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Abstract
This paper considers the structure consisting of the set of all words over a given alphabet
together with the subword relation, regular predicates, and constants for every word. We are
interested in the counting extension of first-order logic by threshold counting quantifiers.
The main result shows that the two-variable fragment of this logic can be decided in twofold
exponential alternating time with linearly many alternations (and therefore in particular in
twofold exponential space as announced in the conference version (Kuske and Schwarz,
in: MFCS’20, Leibniz International Proceedings in Informatics (LIPIcs) vol. 170, pp 56:1–
56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020) of this paper) provided
the regular predicates are restricted to piecewise testable ones. This result improves prior
insights by Karandikar and Schnoebelen by extending the logic and saving one exponent in
the space bound. Its proof consists of twomain parts: First, we provide a quantifier elimination
procedure that results in a formula with constants of bounded length (this generalises the
procedure by Karandikar and Schnoebelen for first-order logic). From this, it follows that
quantification in formulas can be restricted to words of bounded length, i.e., the second part
of the proof is an adaptation of the method by Ferrante and Rackoff to counting logic and
deviates significantly from the path of reasoning by Karandikar and Schnoebelen.

1 Introduction

The subword relation is one of the simplest nontrivial examples of a well-quasi-ordering
[5] and can be used in the verification of infinite state systems [4]. It can be understood as
embeddability of one word into another. This embeddability relation has been considered
for other classes of structures like trees, posets, semilattices, lattices, graphs, Mazurkiewicz
traces, etc. [7, 8, 12, 13, 15, 23, 24].

Many of these papers study logical aspects of the embeddability relation. Regarding the
subword relation, the literature provides a rather sharp description of the border between
decidable and undecidable fragments of first-order logic: For the subword order alone, the
∃∗-theory is decidable [14] and the ∃∗∀∗-theory is undecidable [9]. For the subword order
together with regular predicates, the two-variable theory is decidable [9] (this holds even for
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the two-variable fragment of the logic C+MOD, i.e., the extension of first-order logic by
threshold- and modulo-counting quantifiers [16]) and the three-variable theory [9] as well
as the ∃∗-theory are undecidable [6] (these two undecidabilities already hold if we only
consider singleton predicates, i.e., constants). Recently, Baumann et al. [1] strengthened the
last undecidability result by showing that all semi-decidable languages can be defined by
an existential formula using constants (even more, a language belongs to the nth existential
level of the arithmetical hierarchy if, and only if, it can be defined by a Σn-formula).

We next sketch the decision procedure for the 2-variable fragment of the first-order theory
of the subword relation together with regular predicates from [9]. Letϕ(x) be a formulawith a
single free variable. It may contain regular predicates that are given in any familiar formalism.
Then, the crucial insight from [9] is that the set of words satisfying ϕ(x) can be obtained
from the regular predicates by a fixed set of rational transductions and Boolean operations.
Hence, one can inductively build the minimal deterministic finite automaton (henceforth
dfa) accepting this set. The only known upper bound for the size of this minimal dfa is non-
elementary since any quantification requires to apply one of the rational transductions to the
language of a minimal dfa (which leads to a nondeterministic finite automaton, i.e., nfa) and
then to determinise and minimise this nfa. The crucial insight from the follow-up paper [10]
by the same authors is that the size of these minimal dfas is at most triply exponential if,
instead of regular predicates, one allows constants, only (alternatively: singleton predicates).
Since determinisation and minimisation of an nfa can be done in space polynomial in the
resulting minimal dfa (and logarithmic in the nfa), the above construction can be carried out
in threefold exponential space1 which is also an upper bound for the said theory (the best
lower bound we know so far is PSPACE [9]). This bound on the size of the minimal dfas is
possible since all defined languages are piecewise testable [20]. A useful complexity measure
for piecewise testable languages is their height. The new and innovative contribution of the
proof from [10] are bounds for the height of the upwards closure L↑, the downwards closure
L↓, and the incomparability set L‖ of a piecewise testable language L; these new bounds
are polynomial in the height of L (assuming a fixed alphabet).2

We improve this 3EXPSPACE upper bound for the theory in three aspects:

1. We prove an upper bound of twofold exponential alternating time with linearly many
alternations (which implies an upper bound of twofold exponential space, i.e., the result
we announced in the conference version of this paper [11]).

2. We allow piecewise testable predicates given by so-called pt-nfas [17, 18] (which are
more succinct than minimal dfas). Further, the upper bound is measured in the depth of
these pt-nfas as opposed to their size.

Remark Any piecewise testable predicate can be defined in the one-variable fragment of
first-order logic. Consequently, these predicates do not increase the expressive power. Since
a pt-nfa of depth k accepts a piecewise testable language of height k, the naive translation of
a pt-nfa into a formula yields a formula of size exponential in the depth of the pt-nfa. As to
whether this size increase is necessary seems not to be known.

3. We extend the two-variable fragment of first-order logic by threshold counting quantifiers
∃�t (from [16], we know that this theory is decidable, even with regular predicates).

1 The claim of threefold exponential time from [10, Thm. 7.5] is not supported by the proof idea [19].
2 This view indicates that the result from [10] can be improved by allowing, instead of singleton predicates,
piecewise testable predicates given by minimal dfas. Also then, the algorithm from [9] should run in threefold
exponential space.
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Following and extending the ideas from [10], we first prove new results on the height of
piecewise testable languages. Namely, we extend the above mentioned results about L↑, L↓,
and L‖ to, e.g., L↑�t , the set of words that have at least t subwords in L (and similarly for
L↓�t and L‖�t ). These considerations can be found in Sect. 3.

From these results, it follows that a language L defined by a formula (that uses threshold
counting quantifiers and piecewise testable predicates given by pt-nfas) is piecewise testable
of height at most doubly exponential in the size of the formula (Theorem 4.3).

Remark Consequently, L can be defined by a quantifier-free first-order formula. It follows
that also the addition of counting quantifiers ∃�t does not increase the expressive power of
the logic. But the use of counting quantifiers allows to write exponentially more succinct
formulas (Theorem 4.5).

So far, this parallels the development in [10] where the corresponding result was shown
for first-order logic. But at this point, instead of building automata (as done in [10]), we
follow another path of argument, that is an adaptation of Ferrante and Rackoff’s method [3].

The language-theoretic considerations imply that any formula is equivalent to a quantifier-
free formula that uses constants of doubly exponential length and no piecewise testable
predicates (Corollary 4.4). From this, we derive that quantification in formulas can be
restricted to words of doubly exponential length. This implies that the two-variable frag-
ment of the threshold counting extension of first-order logic becomes decidable in twofold
exponential alternating time with linearly many alternations (allowing piecewise testable
predicates in the formula given by pt-nfas).

2 Definitions andmain results

Throughout this paper,wefix an alphabetΣ .Wedenote byΣ∗ the set of (finite)words overΣ .
A word u ∈ Σ∗ is a subword of v ∈ Σ∗ if u = u1u2 . . . un and v = v0u1v1u2v2 · · · unvn
for some n ∈ N and ui , vi ∈ Σ∗. We write u 	 v for this fact and alternatively say that v

is a superword of u. Finally, we write u‖v if neither u is a subword of v nor vice versa; we
say that u and v are incomparable. Note that for any two distinct words u and v, we have
precisely one of the three relations u 	 v, u 
 v, or u‖v.

Let L ⊆ Σ∗ be a language. Its upwards closure is the language L↑ = {v ∈ Σ∗ | ∃u ∈
L : u 	 v} of all words v that have some subword u in L . Dually, the downwards closure of
L is the language L↓ = {u ∈ Σ∗ | ∃v ∈ L : u 	 v} of all words u that have some superword
v in L . Finally, the incomparability set of L is the language L‖ = {u ∈ Σ∗ | ∃v ∈ L : u‖v}
of all words u that have some incomparable word v in L .

Note that, for any language L , we have L ⊆ L↑ ∩ L↓, i.e., these two sets need not be
disjoint. For, e.g., L = {aa, bb}∗, we even get L↑ = L↓ = L‖ = Σ∗ provided Σ = {a, b}.

2.1 Piecewise testable languages and themain result for language theorists

The length of a word u ∈ Σ∗ is denoted |u|, Σ�n denotes the set of words of length � n.
We next define Simon’s congruences ∼n that play an important role in our considerations.

Definition Let u, v ∈ Σ∗ and n ∈ N. Then, u and v are n-equivalent (denoted u ∼n v) if they
have the same subwords of length � n. We denote by [u]n the equivalence class containing
the word u wrt. the equivalence relation ∼n .
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A language L ⊆ Σ∗ is piecewise testable if there exists n ∈ N such that L is a union of
languages [u]n for some words u ∈ Σ∗ (which is equivalent to saying that L is closed under
∼n). The minimal such n is called the height of L . We write PT(n) for the class of piecewise
testable languages of height � n. Note that PT(n) ⊆ PT(n + 1), and that both ∅ and Σ∗
are of height 0. Since the set of equivalence classes [u]n forms a partition of Σ∗, the class
PT(n) is closed under Boolean operations. Since Σ�n is finite, there are only finitely many
equivalence classes of ∼n . Hence, for any n ∈ N, there are only finitely many languages
L ⊆ Σ∗ in PT(n).

Let L ⊆ Σ∗ be piecewise testable. Then, the upwards closure L↑, the downwards closure
L↓ and the incomparability set L‖ are all piecewise testable of height polynomial in that of
L (the degree of the polynomial is the size of the alphabet Σ) [10]. We will extend these
results to the following more general operations.

Let L ⊆ Σ∗ be some language and t ∈ N some threshold. Then

L↑�t = {v ∈ Σ∗ | ∃u1, . . . , ut ∈ L pairwise distinct : ui 	 v for all 1 � i � t}
denotes the set of words v that have� t subwords in L . In particular, L↑�0 = Σ∗ and L↑�1
is the usual upwards closure L↑ of L . Note that any language L↑�t is upwards closed (i.e.,
satisfies

(
L↑�t

)↑ = L↑�t ) and therefore piecewise testable.
Dually, the set

L↓�t = {u ∈ Σ∗ | ∃v1, . . . , vt ∈ L pairwise distinct : u 	 vi for all 1 � i � t}
consists of all words u that have � t superwords in L; the above remarks on L↑�t apply
mutatis mutandis.

Let

L‖�t = {u ∈ Σ∗ | ∃v1, . . . , vt ∈ L pairwise distinct : u‖vi for all 1 � i � t}
contain all words u that are incomparable with � t words from L .

We will also write, e.g., L‖<t for the complement of L‖�t , i.e., for the set of words that
are incomparable with at most t − 1 words from L .

The function g|Σ | thatwill bound the height of the resulting languages L↑�t , etc. is defined
as follows: Let n ∈ N. Then, ∼n has only finitely many equivalence classes. Let g|Σ |(n) be
minimal such that every equivalence class [x]n contains some word of length � g|Σ |(n).
Then, n � g|Σ |(n) � g|Σ |(n+1) for all n ∈ N. From [10, Thm. 3.7 & Eq. (3.12)], we know
that g|Σ |(n) � (n + 2)|Σ |.

The main result for language theorists now reads as follows (for the proof, see Sect. 3): it
generalises [10, Theorems 4.4, 5.5, and 6.1] from t = 1 to general thresholds.

Theorem 2.1 Let Σ be some alphabet, n, t ∈ N, and L ⊆ Σ∗ be a piecewise testable
language of height � n. Then, the following hold:

1. L↑�t is piecewise testable of height � g|Σ |(n) + t − 1.
2. L↓�t is piecewise testable of height � (|Σ | + 1) · (

g|Σ |(n) + 1
)
(note that this upper

bound does not depend on t).
3. L‖�t is piecewise testable of height � g|Σ |(n) + t .

Before we turn to a consequence in logic, we shortly recall some results on the relation
of nondeterministic finite automata (abbreviated nfa) and piecewise testable languages.

There are different characterisations of piecewise testable languages using nfas; we only
rely on one byMasopust and Thomazo [17, 18] (see following remark for missing definition).
They define a class of nondeterministic finite automata, called pt-nfa and prove the following:
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Alternating complexity of counting first-order logic for… 83

– A language is piecewise testable iff it is accepted by some pt-nfa [18, Thm. 25].
– Further, the depth ||A|| of a pt-nfa (i.e., the maximal length of a simple path) bounds the

height of the accepted language [17, Thm. 8].

Remark The concrete definition of a pt-nfa is of no importance for this paper; we only recall
it for the convenience of the interested reader.

An nfa is a tuple A = (Q, I , T , F) such that Q is a finite set, I , F ⊆ Q, and T ⊆
Q × Σ × Q. For p, q ∈ Q and Γ ⊆ Σ , we write p

Γ ∗−→ q whenever there exists a word
over Γ that labels some path from p to q . The depth of the nfa A is the maximal length of
a simple path. The language L(A) of the nfa A is the set of words over Σ that label some
path from some element of I to some element of F .

LetA = (Q, I , T , F) be an nfa. For r ∈ Q, we write Σr for the set of letters a ∈ Σ with
(r , a, r) ∈ T . The nfa A is a pt-nfa [17, Def. 3] if the following hold:

– The reachability relation is a partial order (i.e., p
Σ∗−→ q

Σ∗−→ p implies p = q).
(An nfa satisfying this property is called acyclic.)

– For all p, q ∈ Q, p
Σ∗

p−→ q implies p = q .

– For all p, q, r ∈ Q, p
Σ∗
r−→ q, r implies q

Σ∗
r−→ r .

2.2 The logic C2 and themain result for logicians

Let NFA be the set of all nfas over the alphabet Σ (to make this a set as opposed to a class,
we require that states of these nfas belong to N). Consider the structure

S = (
Σ∗,	,

(
L(A)

)
A∈NFA, (w)w∈Σ∗

)

whose universe is the set of words, whose only binary relation is the subword relation, that
has a unary relation L(A) for each nfa A ∈ NFA and a constant for every word over Σ .

We can make statements about this structure using some variant of classical first-order
logic. To control the use of nfas in these formulas, let A ⊆ NFA be a set of nfas (e.g.,
A = NFA, A = ∅, or A = ptNFA ⊆ NFA which is the set of pt-nfas). Then, formulas from
C2
A are defined by the following syntax:

ϕ := c 	 d | c = d | c ∈ L(A) | ϕ ∨ ϕ | ¬ϕ | ∃�t z ϕ

where c, d ∈ {x, y} ∪ Σ∗ are variables from {x, y} or words over Σ , A ∈ A is some nfa
overΣ , t ∈ N, and z ∈ {x, y} is a variable. Note that we allow only the variables x and y. The
semantics of these formulas is defined in the obvious way with the understanding that ∃�t x ϕ

holds if there are t mutually distinct words that all make the formula ϕ true. Consequently,
∃�1 is the usual existential quantifier and ∃�0x ϕ is always true. Let FO2

A denote the subset
of C2

A that only uses the quantifier ∃�1, i.e., the classical first-order quantifier.
For arbitrary structures, the introduction of threshold counting quantifiers ∃�t in conjunc-

tion with the restriction to two variables extends the expressive power. Later, we will see that
in our context, the logics C2

ptNFA and FO2
∅ are equally expressive by Corollary 4.4, but C

2
ptNFA

is exponentially more succinct than FO2
∅ by Theorem 4.5.

As a side remark, we prove that constants of length � 2 suffice for the whole expressive
power.

Theorem 2.2 Let A ⊆ NFA. For every formula ϕ ∈ C2
A, there exists an equivalent formula

ψ ∈ C2
A that uses constants of length � 2, only. The same applies to the logic FO2

A.
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Proof We show that, for every word w ∈ Σ∗, there exists a formula λw(x) ∈ FO2
∅ using at

most constants of length � 2 such that w is the only word satisfying λw(x).
Before we start the construction of λw(x), consider the following inductively defined

formula αn(z) (where z is any variable from {x, y} and z′ is the other variable):

αn(z) =
{
z = z if n = 0

∃z′ : z′ 	 z ∧ z′ �= z ∧ αn−1(z′) otherwise.

Then, S |� αn(u) iff |u| � n.
We now come to the construction of λw(x) by induction on the length of w. If |w| � 2,

we simply set λw(x) = w.
Now let n = |w| > 2 and define m = �n/2� + 1 < n. Define Sw = {u ∈ Σ�m | u 	 w}.

Then, λw(x) is the following formula:

αn(x) ∧ ¬αn+1(x)

∧
∧

u∈Sw

∃y : λu(y) ∧ y 	 x

∧
∧

u∈Σ�m\Sw

∃y : λu(y) ∧ ¬y 	 x .

The first two conjuncts express |x | = n, i.e., the length of x equals that ofw. By the induction
hypothesis, λu(y) expresses y = u. Consequently, the latter two conjuncts are equivalent to
x ∼m w.

In other words, S |� λw(v) iff |v| = |w| and v ∼m w. But this is equivalent to v = w

[22, Thm. 6.2.16]. ��

The size of a formula is defined with the understanding that the size |A| of an nfa A is its
number of states, the size of a variable is 1, the size of a word is its length, and the size of
the quantifier ∃�t is the length |bin(t)| of the binary encoding of t .

Besides the size, we also define the norm ||ϕ|| of a formula ϕ from C2
ptNFA (recall that

||A|| denotes the depth of the pt-nfa A):

||c 	 d|| = ||c = d|| = max
(|c|, |d|) , ||c ∈ L(A)|| = max

(|c|, ||A||) ,

||α ∨ β|| = max
(||α||, ||β||) , ||¬β|| = ||β|| , and

||∃�t x ϕ|| = |bin(t)| + ||ϕ|| .
Note that this norm ||ϕ|| forms a mixture between the size of a formula and its quantifier
depth: It depends on the maximal size of constants and simple paths in automata appearing in
ϕ as well as on the quantifier depth (where the quantifier ∃�t , that intuitively corresponds to
a sequence of t quantifiers, contributes only �log(t)� to the norm). In particular, ||ϕ|| bounds
the length of constants and the depth of pt-nfas occurring in ϕ. Note further that the norm
||ϕ|| of any formula ϕ is at most its size |ϕ|, i.e., ||ϕ|| � |ϕ|.

From Theorem 2.1, we infer in Sect. 4 that all definable languages are piecewise testable
of bounded height (Theorem 4.3). This allows to derive a quantifier elimination result that
reads as follows:

Corollary 4.4. Let c = 2 · |Σ |. Every C2
ptNFA-formula ϕ is equivalent to some quantifier- and

automata-free formula ψ ∈ FO2
∅ with ||ψ || < 2c

2||ϕ||
.
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Karandikar and Schnoebelen [10] showed that any non-empty piecewise testable language
of height n has elements of length polynomial in n. Based on Corollary 4.4, we can therefore
restrict quantification in a formula ϕ to words of bounded length, implying our main result
for logicians.

Theorem 5.3. The C2
ptNFA-theory of S belongs to STA

(∗, 22
poly(n)

, O(n)
)
, i.e., can be decided

in doubly exponential alternating time with linearly many alternations.

Recall that, by [2], STA(s, t, a) is the class of all languages, for which membership can be
decided by an alternating Turing machine whose space, time, and alternations are bounded
by the functions s, t , and a, respectively. Typically, ∗ is used to denote that no restriction is
placed on a specific resource. Thus, STA is a combined complexitymeasure that is particularly
useful when describing the complexity of logical theories (see, e.g., [2, 3]).

3 Closure of the class of piecewise testable languages

The purpose of this section is to proveTheorem2.1, i.e., ourmain result for language theorists.

3.1 Notions and results used in the proof

A set of words L is convex if u, w ∈ L and u 	 v 	 w imply v ∈ L . It is a chain if
it is linearly ordered by the subword order and if it is infinite. Since the subword order is
well-founded, any chain is isomorphic to (N,�).

Lemma 3.1 (compiled in [10]) Let u, v ∈ Σ∗, a ∈ Σ , and n ∈ N.

1. The equivalence class [u]n is convex.
2. If u ∼n v, then there exists w ∈ [u]n with u, v 	 w.
3. If uv ∼n uav, then uv ∼n ua�v for all � ∈ N.
4. The equivalence class [u]n is infinite or a singleton.

Proof (cited from [10]) (1) is by combining the definition of∼n with the observation {u}↓ ⊆
{v}↓ provided u 	 v. (2) is [21, Lemma 6] (cf. [22, Thm. 6.2.6] for an alternative proof). (3)
is in the proof of [22, Cor. 6.2.8]. Finally, (4) follows from (1), (2), and (3). ��

An example of a singleton equivalence class is [u]|u|+1 for any u ∈ Σ∗; if u contains two
distinct letters, then even [u]|u| = {u} (but [aa]2 = aaa∗).

For a set L ⊆ Σ∗ of words, let min(L) denote the set of words v ∈ L that have no proper
subword in L . Since the subword relation is well-founded, any word from L is a superword
of some word from min(L), i.e., L ⊆ min(L)↑.

Imre Simon found a description of the set of minimal elements of an equivalence
class [u]n that uses the following concept. For a set B ⊆ Σ , let Perm(B) ⊆ Σ∗
denote the set of permutations of B seen as words, i.e., Perm(∅) = {ε} and Perm(B) =⋃

b∈B b Perm
(
B \ {b}) for B �= ∅. For sets Bi ⊆ Σ , define Perm(B1, B2, . . . , Bk) =

Perm(B1)Perm(B2) . . . Perm(Bk). For instance, Perm
({a}, {b}, {c}) = {abc} while

Perm
({a, b}, {c}) = {abc, bac} for all letters a, b, c ∈ Σ . For k = 0, we set Perm

() = {ε}.
Theorem 3.2 ([20], cf. [22, Thm. 6.2.9]) Let n ∈ N and u ∈ Σ∗. Then, there exist k ∈ N

and B1, B2, . . . , Bk ⊆ Σ with min
([u]n

) = Perm(B1, B2, . . . , Bk).
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86 D. Kuske, C. Schwarz

Deleting all empty sets from the tuple (B1, B2, . . . , Bk) makes the above presentation of
min

([u]n
)
unique. The theorem implies in particular that all words from min

([u]n
)
have the

same Parikh image. Further, they all have the same length
∑

1�i�k |Bi | which is � g|Σ |(n)

(by the very definition of that function) and therefore � (n + 2)|Σ | (by [10, Thm. 3.7 and
Eq. (3.12)]).

Theorem 3.3 Let Σ be an alphabet, w ∈ Σ∗, and n ∈ N. Then, there exists a word v ∼n w

with |v| � g|Σ |(n) and v 	 w.

Proof The definition of the function g|Σ | implies the existence of some word u′ ∼n w with
|u′| � g|Σ |(n). Since the subword order is well-founded, there exist words u, v ∈ min([w]n)
with u 	 u′ and v 	 w. Now Theorem 3.2 implies |v| = |u| � |u′| � g|Σ |(n). ��

3.2 Upward closures

The following result verifies the first claim of Theorem 2.1.3

Proposition 3.4 Let L ∈ PT(n) be a piecewise testable language of height � n and t ∈ N.
Then, the language L↑�t is piecewise testable of height � g|Σ |(n) + t − 1.

Proof Let z ∈ L↑�t and z′ ∼g|Σ |(n)+t−1 z. Then, there exists a t-elements set Y ⊆ L with
y 	 z for all y ∈ Y . Choosing the elements of Y as short as possible, we can assume
Y↓ ∩ L = Y .

Now let y ∈ Y . By Theorem 3.3, there is a word x with x ∼n y, x 	 y, and |x | � g|Σ |(n).
Since x is a subword of y, there are more than |y| − |x | words x ′ with x 	 x ′ 	 y. Since

the equivalence class [y]n is convex, any such word x ′ satisfies x ′ ∼n y and therefore x ′ ∈ L .
Consequently,

t = |Y | = |Y↓ ∩ L| � |y↓ ∩ L| > |y| − |x | � |y| − g|Σ |(n) .

But this implies |y| � g|Σ |(n) + t − 1.
So far, we proved that all words from Y have length at most g|Σ |(n)+ t −1. Since they all

are subwords of z ∼g|Σ |(n)+t−1 z′, we obtain y 	 z′ for all y ∈ Y . From |Y | = t and Y ⊆ L ,
we derive z′ ∈ L↑�t , i.e., L↑�t is closed under ∼g|Σ |(n)+t−1. ��

3.3 Downward closures

To verify the second claim of Theorem 2.1, we first prove that only singleton equivalence
classes [x]n have maximal elements. We will use this lemma in the following proof when
showing that [x]n↓�t = [x]n↓ if the equivalence class [x]n is not a singleton.
Lemma 3.5 Let n ∈ N and x, y ∈ Σ∗ be distinct with x ∼n y. Then, there exists z ∈ Σ∗
with y ∼n z, y 	 z, and y �= z.

Proof Since [x]n = [y]n is not a singleton, it is infinite by Lemma 3.1(4), thus contains in
particular a word w of length |w| > |y|. By Lemma 3.1(2), there exists a z ∈ [y]n with
y, w 	 z, implying |z| � |w|, and therefore z �= y. ��
3 The operation ↑�t for t � 2 is not idempotent and therefore not a closure operator. For convenience, we
stick to this name.
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Proposition 3.6 Let L ∈ PT(n) be a language over Σ and t ∈ N. Then, the language L↓�t

belongs to PT
(
(|Σ | + 1) · (g|Σ |(n) + 1)

)
.

Proof Since L ∈ PT(n) and since ∼n has finite index, there are finitely many words
x1, . . . , xm with L = ⋃

1�i�m[xi ]n and xi �n x j for all 1 � i < j � m. By the defi-
nition of the function g|Σ |, we can assume |xi | � g|Σ |(n) for all 1 � i � m.

Set

F =
⋃

1� j�m
[x j ]n finite

[x j ]n and I =
⋃

1�i�m
[xi ]n infinite

[xi ]n

such that in particular L = F ∪ I .
We first show

L↓�t = F↓�t ∪ I↓ .

For the inclusion “⊆”, let x ∈ L↓�t \ F↓�t . Then, x has t superwords in L = F ∪ I , but
at most t − 1 many in F . Hence, it has at least one superword in I , i.e., x ∈ I↓. For the
converse inclusion, note that F↓�t ⊆ L↓�t is trivial since F ⊆ L . So let x ∈ I↓. Then,
there exists y ∈ I with x 	 y. Since y ∈ I , the equivalence class [y]n ⊆ I is infinite and
therefore contains no maximal element by Lemma 3.5. Hence, there are infinitely many (and
therefore in particular � t) superwords of y 
 x in I ⊆ L . Consequently, x ∈ L↓�t .

Note that the height of I is � n since it is a union of equivalence classes of ∼n . Conse-
quently, the height of I↓ is � (|Σ | + 1) · (

g|Σ |(n) + 1
)
by [10, Thm. 5.5].

Since every finite equivalence class [x j ]n is a singleton, we obtain
F = {

x j | [x j ]n finite
}
,

implying that all words from F and therefore from F↓�t have length at most g|Σ |(n). Hence,
F↓�t is finite and thus of height � g|Σ |(n) + 1 � (|Σ | + 1) · (

g|Σ |(n) + 1
)
.

We showed that both, F↓�t and I↓, are closed under∼(|Σ |+1)·(g|Σ |(n)+1); hence, the same
holds for their union L↓�t . ��

3.4 Incomparability set

There are three types of equivalence classes [x]n : the singletons, the chains (i.e., infinite
languages ordered linearly by the subword order), and the infinite ones which are no chains.
Note that by Lemma 3.1(4) this is a complete characterization of the equivalence classes.
Propositions 3.7, 3.9, and 3.14, respectively, bound the heights of [x]n‖�t for these three
types of equivalence classes and collectively verify Theorem 2.1(3).

Proposition 3.7 Let n, t ∈ N and x ∈ Σ∗ such that L = [x]n is a singleton. Then, L‖�t ∈
PT

(
g|Σ |(n)

)
.

Proof If t � 2, then L‖�t = ∅ since L is a singleton. If t = 0, then L‖�t = Σ∗. Note that
both these languages belong to PT(0) ⊆ PT

(
g|Σ |(n)

)
.

Finally, consider the case t = 1. Then, L‖�t = Σ∗ \ (L↑ ∪ L↓) since L is a singleton.
Note that L↑ ∪ L↓ = L↑ ∪ (

L↓ \ {x}) since x ∈ L↑. The height of the former language
is � |x |. The latter is finite, and all its elements have length < |x |; hence, the height of that
language is � |x | as well. Thus, the height of L↑ ∪ L↓ is � |x | and the same applies to its
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complement L‖�t . Since L = [x]n is a singleton, the definition of the function g|Σ | implies
|x | � g|Σ |(n). ��

Next, we consider the case that [x]n is a chain and bound the height of [x]n‖�t . The
following lemma provides the central argument that will also be used later.

Lemma 3.8 Let t � 1 and let C be the convex chain x0 Ĺ x1 Ĺ · · · . Then, C‖<t =
C ∪ {xt−1}↓.
Note that, provided x0 �= ε, the chain C is not maximal since it can be extended to the left.

Proof We first demonstrate the inclusion “⊇”. Since any two elements of C are comparable,
we clearly have C‖<t ⊇ C . Further, any subword of xt−1 is a subword of all words xt−1+i

for i ∈ N and therefore at most incomparable with the t − 1 words x0, x1, …, xt−2 from C .
For the converse inclusion, let y ∈ C‖<t . Then, y is comparable with infinitely many

words from C . Since C has only finitely many words that are shorter than y, there is � ∈ N

with y 	 x�. Let � ∈ N be minimal with this property. We distinguish three cases of the
relation between x0 and y:

– If y 	 x0, then y ∈ {xt−1}↓.
– If y ‖ x0, then x0, x1, . . . , x�−1 ‖ y since � was chosen minimal with y 	 x� and

x0 	 x1 	 · · · 	 xl−1 is a chain. From y ∈ C‖<t , we obtain � < t and therefore
y 	 x� 	 xt−1.

– If y 
 x0, we have x0 	 y 	 x� and therefore y ∈ C since C is convex.

Thus, in any case, y ∈ C ∪ {xt−1}↓. ��
Proposition 3.9 Let n, t ∈ N and x ∈ Σ∗ such that C = [x]n is a chain. Then, C‖�t ∈
PT

(
g|Σ |(n) + t

)
.

Proof If t = 0, then C‖�t = Σ∗ ∈ PT(0). It therefore suffices to consider the case t > 0.
We list the elements of the chain C in increasing order:

x0 Ĺ x1 Ĺ x2 · · ·
Since C = [x]n is a chain, it is a convex chain by Lemma 3.1(1) such that |xi | = |x0| + i
holds for all i � 0. From Lemma 3.8, we obtain

C‖<t = C ∪ {xt−1}↓ .

Since {xt−1}↓ is finite, its height is � |xt−1| + 1 = |x0| + t − 1 + 1 � g|Σ |(n) + t . The
height of C is � n � g|Σ |(n) by assumption; thus, the height of C‖<t is � g|Σ |(n) + t . But
then the same bound applies to the height of C‖�t = Σ∗ \ C‖<t . ��

It remains to prove a similar statement for infinite equivalence classes [x]n that are not
a chain. The proof of the case t = 1 from [10] first shows that [x]n contains at least two
elements of every length > |x |. Consequently, every word of length > |x | is incomparable
with some word from [x]n , i.e., [x]n‖�1 is cofinite and therefore piecewise testable.

Our proof for t > 1 shows that the set of pairs of words of equal length can be grouped into
two convex chains, i.e., the equivalence class [x]n contains two convex chains that intersect,
at most, in min

([x]n
)
(Lemma 3.13). Then, we apply Lemma 3.8. But first, we need some

insight into convex chains which is the topic of the following considerations.

Lemma 3.10 Let x, y ∈ Σ∗ and a ∈ Σ . Then, xa∗y is a convex chain.
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Proof Let x ′ be the longest prefix of x not ending with a (i.e., x ′ ∈ Σ∗ \ Σ∗a and x ∈ x ′a∗)
and y′ the longest suffix of y not beginning with a. Then, xa∗y ⊆ x ′a∗y′ is convex in
(x ′a∗y′,	) and we prove the stronger claim that the latter set is a convex chain.

To simplify notation, suppose x ∈ Σ∗ \ Σ∗a and y ∈ Σ∗ \ aΣ∗.
Clearly, xa∗y is a chain in (Σ∗,	).
Let w ∈ Σ∗ and i, � ∈ N with xai y 	 w 	 xa�y. We have to show that w belongs to

xa∗y. Note that xy 	 w since xy 	 xai y 	 w. Let w1 be the prefix of length |x | of w, w3

be the suffix of length |y| of w, and w2 be the unique word with w = w1w2w3. Since w is
a subword of xa�y, dropping the first |x | letters in both w and xa�y preserves the subword
relation. The same holds when dropping the last |y| letters, hence w2 	 a�, i.e. w2 ∈ a∗. By
similar reasoning for xy 	 w1w2w3, we can conclude that x 	 w1w2. Since w2 ∈ a∗, but
x does not end on a, x has to be a subword of w1 and thus x = w1, as both words are of the
same length. Symmetrically, we can show y = w3. Consequently, we have w ∈ xa∗y. ��

The third item of the following lemma implies, together with Theorem 3.2, that the max-
imal a-prefixes of two words from min

([x]n
)
differ in length by at most one.

Lemma 3.11 Let B1, B2, . . . , Bk ⊆ Σ be non-empty, a ∈ Σ and u, v ∈ Σ∗.

(1) If au ∈ Perm(B1, . . . , Bk), then a ∈ B1 and u ∈ Perm
(
B1 \ {a}, B2, . . . , Bk

)
.

(2) If aau ∈ Perm(B1, . . . , Bk), then B1 = {a}.
(3) If u, v /∈ aΣ∗ and m, n ∈ N with amu, anv ∈ Perm(B1, . . . , Bk), then |m − n| � 1.

Proof Since B1 �= ∅, the first claim follows from

Perm(B1, . . . , Bk) = Perm(B1) · Perm(B2, . . . , Bk)

=
⋃

b∈B1
b · Perm(

B1 \ {b}) · Perm(B2, . . . , Bk)

=
⋃

b∈B1
b · Perm(

B1 \ {b}, B2, . . . , Bk
)
.

Now assume aau ∈ Perm(B1, . . . , Bk). Then, by the above, a ∈ B1 and the word au
belongs to the set Perm

(
B1 \ {a}, B2, . . . , Bk

)
. If, towards a contradiction, B1 �= {a}, then

B1 \ {a} �= ∅. Hence, by the first claim again, a ∈ B1 \ {a}, a contradiction. Thus, indeed,
B1 = {a}.

Towards a contradiction, assume u, v /∈ aΣ∗, |m − n| > 1, and amu, anv ∈
Perm(B1, . . . , Bk). Without loss of generality, we may assume m � n + 2. By the sec-
ond claim, we get B1 = {a} from m � n + 2 � 2. Hence,

am−1u, an−1v ∈ Perm
(
B1 \ {a}, B2, . . . , Bk

) = Perm(B2, . . . , Bk) .

By induction, we obtain am−nu, v ∈ Perm(Bn+1, . . . , Bk). Since m − n � 2, the second
claim implies Bn+1 = {a} and therefore v ∈ aΣ∗. But this contradicts our choice of v. ��
Lemma 3.12 Let B be a tuple of finite nonempty sets of letters, x1, x2, y1, y2 ∈ Σ∗ be words
with x1x2, y1y2 ∈ Perm(B), and a, b ∈ Σ letters with x1ax2 �= y1by2.

Then, x1a∗x2 and y1b∗y2 are convex chains that intersect, at most, in x1x2.

Proof Without loss of generality, we assume |x1| � |y1|. Since |x1x2| = |y1y2|, we get
|x2| � |y2|. By Lemma 3.10, C1 = x1a∗x2 and C2 = y1b∗y2 form convex chains.

It remains to be shown that their intersection is contained in {x1x2} = {y1y2}. So let
v ∈ C1 ∩ C2. Then, there exist non-negative integers � and m with v = x1a�x2 = y1bm y2.
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Since the words x1x2 and y1y2 are of equal length, we have � = m. If � = 0, then v =
x1a0x2 = y1b0y2 is in {x1x2} and we are done. Thus, we may assume � > 0.

Since x1x2 and y1y2 both belong to Perm(B), we get |x1x2|a = |y1y1|a , implying 0 <

� = |a�|a = |x1a�x2|a − |x1x2|a = |y1b�y2|a − |y1y2|a = |b�|a and therefore a = b.
Since x1 and y1 both are prefixes of x1a�x2 with |x1| � |y1|, the word x1 is a prefix of

y1, i.e., there is a word x ′
1 with y1 = x1x ′

1. Symmetrically, we get a word y′
2 with x2 = y′

2y2.
From x1x ′

1a
�y2 = y1a�y2 = x1a�x2 = x1a�y′

2y2, we conclude x
′
1a

� = a�y′
2 (and therefore

in particular |x ′
1| = |y′

2|). Aiming at a contradiction, assume |x ′
1| = |y′

2| � �. Then, x ′
1 is

a prefix of a� and similarly y′
2 a suffix of a�, hence x ′

1 = y′
2 = ak for some nonnegative

integer k ∈ N. But then y1by2 = y1ay2 = x1akay2 = x1aak y2 = x1ax2, as opposed to
our assumption. Consequently |x ′

1| = |y′
2| > �, implying that there exists k ∈ N and a word

w ∈ Σ∗ \ aΣ∗ such that x ′
1 = a�akw and y′

2 = akwa�. If w = ε, then x ′
1 = y′

2 = ak+�

and therefore (as above) y1by2 = y1ay2 = x1ak+�ay2 = x1aak+�y2 = x1ax2, as opposed
to our assumption. Hence, w = cw′ for some letter c �= a and some word w′ ∈ Σ∗.

Note that

x1a
kcw′a�y2 = x1x2 ∈ Perm(B) and

x1a
�+kcw′y2 = y1y2 ∈ Perm(B) .

Applying Lemma 3.11(1), we obtain a tuple C of non-empty subsets of Σ with
akcw′a�y2, a�+kcw′y2 ∈ Perm(C).

Since c �= a, Lemma 3.11(3) implies |�+ k − k| � 1, i.e., � � 1. But � = 1 is impossible
since x1ax2 �= y1ay2. Hence, � = 0 and therefore v = x1x2.

Recall that we considered an arbitrary word v ∈ C1 ∩C2 and derived v ∈ {x1x2}. Hence,
indeed, C1 ∩ C2 ⊆ {x1x2}. ��

Note that, in the lemma above, the two words x1x2 and y1y2 have the same Parikh image.
However, replacing the requirement x1x2, y1y2 ∈ Perm(B) by this weaker property does not
suffice for the claim of the lemma: consider x1 = aac, y2 = caa, x2 = y1 = ε, and a = b.
Then, x1x2 = aac and y1y2 = caa satisfy the modified prerequisites, but x1a∗x2 = aaca∗
and y1b∗y2 = b∗caa = a∗caa are two convex chains that intersect in aacaa.

Lemma 3.13 Let u ∈ Σ∗ and n ∈ N such that [u]n is infinite but not a single chain. Then, [u]n
contains two convex chains C1 and C2 with C1 ∩ C2 ⊆ min

([u]n
)
and Ci ∩ min

([u]n
) �= ∅

for i ∈ {1, 2}.

Proof Since [u]n is infinite but not a single chain, [10, Lemma 6.2 and 6.3] implies that
there are words x1, x2, y1, y2 ∈ Σ∗ and letters a, b ∈ Σ such that x1x2, y1y2 ∈ min

([u]n
)
,

x1ax2, y1by2 ∈ [u]n , and x1ax2 �= y1by2.
By Theorem 3.2, there exists a tuple B of nonempty subsets of Σ such that x1x2, y1y2 ∈

min
([u]n

) ⊆ Perm(B). By Lemma 3.12, x1a∗x2 and y1b∗y2 are convex chains whose inter-
section is contained in {x1x2}. By Lemma 3.1(3) they are both subsets of [u]n , obviously
containing elements from min

([u]n
)
. ��

Now we can handle the remaining equivalence classes, i.e., bound the height of [x]n‖�t

provided [x]n is infinite but not a chain.
Proposition 3.14 Let n, t ∈ N and x ∈ Σ∗ such that L = [x]n is infinite but not a chain.
Then, L‖�t ∈ PT

(
g|Σ |(n) + t

)
.
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Proof If t = 0, then L‖�t = Σ∗ ∈ PT(0). Hence, it remains to consider the case t > 0.
By Lemma 3.13, there exist two convex chains C1,C2 ⊆ L such that C1 ∩C2 ⊆ min(L)

and Ci ∩ min(L) �= ∅ for i ∈ {1, 2}. We prove that

L‖<t ⊆ Σ<g|Σ |(n)+t .

Let v ∈ Σ∗ with |v| � g|Σ |(n) + t > g|Σ |(n). Then, by Theorem 3.2 and the definition of
the function g|Σ |, v /∈ min(L) implying v /∈ C1 ∩ C2, without loss of generality, we assume
v /∈ C1. Since C1 ∩ min(L) �= ∅, the chain C1 contains some word of length � g|Σ |(n).
Consequently, its word xt−1 number t − 1 satisfies |xt−1| < g|Σ |(n) + t � |v|, i.e., v cannot
be a subword of xt−1. Now Lemma 3.8 implies v /∈ C1‖<t . From C1 ⊆ L , we now obtain
v ∈ C1‖�t ⊆ L‖�t . Consequently, v /∈ L‖<t which proves the above claim.

Since all words in L‖<t are “short”, we obtain L‖<t ∈ PT
(
g|Σ |(n) + t

)
and the same

holds for the complement L‖�t of this set. ��

We can now put the above three propositions together to verify the last claim of Theo-
rem 2.1.

Proposition 3.15 Let L ∈ PT(n) be a language over Σ and t ∈ N. Then, L‖�t ∈
PT

(
g|Σ |(n) + t

)
.

Proof Since L is of height � n, there is a finite set of words {x1, . . . , xm} with xi �n x j
for all 1 � i < j � m such that L is the union of the equivalence classes [xi ]n . Since
equivalence classes are disjoint, we obtain

L‖�t =
⋃ ⋂

1�i�m

[xi ]n‖�g(i)

where the union is taken over all functions g : {1, 2, . . . ,m} → {0, 1, . . . , t} with∑
1�i�m g(i) = t . The previous propositions show that any of the languages [xi ]n‖�s

is piecewise testable of height � g|Σ |(n)+ t . Since the class PT
(
g|Σ |(n)+ t

)
is closed under

Boolean operations, the claim follows. ��

4 Expressive power and quantifier elimination

Having completed the language-theoretic part of this paper, we now come to its consequences
in logic, i.e., we consider the threshold counting logic C2

ptNFA that has two variables x and
y, unary predicates for each piecewise testable language (represented by some pt-nfa), the
subword order, a constant for every word, and threshold quantifiers of the form ∃�t for t ∈ N.
The central result, Theorem 4.3, states that every language definable in this logic is piecewise
testable of height bounded in terms of the norm of the defining formula. But first a simple
result on the expressive power of quantifier-free formulas.

Lemma 4.1 Let n ∈ N.

(1) Any language L ∈ PT(n) is defined by some quantifier- and automata-free formula
ϕ(x) ∈ FO2

∅ with ||ϕ|| � n.
(2) If ϕ(x) ∈ FO2

ptNFA is a quantifier-free formula with ||ϕ|| � n, then it defines a language
from PT(n + 1).
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Proof (1) Since L ∈ PT(n), it is a finite union of equivalence classes [v]n for v ∈ Σ∗. Such
an equivalence class [v]n can be defined by the formula

ϕ(x) =
∧

u	v
|u|�n

u 	 x ∧
∧

u �	v
|u|�n

¬(u 	 x) .

Since ϕ uses constants of length � n, only, we have ||ϕ|| � n.
(2) Now let ϕ(x) ∈ FO2

ptNFA be a quantifier-free formula with ||ϕ(x)|| � n. First, suppose
x ∈ L(A) is a subformula of ϕ(x). Then, the depth of the pt-nfa A is � n. Hence, by
[17, Thm. 8], L(A) ∈ PT(n). By the first statement, any subformula x ∈ L(A) can
be replaced by a quantifier- and automata-free formula λ(x) ∈ FO2

∅ with ||λ(x)|| � n.
Consequently, we can assume that ϕ(x) is automata-free, i.e., belongs to FO2

∅.
Now replace subformulas of the form x 	 v (with v a word) by

∨

u	v

x = u ,

such that the formula ϕ(x) becomes a Boolean combination of formulas u 	 x and u = x
with constants u of length � n. Note that {u}↑ is of height � |u| and {u} is of height
� |u| + 1. Hence, ϕ(x) defines a Boolean combination of languages from PT(n + 1),
i.e., a language from PT(n + 1). ��

Remark The above lemma shows that quantifier- and automata-free formulas of norm � n
suffice to describe all piecewise testable languages of height � n, but any such formula is
only guaranteed to define a piecewise testable language of height � n + 1. The bounds are
tight as the following two examples demonstrate (with Σ = {a}):
(1) The language {aaa}a∗ belongs to PT(3), but cannot be defined by a formula of norm

� 2.
(2) The formula x = aaa of norm 3 defines the language {aaa} from PT(4) \ PT(3).

Note that all heights appearing in Theorem 2.1 are bounded by (|Σ | + 1) · (g|Σ |(n)+m
)
.

We now bound this function by a polynomial.

Lemma 4.2 Let c = 2 · |Σ | and let m, n ∈ N. Then, (|Σ |+1) ·(g|Σ |(n)+m
)

< (m+n+2)c.

Proof If |Σ | = 1, we get

(|Σ | + 1) · (
g|Σ |(n) + m

) = 2(m + n) since g1(n) = n

< 2(m + n + 2)

� (m + n + 2)2

= (m + n + 2)c .

If |Σ | � 2, we obtain

(|Σ | + 1) · (
g|Σ |(n) + m

)

� (|Σ | + 1) · (
(n + 2)|Σ | + m

)
by [16 Thm.3.7 Eq. (3.12)]

< 2|Σ | · (
(n + 2)|Σ | + m

)
since |Σ | � 2

� 2|Σ | · (m + n + 2)|Σ |

� (m + n + 2)2|Σ | = (m + n + 2)c . ��
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Theorem 4.3 Let c = 2 · |Σ | and ϕ(x) ∈ C2
ptNFA. Then, the language Lϕ = {

u ∈ Σ∗ | S |�
ϕ(u)

}
is piecewise testable of height < 2c

2||ϕ||
.

Proof We prove the claim by induction on the construction of the formula ϕ.
First supposeϕ(x) is quantifier-free. Then, by Lemma 4.1(2), the language Lϕ is piecewise

testable of height � ||ϕ|| + 1 < 2c
2||ϕ||

since c � 2. If the formula ϕ is a Boolean combi-
nation of formulas, the claim follows by induction since the doubly exponential function is
monotone.

Now let ϕ(x) = ∃�t y : ϕ′(x, y). Our first goal is to express the formula ϕ(x) as a Boolean
combination of formulas α(x) with ||α|| � ||ϕ′|| and ∃�s y : (

xθ y ∧ γ (y)
)
with s � t ,

θ ∈ {Ĺ, Ľ,=, ‖}, and ||γ || � ||ϕ′||.
There exists a finite set A of formulas of the following form such that ϕ′(x, y) is a Boolean

combination of formulas from A:

– formulas where at most x or y, but not both, are free
– atomic formulas x 	 y, x = y, and y 	 x

Note that all formulas α from A satisfy ||α|| � ||ϕ′|| since they are subformulas of ϕ′(x, y).
For B ⊆ A set

δB(x, y) =
∧

β∈B
β ∧

∧

α∈A\B
¬α .

Then, there is a set B of subsets of A such that ϕ′(x, y) is equivalent to
∨

B∈B
δB(x, y) .

Since any pair of words can satisfy at most one formula δB(x, y), the formula ϕ(x) =
∃�t y : ϕ′(x, y) is equivalent to

ϕ1(x) =
∨ ∧

B∈B
∃�tB y : δB(x, y)

where the disjunction extends over all tuples (tB)B∈B of natural numbers from {0, 1, . . . , t}
that sum up to t .

So far,we expressed the formulaϕ(x) as aBoolean combinationof formulas∃�s y : δ(x, y)
with s � t and δ(x, y) a conjunction of possibly negated formulas from A. Note that any
such formula is equivalent to the disjunction over all formulas

∃�s1 y : x Ĺ y ∧ δ(x, y)

∧∃�s2 y : x Ľ y ∧ δ(x, y)

∧∃�s3 y : x ‖ y ∧ δ(x, y)

∧∃�s4 y : x = y ∧ δ(x, y)

where the disjunction extends over all tuples (s1, s2, s3, s4) of natural numbers from
{0, 1, . . . , s} that sum up to s.

So far,we expressed the formulaϕ(x) as aBoolean combination of formulas∃�s y : (
xθ y∧

δ(x, y)
)
with s � t , δ(x, y) a conjunction of possibly negated formulas from A, and θ ∈ {Ĺ

, Ľ,=, ‖}.
We now consider one such formula. Since δ(x, y) is a conjunction of possibly negated

formulas from A, we can write it as α(x) ∧ β(x, y) ∧ γ (y) with ||α||, ||γ || � ||ϕ′|| and
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β(x, y) a conjunction of formulas of the form x 	 y, x 
 y, and their negations. Depending
on whether xθ y is consistent with β(x, y) or not, the formula ∃�s y : (

xθ y ∧ δ(x, y)
)
is

equivalent to ⊥ or to

α(x) ∧ ∃�s y : (
xθ y ∧ γ (y)

)
.

Thus, we reached our first goal: we expressed the formula ϕ(x) as a Boolean combination

(1) of formulas α(x) with ||α|| � ||ϕ′|| and
(2) of formulas ∃�s y : (

xθ y ∧ γ (y)
)
with s � t , θ ∈ {Ĺ, Ľ,=, ‖}, and ||γ || � ||ϕ′||.

Since the class PT(n) is closed under Boolean operations, it suffices to show that any
such formula defines a piecewise testable language of height < 2c

2||ϕ||
. By the induction

hypothesis, this is clear for formulas from (1) since ||ϕ′|| � ||ϕ||.
Our second and final goal is to show that it also holds for formulas from (2). So let

s � t , θ ∈ {Ĺ, Ľ,=, ‖}, and γ (y) be a formula with ||γ || � ||ϕ′|| and consider the formula
∃�s y : (

xθ y ∧ γ (y)
)
.

We consider the language

L = {
w ∈ Σ∗ | S |� γ (w)

}

that, by the induction hypothesis, is piecewise testable of height < 2c
2||ϕ′ ||

. Now we have to
consider the four possible values of θ separately.

1. Let θ = Ĺ. Then, the formula ∃�s y : (
x Ĺ y ∧ γ (y)

)
is equivalent to

γ (x) ∧ ∃�s+1y : (
x 	 y ∧ γ (y)

)

∨¬γ (x) ∧ ∃�s y : (
x 	 y ∧ γ (y)

)
.

Consequently, the set of words satisfying ∃�s y : (
x Ĺ y ∧ γ (y)

)
equals

(L ∩ L↓�s+1) ∪ (L↓�s \ L) .

From Theorem 2.1(2), we obtain

L↓�s+1, L↓�s ∈ PT
((|Σ | + 1

) · (
g|Σ |(2c

2||ϕ′ ||
) + 1

))
.

Note that
(|Σ | + 1

) · (
g|Σ |(2c

2||ϕ′ |||
) + 1

)
< (2c

2||ϕ′ || + 3)c by Lemma 4.2

< (2c
2||ϕ′ || + 2c

2||ϕ′ ||
)c since c � 2, ||ϕ′|| � 1

= (2 · 2c2||ϕ′ ||
)c

< (2c
|bin(s)| · 2c2||ϕ′ ||

)c

= (2c
|bin(s)|+c2||ϕ′ ||

)c

� (2c
|bin(s)|+2||ϕ′ ||

)c since c � 2, |bin(s)|, ||ϕ′|| � 1

= 2c
1+|bin(s)|+2||ϕ′ ||

� 2c
2||ϕ||

where the last inequality holds since ||ϕ|| = |bin(t)| + ||ϕ′||, |bin(s)| � 1, and s � t .
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It follows that L↓�s+1 and L↓�s both are piecewise-testable of height < 2c
2||ϕ||

. Since
this also holds for the language L and since PT(2c

2||ϕ|| − 1) is closed under Boolean
combinations, this settles the case θ = Ĺ.

2. Now let θ = Ľ. Similarly to above, the set of words satisfying ∃�s y : (
x Ľ y ∧ γ (y)

)
is

a Boolean combination of the languages L , L↑�s+1, and L↑�s . By Theorem 2.1(1), the
latter two languages both belong to

PT
(
g|Σ |(2c

2||ϕ′ ||
) + s

)
.

Note that

g|Σ |(2c
2||ϕ′ ||

) � 2c
2||ϕ′ || � 16 > 4

since c � 2 and ||ϕ′|| � 1. It follows that

g|Σ |(2c
2||ϕ′ ||

) + s < g|Σ |(2c
2||ϕ′ ||

) + s + g|Σ |(2c
2||ϕ′ ||

) − 4 since g|Σ |(2c
2||ϕ′ ||

) > 4

� 2 · (
g|Σ |(2c

2||ϕ′ ||
) + s − 2

)

�
(|Σ | + 1

) · (
g|Σ |(2c

2||ϕ′ ||
) + s − 2

)
since |Σ | � 1

< (2c
2||ϕ′ || + s)c by Lemma 4.2

� (2c
2||ϕ′ || + 2c

|bin(s)|
)c since c � 2

� (2c
|bin(s)|+2||ϕ′ ||

)c

� 2c
2||ϕ||

where the last equality follows from ||ϕ|| = |bin(t)| + ||ϕ′|| and s � t . Thus, we showed
that L↑�s+1 and L↑�s both are of height < 2c

2||ϕ||
. Since this also holds for the language

L and since PT
(
2c

2||ϕ|| −1
)
is closed under Boolean operations, this settles the case θ = Ľ.

3. Next consider the case θ = ‖. By Theorem 2.1(3), the set of words satisfying ∃�s y : (x ‖
y∧γ (y)) = L‖�s belongs to PT(g|Σ |(2c

2||ϕ′ ||
)+s). The claim follows from g|Σ |(2c

2||ϕ′ ||
)+

s < 2c
2||ϕ||

as we verified in the previous case.
4. It remains to consider the (trivial) case that θ is equality. Then, the set of words satisfying

∃�s y : (
x = y ∧ γ (y)

)
equals

– Σ∗ ∈ PT(0) if s = 0,

– L ∈ PT(2c
2||ϕ′ || − 1) if s = 1, and

– ∅ ∈ PT(0) if s > 1.

Consequently, it is always of height < 2c
2||ϕ||

.

Thus, we reached our second and final goal.
In summary, we proved that the set of words satisfying ϕ(x) is a Boolean combination of

piecewise testable languages of height < 2c
2||ϕ||

and therefore belongs to this class as well.
This finishes the inductive proof of the theorem. ��

Since piecewise testable languages of bounded height can be defined by quantifier-free
formulas from FO2

∅, we obtain the following quantifier-elimination result (that, differently
from the theorem above, applies also to formulas with two free variables).
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Corollary 4.4 Let c = 2 · |Σ |. Every C2
ptNFA-formula ϕ is equivalent to some quantifier- and

automata-free formula ψ ∈ FO2
∅ with ||ψ || < 2c

2||ϕ||
.

For first-order formulas ϕ, this result can be found in [10, Cor. 7.4 & Thm. 7.5].

Proof Let ϕ(x, y) be some formula from C2
ptNFA. As in the previous proof, it is a Boolean

combination of formulaswith a single free variable of norm� ||ϕ|| and of the formulas x 	 y,
x = y, and x 
 y. By Theorem 4.3, any formula α(x) with a single free variable defines
a piecewise testable language L of height < 2c

2||ϕ||
. By Lemma 4.1(1), this language can

be defined by a quantifier- and automata-free formula α′(x) from FO2
∅ with ||α′|| < 2c

2||ϕ||
.

Replacing, in the Boolean combination ϕ(x, y), all occurrences of α(x)with α′(x), we obtain
a quantifier- and automata-free formula ψ(x, y) that is equivalent to ϕ(x, y) and satisfies
||ψ || < 2c

2||ϕ||
. ��

Note that the above corollary implies in particular that the logics C2
ptNFA and FO2

∅ are
equally expressive (a description of this expressive power in terms of subword-piecewise
testable relations can be found in [10, Thm. 7.2(ii)]). It bounds the norm of the resulting
formula ψ in terms of the norm of ϕ (which, in turn, is bounded by the size of ϕ). Since ψ

is automata- and quantifier-free, its norm equals the maximal length of a constant appearing
in ψ , i.e., all words in ψ are of length at most doubly exponential in |ϕ|. Hence, the number
of distinct atomic formulas in ψ is at most triply exponential. It follows that the size of ψ is
at most fivefold exponential in the norm (and therefore the size) of ϕ.

This explosion of size is not surprising since, inψ , we are not allowed to use quantification
(let alone threshold counting quantification) nor piecewise testable predicates. The following
result shows that disallowing threshold counting quantification alone already results in an
exponential increase in formula size.

Theorem 4.5 For Σ = {a}, the logic C2
∅ is exponentially more succinct than FO2

∅. More
precisely, there is a sequence

(
ϕn(x)

)
n∈N of formulas in C2

∅ of size O(n) such that, for every

sequence of equivalent formulas
(
ψn(x)

)
n∈N from FO2

∅, ψn is of size Ω(2n).

We do not know whether the same result holds for non-singleton alphabets.

Proof Let Σ = {a}. For n ∈ N consider the formula

ϕn(x) = ∃�2n y : y 	 x ∧ ¬∃�2n+1y : y 	 x .

Note that |ϕn | = O(n) since the thresholds 2n and 2n +1 are encoded in binary. Furthermore,
a2

n−1 is the only word satisfying this formula.
Now let ψn(x) be a formula from FO2

∅ that is equivalent to ϕn(x). First note that am 	 z
(where z is any variable) is equivalent to the formula

αm(z) =
{
z = z if m = 0

∃z′ : (
z′ 	 z ∧ z′ �= z ∧ αm−1(z′)

)
otherwise

(where z′ is the other variable). Thus, replacing all subformulas am 	 z and z 	 am by
αm(z) and ¬αm+1(z), respectively, we eliminate all constants from ψn(x). This replacement
results in a linear increase in formula size, only (note that the size of the word am is m). So,
from now on, we can assume that ψn(x) is constant-free.

Now, letψ(x) be any constant-free formula from FO2
∅ of quantifier-rank d and let k, � ∈ N

with k, � � d . Then, by induction on d , one can show that S |� ψ(ak) ⇐⇒ S |� ψ(a�).
Since a2

n−1 is the only word satisfying ψn(x), the quantifier-rank of ψn(x) is � 2n − 1.
Hence, the size of ψn(x) is exponential in n. ��
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5 Complexity of the C2ptNFA-theory

We now adapt the technique by Ferrante and Rackoff from first-order logic to its extension
by threshold counting quantifiers to derive our upper complexity bound from Corollary 4.4.4

Central to this proof is the following lemma expressing that quantification in formulas can
be restricted to words of bounded length. This property is the core of the method by Ferrante
and Rackoff [3].

Lemma 5.1 Let ϕ(x) = ∃�t y : ψ(x, y) be a formula from C2
ptNFA. Let c = 2 · |Σ |, N ∈ N

with 2c
2||ϕ|| � N, and u ∈ Σ∗ with |u| < N. Then, S |� ϕ(u) iff there are t words v of length

< N 2c such that S |� ψ(u, v).

Proof We have to show that, whenever ϕ(u) holds, then there are t short words v such that
ψ(u, v) holds (the other implication is trivial).

So assume there are at least t words in the language L := {
v ∈ Σ∗ | S |� ψ(u, v)

}
.

By Corollary 4.4, there exists a quantifier- and automata-free formula ψ ′(x, y) ∈ FO2
∅

equivalent to ψ(x, y) such that ||ψ ′|| < 2c
2||ψ ||

< 2c
2||ϕ|| � N . Since |u| < N , also the

norm of the quantifier- and automata-free formula ψ ′(u, y) is < N . Note that L is defined
by this formula. Hence, by Lemma 4.1(2), L is piecewise testable of height � N . Since L
contains at least t words, the definition of the function g|Σ | together with the convexity of
all equivalence classes implies that L contains mutually distinct words v1, . . . , vt of length
< g|Σ |(N ) + t � (N + t + 2)c (by Lemma 4.2). We have |bin(t)| � ||ϕ|| which implies
t � N . Hence, (N + t +2)c � (2N +2)c which is smaller than N 2c since N � 16. Thus, we
have |vi | < N 2c for all 1 � i � t . Consequently, we found t “short” witnesses for ψ(u, y).

��
Proposition 5.2 There is an alternating algorithm that, on input of a formula ϕ(x, y) ∈
C2
ptNFA and words u and v, decides whether S |� ϕ(u, v). This alternating algorithm runs

in time doubly exponential in
∣∣∣∣ϕ(u, v)

∣∣∣∣ and uses O
(|ϕ|) alternations.

Proof Before we come to the actual proof, we explain the idea underlying our approach. First,
from ϕ, u, v, and N , we could compute a propositional formula (whose atomic propositional
formulas are atomic formulas from C2

ptNFA) that is equivalent to ϕ(u, v). This is possible
since, by the previous lemma, we can restrict quantification in ϕ to words of bounded length.
To serve as the basis of an alternating algorithm, we need in addition that the propositional
formula is in negation normal form (i.e., at most atomic formulas are negated).

However, this approach has the following two problems.
First, the length bound from Lemma 5.1 is doubly exponential. Hence, the propositional

formula for ∃�1y : ψ(u, y) is the disjunction over all formulas ψ(u, v) with v a word of
doubly exponential length. But computing this formula requires triply exponential time.
The solution to this first problem is that the propositional formula is not calculated explicitly.
Instead, its evaluation is simulated by a procedure that takes, as arguments, a formula α(x, y),
two words wx and wy , and a natural number N and returns the truth value of α(wx , wy) if
all quantifications are bounded by values that depend on N .

Sincewedonot compute the propositional formula,we cannot compute its negationnormal
form afterwards. Nor can we transform the C2

ptNFA-formula into negation normal form since

4 For first-order logic, the use of Corollary 4.4 can be replaced by the corresponding statements from [10,
Cor. 7.4 & Thm. 7.5].
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this logic does not allow universal quantifiers. This problem is solved by considering not just
one procedure as above, but two (one for formulas α occurring positively, one for negative
occurrences).

Formally (and now the actual proof starts), we use the following recursive procedures
checkP and checkN whose parameters are

– a C2
ptNFA-formula α(x, y),

– two words wx and wy , and
– a natural number N .

(1) If α is an atomic formula, then decide whether α(wx , wy) holds. This can be done by
a nondeterministic algorithm in time linear in |wx | + |wy | + |α|. If so, the procedure
checkP returns true and false otherwise. The procedure checkN returns the negation of
these values.

(2) If α = β ∨ γ , then a call of checkP(α,wx , wy, N ) returns true iff at least one of
checkP(β,wx , wy, N ) and checkP(γ,wx , wy, N ) returns true.
Dually, checkN(α,wx , wy, N ) returns true iff both, checkN(β,wx , wy, N ) and checkN
(γ,wx , wy, N ), return true.

(3) If α = ¬β, then checkP(α,wx , wy, N ) returns true iff checkN(β,wx , wy, N ) returns
true and dually for checkN(α,wx , wy, N ).

(4) Let α = ∃�t y : ψ(x, y).
Then, checkP(α,wx , wy, N ) returns true iff, for some set T of t words of length <

N 2c, the call of checkP(ψ,wx , w
′
y, N

2c) returns true for all words w′
y ∈ T . Thus, the

evaluation of checkP consists of two phases: an existential phase (in which a set T is
guessed, i.e. the computation branches into a sub-computation for each choice of T ),
followed by a universal phase (in which for each sub-computation, i.e. for each choice
of T , it is checked whether T is a set of t solutions).
Dually, checkN(α,wx , wy, N ) returns true iff, for some set T of t − 1 words of length
< N 2c, the call of checkN(ψ,wx , w

′
y, N

2c) returns true for all wordsw′
y of length< N 2c

that do not belong to T . As before, the call of checkN(α,wx , wy, N ) too consists of an
existential phase followed by a universal phase (considering, instead of the guessed set
T , its complement wrt. the set of words of length < N 2c).

Now let ϕ(x, y) be a formula from C2
ptNFA, u, v ∈ Σ∗, and N0 ∈ N with |u|, |v| < N0

and 2c
2||ϕ|| � N0. By induction on the size of ϕ and using Lemma 5.1, one obtains that

S |� ϕ(u, v) iff checkP(ϕ, u, v, N0) returns true iff checkN(ϕ, u, v, N0) returns false.
Now let ψ = ϕ(u, v). Then, S |� ϕ(u, v) iff checkP(ψ, ε, ε, 2c

2||ψ ||
) returns true.

We now analyse the runtime of an execution of a call of checkP(ψ, ε, ε, 2c
2||ψ ||

). First, the
value of the parameter N is bounded by

(2c
2||ψ ||

)(2c)
d � 2c

4||ψ || = 2c
4||ϕ(u,v)||

where d � ||ψ || is the quantifier depth ofψ . Consequently, the recursive execution considers
only words of this doubly exponential length. Further, when handling a quantifier ∃�t , it
considers a set of at most t words of this doubly exponential length. Since t is at most
exponential in the size of ψ , the alternating algorithm runs in at most doubly exponential
time.

Further note that the execution alternates between universal and existential states only
linearly often. ��

Since ||ϕ|| � |ϕ|, we immediately obtain
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Theorem 5.3 The C2
ptNFA-theory of S belongs to STA

(∗, 22
poly(n)

, O(n)
)
, i.e., can be decided

in doubly exponential alternating time with linearly many alternations.

6 Summary and open question

We considered the extension of first-order logic by threshold-counting quantifiers over the
subword order with piecewise testable predicates and constants. We showed that the 2-
variable fragment of this theory is decidable using doubly exponential space, more precisely,
it belongs to STA

(∗, 22
poly(n)

, O(n)
)
. This extends a result from [10] in two aspects: first,

we add threshold counting quantifiers and piecewise testable predicates to first-order logic
and, secondly, we improve their upper bound by one exponent (if only considering the space
bound). Our proof relies on two independent aspects: the consideration of the height of
definable languages (which is a direct continuation from [10]) and an adaptation of Ferrante
and Rackoff’s method [3].

The work done in this paper can be continued in the following directions:

– Addition of further binary relations: Let C be some collection of binary relations on Σ∗
such that Boolean combinations of relations from C ∪ {	} are effectively rational. This
holds, e.g., if C consists of the prefix relation, the relation “have equal length”, the cover
relation as well as powers thereof (e.g., the relation “u 	 v and |v| − |u| = k” for fixed
k ∈ N). Then, the proof of [9, Thm. 5.5] can be extended to show the following result:
The FO2

NFA-theory of the extension of the structure S with the binary relations from C is
decidable. If the Boolean combinations are even effectively unambiguous rational, then
the C2

NFA-theory becomes decidable using the arguments from [16] (where the result is
demonstrated in case C contains the cover relation, only).
It is not clear for which sets C the C2

ptNFA-theory becomes decidable in elementary space
(which is the case for C = ∅ as demonstrated in this paper). The same question applies
already for the FO2

∅-theory.
– Addition of regular predicates: By [16], the C2

NFA-theory is decidable, but the only known
algorithm is non-elementary. On the other hand, the C2

ptNFA-theory is decidable using
elementary space. It is not clear whether there are other classes of nfas A ⊆ NFA such
that the C2

A- or FO
2
A-theory are decidable in elementary space.
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