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Abstract
In Freydenberger (Theory Comput Syst 53(2):159–193, 2013. https://doi.org/10.1007/
s00224-012-9389-0), Freydenberger shows that the set of invalid computations of an
extended Turingmachine can be recognized by a synchronized regular expression [as defined
in Della Penna et al. (Acta Informatica 39(1):31–70, 2003. https://doi.org/10.1007/s00236-
002-0099-y)]. Therefore, the widely discussed predicate “= {0, 1}∗” is not recursively enu-
merable for synchronized regular expressions (SRE). In this paper, we employ a stronger
form of non-recursive enumerability called productiveness and show that the set of invalid
computations of a deterministic Turing machine on a single input can be recognized by a
synchronized regular expression. Hence, for a polynomial-time decidable subset of SRE,
where each expression generates either {0, 1}∗ or {0, 1}∗ − {w} where w ∈ {0, 1}∗, the pred-
icate “= {0, 1}∗” is productive. This result can be easily applied to other classes of language
descriptors due to the simplicity of the construction in its proof. This result also implies that
many computational problems, especially promise problems, for SRE are productive. These
problems include language class comparison problems (e.g., does a given synchronized regu-
lar expression generate a context-free language?), and equivalence and containment problems
of several types (e.g., does a given synchronized regular expression generate a language equal
to a fixed unbounded regular set?). In addition, we study the descriptional complexity of SRE.
A generalized method for studying trade-offs between SRE and many classes of language
descriptors is established.

1 Introduction

An extension of regular expressions—synchronized regular expressions (SRE)—is defined
and studied in [6]. SRE may allow to find if certain subexpressions are repeated the same
number of times in a text. This can be useful for integrity checks, especially when mixed
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with other extensions such as backreferences (as defined in [1]). Della Penna et al. use SRE
to present a formal study of the backreferences extension and of a new extension called the
synchronized exponents proposed by them. They also study the classification of SRE in the
formal language hierarchy and show that SRE are context-sensitive but do not generate all
context-free languages. Themembership problem for SREandSREwith certain restrictions is
studied in [6] aswell. In [5], Carle shows that the language of palindromes cannot be generated
by a synchronized regular expression, and the language {ww|w ∈ {0, 1}∗} is a synchronized
regular language. Hence, the class of synchronized regular languages is incomparable with
the class of context-free languages.

In [7], Freydenberger shows that the set of invalid computations of an extended Turing
machine can be recognized by an extended regular expression (introduced by Câmpeanu et al
[4]), hence, by a synchronized regular expression. Therefore, the widely discussed predicate
“= {0, 1}∗” is not recursively enumerable for SRE. Moreover, Freydenberger shows that
the regularity, cofiniteness, and RegEx(k)-ity (defined in [7]) problems are not recursively
enumerable for SRE.More research on extended regular expressions (EXREGs) can be found
in [2, 9, 26, 27].

In this paper, we employ a stronger form of non-recursive enumerability called produc-
tiveness. A productive set S is not recursively enumerable. Furthermore, for any effective
axiomatic system F, there is an effective procedure to construct an element that is in S, but
not provable in F (see Sect. 3.1 for precise definitions). Then, we show that the set of invalid
computations of a deterministic Turing machine on a single input can be recognized by a
synchronized regular expression. Hence, for a polynomial-time decidable subset of SRE,
where each expression generates either {0, 1}∗ or {0, 1}∗ − {w} where w ∈ {0, 1}∗, the
predicate “= {0, 1}∗” is productive. This special type of universality problem is denoted by
“= {0, 1}∗ ||Lc|≤1”. This result can be easily applied to other classes of language descriptors,
such as 1-SRE (see Definition 6), one-reversal bounded one-counter machines, and real-time
one-way cellular automata (the definition can be found in [20]), due to the simplicity of the
construction in its proof. This result also implies the productiveness of many problems for
SRE. These problems include:

1. a variety of equivalence and containment problems such as testing equivalence to any
fixed unbounded regular languages,

2. language class comparison problem which is defined as follows:
For two classes of language descriptors D1 and D2, determine for any a ∈ D1, whether
L(a) ∈ L(D2)?

The general containment problem for pattern languages over fixed alphabets is shown to be
undecidable in [8] which can be applied to SRE directly since all pattern languages can be
represented by SRE (see [6]). We study the problems of testing equivalence and containment
to many fixed languages since these results are stronger and have more practical meanings.
For example, the result of testing equivalence to a fixed regular set enables us to show there
is no approximating minimization algorithm between SRE and DFA accepting this fixed
regular set.

Several authors have investigated the existence and applicability of analogues of Rice’s
Theorem for many classes of languages. For example, in [17, 18], sufficient conditions are
given for a language predicate to be as hard as the language predicate = {0, 1}∗. There are
five major differences between the previous results in [17, 18] and the results in this paper.

1. In Theorem 4.5, we show a way to study predicates that are not true for any
regular/context-free sets. This is not done in the previous research. Most of the previous
results require the language predicates to be true for some regular sets.

123



On the undecidability and descriptional complexity… 259

2. Due to the properties of the predicate “= {0, 1}∗ ||Lc|≤1”, most of the results in this
paper are applicable to promise problems. For example, Theorem 4.3 states that for
a polynomial-time decidable subset of SRE, where each expression is guaranteed to
generate a regular set, the predicates are productive.

3. The previous results are only for regular expressions, context-free grammars, and in some
cases, context-sensitive grammars. But, because of the simple construction in Proposi-
tion 3, we can easily apply the results of this paper to any class of language descriptorsD
such that L(D) contains the language {x # y |x, y ∈ (� − {#})∗ and |x | = |y|} and L(D)

is closed under union, and concatenation with regular sets. For example, the results of
this paper can be applied to SRE, 1-SRE, one-reversal bounded one-counter machines,
and real-time one-way cellular automata.

4. The previous results cannot be applied to the language class comparison problems
between incomparable classes. But the results in this paper enable us to study such
problems. For example, we know that the class of synchronized regular languages is
incomparable with the class of context-free languages. In Corollary 4, we show that it
is productive to determine, for an arbitrary synchronized regular expression, whether it
generates a context-free language.

5. The previous results require the language predicates to be with certain restrictions, such
as closed under left or right derivatives. But in Corollary 3, we show that it is productive
to determine, for an arbitrary synchronized regular expression, whether it generates a
k-pattern language (defined in Definition 3) for any k ≥ 1. Due to the dichotomization of
the reduction in the proof, we do not need any closure property for k-pattern languages.

The second aim of this paper is to study the descriptional complexity of SRE. In the theory
of formal languages, questions concerning descriptional complexity are widely discussed.
How succinctly can a descriptor generate a language in comparison with some other descrip-
tors generating the same language? It is well-known that for all natural number n ≥ 1, there
exists a regular language accepted by some nondeterministic finite automata (NFA) with n
states but every deterministic finite automaton (DFA) accepting the same language has at
least 2n states. In [13], Hartmanis shows that there is no recursive trade-off between push-
down automata (PDA) and deterministic pushdown automata (DPDA). In [7], Freydenberger
shows that there is no recursive trade-off between SRE and regular expressions. More related
research can be found in [14]. In this paper, we study trade-offs between SRE and many
language descriptors including DFA, subclasses of regular expressions, and multi-patterns.

Multi-patterns (MP) and multi-pattern languages (MPL) are defined in [19] to exhibit
common patterns for a given sample of words. As Della Penna et al. mentioned in [6],

backreferences are a generalization of patterns, i.e., expressions that make reference
to the string matched by a previous subexpression,

we believe it is interesting to consider the relationship between SRE andMPL. Several results
established in this paper are related to MPL. We prove that it is productive whether a given
synchronized regular expression generates a multi-pattern language. In addition, we show
that there is no recursive trade-off between SRE and MP.

This paper is organized as follows.
In Sect. 2, we review the definitions of SRE and MP. Several preliminary definitions and

notations are also explained.
In Sect. 3.1, the definition and importance of productiveness are discussed. In Sect. 3.2,

we show the predicate “= {0, 1}∗ ||Lc|≤1” is productive for SRE.
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In Sect. 4, sufficient conditions are given for a language predicate to be as hard as the
language predicates “= {0, 1}∗ ||Lc|≤1” for SRE. These conditions yield amethod for proving
productiveness results through highly efficient many-one reductions. Using this method, we
prove many computational problems are productive for SRE.

In Sect. 5, we study the descriptional complexity of SRE and generalize a method for
showing non-recursive trade-offs between SRE and many classes of language descriptors.

2 Definitions and notations

In this section, we review the definitions of SRE and MPL from [6] and [19], respectively.
Several preliminary definitions and notations are also explained. The reader is referred to
[16] for all unexplained notations and terminologies in language theory.

We use λ to denote the empty string and ∅ to denote the empty set. We use N to denote the
set of natural numbers. Let P denote the class of sets that can be recognized in polynomial
time by a deterministic Turing Machine. If A is many-one reducible to B, we write A ≤m B.

Let REG({0,1}) be the set of (∪, ·, ∗)-regular expressions over language alphabet {0, 1}.
Let CFG({0,1}) be the set of context-free grammars over terminal alphabet {0, 1}.
Definition 1 The synchronized regular expressions on an alphabet �, a set of variables V
and a set of exponents X are defined as follows:

∅ ∈ SRE (empty set)
λ ∈ SRE (empty string)
∀a ∈ � : a ∈ SRE (letters)
∀v ∈ V : v ∈ SRE (variables)

If e1, e2 ∈ SRE , then:

1. e∗
1 ∈ SRE (star)

2. ∀x ∈ X : ex1 ∈ SRE (exponentiation)
3. ∀v ∈ V : e1%v ∈ SRE (variable binding)
4. e1e2 ∈ SRE (concatenation)
5. e1 + e2 ∈ SRE (union)

	

Beyond these basic syntactic definitions, a synchronized regular expression must meet the

following conditions to be considered valid.

Definition 2 The SRE validity test is defined as follows:

1. Each variable occurs in a binding operation no more than once in the expression.
2. Each occurrence of a variable in the expression is preceded by a binding of that variable

somewhere to the left of the occurrence in the expression.

Throughout this paper, let SRE({0, 1}) denote the set of valid synchronized regular
expressions over alphabet {0, 1}. 	


Unless otherwise specified, any mention of SRE in this paper refers to valid SRE. The
following examples are used in later proofs of this paper and can help the readers better
understand SRE.
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Example 2.1 The synchronized regular expression 0x1x specifies the language {0n1n | n ≥
0}.
Example 2.2 The synchronized regular expression (0 + 1)x#(0 + 1)x specifies the language
{a#b | a, b ∈ {0, 1}∗, |a| = |b|}.
Example 2.3 The synchronized regular expression (0+1)∗%X · X (X is a variable) specifies
the language {ww | w ∈ {0, 1}∗}.
Definition 3 Let V be an alphabet of variables such that V ∩{0, 1} = ∅. A pattern α is a string
overV∪{0, 1}. LetH be the set of homomorphisms hwhere h : (V∪{0, 1})∗ �→ (V∪{0, 1})∗.
Then, the language generated by the pattern α is defined as
L(α) = {w ∈ {0, 1}∗ | w = h(α) for some h ∈ H such that h(0) = 0 and h(1) = 1}.
Amulti-patternπ is a finite set of patterns,π = {α1, α2, α3, . . . , αn}whereαi ∈ (V∪{0, 1})∗
(1 ≤ i ≤ n). The language generated by the multi-pattern π is

L(π) =
n⋃

i=1

L(αi ).

For all integer k ≥ 1, a k-pattern p is a set of patterns of cardinality k. The language
generated by the k-pattern p is

L(p) =
k⋃

i=1

L(αi ).

Throughout this paper,MP({0,1})denotes the set of all multi-patterns over terminal alphabet
{0, 1}. 	

Example 2.4 The language {ww | w ∈ {0, 1}∗} is a pattern language.

Proof Consider the pattern α = xx where x is a variable. Since x can be replaced by any
string in {0, 1}∗, it is clear L(α) = {ww | w ∈ {0, 1}∗}. 	

Example 2.5 The language {0ww | w ∈ {0, 1}∗} ∪ {1w | w ∈ {0, 1}∗} is a multi-pattern
language but not a pattern language.

Proof It is not hard to see that no single pattern can specify this language but themulti-pattern
π = {0xx, 1x} specifies this language. 	

Example 2.6 The simple regular language {0}∗ · {1}∗ is not a multi-pattern language.

Proof The proof can be found in [19]. 	

LetD be a class of language descriptors that describe languages over �. In this paper, we

only consider finite �. Then, ∀d ∈ D, L(d) = {w ∈ �∗ | w is described by d} and L(D) =
{L ⊆ �∗ | ∃d ∈ D such that L = L(d)}. ∀d ∈ D, let |d| denote the size of d and < d >

denote a code of d .
Our code of a language descriptor is efficient and described informally below.

1. For a regular expression, synchronized regular expression, or multi-pattern, the code is
itself.

2. For a context-free grammar with n nonterminals, nonterminals are denoted by su where
u is a base 10 numeral without leading 0’s representing integers {0, 1, . . . , n − 1}. Each
production A → B is denoted by a pair (A, B).
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3. For a Turing machine with a set of states Q and tape alphabet T , states are denoted by qu
where u is a base 10 numeral without leading 0’s representing integers {0, 1, . . . , |Q|−1}.
Each machine move δ(q, a) = (q ′, a′, d) where q, q ′ ∈ Q, a, a′ ∈ T and d ∈ {L, R} is
denoted by a 5-tuple (q, a, q ′, a′, d). For other types of automata, we have similar rules.
We use tuples to denote machine moves and qu to denote states.

The size of a DFA is the number of states of the DFA. The size of a pattern is the number
of symbols of the pattern. The size of a context-free grammar is the number of symbols of
all its productions. For example, the following context-free grammar d accepts the language
{0, 1}∗. d = ({s1}, {0, 1}, {(s1, 0s1), (s1, 1s1), (s1, λ)}, s1). The size of d is 8 (denoted by
|d| = 8).

Comparing two classes of language descriptorsD1 andD2, we assume thatL(D1)∩L(D2)

is not finite. We say that a function f : N �→ N where f (n) ≥ n is an upper bound for the
trade-off between D1 and D2 when transforming from a minimal descriptor in D1 for an
arbitrary language to an equivalent minimal descriptor in D2, if for all L ∈ L(D1) ∩ L(D2)

the following holds:

Min{|d| | d ∈ D2,L(d) = L} ≤ f (Min{|d| | d ∈ D1,L(d) = L}).
If no recursive function is an upper bound for the trade-off between D1 and D2, we say

the trade-off between D1 and D2 is non-recursive.

3 Productiveness and the predicate “= {0, 1}∗” for SRE
Section 3 consists of the two Sects. 3.1 and 3.2. Section3.1 consists of the definition of
productiveness, a stronger form of non-recursive enumerability, and two propositions that
can be used to prove productiveness results. Section3.2 consists of Theorem 3.1, which
shows for a polynomial-time recognizable subset D′ of SRE({0, 1}), such that ∀d ∈ D′,
L(d) ⊆ {0, 1}∗ and |{0, 1}∗ − L(d)| ≤ 1, the set {< d >| d ∈ D′, L(d) = {0, 1}∗} is
productive, hence, non-recursively enumerable.

3.1 Productiveness

Productive sets and their properties are a standard topic in mathematical logic/recursion
theory textbooks such as [25] and [28]. Productiveness is a recursion-theoretic abstraction of
what causes Gödel’s first incompleteness theorem to hold. Definition 4 recalls the definition
of a productive set on N, as developed in [25].

Definition 4 Let W be an effective Gödel numbering of the recursively enumerable sets. A
set A of natural numbers is called productive if there exists a total recursive function f so that
for all i ∈ N, ifWi ⊆ A, then f (i) ∈ A−Wi . The function f is called the productive function
for A. 	


From this definition, we can see that no productive set is recursively enumerable. It is
well-known that the set of all provable sentences in an effective axiomatic system is always
a recursively enumerable set. So for any effective axiomatic system F , if a set A of Gödel
numbers of true sentences in F is productive, then there is at least one element in A which
is true but cannot be proven in F . Moreover, there is an effective procedure to produce such
an element.
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Let W be an effective Gödel numbering of the recursively enumerable sets. K denotes
the set {i ∈ N | i ∈ Wi }. K denotes the set {i ∈ N | i /∈ Wi }. Two well-known facts of
productive sets (see [25]) that are necessary for the research developed here are as follows:

Proposition 1 1. K is productive.
2. For all A ⊆ N, A is productive if and only if K ≤m A.

	

Let �, � be two different finite alphabets such that both A ⊆ �∗ and A ⊆ �∗. It is easily

seen that

There exists a total recursive function F : N → �∗ such that K ≤m A (via F) if and
only if there exists a total recursive function G : N → �∗ such that K ≤m A (via G).

Hence, language A is productive for some finite alphabet � such that A ⊆ �∗ if and only if
A is productive for all finite alphabets � such that A ⊆ �∗. This is the sense in which the
concepts of productiveness are independent of particular finite alphabets.

The following proposition is used to prove many productiveness results for SRE. It also
shows in which way the productiveness is stronger than non-recursive enumerability, i.e.,
every productive set A has an infinite recursively enumerable subset, and for any sound proof
procedure P, one can effectively construct an element that is in A, but not provable in P.

Proposition 2 Let A ⊆ �∗, B ⊆ �∗, and A ≤m B. Then, the following holds:

1. If A is productive, then so is B.
2. If A is productive, then there exists a total recursive function � : �∗ → �∗, called a

productive function for A, such that for all x ∈ �∗,

L(Mx ) ⊆ A ⇒ �(x) ∈ A − L(Mx ), where {Mx | x ∈ �∗} is some Gödel-numbering
of Turing machines over alphabet �.

3. If A is productive, then A is not recursively enumerable (RE). However, A does have an
infinite RE subset.

	

Proof of 1: By Proposition 1, if A is productive, then K ≤m A. Hence by the transitivity of
the many-one reducibility, K ≤m B. Hence by Proposition 1, B is also productive.
Proof of 2: Let the natural numbers be represented in unary. LetK ≤m A (via F). Then, there
exists a total recursive function g : �∗ → {1}∗ such that, for all x ∈ �∗,

L(Mg(x)) = F−1(L(Mx )).

The proof of the existence of function g can be seen in Theorem V(a) [25] page 84. Let the
function � : �∗ → �∗ be defined by, for all x ∈ �∗, �(x) = F(g(x)). The function �

is a total recursive function since it is the composition of two total recursive functions with
appropriate domains and ranges. The function� is actually a productive function forA.This is
seen as follows. Let x ∈ �∗; and suppose thatL(Mx ) ⊆ A. Then,L(Mg(x)) ⊆ F−1(A) ⊆ K.
By the productive property ofK using productive function I{1}∗ , g(x) ∈ K−L(Mg(x)). Hence,
�(x) = F(g(x)) ∈ A. But �(x) /∈ L(Mx ), since otherwise,

�(x) = F(g(x)) ⇒ g(x) ∈ F−1(L(Mx )) = L(Mg(x)),

contradicting, g(x) ∈ K − L(Mg(x)). Hence, as was to be verified,
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�(x) ∈ A − L(Mx ).

Proof of 3: Since K is not RE and K ≤m A by assumption, A is also not RE. The remainder
of the proof is essentially the same as that of Theorem X [25] pages 90–91. It is given here,
for the convenience of the reader.

Let � : �∗ → �∗ be a productive total recursive function for A. A total recursive
function g : N → �∗ can be computed inductively as follows. Let x0 be some Gödel
index for 	. Then, 	 = L(Mx0) ∈ A; and hence, �(x0) ∈ A − L(Mx0). Let g(0) =
�(x0). To compute g(n + 1), do the following. Let xn+1 be a Gödel index, for the finite
set {g(0), . . . , g(n)} ⊆ A. Let g(n + 1) = �(xn+1). Then L(Mxn+1) ⊆ A; and hence,
g(n + 1) = �(xn+1) ∈ A− {g(0), . . . , g(n)}. Since the function g as defined is one-to-one,
the set {g(n) | n ≥ 0} is an infinite RE subset of A. 	


3.2 The predicate “= {0, 1}∗” for SRE

To make our results stronger and more applicable, we first study the sets of valid and invalid
computations of Turing machines. Unlike the definition stated in [12] and [16], we define
the sets of valid and invalid computations of Turing machines on given inputs. This refined
definition enables us to investigate the complexity/undecidability of the restricted language
predicate:

testing equivalence to {0, 1}∗ for languages whose complements’ cardinalities are less
than or equal to one (denoted by “= {0, 1}∗ ||Lc|≤1”).

The instances of this restricted predicate have very important semantic properties: they are
the simplest regular sets. These restrictions make the predicate more widely applicable: for
example, they directly apply to promise problems, predicates on regular sets, anddescriptional
complexity of language descriptors.
Throughout this section, M = (Q, �, T , δ, q0, B, F) is a single tape deterministic Turing
machine where:

1. Q is M’s nonempty finite set of states;
2. q0 ∈ Q is M’s unique start state;
3. F ⊆ Q is M’s set of accepting states. Each one in F is final;
4. M’s input alphabet is � and T is M’s tape alphabet where � ⊆ T ;
5. B ∈ T is the blank symbol;
6. δ : ((Q − F) × T ) �→ (Q × T × {L, R}) is the transition function where L is the left

shift and R is the right shift; and
7. �M = T ∪ (Q × T ) ∪ {#} where the sets T , (Q × T ) and {#} are pairwise disjoint. �′

M
= �M − {#}

Definition 5 Let M be any fixed deterministic Turing machine. For all w ∈ �+, letting
w = w1w2w3 . . . wk where w j ∈ � (1 ≤ j ≤ k), the set of valid computations of M on w

denoted by V ALCM(w), is the set of strings of the form #id0#id1#id2 · · · #idn# such that

1. each idi (1 ≤ i ≤ n) is an ID1 of M
2. id0 = (q0, w1)w2w3 . . . wk is the initial ID of M on w

3. idn is a final ID
4. idi �M idi+1

2 for 0 ≤ i < n

1 The definition of an ID can be seen in [16].
2 �M represents a move of M . The definition of idi �M idi+1 can be seen in [16].
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The set of invalid computations of M on w denoted by I NV ALCM(w), is the complement
of V ALCM(w) with respect to �∗

M .
We write a �M bc where a, b, c ∈ �′

M if and only if a ∈ (Q × T ) is the rightmost letter of
an ID, δ(a) = (qi , b, R) and c = (qi , B).
We write ab �M c where a, b, c ∈ �′

M if and only if a is the leftmost letter of an ID and

1. if a, b /∈ (Q × T ), then c = a;
2. if a ∈ (Q × T ) and δ(a) = (qi , t, L), then c = (qi , B);
3. if a ∈ (Q × T ) and δ(a) = (qi , t, R), then c = t ;
4. if b ∈ (Q × T ) and δ(b) = (qi , t, L), then c = (qi , a);
5. if b ∈ (Q × T ) and δ(b) = (qi , t, R), then c = a;

Or, b is the rightmost letter of an ID and

1. if a, b /∈ (Q × T ), then c = b;
2. if a ∈ (Q × T ) and δ(a) = (qi , t, L), then c = b;
3. if a ∈ (Q × T ) and δ(a) = (qi , t, R), then c = (qi , b);
4. if b ∈ (Q × T ) and δ(b) = (qi , t, L), then c = t .

We write abc �M d where a, b, c, d ∈ �′
M if and only if abc is an infix of an ID and

1. if a, b, c /∈ (Q × T ), then d = b;
2. if a ∈ (Q × T ) and δ(a) = (qi , t, R), then d = (qi , b);
3. if a ∈ (Q × T ) and δ(a) = (qi , t, L), then d = b;
4. if c ∈ (Q × T ) and δ(a) = (qi , t, L), then d = (qi , b);
5. if c ∈ (Q × T ) and δ(c) = (qi , t, R), then d = b;
6. if b ∈ (Q × T ) and δ(b) = (qi , t, L) or δ(b) = (qi , t, R), then d = t .

	

Intuitively, the notation abc �M d means three consecutive letters of an ID determine one

letter of the next ID. By checking every three consecutive letters of idi , if the corresponding
letter of idi+1 is always the correct one (i.e., abc �M d is true for every three consecutive
letters of idi ), we know idi �M idi+1. The notations a �M bc and ab �M c are used to
handle the boundary cases. For example, a �M bc means the head of Turing machine M
is scanning the rightmost letter of the input, rewriting it to b, and moving to the right. So,
c = (q, B) where q is a state of M and B is the blank symbol. Since M is a deterministic
Turing machine, VALCM(w) only contains one single string when M accepts w; otherwise
VALCM(w) is the empty set. Hence, INVALCM(w) is either �∗

M or �∗
M −{t} where t ∈ �∗

M .
The following proposition shows that the class of synchronized regular languages contains
INVALCM(w) very efficiently. The intuitive explanation of the languages L1 through L5 in
the following proposition can be found later in the proof.

Proposition 3 1. I NV ALCM(w) = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5, where the language L j

(1 ≤ j ≤ 5) is defined as follows:

L1 = �∗
M − {#} · (T ∗ · (Q × T ) · T ∗{#})+

L2 = �∗
M − �∗

M · {#} · T ∗ · (F × T ) · T ∗ · {#}
L3 = {λ} ∪ ((�M − {#}) ∪ {#} · ((�M − {(q0, w1)}) ∪ {(q0, w1)}

· ((�M − {w2}) ∪ · · · ∪ {wk−1}
· ((�M − {wk}) ∪ {wk} · �′

M ) · ··))) · �∗
M

L4 = �∗
M · �′

M · {x#y | x, y ∈ �′∗
M and |x | = |y|} · {#} · �∗

M
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∪
�∗

M · {#} · {x#y | x, y ∈ �′∗
M and |x | = |y|} · �′

M · �′
M · �∗

M

L5 = L5.1 ∪ L5.2 ∪ L5.3 ∪ L5.4 where

L5.1 =
⋃

a,b,c∈�′
M

a /∈(Q×T )
or a�Mbc

�∗
M · {#} · {ua#vbc | u, v ∈ �′∗

M and |u| = |v|} · {#} · �∗
M

L5.2 =
⋃

a,b,c∈�′
M

ab�Mc

�∗
M · {#ab} · �′∗

M · {#c} · �∗
M

L5.3 =
⋃

a,b,c,d,e∈�′
M

ab�Mc or
b�Mde

�∗
M · {#} · {uab#vc | u, v ∈ �′∗

M and |u| = |v| − 1} · {#} · �∗
M

L5.4 =
⋃

a,b,c,d∈�′
M

abc�Md

�∗
M · {#uabcw#vd | u, v, w ∈ �′∗

M and |u| = |v| − 1} · �∗
M

2. The languages L1, L2 and L3 are regular sets. The language L1 and L2 depend only
on M. There exists a regular expression NM,w such that L(NM,w) = L3 and NM,w is
constructible from w deterministically in time O(|w|log|w|).

3. L4 and L5 depend only on M and can be generated by synchronized regular expressions.
4. A synchronized regular expression e is constructible deterministically from w in time

O(|w|log|w|) such that L(e) = I NV ALCM(w).

Proof of 1: The proof of L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ⊆ I NV ALCM(w) is straightforward by
the definition of INVALCM(w).

All strings in L1 are not of the form #id0#id1#id2 · · · #idn# where idi (1 ≤ i ≤ n) is an ID
of M .
All strings in L2 do not end with idn# where idn is a final ID of M .
All strings in L3 do not start with #id0 where id0 is the initial ID of M on w

Every string in L4 has an infix #x#y# where x, y ∈ �′∗
M such that |x | > |y| or |y| − |x | > 1.

Every string in L5 has an infix #x#y# where x, y ∈ �′∗
M such that x �M y.

L5.1 covers the case when |x | = |y| − 1, an error causing x �M y shows at the rightmost
part of x and y.
L5.2 covers the case that an error causing x �M y shows at the leftmost part of x and y.
L5.3 covers the case when |x | = |y|, an error causing x �M y shows at the rightmost part of
x and y.
L5.4 covers the case that an error causing x �M y shows at the middle of x and y.

The proof of I NV ALCM(w) ⊆ L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5:
∀t ∈ I NV ALCM(w), there are only two possibilities:

1. t is not of the form #idk1#idk2#idK3 · · · #idkn# where idki (1 ≤ i ≤ n) is an ID of M .
Then t ∈ L1.

2. t is of the form above. There are only two possibilities:

(a) t does not end with idn# where idn is a final ID of M . Then, t ∈ L2.
(b) t ends with idn#. Then, there are only two cases:

(i) t does not start with #id0 where id0 is the initial ID of M on w. Then, t ∈ L3.
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(ii) t starts with #id0. Then, let t = #id0#id1#id2 · · · #idn#.
t ∈ I NV ALCM(w) ⇒ ∃ a leftmost i(0 ≤ i < n) such that idi �M idi+1.
If |idi | > |idi+1| or |idi+1| − |idi | > 1, then t ∈ L4.
Otherwise, ∃x ∈ �′

M which is the leftmost error in idi+1 so that idi �M idi+1.
If |idi | < |idi+1|
(A) x is the first letter of idi+1, then t ∈ L5.2
(B) x is one of the last two letters of idi+1, then t ∈ L5.1
(C) otherwise, t ∈ L5.4
If |idi | = |idi+1|
(A) x is the first letter of idi+1, then t ∈ L5.2
(B) x is the last letter of idi+1, then t ∈ L5.3
(C) otherwise, t ∈ L5.4

Proof of 2, 3, and 4: From the definition of L3, we can see that the regular expression
NM,w accepting L3 contains O(|w|) parentheses. Hence, we need O(|w|log|w|) time to
encode and count these parentheses. From Definition 1, SRE languages are closed under
union and concatenation efficiently. It is obvious that every regular language is an SRE
language. From Example 2.2, it is easy to see that we can efficiently construct an SRE to
specify the language L1 ∪ L2 ∪ L3 ∪ L4. Now, we give a synchronized regular expression
to specify a language that is central to the specification of L5. For simplicity, assume the
input alphabet of the Turing machine � = {0, 1}. For any a, b, c, d ∈ {0, 1}, the SRE
(0+1)xabc(0+1)∗#(0+1)x (0+1)d specifies the language {uabcw#vd | u, w, v ∈ {0, 1}∗,
|u| = |v|−1} over language alphabet {0, 1, #}. From this synchronized regular expression,we
can construct a synchronized regular expression to specify L5 by concatenation with regular
sets and union with SRE languages. Hence, we can efficiently construct a synchronized
regular expression to specify L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5. 	


By this proposition and the following theorem, we show that even for a polynomial-
time recognizable subset D′ of SRE({0, 1}) where each element in D′ generates either
{0, 1}∗ or {0, 1}∗ − {w} (w ∈ {0, 1}∗), the predicate “= {0, 1}∗” is already productive.
This means the predicate “= {0, 1}∗ ||Lc|≤1” is not recursively enumerable for SRE({0, 1}),
independent of the complexity of testing whether an instance is in D′. Results of this type
occur throughout this paper and have many applications, especially for promise problems.
Moreover, since synchronized regular expressions are recursive language descriptors, the
predicate “�= {0, 1}∗” is recursively enumerable.
It is worth noticing that the languages L1 through L5 in Proposition 3 are very simple
languages. Sowe can easily apply the results of this paper to any class of language descriptors
D such that L(D) contains the language {x # y |x, y ∈ (� − {#})∗ and |x | = |y|} and L(D)

is closed under union, and concatenation with regular sets. For example, the results of this
paper can be applied to one-reversal bounded one-counter machines, and real-time one-way
cellular automata (defined in [20]).

Theorem 3.1 There exists a subset D′ of SRE({0, 1}) such that

1. D′ ∈ P;
2. ∀d ∈ D′, L(d) ⊆ {0, 1}∗ and |{0, 1}∗ − L(d)| ≤ 1; and
3. K ≤m {< d >| d ∈ D′, L(d) = {0, 1}∗}

	

Proof of 2, 3: It is not hard to see we can efficiently code INVALCM(w) into alphabet {0, 1}.
According to Proposition 3, a synchronized regular expression e is constructible determin-
istically in time O(|w|log|w|) to accept the coded I NV ALCM(w). Let D′ be the set of
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all possible e. Since M is a deterministic Turing machine, we know |L(e)c| ≤ 1 and
L(e) = {0, 1}∗ if and only if M does not accept w.

Proof of 1: Let e be constructed in a certain way to accept L1, . . . , L5 so that e has a special
format. For example, e must contain 5 easily separable sub-expressions such that the first
sub-expression accepts L3, and the remaining sub-expressions accept L1, L2, L4, L5 in this
exact order. Since L1, L2, L4, and L5 only depend on the fixed Turing machine M , one can
determine the inputw ofM from e in polynomial time in |e| by reading the first sub-expression
of e. So for any synchronized regular expression ed , if one cannot determine an inputw from
ed , then ed /∈ D′. Otherwise, one can determinew according to the format of ed and construct
a synchronized regular expression ew from w and M (M is fixed) in polynomial time so it
accepts the coded INVALCM(w). Make sure that ew must contain 5 easily separable sub-
expressions such that the first sub-expression accepts L3, and the remaining sub-expressions
accept L1, L2, L4, L5 in this exact order. ed ∈ D′ if and only if ed = ew . This shows that
D′ ∈ P. 	


Della Penna et al. also introduced a proper subclass of SRE, namely the 1-level or “flat”
SRE in [6]. 1-SREare a yet useful butmuch less complex subclass of SRE.Definition 6 review
the definition of a 1-level synchronized regular expression. From the proof of Proposition 3
and Theorem 3.1, it is not hard to see corollary 1 holds.

Definition 6 [6] 1-level synchronized regular expressions(1-SRE) are SRE where variables
and exponents cannot be nested (i.e., variables and exponents cannot appear inside an
exponentiated expression or in the expression that is bound to a variable). 	

Corollary 1 The predicate “= {0, 1}∗ ||Lc|≤1” is productive for 1-SRE. 	

Proof In Example 2.2 and the proof of Proposition 3, the synchronized regular expressions
we present are 1-SRE. A 1-SRE language concatenation with a regular set or union with a
regular set is still a 1-SRE language. A 1-SRE language union with a 1-SRE language is still
a 1-SRE language. So we can construct a 1-level synchronized regular expression to accept
L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 defined in Proposition 3. 	


Therefore, all the results for SRE in this paper hold for 1-SRE.

4 Language predicates for SRE

In this section, we show that many important language predicates are as hard as the predicate
“= {0, 1}∗ ||Lc|≤1” for SRE. This section consists of three major theorems. Theorem 4.1
shows the productiveness of testing equivalence and containment to any fixed unbounded
regular set for SRE. Theorem 4.3 gives widely applicable sufficient conditions for proving
productiveness results for SRE. One condition of Theorem 4.3 is that the language predicates
need to be true for only one regular set {0, 1}∗. Theorem 4.5 shows how to prove productive-
ness results for predicates that are not true for any regular/context-free languages by giving
two interesting examples related to multi-pattern languages.

The following definition from [15] is necessary for Theorem 4.1.

Definition 7 A regular set R0 ⊆ {0, 1}∗ is unbounded if and only if there exist strings
r , s, x, y ∈ {0, 1}∗ such that R0 ⊇ {r} · {0x, 1y}∗ · {s}. 	

Theorem 4.1 Let R0 be any fixed unbounded regular set over {0, 1}. There exists a subset S′
of SRE({0, 1}) such that
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1. S′ ∈ P;
2. ∀d ∈ S′, |R0 − L(d)| ≤ 1;
3. K ≤m {< d >| d ∈ S′, L(d) = R0}; and
4. K ≤m {< d >| d ∈ S′, L(d) ⊇ R0}.

	

Proof Theproof is similar to that used in [17] to show that the predicate “= L0” is undecidable
for context-free grammars where L0 is any fixed context-free language with unbounded
regular subset. Since R0 is unbounded, from Lemma 7, there exist r , s, x, y ∈ {0, 1}∗ such
that {r}·{0x, 1y}∗ ·{s} ⊆ R0.∀e1 ∈ D′ where D′ is defined in Theorem 3.1, we can efficiently
construct a synchronized regular expression e2 such that

L(e2) = {r} · h(L(e1)) · {s}
∪

R0 ∩ {r} · {0x, 1y}∗ · {s}
where h : {0, 1}∗ �→ {0, 1}∗ is the homomorphism defined by h(0) = 0x and h(1) = 1y. For
any e1 ∈ D′, we can construct e2 in polynomial time in |e1| since R0, x, y, s and r are fixed
constants. Let S′ be the set of e2. D′ ∈ P ⇒ S′ ∈ P. If L(e1) = {0, 1}∗, then L(e2) = R0;
otherwise, L(e1) = {0, 1}∗ − {w}. Hence, L(e2) = R0 − {rh(w)s}. 	


Theorem 4.1 shows that for any fixed unbounded regular set R0, the predicates “= R0”
and “⊇ R0” are productive even for a polynomial-time recognizable subset of SRE({0, 1})
where each element generates either R0 or R0 − {w} (w ∈ {0, 1}∗). We believe this result
has significant practical meanings since in reality, finding an approximation that differs from
R0 by a finite set is often done and very interesting.

The proof of Theorem 4.1 can be easily applied to any fixed language L0 with an
unbounded regular subset as long as the language L0 ∩ {r} · {0x, 1y}∗ · {s} can be generated
by a synchronized regular expression. Here, we give an example to show that Theorem 4.1
works for many non-regular languages. Extended regular expressions (EXREGs) are intro-
duced by Câmpeanu et al [4] and are closed under intersection with regular sets [3]. It is
easy to see that SRE contain EXREGs effectively since variable bindings can function as
backreferences (defined in [4]). Hence, for any language L0 generated by an extended regular
expression, the language L0∩{r} · {0x, 1y}∗ · {s} can be generated by a synchronized regular
expression. Hence, we can get the following corollary.

Corollary 2 Let L0 be any extended regular language (defined in [4]) over {0, 1} with
an unbounded regular subset. The predicates “=L0” and “⊇ L0” are productive for
SRE({0, 1}). 	


It may be practically more relevant to ask for an approximating minimization algo-
rithm between SRE and DFA/CFG/EXREGs, i.e., given a synchronized regular expression
e, finding a DFA/CFG/EXREG accepting L(e) whose size is bounded by f (M) where
f : N → N is a recursive function and M is the size of a minimal DFA/CFG/EXREG
accepting L(e). The results of testing equivalence and containment to some fixed language
L0 also enable us to show there is no approximating minimization algorithm between SRE
and DFA/CFG/EXREGs accepting L0. For simplicity, we only show the following theorem
for the case L0 = {0, 1}∗.
Theorem 4.2 Let f : N → N be a recursive function. Then, there is no algorithm for solving
the f -bounded approximating minimization problem between SRE and DFA/CFG/EXREGs.
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Proof We only prove there is no algorithm for solving the approximating minimization prob-
lem between SRE and CFG. For DFA, the proof is easier since the universality problem is
decidable forDFA.ForEXREGs, the proof is similar.Assume there is an algorithm for solving
the approximating minimization problem between SRE and CFG. Then, for any synchro-
nized regular expression generating a context-free language L0, one can find an equivalent
CFG of size K accepting L0, such that K ≤ f (M) where M is the size of a minimal CFG
accepting L0. In this case, let L0 = {0, 1}∗. We know the size of a minimal CFG accepting
{0, 1}∗ is 8 (see the example in Sect. 2). Hence, for any synchronized regular expression e,
we can run this algorithm and find an equivalent CFG d. For any context-free grammar with
n nonterminals, nonterminals are denoted by su where u is a base 10 numeral without leading
0’s representing integers {0, 1, . . . , n − 1}. If |d| > f (8), then L(e) �= {0, 1}∗. Otherwise,
|d| ≤ f (8). There exists a finite set T such that for any context-free grammar p where
|p| ≤ f (8), p ∈ T . Hence, there exists a finite table telling if L(p) = {0, 1}∗, for all p ∈ T .
Since the table is finite, it is decidable to check which p = d and if L(p) = {0, 1}∗. if
L(d) = {0, 1}∗, then L(e) = {0, 1}∗; otherwise, L(e) �= {0, 1}∗. This shows the universality
problem is decidable for SRE, which is a contradiction. 	


To better describe Theorem 4.3, we introduce the following notations. For any predicate


on a class of languages over �, let 
le f t denote the set {L ⊆ �∗ | ∃L ′ where 
(L ′) = true
and ∃a ∈ �∗, such that L = a\L ′}. Let 
right denote the set {L ⊆ �∗ | ∃L ′ where

(L ′) = true and ∃a ∈ �∗, such that L = L ′/a}. The notations a\L and L/a denote left
and right quotients with a single letter, respectively.

Theorem 4.3 Let 
 be any non-trivial predicate on the regular sets, such that

1. 
({0, 1}∗) = true and
2. L(REG({0, 1})) − 
le f t �= ∅ or L(REG({0, 1})) − 
right �= ∅
Then, there exists a subset S′ of SRE({0, 1}) such that
1. S′ ∈ P;
2. ∀d ∈ S′, L(d) is regular; and
3. K ≤m {< d >| d ∈ S′, 
(L(d)) = true}, hence, testing if the predicate 
 is true for

SRE is productive.

	

Proof The proof is similar to that used in [18] which shows the undecidability of many
predicates on context-free languages which are true for {0, 1}∗. We only prove when
L(REG({0, 1})) − 
le f t �= ∅, the theorem holds. The other part of the proof is very sim-
ilar. Since L(REG({0, 1})) − 
le f t �= ∅, there exists a regular language L f such that
L f /∈ 
le f t . Then, ∀e1 ∈ D′ where D′ is defined in Theorem 3.1, we can efficiently
construct a synchronized regular expression e2 such that

L(e2) = h(L(e1)) · {11} · {0, 1}∗
∪

{00, 01}∗ · {11} · L f

∪
{00, 01}∗ · {11} · {0, 1}∗

where h : {0, 1}∗ �→ {0, 1}∗ is the homomorphism defined by h(0) = 00 and h(1) = 01. Let
S′ be the set of e2. Since L f is a fixed regular set, we can determine e1 from e2 in polynomial
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time in |e2|. D′ ∈ P ⇒ S′ ∈ P. IfL(e1) = {0, 1}∗, thenL(e2) = {0, 1}∗. Hence,
(L(e2)) =
true; otherwise, L(e1) = {0, 1}∗ − {w}. Hence, L(e2) is regular and h(w)11 \L(e2) = L f .
According to the definition of 
le f t , L f /∈ 
le f t ⇒ 
(L(e2)) = f alse. 	


Theorem 4.3 is extremely useful for proving productiveness results of language class
comparison problems for SRE with a promise that each synchronized regular expression
is guaranteed to generate a regular language. We illustrate the power and applicability of
Theorem 4.3.

Theorem 4.4 The following predicates on the regular sets over {0, 1} satisfy the conditions
of Theorem 4.3, i.e., for each of the following predicates, testing if the predicate is true for
SRE is productive.

1. L is a star event, i.e., L = (L)∗;
2. L is a code event, i.e., there exist strings w1, . . . , wk ∈ {0, 1}∗ such that L =

{w1, . . . , wk}∗;
3. For all k ≥ 1, L is a k-parsable event; and L is a locally parsable event;
4. L is an ultimate definite event, reverse ultimate definite event, or generalized ultimate

definite event;
5. L is a comet event, reverse comet event, or generalized comet event;
6. L = γ (L), where γ (L) = {y | there exists x in L such that | y |=| x |};
7. L is prefix closed, i.e., L = {x | there exists y in {0, 1}∗ and x · y ∈ L};
8. L is suffix closed, i.e., L = {y | there exists x in {0, 1}∗ and x · y ∈ L};
9. L is infix closed, i.e., L = {y | there exists x, z in {0, 1}∗ and x · y · z ∈ L};
10. L is co-finite;
11. For all k ≥ 1, L is a k-definite event, k-reverse definite event, or k-generalized definite

event;
12. L is definite, reverse definite, or generalized definite event;
13. For all k ≥ 1, L is a k-testable event;
14. For all k ≥ 1, L is k-testable in the strict sense;
15. L is locally testable in the strict sense;
16. L is locally testable;
17. L is a star-free, non-counting, group-free, permutation-free, or LTO event;
18. For all k > 2, L is a CMk event;
19. L is accepted by some strongly connected deterministic finite automaton;
20. L is accepted by some permutation automaton;
21. L is a pure group event;
22. L = Lrev; and
23. L is dot-free, i.e., L is denoted by some (∪, ·, ∗,−) regular expression over {0, 1} with

no occurrence of “·”;
	


Proof The definitions of the classes of regular sets of 2, 3, and 11 through 18 can be found
in [22]. The definition of 4 can be found in [23], 5 in [24], 19 in [11], 20 in [29], and 21 in
[21]. The proof for each of the above predicates consists of two parts. The first part consists
of observing that the predicates are true for {0, 1}∗. The second part of the proof consists of
showing that
le f t or
right is a proper subset of the regular sets which can be found in [18].

	

Since Theorem 4.3 only requires the predicates to be true for one regular set {0, 1}∗, we

can use its proof to study the complexity/undecidability of predicates on many classes of
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languages other than the regular sets. Two interesting examples are the following corollar-
ies of the proof of Theorem 4.3. Due to the power and applicability of this proof and the
dichotomization of its reduction, we can show Corollary 3 despite that MPL is an anti-AFL
(anti-abstract family of languages, see [10] for definition) and k-pattern languagesmay not be
closed under left or right derivatives ( [19]), and any class of languages � ⊆ L(CFG({0, 1}))
that contains {0, 1}∗ satisfies Corollary 4 regardless of the closure properties of �.

Corollary 3 {< d >| d ∈ SRE({0, 1}), L(d) is a k-pattern language for any k ≥ 1} is
productive, and {< d >| d ∈ SRE({0, 1}), L(d) is a multi-pattern language } is productive.

	

Proof Let L f = {0n1n | n ≥ 0}. We know that L f is an SRE language by Example 2.1.
We also know that L f is not a multi-pattern language and MPL is closed under left and
right derivatives [19]. Hence, with the same construction in the proof of Theorem 4.3, if
L(e1) = {0, 1}∗, then L(e2) = {0, 1}∗ which is a 1-pattern language. Otherwise, there exists
a string w ∈ {0, 1}+ such that w\L(e2) = L f . Since L f is not a multi-pattern language
and MPL languages are closed under left derivatives, L(e2) is not a multi-pattern language.
Hence, L(e2) is not a k-pattern language for any k ≥ 1. 	

Corollary 4 For any fixed set � where � ⊆ L(CFG({0, 1})) and {0, 1}∗ ∈ �,
{< d >| d ∈ SRE({0, 1}), L(d) ∈ �} is productive.
Thus, in particular,
{< d >| d ∈ SRE({0, 1}), L(d) is context-free }, and
{< d >| d ∈ SRE({0, 1}), L(d) is regular } are productive. 	

Proof Let L f = {ww | w ∈ {0, 1}∗}. The SRE (0 + 1)∗%X · X (X is a variable) specifies
L f . So with the same construction in the proof of Theorem 4.3, if L(e1) = {0, 1}∗, then
L(e2) = {0, 1}∗. Hence, L(e2) ∈ �. Otherwise, there exists a string w ∈ {0, 1}+ such that
w \ L(e2) = L f . Since L f is not context-free and context-free languages are closed under
left derivatives, L(e2) is not context-free. Hence, L(e2) /∈ �. 	


So far, all language class comparison problems we have studied need to be true for only
one regular set {0, 1}∗. The following theorem illustrates how we can investigate the com-
plexity/undecidability of predicates that are not true for any regular set, or any context-free
languages.

Theorem 4.5 K ≤m {< d >| d ∈ SRE({0, 1}), L(d) is not regular but in L(MP({0,1}))},
and K ≤m {< d >| d ∈ SRE({0, 1}), L(d) is not context-free but in L(MP({0,1}))}. 	

Proof Let Lt = {1} · {ww | w ∈ {0, 1}∗} ∪ {0} · {0, 1}∗ and L f = {0}∗ · {1}∗. Consider the
multi-pattern π = {1xx, 0x} where x is a variable. Then, L(π) = Lt . Hence, Lt is a multi-
pattern language. It is easy to see that Lt is not a context-free language. ∀e1 ∈ SRE({0, 1}),
we can effectively construct a synchronized regular expression e2 such that

L(e2) = {0} · h(L(e1)) · {11} · {0, 1}∗
∪

{0} · {00, 01}∗ · {11} · L f

∪
Lt ∩ {0} · {00, 01}∗ · {11} · {0, 1}∗
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where h : {0, 1}∗ �→ {0, 1}∗ is the homomorphism defined by h(0) = 00 and h(1) = 01.
Extended regular expressions (EXREGs) are introduced by Câmpeanu et al [4] and are closed
under intersection with regular sets [3]. The language {ww | w ∈ {0, 1}∗} can be specified
by an extended regular expression ((0 + 1)∗) \ 1 (\1 is a backreference used to match the
same content as a previously matched subexpression). Hence, Lt can be specified by an
EXREG. Hence, Lt ∩ {0} · {00, 01}∗ · {11} · {0, 1}∗ can be specified by an EXREG. It is
easy to see that SRE contain EXREGs effectively since variable bindings can function as
backreferences. Hence, Lt ∩{0} · {00, 01}∗ · {11} · {0, 1}∗ can be specified by a synchronized
regular expression. Since Lt , L f and {0} · {00, 01}∗ · {11} · {0, 1}∗ are fixed languages, the
construction of e2 can be done in polynomial time in |e1|. If L(e1) = {0, 1}∗, since {0} ·
{0, 1}∗ ⊆ Lt , L(e2) = Lt . Hence, L(e2) is a multi-pattern language but not context-free.
Otherwise, ∃w ∈ {0, 1}∗ such that 0 h(w)11\L(e2) = L f . MPL is closed under left and
right derivatives [19] ⇒ L(e2) is not a multi-pattern language. 	


5 Descriptional complexity of SRE

In this section, we study the descriptional complexity of SRE using the special properties
of the predicate “= {0, 1}∗ ||Lc|≤1”. Regular languages are the most commonly used formal
languages. In [7], Freydenberger shows that there is no recursive trade-off between SRE and
regular expressions. But it may be practically more relevant to ask the trade-off between
SRE and a class of language descriptors accepting a particular subset of regular languages.
The special properties of the predicate “= {0, 1}∗ ||Lc|≤1” enable us to study such trade-offs
since the language {0, 1}∗ and {0, 1}∗ − {w} are both co-finite and are the simplest regular
languages. In Theorem 5.1, we show that there is no recursive trade-off between SRE and
DFA. Then, Theorem 5.2 generalizes the proof of Theorem 5.1 and gives sufficient condi-
tions for establishing non-recursive trade-offs between SRE and many classes of language
descriptors. To illustrate the power and applicability of Theorem 5.2, we show that any class
of language descriptors accepting languages satisfying any predicate listed in Theorem 4.4
satisfies the conditions of Theorem 5.2.

To show that our results are even more widely applicable, we tune Theorem 5.2 with
slight changes to study the trade-off between SRE and multi-patterns. Here, we redefine
I NV ALCM(w) developed in Definition 5 to tune the conditions in Theorem 5.2 so they
can fit the properties of multi-patterns (Lemmas 5.2 and 5.3). Intuitively, Definition 5 defines
I NV ALCM(w) as either {0, 1}∗ or {0, 1}∗ − {w}. The redefined I NV ALCM(w) in Def-
inition 8 defines I NV ALCM(w) as either {0, 1}∗ or {0, 1}∗ − {w} · {0, 1}∗. Lemma 5.2
shows that {0, 1}∗ − {w} · {0, 1}∗ is a multi-pattern language. Lemma 5.3 shows that for
any multi-pattern π generating {0, 1}∗ − {w} · {0, 1}∗, |π | ≥ |w| − 1. With the tuned con-
ditions, we establish Theorem 5.3 to show there is no recursive trade-off between SRE and
multi-patterns. This is another example to show Proposition 3 is easily applicable.

The following lemma for DFA is well-known and needed for proving Theorem 5.1.

Lemma 5.1 ∀w ∈ {0, 1}∗, let Lw = {0, 1}∗ − {w}. For any DFA M that accepts Lw, |M | ≥
|w|. 	

Theorem 5.1 There exists a subset D′ of SRE({0,1}) such that

1. D′ ∈ P;
2. ∀d ∈ D′, L(d) is regular;
3. There exists no recursive function f : N �→ N such that ∀d ∈ D′, for any minimal DFA

M accepting L(d), |M | ≤ f (|d|); and
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4. There exists a fixed constant C > 0 such that
{< d >| d ∈ D′, ∃ a DFA M such that L(M) = L(d) and |M | < C} is productive,
hence, not recursively enumerable.

	

Proof of 1, 2, and 3: Let D′ be the same D′ defined in Theorem 3.1. We know that every
language in L(D′) is either {0, 1}∗, or {0, 1}∗ − {t} where t ∈ {0, 1}∗ is the coded valid
computation of a Turing machine N on an input w. Assume such a recursive function f
stated in 3 exists. From Lemma 5.1, we know that f (|d|) ≥ |M | ≥ |t |. If the Turing machine
N on w halts, let x denote the number of steps N takes to halt. Then, |t | ≥ x · |w|. Hence,
f (|d|) > x . Hence, the halting problem is recursive, which is a contradiction.

Proof of 4: Let C = 2. For any d ∈ D′, if L(d) = {0, 1}∗, then there exists a DFA M with a
single state such thatL(M) = L(d). Hence, |M | < C ; otherwise,L(d) = {0, 1}∗−{t}where
t ∈ {0, 1}+, then from Lemma 5.1, for any DFA M specifying L(d), |M | ≥ |t |. Therefore,
it is clear |M | ≥ C . 	


We establish the following theorem to generalize Theorem 5.1. Many non-recursive trade-
offs between SRE and other classes of language descriptors can be proved using it.

Theorem 5.2 Let D be any class of language descriptors over alphabet {0, 1} such that
1. For any w ∈ {0, 1}∗, Lw = {0, 1}∗ − {w} ∈ L(D); and
2. There exists a strictly increasing recursive function f : N �→ N such that for any d ∈ D

specifying Lw, f (|d|) > |w|.
Then, there is no recursive trade-off between SRE and D. 	

Proof Assume there exists a recursive function g : N �→ N such that for any synchronized
regular expression e specifying the coded I NV ALCM(w) (notice that we can efficiently
code I NV ALCM(w) into alphabet {0, 1} and |I NV ALCM(w)c| ≤ 1), for any d ∈ D
specifying L(e), g(|e|) > |d|. Since f is strictly increasing, we know f (g(|e|)) > f (|d|) >

|t | where t ∈ V ALCM(w). Clearly, the function f ◦ g remains a recursive function. |t | >

x where x is the number of steps that the Turing machine N takes to halt on w. Hence,
f (g(|e|)) > x . Hence, the halting problem is recursive, which is a contradiction. 	

The following corollary illustrates the power and applicability of Theorem 5.2.

Corollary 5 Any class of language descriptors D that L(D) satisfies any predicate listed
in Theorem 4.4 satisfies the conditions of Theorem 5.2, i.e., there is no recursive trade-off
between SRE and D.

It is also interesting for us to investigate the trade-off between SRE and multi-patterns. To
illustrate that our results are tunable andwidely applicable,we slightly change the definition of
INVALCM(w) as follows to investigate this problem. Intuitively, the redefined INVALCM(w)
is either {0, 1}∗ or {0, 1}∗ − {w} · {0, 1}∗.
Definition 8 Recall the deterministic Turing machine M = (Q, �, T , δ, q0, B, F) we men-
tioned in Sect. 3. For all w ∈ �+, letting w = w1w2w3 . . . wk where w j ∈ � (1 ≤ j ≤ k),
the set of valid computations of M on w denoted by V ALCM ′(w), is the set of strings of
the form #id0#id1#id2 · · · #idn# · t such that

1. t ∈ �∗
M
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2. each idi (1 ≤ i ≤ n) is an ID of M
3. id0 = (q0, w1)w2w3 . . . wk is the initial ID of M on w

4. idn is a final ID
5. idi �M idi+1 for 0 ≤ i < n

The set of invalid computations of M on w denoted by I NV ALCM ′(w) is the complement
of V ALCM ′(w) with respect to �∗

M . 	

With this refined definition and the following two lemmas, we can study the trade-off

between SRE and multi-patterns using a method similar to Theorem 5.2.

Lemma 5.2 ∀w ∈ {0, 1}+, the language Lw = {0, 1}∗ − {w} · {0, 1}∗ is a multi-pattern
language. 	

Proof Let w = w0w1w2 · · · wk where wi ∈ {0, 1}(0 ≤ i ≤ k). Let 0̄ = 1 and 1̄ = 0. Con-
sider the multi-pattern π = {λ, w0, w0w1,…, w0w1 . . . wk−1, w̄0x , w0w̄1x , w0w1w̄2x ,…,
w0w1w2 . . . wk−1w̄k x} where x is a variable. It is clear that L(π) = Lw. 	

Lemma 5.3 For any multi-pattern π that generates the language Lw = {0, 1}∗−{w}·{0, 1}∗
where w ∈ {0, 1}+, |π | ≥ |w| − 1. 	

Proof Assume |π | < |w| − 1. Let wL be the longest proper prefix of w. Then, we know
|wL | = |w| − 1 and wL ∈ Lw. Hence, there is a pattern α ∈ π such that wL ∈ L(α).
According to the assumption, |α| < |wL | since otherwise |π | ≥ |α| ≥ |w| − 1 which is a
contradiction. Hence, there must be at least one variable occurring in α.

Let x be the leftmost variable occurred in α and V be the set of variables for π . Let
α = P1x P2 where P1 ∈ {0, 1}∗ and P2 ∈ ({0, 1} ∪ V )∗. Since wL ∈ L(α), we know P1 is a
proper prefix of w. Hence, ∃t ∈ {0, 1}∗ such that P1 · t = w.

Let x be substituted by t , then there exists a string in {w} · {0, 1}∗ that matches α, which
is a contradiction. 	

Theorem 5.3 There exists a subset S′ of SRE({0,1}) such that

1. S′ ∈ P;
2. ∀d ∈ S′, L(d) is a multi-pattern language;
3. There exists no recursive function f : N �→ N such that ∀d ∈ S′, for any minimal

multi-pattern π specifying L(d), |π | ≤ f (|d|); and
4. There exists a fixed constant C > 0 such that

{< d >| d ∈ S′, ∃ a multi-pattern π such that L(π) = L(d) and |π | < C} is productive,
hence, not recursively enumerable.

	

Proof of 1, 2, and 3: Corresponding to Definition 8, L1 through L5 in Proposition 3 need to
be changed slightly. Let �1 = �M − (F × T ) − {#} and �2 = �M − (F × T ). Let

L ′
1 = �∗

M − {#} · (T ∗ · (Q × T ) · T ∗{#})+ · �∗
M

L ′
2 = �∗

M − �∗
M · {#} · T ∗ · (F × T ) · T ∗ · {#} · �∗

M

L ′
3 = {λ} ∪ ((�M − {#}) ∪ {#} · ((�M − {(q0, w1)}) ∪ {(q0, w1)}

· ((�M − {w2}) ∪ · · · ∪ {wk−1} · ((�M − {wk}) ∪ {wk} · �′
M ) · ··))) · �∗

M

L ′
4 = �∗

2 · �′
1 · {x#y | x ∈ �∗

1 and y ∈ �′∗
M , |x | = |y|} · {#} · �∗

M
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∪
·�∗

2 · {#} · {x#y | x ∈ �∗
1 and y ∈ �′∗

M , |x | = |y|} · �′
M · �′

M · �∗
M

L ′
5 = L ′

5.1 ∪ L ′
5.2 ∪ L ′

5.3 ∪ L ′
5.4 where

L ′
5.1 =

⋃

a,b,c∈�′
M

a /∈(Q×T )
or a�Mbc

�∗
2 · {#} · {ua#vbc | u ∈ �∗

1, v ∈ �′∗
M and |u| = |v|} · {#} · �∗

M

L ′
5.2 =

⋃

a,b,c∈�′
M

ab�Mc

�∗
2 · {#ab} · �∗

1 · {#c} · �∗
M

L ′
5.3 =

⋃

a,b,c,d,e∈�′
M

ab�Mc or
b�Mde

�∗
2 · {#} · {uab#vc | u ∈ �∗

1, v ∈ �′∗
M and |u| = |v| − 1} · {#} · �∗

M

L ′
5.4 =

⋃

a,b,c,d∈�′
M

abc�Md

�∗
2 · {#uabcw#vd | u, w ∈ �∗

1, v ∈ �′∗
M and |u| = |v| − 1} · �∗

M

Since all states in F are final, for any string s = #id0#id1#id2 ···#idn#·t ∈ V ALCM ′(w),
idn is the first ID that contains a letter in (F × T ). So we can use this property to distinguish
which part of s belongs to #id0#id1#id2 · · ·#idn# and which part of s belongs to t . Thus, it is
not hard to see that I NV ALCM ′(w) = L ′

1 ∪ L ′
2 ∪ L ′

3 ∪ L ′
4 ∪ L ′

5 and I NV ALCM ′(w) can
be expressed by a synchronized regular expression. Recall the set D′ defined in Theorem 3.1.
We can slightly change the set D′ to S′ so L(S’) is the set of coded INVALCM’(w) over {0, 1}.
The proof is very similar to the proof of Theorem 3.1. From Lemma 5.2, we know that every
language inL(S′) is a multi-pattern language. Assume such a recursive function f stated in 3
exists. FromLemma 5.3, we know that f (|d|) ≥ |π | ≥ |t |−1where t ∈ V ALCM(w). If the
Turing machine M onw halts, let x denote the number of steps M takes. Hence, |t | ≥ x · |w|.
Hence, f (|d|) > x . Therefore, the halting problem is recursive, which is a contradiction.

Proof of 4: Let C = 2. For any d ∈ S′, if L(d) = {0, 1}∗, then there exists a multi-pattern
{x} where x is a variable and L({x}) = L(d); otherwise L(d) = {0, 1}∗ − {u} · {0, 1}∗ where
u ∈ {0, 1}+, then from Lemma 5.3, for any multi-pattern π specifying L(d), |π | ≥ |u| − 1.
It is clear |π | ≥ 2. 	


6 Conclusion

In this paper, productiveness is employed, which is a stronger form of non-recursive enumer-
ability. If a language predicate is productive, then the predicate is not recursively enumerable.
Moreover, for the given language predicate, there is an effective procedure which, given as
input a program enumerating an effective axiomatic system which proves only true values of
the language predicate, produces a statement which cannot be proven by the given axiomatic
system but which is still true with respect to the language predicate. We have revised the
definition of the sets of invalid computations of Turing machines and used this definition to
show that the predicate “= {0, 1}∗ ||Lc|≤1” is productive for SRE. This result enables us to
establish the productiveness of many problems for SRE, especially promise problems. Using
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the special properties of the predicate “= {0, 1}∗ ||Lc|≤1”, non-recursive trade-offs between
SRE and many language descriptors are also proved.
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19. Kari, L., Mateescu, A., Pǎun, G., Salomaa, A.: Multi-pattern languages. Theoret. Comput. Sci. 141(1),
253–268 (1995). https://doi.org/10.1016/0304-3975(94)00087-Y

20. Malcher, A.: Descriptional complexity of cellular automata and decidability questions. J. Autom. Lang.
Comb. 7(4), 549–560 (2002). https://doi.org/10.25596/jalc-2002-549

21. McNaughton, R.: The loop complexity of pure-group events. Inf. Control 11(1), 167–176 (1967). https://
doi.org/10.1016/S0019-9958(67)90481-0

22. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)
23. Paz, A., Peleg, B.: Ultimate-definite and symmetric-definite events and automata. J. ACM 12(3), 399–410

(1965). https://doi.org/10.1145/321281.321292
24. Paz, A., Peleg, B.: On concatenative decompositions of regular events. IEEE Trans. Comput. C–17(3),

229–237 (1968). https://doi.org/10.1109/TC.1968.229096
25. Rogers, H., Jr.: Theory of Recursive Functions andEffectiveComputability.MITPress, Cambridge (1987)
26. Schmid, M.L.: Inside the class of regex languages. Int. J. Found. Comput. Sci. 24(07), 1117–1134 (2013).

https://doi.org/10.1142/S0129054113400340
27. Schmid, M.L.: Characterising regex languages by regular languages equipped with factor-referencing.

Inf. Comput. 249, 1–17 (2016). https://doi.org/10.1016/j.ic.2016.02.003
28. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)
29. Thierrin, G.: Permutation automata. Math. Syst. Theory 2, 83–90 (1968). https://doi.org/10.1007/

BF01691347

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/322017.322020
https://doi.org/10.1137/0207007
https://doi.org/10.1016/0304-3975(94)00087-Y
https://doi.org/10.25596/jalc-2002-549
https://doi.org/10.1016/S0019-9958(67)90481-0
https://doi.org/10.1016/S0019-9958(67)90481-0
https://doi.org/10.1145/321281.321292
https://doi.org/10.1109/TC.1968.229096
https://doi.org/10.1142/S0129054113400340
https://doi.org/10.1016/j.ic.2016.02.003
https://doi.org/10.1007/BF01691347
https://doi.org/10.1007/BF01691347

	On the undecidability and descriptional complexity of synchronized regular expressions
	Abstract
	1 Introduction
	2 Definitions and notations
	3 Productiveness and the predicate ``={0,1}*'' for SRE
	3.1 Productiveness
	3.2 The predicate ``={0,1}*'' for SRE

	4 Language predicates for SRE
	5 Descriptional complexity of SRE
	6 Conclusion
	References




