduction
in the λ-calculus. A �-term of the form (λU ) V is called a β-redex. A β-reduction is the
smallest binary relation over � compatible with the term formation rules and containing

(λU ) V →β U [x := V ],
where U [x := V ] is obtained from U by obtaining every free occurrence of x in U by V .
In the term λx .U , the occurrences of the variable x in U are considered to be bound. If
an occurrence of x is free in U , then we say that the abstraction λx binds x in λx .U . We
adopt Barendregt’s notational conventions here: Terms differing in proper renaming of bound
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variables are considered equal, and if M1, . . . , Mn occur in a certain mathematical context
(e.g., definition, proof), then in these terms all bound variables are chosen to be different
from the free variables. With all that being said, we can formulate b-reduction on multiset
patterns, which corresponds to β-reduction.

Definition 14 (b-rule, b0-rule)

1. In order to define a reduction on multisets, we introduce the b-rule, which is a relation
over multiset patterns.

(({|l · λx |}X | {|r |}Y ), ({|ε|}X �x {|ε|}Y )) (b-rule)

We call the multiset pattern ({|l · λx |}X | {|r |}Y ) a b-redex pattern, and the multiset pattern
({|ε|}X �x {|ε|}Y ) a b-contractum pattern. Note that x ∈ Eλ by Definition 12.

2. We call a given M a b0-redex, and M ′ its b0-contractum if M , M ′ ∈ M(Eλ) is such
that (M, M ′) can be matched with the b-rule, that is, M ≡ 〈({|l · λx |}X | {|r |}Y )〉σρ and
M ′ ≡ 〈({|ε|}X �x {|ε|}Y )〉σρ . In notation: M ↪→b0 M ′.

As usual, we define b-reduction as the smallest relation over the set of multisets M(Eλ)

that contains ↪→b0 and is compatible with the term formation rules. In notation: M ↪→b M ′
if M b-reduces to M ′.

Definition 15 (b-reduction) The b0-rule can be extended to ↪→b-reduction over multisets in
M(Eλ). Let U , V and W ∈ M(Eλ).

1. If U ↪→b0 V , then U ↪→b V .
2. If U ↪→b V , then λx ·U ↪→b λx · V .
3. If U ↪→b V , then l ·U | r · W ↪→b l · V | r · W and l · W | r ·U ↪→b l · W | r · V .

We can observe that this is equivalent to the following approach: letU be a submultiset of
M such thatU is a b0-redex. Then, M ↪→b M ′ if eitherU is M and M ′ is the b0-contractum
of M , or ∃ ξ such that M ≡ ξ · U and M ′ ≡ ξ · U ′ and U ′ is the b0-contractum of U , or
M ≡ N | V and V ≡ ξ · U and M ′ ≡ ξ · U ′ and U ′ is the b0-contractum of U and none of
the strings in N begins with ξ . The latter part follows from Rule (2) of Definition 9, since
it identifies redexes as special from multisets with maximal common prefixes. The key idea
behind the rewrite rule is as follows. Given a λ-term M , assume (λx U ) V is a β-redex in M .
Then, the canonical encoding �(λx U ) V � is of the form l · (λx · �U�) | r · �V �. In this
case, we are able to find ρ and σ such that 〈{|l · λx |}X 〉σρ evaluates to �λx .U� and 〈{|r |}Y 〉σρ
evaluates to �V �. But then ({|ε|}X �x {|ε|}Y ) correctly encodes the contractum U [x := V ].
This is stated by Theorem 24 in the next subsection.

We term the calculus obtained as above the λ-SMSR calculus. In what follows, when we
talk about a String MultiSet Rewriting calculus, we refer to the λ-SMSR calculus; hence, we
may omit the prefix λ.

We recall that given M ∈ M, the multiset patterns ({|l ·λx |}X | {|r |}Y ) are matched against
the largest possible submultisets of M with a certain common prefix. If M is the b0-redex
itself, then Rule (2) of Definition 9 is trivially valid. Then, the values for ρ(X), ρ(Y ) are
chosen according to the number of strings of the corresponding submultisets representingU
and V in �(λx U ) V �. This is illustrated in the next example.

Example 16 Previously, in Example 13, we showed how the term (λx .xx)(λx .xx) can be
encoded. Here, we demonstrate the application of the rewrite rule:
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l · λx · l · x | l · λx · r · x | r · λx · l · x | r · λx · r · x
≡ 〈({|l · λx |}X �x {|r |}Y )〉σρ
↪→b 〈({|ε|}X �x {|ε|}Y )〉σρ
≡ l · λx · l · x | r · λx · l · x | l · λx · r · x | r · λx · r · x,

where ρ(X) = ρ(Y ) = 2 and σ (̃x1) = l · x , σ (̃x2) = r · x and σ(ỹ1) = λx · l · x
and σ(ỹ2) = λx · r · x . Of course, the above rewriting can be continued, because of the
non-normalizing property of (λx .xx)(λx .xx).

A few remarks on the correct execution of ↪→b-reduction are in order here. To preserve
the correctness of the encoding between the λ-calculus and the String MultiSet Rewriting
system obtained above, we must keep in mind that in the λ-calculus bound and free variable
occurrences are distinguished and λ-terms are defined in a way such that the problem of
variable collision should be avoided. In order to acquire the same ability for the λ-SMSR
calculus, a solution can be to introduce the analogue of Barendregt’s variable conventions
for λ-SMSR. This means that we identify multisets that are images of λ-terms differing in
the correct renaming of bound variables by extending Definition 2 to these cases. Hence,
substitution as defined in Definition 4 is understood via “renaming of bound variables”;
therefore, collision of variables does not occur. We omit the technical details, however. In
what follows, the notation IH stands for the phrase “the induction hypothesis.”

3.2 Correctness of the encoding

Before stating the theorem on the correctness of the encoding, we introduce some necessary
notation and lemmas. We first show that b-redexes in multisets correspond to β-redexes
in λ-terms. Prior to this, we examine the relation between λ-terms and their representing
multisets. From now on, we mean by multisets the elements of the set M(Eλ). We write M
instead ofM(Eλ) and S instead of S(Eλ).

Definition 17 (Maximal submultisets, multiset prefixes)

1. Let ξ, ζ ∈ S. Then, ξ < ζ if ∃ ν such that ζ = ξ · ν and ν �= ε.
2. Let M , N be multisets. Then, ξ ∈ S is a multiset prefix of N in M , or, in short, a

multiset prefix of N , if, for every χ ∈ N , ξ · χ ∈ M . In other words, (ξ · N ) 	 M .
in notation: N 	ξ M . Let pre f (M) denote the set of multiset prefixes for M , that is,
pre f (M) = {ξ | ∃N : N 	ξ M)}.

3. Let M , U be multisets. Let ξ ∈ S and assume ξ is a prefix for U . We call U maximal in
M with respect to ξ , or, in short, maximal, if �ζ for which (ζ | ξ ·U ) 	 M and ξ < ζ . In
notation:U �ξ M . We may omit ξ if it is clear from the context. If we want to emphasize
that ξ is the multiset prefix of the maximal multisetU , we write ξ = pre fM (U ). We may
omit the subscript M . We collect the maximal multisets U of M with respect to some ξ

by writing U ∈ mm(M). Note that if U ∈ mm(M), U is not a submultiset of M (except
for U ≡ M); however, there exists ξ such that (ξ ·U ) 	 M .

Note that, given N 	ξ M , the multiset prefix ξ is unique if it exists. On the other hand, if
N 	ξ M such that N is maximal, then N is the unique such multiset. The following example
illustrates the above notions.

Example 18 Let M ≡ ((λx .x y x) y). Consider the corresponding multiset U ≡ �M� ≡
(l · λx · l · l · x | l · λx · l · r · y | l · λx · l · x | r · y).
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1. The multiset (λx · l · l · x | λx · l · r · y) has l as prefix and the multiset (l · l · x | l · r · y)
has prefix l · λx , respectively.

2. The multiset V ≡ (l · x | x) has prefix l · λx · l. However, V is not maximal in M with
respect to l · λx · l. The multiset (l · x | r · y | x) is maximal in M with respect to l · λx · l,
and it is the only such multiset.

Intuitively,U ismaximal in N , provided N is the image of someλ-termM by the encoding,
if and only if U collects all the strings of N starting with a certain common prefix. The next
lemma identifies the maximal multisets in �M� in terms of the encoding. First of all, we give
an informal description of what we mean by subterm occurrences. A subterm occurrence of
N in M is a pair (N ,C[ ]) such that app(C[ ], N ) = M , where C[ ] a one-holed context
and app(C[ ], N ) yields the result of the substitution of N in C[ ]. We recall the fairly
straightforward definitions.

Definition 19 Let [ ] be a given symbol called a hole and assume Vλ are the set of λ-variables.

1. Then, the one-holed λ–contexts are defined by the Backus–Naur form below:

C[ ] = [ ] | (λVλ C[ ]) | (�C[ ]) | (C[ ]�),

where � denotes the λ-terms.
2. LetC[ ] be a one-holed λ-context and N ∈ �. Then, app(C[ ], N ) is the result of writing

N in place of the hole:

(a) app([ ], N ) = N ,
(b) app(λx .C[ ], N ) = λx .app(C[ ], N ),
(c) app((U C[ ]), N ) = (U app(C[ ], N )),
(d) app((C[ ]U ), N ) = (app(C[ ], N )U ), where U ∈ �.

Furthermore, by abuse of notation, wemay ignore references to contexts whenwemention
subterms. Namely, we may write N ≤ M instead of app(C[ ], N ) = M . Furthermore, we
assume in what follows that [ ] is an element of the alphabet Eλ underlying the encoding of
the λ-calculus. The main advantage of the encoding is that the notion of subterm occurrence
can be made precise through it and, hence, we can reason on them in exact terms. As we will
see later, we can determine the address of a subterm occurrence explicitly by examining its
representing strings, hence identifying the subterm occurrence in a unique way. We denote
by N ≤ M the fact that N is a subterm (occurrence) of M , where M is a λ-term. Given a
finite sequence σ , let the notation a ∈ σ denote the fact that a is one of the elements of σ .

Lemma 20 Let ξ ∈ pre f (�M�), where M ∈ �. Then, if ξ ′ = (ξ · e) ∈ pre f (�M�), for
e ∈ E , then either e ∈ {l, r} or e = λx or e = x for some x ∈ Vλ and these possibilities are
mutually exclusive.

Proof Straightforward. ��
Lemma 21 Let M be a λ-term. Then, U is a maximal multiset of �M� iff there exists a
subterm N of M such that U ≡ �N�. Moreover, app(C[ ], N ) = M iff U �ξ �M� such that
[ ] �ξ C[ ].
Proof (⇒) Let M be a λ-term, assumeU is a maximal multiset of �M�. Then,U �ξ M

for some ξ . We argue by induction on ξ .

– |ξ | = 0. Then, U ≡ M and the statement is obvious.
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– ξ = ξ ′ · λx for some ξ ′ and λx . Let U ′ = mm(M, ξ ′). By IH, ∃ V ′ ≤ M such that
U ′ ≡ �V ′�. By Lemma 20, V ′ ≡ λx · V . Regarding the maximality, let ξ ′ · λx < ζ

for some ζ . This means ξ ′ < ζ , and, by the maximality of �V ′�, ζ ∈ ξ ′ · �V ′�. Since
�V ′� ≡ λx · �V �, we have ζ ∈ ξ · �V �. Moreover, let app(C ′[ ], V ′) = M and let
U ′ �′

ξ �M�. Then, app(C[ ], V ) = M , where C[ ] is obtained from C ′[ ] when we
exchange [ ] is C ′[ ] for λx · [ ].

– ξ = ξ ′ · l or ξ = ξ ′ · r . Analogous to the above case.

(⇐) Let N ≤ M . Assume app(C[ ], N ) = M . We argue by induction on C[ ].
– C[ ] = [ ]. Then, N ≡ M and the statement is clear.
– C[ ] = (U C1[ ]). Then, M = (U app(C1[ ], N )). By IH, U ≡ �N�

is a maximal multiset of �app(C1[ ], N )�. Let ξ be its multiset prefix. Then,
r · ξ · �app(C1[ ], N )� 	 M . Moreover, let r · ξ < ζ . Then, ζ = r · ζ ′. By the
maximality ofU in �app(C1[ ], N )�, ζ ′ ∈ ξ ·U , which means, ζ ∈ r · ξ ·U . Hence,
U ∈ mm(M). The remaining cases are similar.

��
Weobserve that since a b-redex is amaximal submultiset of �M� for anyM , it corresponds

to a subterm of M . Moreover, the above lemma shows that a b-redex must be the image of a
β-redex by the encoding. Hence, b-redexes are the counterparts of β-redexes. The following
lemma is a preparation for Lemma 23.

Lemma 22 Let M,N ∈ �. Then, �M�[x ← �N�] ≡ �M[x := N ]�.
Proof By induction on M . ��

The next lemma states that if we start from a b-redex, the result of the reduction is the
encoding of the contractum of the corresponding β-redex.

Lemma 23 Let M = (λx .M1) M2, assume �M� ↪→b U such that �M� is the redex reduced.
Then, U ≡ �M1[x := M2] �.
Proof Assume M = (λx .M1) M2 and �M� ↪→�M�

b U as above. Since �M� = l · λx ·
�M1� | r · �M2�, by the formulation of b-reduction, we must have 〈{|ε|}X 〉σρ ≡ �M1� and
〈{|ε|}Y 〉σρ ≡ �M2�. We argue by induction on M1.

• M1 ∈ Vλ. If M1 = x , then, by Definition 4, �M1�[x ← �M2�] ≡ �M2� ≡ �M1[x :=
M2]�. When M1 = y, then �M1[x := M2]� ≡ y ≡ �y�.

• M1 = λy.M3. Then, �M1� ≡ λy · �M3� and, straightforwardly, (λy · �M3�)[x ←
�M2�] ≡ λy · (�M3�[x ← �M2�]). Applying Lemma 22 (�M3�[x ← �M2�]), we obtain
the result.

• M1 = (M3 M4). In this case, �M1� ≡ l · �M3� | r · �M4� and (l · �M3� | r · �M4�)[x ←
�M2�] ≡ l · �M3�[x ← �M2�] | r · �M4�[x ← �M2�]. The statement follows from
Lemma 22 and the fact (M3 M4)[x := M2] = (M3[x := M2] M4[x := M2]).

��
Now, we are in a position to prove the correctness theorem.

Theorem 24 The encoding correctly simulates β-reduction in the λ-calculus. That is, the
following assertions are valid.
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1. Let M →β M ′. Then, �M� ↪→b �M ′�.
2. Let �M� ↪→b U. Then, there exists M ′ such that U ≡ �M ′� and M →β M ′.

Proof 1. We argue by induction on M .

• M = λx .M1. Then M = λxM1 →β λx .M ′
1 = M ′ and �M� ≡ λx · �M1�. By the

induction hypothesis, �M1� ↪→b �M ′
1�. Then, since ↪→b is compatible with the term

formation rules, we obtain �M� ≡ λx · �M1� ↪→b λx · �M ′
1� ≡ �M�.

• M = (M1 M2). Assume M1 →β M ′
1. The case for M2 →β M ′

2 being similar.
Then we apply IH to M1 to obtain �M1� ↪→b �M ′

1�. The result follows from the
compatibility of ↪→b with the term formation rules. The case M = (λx .M1) M2 →β

M ′ = M1[x := M2] is treated by Lemma 23.

2. Let �M� ↪→b U . We proceed by induction on M .

• M = λx .M1. Then, �M� ≡ λx · �M1�. Definitions 14 and 15 imply that �M1� ↪→b V
such that U ≡ λx · V . Then, by IH, we obtain M1 →β M ′

1 with V ≡ �M ′
1�. Then,

clearly, M = λx .M1 →β λx .M ′
1 = M ′ and U ≡ �M ′�.

• M = (M1 M2). Then �M� ≡ l · �M1� | r · �M2�. Let �M1� ↪→b U ′, the case
M2 ↪→b U ′′ being similar. Then, by IH, ∃ M ′

1 such that M1 →β M ′
1 andU

′ ≡ �M ′
1�.

Hence, M →β (M ′
1 M2) and U ≡ �(M ′

1 M2)�. In the case when �M� ↪→b M ′ and
�M� is the redex itself, we necessarily have �M� ≡ 〈({|l · λx |}X | {|r |}Y )〉σρ with some
ρ and σ . Hence, �M� ≡ (l · λx) · U1 | r · U2 for some multisets U1 and U2. Lemma
21 provides M1 and M2 such that �Mi� ≡ Ui (i ∈ {1, 2}). Then, Lemma 23 yields
U ≡ �M1[x := M2] �.

��

4 Applications: proofs of the standardization and finiteness of
developments theorems

We demonstrate the applicability and flexibility of the new tool obtained by presenting proofs
for two fundamental theorems. We prove the standardization and the finiteness of develop-
ments theorems by means of the encoding. The main advantage of the encoding that, by this,
we obtain a tool for identifying subterm occurrences in λ-terms, more precisely, multiset
occurrences in the corresponding multisets. The multiset prefixes not only provide an index
pointing to that occurrence, but we are also able to manipulate them with the help of the
underlying calculus. Firstly, we formulate the necessary notions for the λ-calculus, then we
discuss how these notions transfer to string multisets. We present the usual, more or less,
intuitive definitions concerning residuals and developments. Then we turn to the proof of the
standardization theorem. The most widespread method for standardization is that introduced
in [5]. Several authors have produced somewhat similar variants of Barendregt’s method [1,
13]. In [1], Amadio and Curien define subterm occurrence by giving a sequence of indexes
leading to the underlying subterm in a way very similar to that applied here. Their construc-
tion, however, does not expand to a full calculus, they make use of it to give the precise
interpretation of subterm occurrences. In Sects. 2.1 and 2.2 they present, among the others, a
proof of the standardization theorem. The proof whenM is strongly normalizing, is relatively
easy, on the contrary, the general case is obtained by introducing labeled lambda terms, which
makes their treatment a little more involved than that in [5]. In this paper, we chose a method
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presented in [12]. The present proof is facilitated by Proposition 37 of this section, which
gives a characterization of standard reduction sequences.

Next, we briefly recall the notions of residuals and developments in such a form that is
customary in the λ-calculus. If s is an arbitrary sequence of some elements, other than a
sequence in the SMSR calculus, a is an element from the same set, we denote by a :: s the
concatenation of the one element sequence (a) and s.

Definition 25 (Residuals in λ-calculus) Let M be a term, R = (λx .U ) V be a redex in M .
Let P ≤ M . The residual set P[R] of P with respect to R (or P[R]M if we intend to indicate
M) is defined by the following cases.

1. • P ≤ U : P[R] = {P[x := V ]}.
• P ≤ V : P ′ ∈ P[R] iff P ′ is an occurrence P in one of the substituted instances of V .
• R ≤ P: P[R] = {P ′}, where P ′ is obtained from P by replacing (λx .U ) V with

U [x := V ].
• P and R are disjoint: P[R] = {P}.

In all the other cases P has no residuals.
2. Let σ : M → M1 → . . . → Mn be a reduction sequence starting from M . Let P ≤ M .

Then, the residuals of P with respect to σ are defined by induction on |σ | and are denoted
by P[σ ] or by P[σ ]M if we intend to emphasize that the original term is M . Assume we
have already determined the set P[σ ′] for each |σ ′| < |σ |.
• |σ | = 0: every term is a residual of itself.
• σ = σ ′ :: R: then P ′′ ∈ P[σ ] if, for some P ′ ∈ P[σ ′], P ′′ is a residual of P ′ with

respect to R. That is, P ′′ ∈ P ′[R]Mn−1 .

We can define the residuals of a set of subterms N with respect to σ in an analogous way,
which is denoted by N[σ ].

3. Let R be a set of redexes. A development is a reduction sequence [R1, . . . , Rn], where
Ri ∈ R[R1, . . . , Ri−1]. A development is complete if there are no more residuals of R
left.

We define standard reduction sequences in the usual manner ( [5]).

Definition 26 A β-redex R1 = (λx .U1)U2 of M is to the left of R2 = (λy.V1) V2 if λx
precedes λy when we read M from left to right. In other terms, R1 = (λx .U1)U2 being to
the left of R2 = (λy.V1) V2 this means the fulfillment of one of the following cases:

• There are (M1 M2) ≤ M such that R1 ≤ M1 and R2 ≤ M2, or
• R2 ≤ U1, or
• R2 ≤ U2.

Definition 27 (Standard reduction sequence) Let σ : M1 →R1 M2 →R2 . . . →Rn Mn+1 be
a reduction sequence. Then σ is standard if there are no 1 ≤ i < j ≤ n + 1 such that R j is
a residual of some R standing to the left of Ri . We use the notation σ ∈ St to claim that σ

is a standard reduction sequence.

Wemight have the impression that the definition of standard reduction sequences is some-
what imprecise and difficult to handle. We intend to remedy this shortcoming by introducing
standard reduction sequences in connection with multisets. We present the necessary notions
first.
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Definition 28 Let M be a λ-multiset, assume P 	ξ M , Q 	ζ M as defined in Definition 17.
We write P 	M Q if ζ ≤ ξ . We denote this containment by writing P �M Q if, in addition,
P, Q ∈ mm(M).

In the sequel, we write N � M if ξ is not known or not interesting to us. We do not omit
M from the relation P �M Q. Observe that, if M is such that M ≡ �U�, and N �ξ M
with an appropriate ξ , then, by Lemma 21, there exists V ≤ U such that N ≡ �V �. Hence,
multiset occurrences in M match subterm occurrences inU provided M ≡ �U�. We sum up
these properties in the next lemma.

Lemma 29 Let U, V , W be multisets. Assume U ≡ �M� for some λ-term M. Then, the
following statements hold.

1. Let V ∈ mm(U ). Then, V �ξ U iff ∃ N ≤ M such that V ≡ �N�.
2. Let V , W ∈ mm(U ). Then, V �U W iff ∃ N, P ≤ M such that V ≡ �N� and W ≡ �P�

and N ≤ P.

Proof

1. The first part is a simple restatement of Lemma 21.
2. Assume V , W ∈ mm(U ) as above. Let V �U W . Then, there exist ξ , ζ such that

V �ξ U , W �ζ U and ζ ≤ ξ . Since, in addition, V , W ∈ mm(U ), then, by Lemma
21, we obtain N , P ≤ M such that V ≡ �N� and W ≡ �P�. What remains to prove
is that ζ ≤ ξ iff N ≤ P . By Lemma 21, there exist C ′[ ], C ′′[ ]: app(C ′[ ], N ) = M
and app(C ′′[ ], P) = M and [ ] �ζ C ′′[ ] and [ ] �ξ C ′[ ]. An easy proof by induction
on |ξ | − |ζ | shows that, from ζ ≤ ξ and Lemma 20, it follows that ∃ C ′′′[ ] such that
app(C ′′′[ ], N ) = P , which is the result.

��
Remark 30 Observe that there is a delicate connection between λ-multisets, that is, multisets
that are the images of λ-terms, and maximal multisets of λ-multisets. Namely, if U is a
maximal multiset of �M�, that is, U �ξ �M� for some ξ , then U ≡ �V � such that V ≤ M
as a λ-term. Moreover, ξ determines the position of [ ] in C[ ], where app(C[ ], V ) = M .
In what follows, if we write “we proceed by induction on P” and P ≡ �M� is a λ-multiset,
we understand induction on the number of steps needed to produce P from M by reason of
Definition 12.

In order to talk about the relative positions of multisets in a multiset in a more precise
way, we define an order on the strings. The next definition extends the relation < on strings.

Definition 31 Let ξ , η be strings. Then, ξ precedes η, in notation ξ ≺ η if, either

1. ξ < η, or
2. ξ = ν · l · ξ ′ and η = ν · r · η′ for some ν, ξ ′, η′ ∈ S.

We write ξ � η, if either ξ ≺ η or ξ = η.

Before stating the proposition that expresses standardness in terms of maximal prefixes,
we formulate some auxiliary lemmas. The next lemma gives the notion of being to the left
in the context of multisets.

Lemma 32 Let R1, R2 ≤ M be two different redex occurrences of M. Then, R1 is to the left
of R2 iff pre f (�R1�) ≺ pre f (�R2�) in �M�.
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Proof Let R1 = (λx1.P1) Q1 and R2 = (λx2.P2) Q2.

(⇒) Assume R1 is to the left of R2. We take into account the various cases of Definition 26.
Applying Lemma 21, it is easy to check that in each of the cases the assertion holds.

(⇐) Let pre f (Ri ) = ξi (i ∈ {1, 2}). If ξ1 ≺ ξ2 holds by reason of ξ2 = ξ1 · ν, then
�R2� �M �R1�, hence R2 ≤ R1 is valid by Lemma 29. Otherwise, ξ1 = ν · l · ξ ′

1 and
ξ2 = ν · r · ξ ′

2. Let U1 � �M� such that pre f (U1) = ν · l and U2 � �M� such that
pre f (U2) = ν · r . By Lemma 21, there exist N1, N2 such that Ui ≡ �Ni� (i ∈ {1, 2}).
By virtue of Lemma 29, we obtain that Ri ≤ Ni (i ∈ {1, 2}), which means that R1 is to
the left of R2.

��
We remark that since there is a bijection between λ-terms and λ-multisets, which are

the images of λ-terms in the encoding, we do not introduce a different font style for λ-
multisets. We indicate it in most of the cases, however, whether we are dealing with λ-terms
or λ-multisets.

We can transfer the notions of residuals and standardness tomultisets. By the identification
of terms with λ-multisets, β-redexes can also be matched to b-redexes and the notions like
residuals, being to the left and standardness apply mutatis mutandis. In order to define the
property of a b-redex lying to the left of another one, we can resort to Lemma 32. We define
residuals only formaximal submultisets of the givenmultiset. Considering the strong analogy,
we apply the same notation to multisets in connection with residuals as those introduced for
λ-terms in Definition 25. We repeat the necessary definitions.

Definition 33 (Residuals in the multiset calculus) Let U be a λ-multiset, assume R = (l ·
λx · S | r · T ) is a b-redex in U . Let P � M be a λ-multiset. The b-residual set P[R] of P
with respect to R (or P[R]U if we intend to indicate U ) is defined by the following cases.

1. • P � S: P[R] = {P[x ← T ]}.
• P � T : P ′ ∈ P[R] iff P ′ is a multiset occurrence of P in one of the substituted

instances of T .
• R � P: P[R] = {P ′}, where P ′ is obtained from P by replacing R with S[x ← T ].
• P and R are disjoint: P[R] = {P}.

In all the other cases P has no residuals.
2. Let σ : M → M1 → . . . → Mn be a b-reduction sequence starting from M . Let P 	 M

be a λ-multiset. Then, the b-residuals of P with respect to σ are defined by induction on
|σ | and are denoted by P[σ ] or by P[σ ]M if we intend to emphasize that the original term
is M . Assume we have already determined the set P[σ ′] for each |σ ′| < |σ |.
• |σ | = 0: every λ-multiset is a b-residual of itself.
• σ = σ ′ :: R: then P ′′ ∈ P[σ ] if, for some P ′ ∈ P[σ ′], P ′′ is a b-residual of P ′ with

respect to R. That is, P ′′ ∈ P ′[R]Mn−1 .

We can define the b-residuals of a set of submultisets N with respect to σ in an analogous
way, which is denoted by N[σ ].

3. Let R be a set of b-redexes. A b-development is a b-reduction sequence [R1, . . . , Rn],
where Ri ∈ R[R1, . . . , Ri−1]. A b-development is complete if there are no more b-
residuals of R left.

We omit the prefix “b” and write “residual” and “development” when it is clear from the con-
text that those are the multiset residuals and multiset developments that are under discussion.
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The next lemma describes the previous notions in terms of maximal prefixes.

Lemma 34 Let R, M, N be λ-multisets. Assume R ≡ (l ·λx · P | r ·Q), N 	 M and assume
M ↪→R

b M ′. Suppose N ′ is a residual of N and let pre fM (R) = η, pre fM (N ) = ξ and
pre fM ′(N ′) = χ . Then, the following assertions hold.

1. Let ξ = η · l · λx · ξ ′ for some ξ ′. Then, χ = η · ξ ′.
2. Let ξ = η·r ·ξ ′′ for some ξ ′′. Then,χ ∈ {η·ν ·ξ ′′ | pre fR(x) = l ·λx ·ν for some string ν}.
3. Let ξ ≺ η and ξ be a substring of η. Then, χ = ξ .
4. Let ξ ≺ η and assume ξ is not a substring of η or η ≺ ξ and assume η is not a substring

of ξ . Then, χ = ξ .

Proof We consider the cases of Definition 33 and apply Lemma 29. ��
Lemma 35 Let M be aλ-multiset and assume R is a b-redex. Let M ↪→R M ′ and assume R′ is
a b-redex such that R′ is not a residual of any b-redex in M. Then, pre fM (R) � pre fM ′(R′).

Proof We observe that when we turn to λ-terms instead of multisets, if P = (λy.U ) V is a
redex in a λ-term N and N →P N ′, then Q can be a new redex in N ′ only if it is of the form
Q = (V W [y := V ]). Hence, (y W ) is a subterm of U and V = λz.S for some S.

Let M , R be as above. Since M is a λ-multiset, ∃ N such that M ≡ �N�. Assume R ≡
�(λy.U ) V �. Let W ≡ �U [y := V ] �. By the previous discussion we derive that R′ �M ′ W ,
and we know by Lemma 29 that pre fM ′(W ) ≤ pre fM ′(R′). Moreover, by Lemma 34,
pre fM (R) = pre fM ′(W ); hence, we can conclude that pre fM (R) ≤ pre fM ′(R′). ��

The next corollary states that the “order” of redexes will not change after a reduction step.

Corollary 36 Let M be a λ-multiset and N � M be a b-redex.

1. Suppose R is a b-redex of M and assume M ↪→R M ′. Suppose N ′ is a residual of N , R′
is the contractum of R and assume N is to the left of R (R is to the left of N , respectively).
Then N ′ is to the left of R′ (R′ is to the left of N ′, respectively).

2. Let σ = [R1, R2, . . . , Rn] and assume M ≡ M1 ↪→R1 M2 ↪→R2 . . . ↪→Rn Mn+1 ≡ M ′.
Suppose N ′ is a residual of N with respect to σ and assume that, for every 1 ≤ i ≤ n,
N is to the left of Ri (N is to the right of Ri , resp.). Then, for every 1 ≤ i ≤ n,
pre fM ′(N ′) ≺ pre fM (Ri ) (pre fM (Ri ) ≺ pre fM ′(N ′), resp.).

Proof

1. By Lemmas 32 and 34.
2. Follows from Point 1 taking into account Lemma 35.

��
The next proposition gives a surprising characterization of standard reduction sequences:

It is enough to check whether the maximal prefixes of the actual redexes form a monotone
increasing sequence.

Proposition 37 Let σ : M1 ↪→R1 M2 ↪→R2 . . . ↪→Rn Mn+1 be a reduction sequence. Then,
σ is standard iff pre fM1(R1) � pre fM2(R2) � . . . � pre fMn (Rn).

Proof Let σ : M1 ↪→R1 M2 ↪→R2 . . . ↪→Rn Mn+1 be a reduction sequence. Assume
ξi = pre fMi (Ri ) (1 ≤ i ≤ n).
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(⇒) Let σ be a standard reduction sequence. Assume ξi = pre fMi (Ri ) and ξ1 � ξ2 �
. . . � ξ j � ξ j+1 for some 1 ≤ j ≤ n − 1.

– Suppose R j+1 ∈ R[R j ] for some R. Then, Corollary 36 implies that R is to the left
of R j , which contradicts the standardness assumption.

– Suppose R j+1 is a newly created redex, that is, R j+1 is not a residual of some redex
R with respect to R j . In this case, Lemma 35 involves that ξ j � ξ j+1, contrary to
our assumption.

(⇐) Suppose ξ1 � ξ2 � . . . � ξ j and there are 1 ≤ i < j ≤ n such that R j is a residual
of some R standing to the left of Ri . Then, by Corollary 36, we would necessarily have
ξ j ≺ ξi contradicting our assumption.

��
We are now in a position to prove the standardization theorem for λ-multisets. Thus, by

reason of the encoding, we obtain the standardization theorem for the λ-calculus. Prior to
this, however, we have to state some more lemmas. The next lemma prepares the proof of
the standardization theorem.

Lemma 38 Let P, Q be λ-multisets. Then, the following assertions are valid.

1. If P ≡ λy · P1, then P[x ← Q] ≡ λy · P1[x ← Q].
2. If P ≡ (P1 | P2), then P[x ← Q] ≡ (P1[x ← Q] | P2[x ← Q]).
Proof The proof proceeds by induction on lh(P) + lh(Q) using the previous lemma. ��

The analogue of the next lemma is one of themain tools for demonstrating the standardiza-
tion theorem in the λ-calculus. The proof exploiting multiset representation might probably
seem more precise than the traditional one owing to the characterization of standardness in
Proposition 37.

Lemma 39 Let P, Q be λ-multisets and assume P ↪→σ
st P ′ and Q ↪→ν

st Q′. Then, there
exists P[x ← Q] ↪→τ

st P
′[x ← Q′].

Proof Let P ↪→σ
st P

′, Q ↪→∗
st Q

′. We prove that P[x ← Q] ↪→ξ
st P

′[x ← Q′] by induction
on the lexicographically order pair 〈||σ |, lh(P)〉.
• |σ | = 0. We proceed by induction P .

– P is a variable. If P ≡ x , then we have the result by our assumption on Q. Otherwise,
the statement is trivial.

– P ≡ λy · P1. IH applies together with Lemma 38.
– P ≡ (P1 | P2). By Lemma 38 and IH, we obtain the result.

• |σ | = k > 0.

– P ≡ λy · P1. Then P1 ↪→σ P ′
1, and we can use IH.

– P ≡ (P1 | P2).
∗ Assume ∃ σ1, σ2 such that Pi ↪→σi P ′

i (i ∈ {1, 2}). Then, by IH, P1[x ←
Q] ↪→τ1 P ′

1[x ← Q′] and P2[x ← Q] ↪→τ2
st P ′

2[x ← Q′]. Applying Proposi-
tion 37 we obtain that τ = τ1#τ2 ∈ St .

∗ Let P ↪→σ1 (l · λy ·U | r · V ) ↪→ U [y ← V ] be an initial reduction sequence
of σ . Then σ1 is necessarily empty, otherwise, by Proposition 37, the reduction
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sequence σ would not be standard. Hence, σ is P ≡ (l · λy · U | r · V ) ↪→
U [y ← V ] ↪→σ ′

P ′. Let P ′′ = U [y ← V ]. Then, by applying IH, we obtain
P ′′[x ← Q] ↪→τ ′

st P
′[x ← Q′]. Since P is the redex itself, applying Proposition

37 again, we obtain that τ = [P] :: τ ′ ∈ St .

��
We can now state and prove the standardization theorem for λ-multisets.

Theorem 40 (Standardization) Let M ↪→∗ M ′. Then, there exists a standard reduction
sequence M ↪→∗

st M
′.

Proof Let σ : M1 ↪→R1 M2 ↪→R2 . . . ↪→Rn Mn+1 ≡ M ′, and let us write pre fMi (Ri ) = ξi
(1 ≤ i ≤ n). Suppose ξ1 � . . . � ξn−1 � ξn . Let i be the first index 1 ≤ i ≤ n such that
Rn ∈ R[Ri , . . . , Rn−1], that is, Rn is a residual of some R ≤ Mi and, if pre fMi (R) = ξ ,
then ξi ≺ ξ ≺ ξi+1. We prove that there exists a standard reduction sequence τ such that
M1 ↪→R1 M2 ↪→R2 . . . ↪→Ri−1 Mi →R M ′ ↪→∗ Mn+1.

Let R ≡ �(λx .P) Q�. Then, the last redex Rn of σ is �(λx .P ′) Q′�, where, by IH,
P ↪→∗

st P ′ and Q ↪→∗
st Q′. Lemma 39 provides us with a θ ∈ St such that P[x ←

Q] ↪→θ
st P ′[x ← Q′]. Putting together Lemma 34 and Corollary 36, if R′ ∈ σ is such that

ξ ′ = pre f (R′) ≺ ξ = pre fMi (R) or ξ ≺ ξ ′ and ξ ≮ ξ ′, that is, ξ is not a substring of ξ ′,
then ξ ′ � ξ ′′ or ξ ′′ � ξ ′, resp., for any ξ ′′, where ξ ′′ is multiset the prefix of some R′′ ∈ θ .
Hence, the standardness of the new reduction sequence is guaranteed. ��

We turn to the proof of the finiteness of developments theorem. Considering its main
idea, our proof is similar to the one given in [21]; however, the development separation
theorem, which was the main tool in [21], seems to be more intuitive and easier to handle
in our formalism. In order to deal with developments, we apply a well-known construction
for distinguishing the abstractions that do not count in the development. The definition of
redexes remains the same, we define applications though which do not count as redexes.
We introduce λ∗-abstractions and stipulate that, as before, only ordinary λ-abstractions can
form a redex. Hence, new redexes do not emerge in the reduction sequence. First of all, we
introduce some auxiliary notions and prove some lemmas.

Definition 41 (Starred terms)

1. The set of λ∗-terms is defined as follows.

T ∗ = x | (λ∗x .T ∗) | ((λx .T ∗) T ∗) | (T ∗ T ∗).

The terms of the form (λx .U ) V are considered β-redexes, as usual.

In what follows, we understand by a term a starred term, unless otherwise stated.

The multiset encoding of λ∗-terms goes along the same way as that of λ-terms. The new
elements of the underlying set E compared to the λ-terms are the elements λ∗x , where x is
an arbitrary λ-variable. As before, we call the multisets forming the image set of λ∗-terms λ-
multisets. The following theorem is a version of the development separation theorem in [21].
Before that, we formulate a definition that generalizes the M[x ← N ] notation. We recall
relation � on strings from a total order as defined in Definition 28. With the help of this, we
define a term that is obtained by exchanging the occurrences of x in it with certain multisets.
Intuitively, the notation P[Q1, . . . , Qk]x means that P contains k multisets ending with x
and all such occurrences of x are replaced by terms Q1, . . . , Qk respecting themultiset order.
Obviously, if we let Qi ≡ Q (1 ≤ i ≤ k), then P[Q1, . . . , Qk]x is the same as P[x ← Q].
We repeat this construction in the next definition.
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Definition 42 Let P, Q1, . . . , Qk be multisets and assume ξ1 ≺ . . . ≺ ξk are all the strings
in P which end with the element x . Then, let P[Q1, . . . , Qk]x denote the multiset which is
obtained from P when we exchange ξi = ξ ′

i · x with ξ ′
i · Qi (1 ≤ i ≤ k).

The next lemma is intuitive and straightforward. It helps us with proving the development
separation theorem for multisets.

Lemma 43 Let P, Q1, . . . , Qk be λ-multisets such that U ≡ P[Q1, . . . , Qk]x . Then, either
of the following statements holds.

1. U ≡ λ∗x ·U1, where U1 ≡ P1[Q1, . . . , Qk]x for some P ≡ λ∗x · P1.
2. U ≡ (l · U1 | r · U2), where U1 ≡ P1[Q1, . . . , Qi ]x and U2 ≡ P2[Qi+1, . . . , Qk]x for

some 1 ≤ i ≤ k with P ≡ (l · P1 | r · P2).
Proof Let U ≡ P[Q1, . . . , Qk]x . We proceed by induction on P .

1. P ≡ λ∗x · P1. We note that every string in P ≡ λ∗x · P1 is of the form λ∗x · ξ1, where
ξ1 is a string of P1. From this, Point 1 follows.

2. P ≡ (l · P1 | r · P2). Since P is in the canonical representation, the strings of P are in
the order prescribed by ≺. Hence, there is an 1 ≤ i ≤ k such that ξ1 ≺ . . . ≺ ξi are all
the strings of P falling in P1 and ending in x . By this, we obtain Point 2. Since P must
take exactly one of these two forms, these cases exhaust the possibilities for U .

��
Now, we can turn to the proof of the multiset counterpart of the development separation

theorem.

Theorem 44 Let R ≡ �(λx .P) Q� be a b-redex. Assume R ↪→∗
b R′. Then, R′ ≡

P ′[Q1, . . . , Qk]x such that P ↪→∗
b P ′ and Qi ↪→∗

b Qi for 1 ≤ i ≤ k, where k is the
number of occurrences of x in R′.

Proof Let R ↪→k
b R′. We proceed by induction on k.

• k = 1. R′ ≡ P[x ← Q]. By this, the assertion is true.
• k = l + 1. Assume R ↪→l

b R′′ ≡ P ′′[Q′′
1, . . . , Q

′′
k ]x ↪→b R′ with appropriate P ′′ and

Q′′
1, . . . , Q

′′
k . We prove by induction on P ′′ that, if P ′′[Q′′

1, . . . , Q
′′
k ]x ↪→T

b S, then S is
of the desired form. From this, we can derive our assertion.

– P ′′ ≡ x . Then, Q′′
j ↪→ S for some 1 ≤ j ≤ k. Then, the case P ′′ ≡ y, where x �= y,

is impossible.
– P ′′ ≡ λ∗y.U . Then,Definition15 andLemma43 imply that, from P ′′[Q′′

1, . . . , Q
′′
k ]x ↪→b

S, it follows that U [Q′′
1, . . . , Q

′′
k ]x ↪→b S1 for some S ≡ λ∗y.S1. Then we use IH.

– P ′′ ≡ (l · U1 | r · U2). Then, by Lemma 43, P ′′[Q′′
1, . . . , Q

′′
k ]x ≡ (l ·

U1[Q′′
1, . . . , Q

′′
i ]x | r · U2[Q′′

i+1, . . . , Q
′′
k ]x ) for some 1 ≤ i ≤ k. If either

U1[Q′′
1, . . . , Q

′′
i ]x ↪→T

b S1 or U2[Q′′
i+1, . . . , Q

′′
k ]x ↪→T

b S2, where S ≡ (S1 | S2),
then we can apply the IH. Otherwise, U1[Q′′

1, . . . , Q
′′
i ]x ≡ λy.U ′

1. By Lemma
43, U1 ≡ λy.U ′′

1 ≺ P ′′. Hence, P ′′[Q′′
1, . . . , Q

′′
k ]x ↪→ U ′′

1 [Q′′
1, . . . , Q

′′
i ]x [y ←

U2[Q′′
i+1, . . . , Q

′′
k ]x ] ≡ U ′′

1 [y ← U2][Q′′′
1 , . . . , Q′′′

l ]x , where l depends on the num-
ber of strings belonging to U ′′

1 [y ← U2] ending in x and Q′′′
j ∈ {Q′′

1, . . . , Q
′′
k }

(1 ≤ j ≤ l).

Now, we can demonstrate the finiteness of developments theorem for multisets. ��
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Theorem 45 Let R be a set of b-redexes of the λ-multiset M. Assume M ↪→σ
b M ′ is a

development of R. Then, the length of σ cannot be arbitrarily large.

Proof We argue by induction on n = lh(M), which is the total number of the elements of E
in M with multiplicities. Let M ↪→σ

b M ′, where σ is a development of R. Let us denote by
ln the maximal number of strings of M ′ and sn the maximal length of σ if any one of them
is finite. We assume that lt and st are finite for every 1 ≤ t < n. Furthermore, let |M | stand
for the number of strings in the multiset M , that is, the cardinality of M .

• M ≡ λ∗y · M1. Then M1 ↪→σ
b M ′

1 by Definition 15, hence, IH applies.
• M ≡ (l · M1 | r · M2). If M ′ ≡ (l · M ′

1 | r · M2) such that M1 ↪→σ M ′
1 or M ′ ≡

(l · M1 | r · M ′
2) such that M2 ↪→σ M ′

2, respectively, then we can apply IH. Otherwise,
M ≡ (l ·λy ·M1 | r ·M2) and M ≡ (l ·λx ·M1 | r ·M2) ↪→σ1

b (l ·λx ·M ′
1 | r ·M ′

2) ↪→R
b

M ′
1[x ← M ′

2] ↪→σ2
b M ′′ for some σ1 and σ2. By Theorem 44,M ′′ ≡ M ′′

1 [M1
2 , . . . , Mk

2 ]x ,
where M ′

1 ↪→∗
b M ′′

1 and M ′
2 ↪→∗ M j

2 (1 ≤ j ≤ k). Hence, |σ | ≤ sk + sm · lk + 1, where
lh(M1) = k, lh(M2) = m with 1 ≤ k,m < n and |M ′′| ≤ lk + lk · lm . The right-hand
side of both inequalities has a finite maximum; therefore, since M was arbitrary, sn and
ln are finite.

��
Corollary 46 Let R be a set of redexes in the λ-term M. Let σ be a development of R. Then,
the length of σ cannot be arbitrarily large.

Proof It follows from the previous theorem and Theorem 24. ��
Remark 47 Theorem 45 gives us a bound for the length of developments and for the size of
the result obtained by completing a development. It is not intended in this paper to try to set
up an explicit bound for the lengths of reduction sequences, but it could be performed by
utilizing the bound provided by Theorem 45 (cf. [6]).

5 Conclusion

Regarding the calculi developed for the simulation of biological processes, theStringMultiSet
Rewriting calculus proposed by Barbuti et al. is outstanding in the sense that it possesses the
full computational strength of a Turing machine [4] while, on the other hand, it preserves a
simple structure owing to which it appears to be quite handy on the side of implementation. In
order to demonstrate that computational strength and flexibility, we encoded the λ-calculus
in the frames of the SMSR calculus. The encoding allowed us to address each subterm of a
λ-term directly, hence, making the proof of such classical theorems precise and, at the same
time, intuitive where the argumentation depends on the behavior of particular subterms. We
demonstrated this by proving the standardization and finiteness of developments theorems of
the λ-calculus. Besides shedding light on crucial points of the demonstrations of these well-
known theorems, this method can offer an illustrative tool for formalizing and implementing
λ-calculus theorems.
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