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Abstract
A temporal graph with lifetime L is a sequence of L graphs G1, . . . ,GL , called layers, all of
which have the same vertex set V but can have different edge sets. The underlying graph is the
graphwith vertex setV that contains all the edges that appear in at least one layer. The temporal
graph is always connected if each layer is a connected graph, and it is k-edge-deficient if each
layer contains all except at most k edges of the underlying graph. For a given start vertex s,
a temporal exploration is a temporal walk that starts at s, traverses at most one edge in each
layer, and visits all vertices of the temporal graph. We show that always-connected, k-edge-
deficient temporal graphs with sufficient lifetime can always be explored in O(kn log n) time
steps. We also construct always-connected, k-edge-deficient temporal graphs for which any
exploration requiresΩ(n log k) time steps. For always-connected, 1-edge-deficient temporal
graphs, we show that O(n) time steps suffice for temporal exploration.

1 Introduction

Given a simple, connected, undirected graph G and a start vertex s ∈ V (G), the task of
exploring G, i.e. computing a sequence of consecutively crossed edges e ∈ E(G) that begins
at s and visits every vertex v ∈ V (G) at least once, is both natural and well-understood. A
closely related problemwas initially considered by Shannon [23], who designed amechanical
maze-solving machine which implemented a depth-first search-type technique in order to
locate, within a given maze, a prespecified goal. This ‘searching’ problem is indeed related
to graph exploration: if our task is to simply complete an exploration of G, then a solution
can be straightforwardly found by performing a depth-first search (DFS) starting from s and
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stopping once all vertices have been visited at least once—clearly this requires Θ(n) edge
traversals in total, where n = |V (G)|.

The graph exploration problem in the context of temporal graphs (i.e. graphs whose edge
set can change over time) has also received significant attention in recent years [1, 2, 6–9,
21]. This problem, known as Temporal Exploration (TEXP), but restricted to k-edge-
deficient temporal graphs (which we define formally later) is the focus of this paper. Given
a temporal graph G, the problem asks that we compute a temporal walk, starting at some
prespecified vertex s ∈ V (G), that makes at most a single edge traversal in each time step,
and that visits all vertices at least once by the earliest time possible. We formally define
the problem and temporal graph model in Sect. 2, but refer the interested reader to [5, 20]
for more on temporal graphs in general, or [6, 21] for more details on TEXP. In a rather
general setting, TEXP makes no assumptions about the input temporal graph, aside from
the assumption that it is connected in each time step (i.e. always-connected), which ensures
exploration is always possible provided the temporal graph has a sufficient lifetime [21]. This
general setting allows an arbitrary number of edges from the underlying graph to be missing
in each time step, and thus the graphs in different time steps can differ substantially, which
leads to pessimistic bounds on the worst-case exploration time: it was shown by Erlebach et
al. [6] that there are always-connected temporal graphs with n vertices that require Θ(n2)
time steps to be explored. The construction of temporal graphs with such a large exploration
time from [6] uses an underlying graph that is dense (it has Θ(n2) edges), whilst the graph
in each time step is a star (with n − 1 edges). Thus, in each time step a quadratic number
of edges of the underlying graph are missing from the graph of that time step. Therefore, it
is interesting to study the question whether better exploration times can be guaranteed if the
number of missing edges in each time step is small. To study this question, we also consider
always-connected temporal graphs but, in contrast to previous work, we consider k-edge-
deficient temporal graphs whose structure in each step is ‘close’ to that of its underlying
graph, in the sense that at most k edges are missing. Such graphs were previously considered
by Gotoh et al. [14] in a distributed setting. We assume that the temporal structure of an input
temporal graph is known in full to an algorithm prior to it computing a solution, as opposed
to a setting in which the structure of the graph in each step is revealed online and over time.

1.1 Our contribution

We consider Temporal Exploration on always-connected temporal graphs that are k-
edge-deficient for some k ∈ N. We define the property formally in Sect. 2, but essentially
these are temporal graphs G with underlying graph G such that, during each time step t of
G’s lifetime, there are at most k edges e ∈ E in the underlying graph that are untraversable
in (or ‘missing’ from) G. Let n = |V (G)|. In Sect. 3, we prove for arbitrary k ∈ N that k-
edge-deficient always-connected temporal graphs can be explored in O(kn log n) time steps.
In Sect. 4, we additionally show that 1-edge-deficient graphs can always be explored in 51n
time steps, by giving a recursive exploration algorithm that exploits a number of existing
structural/algorithmic results originating from traditional graph theory. In Sect. 5, we present
a modification of an existingΩ(n log n) lower bound on the number of time steps required to
explore always-connected temporal graphs with planar underlying graph ofmaximum degree
≤ 4, presented in [6], that allows us to obtain an Ω(n log k) bound on the worst-case time
required to explore arbitrary always-connected k-edge-deficient temporal graphs. Finally, we
conclude and point to directions for future work in Sect. 6.
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1.2 Related work

Bui-Xuan et al. [4] propose multiple objectives for optimization when computing temporal
walks/paths from one vertex to another: e.g. fastest (fewest steps used) and foremost (arriving
at the destination at the earliest time possible). Brodén et al. [3] consider the Temporal
Travelling Salesperson Problem on a complete graph with n vertices, with edge costs
that can differ between 1 and 2 in each time step. They show that when an edge’s cost
changes at most k times over the input graph’s lifetime, the problem is NP-complete, but
provide a (2 − 2

3k )-approximation; for the same problem, Michail and Spirakis [21] prove
APX-hardness and provide a (1.7+ε)-approximation. They also consider the decision version
of the Temporal Exploration problem, which asks whether or not a given temporal graph
admits a temporal walk that visits all vertices at least once. They show that the problem is
NP-complete when no restrictions are placed on the input; they also propose considering the
problem under the always-connected assumption, which ensures that exploration is possible
provided the lifetime of the input graph is sufficiently long [21]. Erlebach et al. [6] further
consider the optimization variant of theTemporal Exploration problemunder the always-
connected assumption. They prove an Ω(n2) lower bound on the time needed to explore
general always-connected temporal graphs, and provide a proof that temporal graphs within
this class can be explored in n2 steps. They also prove a number of bounds on the number
of time steps required to explore temporal graphs from various restricted temporal graph
classes. Bodlaender and van der Zanden [2] examine TEXP when restricted to temporal
graphs whose underlying graph has pathwidth at most 2, showing that it is NP-complete to
decide if a temporal exploration schedule with a given arrival time exists even under this very
limiting restriction. In [17, 18], Ilcinkas et al. consider TEXP restricted to temporal graphs
with underlying cycle or cactus graphs, respectively. Akrida et al. [1] consider Return-
To- Base TEXP in which a candidate solution must return to the vertex from which it
initially departed. Erlebach et al. [7] prove an O(dn1.75) bound on the number of time
steps required to explore any temporal graph with degree bounded by d in each step, a

considerable improvement over the previously best known O(
n2 log d
log n ) bound [8]. In [9],

a non-strict variant of TEXP is studied—here, a computed walk may make an unlimited
number of edge traversals in each given time step. Notions of strict/non-strict paths which,
respectively, allow for a single edge/unlimited number of edge(s) to be crossed in any time
step have been considered before, notably by Kempe et al. [19] and Zschoche et al. [24].
In this paper, we only consider strict temporal walks. Gotoh et al. [15] consider TEXP on
temporal graphs with underlying cycle under the so-called (H , S)-view, in which only the
availability of edges at most H hops away for at most the next S time steps is known to an
algorithm. Exploration of k-edge-deficient temporal graphs is studied by Gotoh et al. [14]
in a distributed setting. They prove bounds on the number of cooperating mobile agents
required to ensure that temporal graph exploration can be achieved when the vertices of a
given k-edge-deficient temporal graph are anonymous (i.e. have no unique identifiers). They
consider this problem under two distinct ‘agent scheduler’ models, one in which all agents
are active during each time step (fully synchronous), and one in which an arbitrary subset of
the agents are active during each time step (semi-synchronous)—in either model the agents
are able to observe, in each time step, their current vertex v along with the vertices that are
adjacent to their current vertex, as well as store information about this in a ‘notebook’. They
are also able to write information to a ‘white board’ stored at vertex v, that other agents can
subsequently observe and write to themselves. In the semi-synchronous case, it is shown that
2k + 1 agents are enough to ensure that exploration can be performed by the mobile agents
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in a k-edge-deficient graph. For the fully synchronous case, they show that 2k agents are
enough as long as the size (i.e. order plus number of edges) of the input temporal graph and
the number of cooperating agents is known a priori by all agents.

2 Preliminaries

For a positive integer i , we use the notation [i] as short-hand for the set {1, 2, . . . , i}.
Definition 1 (Temporal graph) A temporal graph G with lifetime L is a sequence of static
graphs G = 〈G1,G2, . . . ,GL 〉 that all have the same vertex set V . We let V (G) := V and
n := |V (G)|, and say G is of order n. The subscripts t ∈ [L] indexing the graphs in the
sequence are the discrete time steps (or simply ‘steps’) 1 to L . Each Gt (which may be
referred to as the t th layer) represents the structure of G in time step t . The underlying graph
G = (V , E) of G is the graph with vertex set V = V (G) and edge set E = ⋃

t∈[L] Et .

An edge-time pair of G is a pair (e, t) such that t ∈ [L] and e ∈ E(Gt ). If ({u, v}, t) is an
edge-time pair and an agent is located at u at the start of time step t , the agent can traverse
the edge {u, v} in time step t and arrive at v at the end of time step t .

Definition 2 (Temporal walk)A temporal walkW in a temporal graph G is a finite sequence
of vertices alternating with edge-time pairs

W = (v1, (e1, t1), v2, (e2, t2), . . . , vl−1, (el−1, tl−1), vl)

for some positive integer l, such that t1 < t2 < · · · < tl and ei = {vi , vi+1} for all i ∈ [l−1].
The walk starts at vertex v1 and ends at vertex vl . Its arrival time, denoted by α(W ), is the
time step in which it traverses its last edge, i.e. tl−1.

A temporal walk W = (v1, (e1, t1), v2, . . . , vl−1, (el−1, tl−1), vl) in a temporal graph G
is an exploration schedule for start vertex s if v1 = s and {v1, v2, . . . , vl} = V (G). In the
optimization variant F- TEXP (foremost TEXP) of TEXP, we are interested in determining,
for a given temporal graph G and start vertex s, an exploration schedule W for start vertex s
with minimum arrival time α(W ).

A temporal graph G = 〈G1, . . . ,GL 〉 is always-connected if and only if Gt is connected
for all t ∈ [L]. We consider always-connected temporal graphs with lifetime L ≥ (n − 1)2.
The following lemma from [6] will be useful and implies that such temporal graphs can
always be explored in at most (n − 1)2 steps by repeatedly moving to a previously unvisited
vertex in at most n − 1 steps.

Lemma 1 (Reachability Lemma; Erlebach et al. [6]) Let G be an arbitrary always-connected
temporal graph with vertex set V , n = |V | ≥ 2, and lifetime L. Then, an agent situated at
any vertex u ∈ V at the beginning of some time step t ≤ L − n + 2 can reach any other
vertex v ∈ V in at most |V | − 1 = n − 1 steps, i.e. by the end of time step t + n − 2.

We now give a formal definition of what it means for a temporal graph G to be k-edge-
deficient:

Definition 3 (k-edge-deficient) Let G = 〈G1, . . . ,GL 〉 be a temporal graph with underlying
graph G = (V , E). Then G is k-edge-deficient (for k ∈ N) if, for all t ∈ [L], we have
Gt = (V , E − Xt ) for some Xt ⊆ E with |Xt | ≤ k.

In always-connected k-edge-deficient temporal graphs, we have that Gt = (V , E − Xt )

is connected for all t ∈ [L].
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When constructing a walk in a k-edge-deficient temporal graph G, we may speak of an
agent following a walkW in the underlying graphG. By this, wemean that the agent traverses
in G the edges in the same order as they are traversed by W , and does this whenever it is
possible to do so, i.e. whenever the next edge e traversed by W is present in the current time
step t . If that edge is not present, the agent is blocked on e in step t .

Roughly speaking, our approaches to proving exploration results for both k-edge-deficient
and 1-edge-deficient temporal graphs involve splitting the lifetime of the input graph into
consecutive periods of time steps, then allowing a set of virtual agents to occupy and attempt
to explore disjoint substructures of the same temporal graph during each period. We then
allow a real agent to follow the ‘best’ virtual agent (best in the sense that this agent has
successfully completed the exploration of their respective substructure) in any such period.
Whilst this same generic approach is employed in some sense or another whilst proving both
results, the graph-theoreticmachinery that enables the approach towork is decidedly different
in both cases. We remark that the difference between the multi-agent approach we employ
here and the multi-agent approaches of [14] is that, here, we use multiple virtual agents as a
conceptual tool for proving the existence (and construction) of a single exploration schedule
that can then be followed by a single real agent. In [14], however, the multiple agents are
an integral part of the problem, as are the varying levels of information that the agents can
retain and share with one another.

3 Exploration algorithm for k missing edges

Wepresent an algorithm that proceeds in rounds. In each round, it considers a forest consisting
of k + 1 edge-disjoint subtrees of a spanning tree of the underlying graph and ensures that
all edges of one of these trees can be traversed in the round. The following lemma, shown
by Frederickson and Johnson [12, Lemma 1], allows us to split a tree T into a pair of
edge-disjoint subtrees (whose union covers E(T )) in a balanced way:

Lemma 2 (Frederickson and Johnson [12]) Let T be a tree with m ≥ 2 edges. Then, one can
compute in time O(m) two edge-disjoint subtrees T ′ and T ′′ such that |E(T ′)|, |E(T ′′)| ∈
[m/3, 2m/3], and such that E(T ′) ∪ E(T ′′) = E(T ).

Say that a set S of edge-disjoint subtrees T ′ ⊆ F is a subtree cover of a forest F if, for every
e ∈ E(F) we have e ∈ E(T ′) for some T ′ ∈ S. Call such a subtree cover S balanced if
it satisfies the additional property that the largest tree in S contains at most three times the
number of edges contained by the smallest. Our exploration method will require maintaining
a subtree cover of size k + 1 of the unexplored parts of the temporal graph, as this ensures
that in each step at least one of the subtrees does not have a missing edge. The following
lemma, which we prove by applying Lemma 2 to the largest tree in a balanced subtree cover,
allows us to build a subtree cover of size k + 1 from a spanning tree of the whole underlying
graph, and to increase a subtree cover from size k to size k + 1 each time one of the k + 1
subtrees has been explored and thus removed from the subtree cover.

Lemma 3 Let S be a balanced subtree cover of some forest F such that |S| = x and |E(F)| ≥
x + 1 hold. Then, one can obtain a balanced subtree cover S′ of F such that |S′| = x + 1.

Proof In this proof we write |T | as short-hand for |E(T )| for any tree T . Consider the largest
tree T in S and apply to it Lemma 2 to obtain two edge-disjoint subtrees T ′ and T ′′ such that
|T ′|, |T ′′| ∈ [|T |/3, 2|T |/3]. Note that this is possible because |E(F)| ≥ x + 1, and since S
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contains exactly x subtrees we have that the largest tree in S contains at least two edges, as
is required by Lemma 2. Let S′ = (S − {T }) ∪ {T ′, T ′′}. We have that S′ is a subtree cover
of F , since S is a subtree cover of F , and since T ′ and T ′′ are edge-disjoint and cover E(T ).
Furthermore, since S is balanced and T contains the most edges of any tree in S, we have
that every tree in S − {T } contains a number of edges in the range [|T |/3, |T |]. Moreover,
we have |T ′|, |T ′′| ∈ [|T |/3, 2|T |/3], and so |T ′|, |T ′′| ∈ [|T |/3, |T |]. Concluding, we have
that the number of edges in each tree of S′ lies in the range [|T |/3, |T |], and so S′ is balanced;
it is clear from the construction of S′ that |S′| = x + 1. 
�
Theorem 1 LetG = 〈G1, . . . ,GL 〉be analways-connected, k-edge-deficient temporal graph
(for some integer-valued function k of n) with underlying graph G, lifetime L ≥ (n − 1)2

and order n. Then, there is a bound τ = O(kn log n) such that, for any start vertex s,
there is an exploration schedule W of G that starts at s ∈ V (G) and has arrival time
α(W ) ≤ min{τ, (n − 1)2}. Moreover, such a schedule can be computed in polynomial-time.

Proof For k ≥ n − 1, the result clearly holds as every always-connected temporal graph can
be explored in at most (n − 1)2 time steps (by repeated application of Lemma 1), so we
assume k < n − 1 for the rest of the proof.

Compute an arbitrary spanning tree T ofG, and letm = |E(T )| = n−1. Assume w.l.o.g.
that m ≥ 4, otherwise G can be explored in O(1) steps using O(1) applications of Lemma
1. Let S = {T } and note that S is a balanced subtree cover of T . Now apply Lemma 3 to S k
times to obtain a balanced subtree cover S∗ of size k+1 (this is possible since k ≤ n−2). In
the following, we let F denote a forest (represented as a single graph) containing all edges
of T that may not yet have been traversed, initially F = T .

We now specify our algorithm in terms of an agent that explores the graph in consecutive
rounds. We denote by t( j) the first step of the j th round, and by s( j) the vertex at which
the agent is positioned at the beginning of time step t( j). The balanced subtree cover at the
start of the j th round is denoted by S∗

( j), and the forest made up of edges that may not yet
have been explored by F( j). Let m′

( j) = ∑
Ti∈S∗

( j)
|E(Ti )|. Initially, we have j = 1, t(1) = 1,

s(1) = s, F(1) = T , S∗
(1) = S∗ is a balanced subtree cover of F(1) (with size k + 1), and

m′
(1) = m. If F( j) contains more than k+1 edges, execute the j th round as follows: consider

the graph from step t( j) + n onward, and place a single virtual agent at an arbitrary vertex
vi in each of the k + 1 subtrees Ti ∈ S∗

( j). Now, for each i ∈ [k + 1], compute a DFS tour
in Ti starting from vi , then let the agent positioned in Ti follow that DFS tour whenever it is
possible to do so for the following 6m′

( j) steps (i.e. whenever the next edge they are required
to traverse is present in the current time step). Since there are k + 1 virtual agents following
tours in edge-disjoint subtrees, and since G is k-edge-deficient, it follows that there are no
edges missing from at least one subtree T ′ ∈ S∗

( j) in every step. Let Ti∗ be the subtree that
had no edges missing during the largest number of steps in the considered 6m′

( j)-step period.

Then, Ti∗ had no edge missing in at least
6m′

( j)
k+1 steps. Since |S∗

( j)| = k + 1, the smallest tree

in S∗
( j) cannot contain strictly more than

m′
( j)

k+1 edges, so because S∗
( j) is balanced the largest

tree in S∗
( j) contains at most

3m′
( j)

k+1 edges. Therefore, at least
6m′

( j)
k+1 steps in which the virtual

agent positioned in Ti∗ is able to traverse an edge are enough for that agent to complete their
DFS of Ti∗ and arrive back at vi∗ . Using the steps in the interval [t( j), t( j) + n − 1], move
the real agent, using Lemma 1, from s( j) to the vertex vi∗ at which the virtual agent began
their tour of Ti∗ . LetW ∗ be the tour followed by the virtual agent positioned in Ti∗ ; from step
t( j) + n to step t ′( j) = t( j) + n + 6m′

( j) − 1, let the real agent completeW ∗. Once completed,
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check if > k + 1 edges of T remain untraversed; if so, consider the set S′ = S∗
( j) − {Ti∗ }

and note that |S′| = k. Observe that S′ is balanced since S∗
( j) was balanced and removing a

tree cannot violate this property. Since we have S′ = S∗
( j) − {Ti∗ }, and since S∗

( j) covered T ,
we have that S′ covers the forest F ′ obtained from F( j) by removing the edges of Ti∗ . Apply
Lemma 3 to S′ to obtain a balanced subtree cover S′′ of F ′ such that |S′′| = k + 1—note
that this is valid since |E(F ′)| > k + 1 = |S′| + 1, as is required by Lemma 3. Now, set
S∗
( j+1) = S′′, F( j+1) = F ′, s( j+1) = vi∗ and t( j+1) = t ′( j) +1 and start the ( j +1)th round as

above. Once a round is completed and at most k+1 edges remain, stop and explore the up to
2k + 2 remaining unexplored vertices one by one, using n − 1 steps per vertex by Lemma 1
and thus O(nk) steps for all these up to 2k + 2 vertices together.

Note that every vertex v in V (T ) = V (G) either (1) belongs to an edge of T that was
traversed by the algorithm, or (2) was visited via an application of Lemma 1. Hence, the
computedwalk is an exploration schedule and it remains only to bound its arrival time. In each
round j , a subtree containing at least a 1

3(k+1) fraction of the edges of F( j) is traversed in its

entirety. To see this, observe that |S∗
( j)| = k+1, so the largest tree in S∗

( j) must contain≥ m′
( j)

k+1

edges; because S∗
( j) is balanced, it follows that all trees in S∗

( j) have size ≥ m′
( j)

3(k+1) . Hence,

after x rounds, the number of edges of T that remain in F(x+1) is ≤ m(1 − 1
3(k+1) )

x . Thus,
after x = 3(k + 1) ln( m

k+1 ) = O(k logm) = O(k log n) (recall that m = |E(T )| = n − 1)

rounds there are≤ m(1− 1
3(k+1) )

3(k+1) ln( m
k+1 ) ≤ k+1 unexplored edges remaining in F(x+1).

As each round takes n + 6m′
( j) ≤ n + 6m = O(n) steps, the total number of steps after

O(k log n) rounds is O(kn log n). A further at most (2k + 2)n steps are sufficient to explore
the up to 2k + 2 remaining unvisited vertices. Hence, the constructed exploration schedule,
call itW , has an arrival time of α(W ) ≤ O(kn log n)+ (2k+2)n = O(kn log n) as required.
If this bound on the arrival time is greater than (n−1)2, use instead the exploration schedule
with arrival time (n − 1)2 that follows from repeated application of Lemma 1.

Finally, it is easy to see that the algorithm for determining the exploration schedule can
be implemented to run in polynomial time. 
�

We remark that in Theorem 1 we have assumed that the given temporal graph has lifetime
at least (n − 1)2 as this assumption ensures that an exploration schedule exists for arbitrary
always-connected temporal graphs. For values of k for which the bound O(kn log n) of the
theorem evaluates to a value λ < (n − 1)2, it is of course sufficient to assume that the given
temporal graph has lifetime at least λ.

As a consequence of Theorem 1, we get the following corollary:

Corollary 1 Let G be an arbitrary, always-connected k-edge-deficient temporal graph with
lifetime L = (n−1)2 and let k = o( n

log n ). Then, for any start vertex s ∈ V (G), G necessarily

admits an exploration schedule W that starts at s and has arrival time α(W ) = o(n2).

Let k be an arbitrary function of n and consider the restriction of F- TEXP (the optimization
variant of TEXP) to k-edge-deficient temporal graphs. Then, since the algorithm of Theorem
1 is constructive and runs in polynomial time, and since the optimal exploration schedule
cannot have arrival time smaller than n − 1, we arrive at the following:

Theorem 2 There exists a polynomial-time O(k log n)-approximationalgorithm forF- TEXP
on k-edge-deficient temporal graphs.
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4 Exploration algorithm for a single missing edge

We now present our algorithm for the case when k = 1. We remark that exploration in this
case feels, intuitively speaking, ‘close’ to exploration in static graphs, since there is just a
single edge missing in each time step. This appears to be evidenced by the relative ease
(compared to less restrictive cases such as k-edge-deficient for general k or bounded-degree
temporal graphs) with which we can employ definitions/results from static graph theory in
order to obtain our algorithm.We nowprovide some preliminary discussion before specifying
the main algorithm of this section.

First, we aim to sparsify the given temporal graph because the exploration time of our
method increases with the number of edges of the underlying graph. To do so, we will simply
ignore some of the edges of the given temporal graph and focus on the subgraph consisting
of the remaining edges. As at most one edge of the underlying graph is missing in each time
step, the same property also holds for the subgraph consisting of those remaining edges, and
we can focus on that subgraph for the purposes of exploration. We only need to be careful to
define the subgraph in such a way that it remains connected provided that at most one edge
is missing.

For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union of G1 and G2, denoted by
G1 ∪G2, is the graph G = (V1 ∪V2, E1 ∪ E2). This definition extends naturally to the union
of a finite collection of graphs.

A graph G = (V , E) is k-vertex-connected (or simply k-connected) if, for any subset
X ⊆ V (G) such that |X | < k, the subgraph of G induced by V − X is connected. For
k = 2, we say biconnected instead of 2-connected. Let G = (V , E) be a connected graph.
An edge e ∈ E is a bridge if G ′ = (V , E − {e}) is disconnected. A graph G = (V , E) is
2-edge-connected if it is connected and does not contain a bridge. Observe that all bridges
of the underlying graph of an always-connected temporal graph are necessarily present in
every time step, as otherwise the graph in a time step with a missing bridge would not be
connected.

A 2-edge-connected component (abbreviated 2-ecc) of a graph G is a vertex-maximal
induced subgraph C ⊆ G such that C is 2-edge-connected. Note that a 2-ecc can also be a
single vertex. We say that a spanning subgraph G ′′ of G preserves 2-edge-connectivity if it
contains all bridges of G and, for every 2-ecc C of G, the subgraph of G ′′ induced by V (C)

is 2-edge-connected. In order to show that every connected graph G has a spanning subgraph
that preserves 2-edge-connectivity and has only a linear number of edges, we make use of
the following result by Nagamochi and Ibaraki.

Theorem 3 (Nagamochi and Ibaraki [22]) Every k-connected graph G = (V , E) admits a
k-connected spanning subgraph G ′ = (V , E ′) such that |E ′| ≤ k|V |. Moreover, G ′ can be
computed in O(|E |)-time.
An induced subgraph G ′ of a graph G is a block (also known as biconnected component) of
G if it is biconnected and maximal.

Definition 4 (Modified block-cut tree construction) Let B be the set of blocks of a given
graph G. Construct a tree T as follows:

(1) For every block Bi ∈ B create a vertex bi ∈ V (T ), and for every vertex u ∈ V (G) create
a vertex cu ∈ V (T ).

(2) For every vertex/block pair (u, Bi ) such that u ∈ V (Bi ), add an edge {cu, bi } ∈ E(T ).

The construction detailed in Definition 4 ensures that T is indeed a tree; it is essentially the
same construction that is used to produce the block-cut tree of a given graph, as considered
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in, for example, [13] and [16]. The construction considered in those studies is well known
to have this property, and the only additional vertices produced by the modified construction
presented above are the vertices in T that correspond to vertices v ∈ V (G) that are not cut
vertices inG. Since these vertices belong to exactly one block, their corresponding vertices in
T must have degree one. Hence, the acyclicity of T cannot be violated by their inclusion. By
applying Theorem 3 to each block of a given connected graph G, we can show the following:

Lemma 4 Let G be an arbitrary connected graph and let C be the set of all 2-eccs of G.
Then, G admits a spanning subgraph G∗ such that (i) the vertices of each 2-ecc C ∈ C form
a 2-ecc in G∗ with at most 4|V (C)| edges, and (ii) |E(G∗)| ≤ 5|V (G)|.
Proof Consider the set C containing all maximal, non-trivial (i.e. order ≥ 2), 2-edge-
connected components Ci in G. We say that a 2-ecc Ci in C spans a block B of G if B
is a subgraph of Ci , i.e. V (B) ⊆ V (Ci ) and E(B) ⊆ E(Ci ). For every block B of G
there is one 2-ecc in C that spans B, because B being biconnected implies that B is 2-edge-
connected and hence a subgraph of a 2-ecc. Hence, each Ci in C spans one or more of the
blocks of G—let B(i) be the set of all blocks spanned by Ci and let xi = |B(i)|. To the
j th block Bi, j ∈ B(i) ( j ∈ [xi ]) apply Theorem 3, obtaining a spanning biconnected sub-
graph B ′

i, j ⊆ Bi, j such that |E(B ′
i, j )| ≤ 2|V (Bi, j )|. Now, since each B ′

i, j is connected
and since every vertex v ∈ V (Ci ) satisfies v ∈ V (B ′

i, j ) ⊆ V (Bi, j ) for some j ∈ [xi ], the
graph C ′

i = ⋃
j∈[xi ] B

′
i, j is connected and spans V (Ci ). Furthermore, since every edge of C ′

i
belongs to exactly one block B ′

i, j (otherwise there are 2 vertices in the intersection of two
distinct blocks, which contradicts their maximality), we have:

|E(C ′
i )| =

∑

j∈[xi ]
|E(B ′

i, j )| ≤ 2
∑

j∈[xi ]
|V (Bi, j )| ≤ 2

∑

v∈V (Ci )

|D(v)|,

where D(v) = {Bi, j : v ∈ V (Bi, j )}. Note that the final inequality holds since∑
j∈[xi ] |V (Bi, j )| counts each vertex v ∈ V (Ci ) exactly as many times as it occurs in unique

blocks Bi, j . Now, in order to show that
∑

v∈V (Ci )
|D(v)| ≤ 2|V (Ci )|, first apply the con-

struction of Definition 4 to Ci so as to produce the modified block-cut tree Ti of Ci . Consider
now step (1) of Definition 4, and notice that it creates a vertex cu ∈ V (T ) for every vertex
u ∈ V (Ci ) and a vertex, say b j , for every block Bi, j ∈ B(i); hence |V (T )| = xi + |V (Ci )|.
We now claim that xi ≤ |V (Ci )|. To see this, note that the following procedure assigns a
distinct vertex as representative for each block of Ci : pick an arbitrary vertex v in an arbi-
trary block Bi, j ∈ B(i) and let v be the representative of Bi, j . Now carry out a DFS of
Ci starting at v and, whenever the DFS traverses for the first time an edge {u, w} (in the
direction from u to w) of a block that does not have a representative yet, let w be the repre-
sentative of that block (note that u is a cut vertex and w is a vertex that has not been visited
before). This shows that xi ≤ |V (Ci )|. By step (2) in Definition 4, an edge e = {cu, b j }
satisfies e ∈ E(T ) if and only if u ∈ V (Ci ) satisfies u ∈ V (Bi, j ). In other words, we have∑

v∈V (Ci )
|D(v)| = |E(T )| ≤ 2|V (Ci )| − 1, and hence we have

|E(C ′
i )| ≤ 2

∑

v∈V (Ci )

|D(v)| ≤ 4|V (Ci )| . (1)

Let G∗ be the graph obtained by taking the union of all C ′
i and all bridge edges in E(G).

The above clearly establishes property (i) for G∗. Notice that the bridge edges in E(G) are
precisely the edges that are not contained in some C ′

i—since G and each C ′
i is connected,

and G∗ includes all bridge edges of G, it is not hard to see that G∗ is connected. Let x < n
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denote the number of bridges in G; then, since each edge in G∗ is either a bridge or belongs
to C ′

i for exactly one i ∈ [|C|], we have
|E(G∗)| =

[ ∑

i∈[|C|]
|E(C ′

i )|
]

+ x ≤ 4 ·
[ ∑

i∈[|C|]
|V (Ci )|

]
+ n ≤ 5n,

where the inequality follows from (1) and the final inequality holds since each vertex belongs
to exactly onemaximal 2-edge-connected componentCi , implying that

∑
i∈[|C|] |V (Ci )| ≤ n.

This establishes property (ii) and the proof is complete. 
�
If G is a 1-edge-deficient, always-connected temporal graph with underlying graph G,

and if G∗ is a spanning subgraph of G that preserves 2-edge-connectivity, then the temporal
graph G∗ with underlying graph G∗ that is obtained from G by removing all edges that are
not in G∗ is also always-connected and 1-edge-deficient. This also implies that every cycle
C of G∗ induces a connected subgraph in every time step of G∗.

A circuit C in a graphG is a closedwalk inG that does not repeat edges. In 1-edge-deficient
temporal graphs, a circuit in the underlying graph behaves like an always-connected temporal
graph with underlying cycle, as at most one edge of the circuit can be missing in each step.
Thus, we get the following theorem, which was shown in [6] for always-connected cycles.

Theorem 4 (Erlebach et al. [6])For every 1-edge-deficient temporal graph G with underlying
circuit C, there exists a start vertex fromwhich the graph can be explored in atmost |E(C)|−1
steps.

The following theorem of Fan allows us to reduce the exploration of a 2-ecc to the exploration
of at most three circuits:

Theorem 5 (Fan [11]) The edges of any 2-edge-connected graph G = (V , E) can be covered
by at most three circuits. Moreover, such a cover can be computed in O(|E | · |V |)-time.
In the proof of Theorem 6, we will also make use of the following lemma:

Lemma 5 Let G be an arbitrary 2-edge-connected graph G with n = |V (G)| ≥ 3 and
let u, u′ ∈ V (G). Then, one can compute a circuit X ⊆ G such that u, u′ ∈ V (X) and
|E(X)| ≤ 2n.

Proof Let x be the number of blocks Bi of G, then consider a shortest path P ⊆ G from u to
u′. Let x ′ ≤ x be the number of distinct Bi visited by P , wherewe say that a path visits a block
Bi if the path contains at least one edge in E(Bi ). Let B1, B2 . . . , Bx ′ be the ordered sequence
of blocks visited by P; we have u ∈ V (B1), u′ ∈ V (Bx ′), and |V (Bj ) ∩ V (Bj+1)| = 1 for
j ∈ [x ′]. W.l.o.g., assume x ′ ≥ 2, since if x ′ = 1 then u and u′ are contained in the same
block and we can simply select a cycle containing u and u′. Additionally, let vi,i+1 be the
unique vertex contained in V (Bi ) ∩ V (Bi+1) for all i ∈ [x ′ − 1].

To construct a circuit X ⊂ G such that |E(X)| ≤ 2n we select: a cycle D1 ⊆ B1 of length
≤ |V (B1)| containing u and v1,2; a cycle Di ⊆ Bi of length at most |V (Bi )| containing
vi−1,i and vi,i+1 for all i ∈ [2, x ′ − 2]; and a cycle Dx ′ ⊆ Bx ′ of length at most |V (Bx ′)|
containing vx ′−1,x ′ and u′. Note that such cycles are always possible to obtain since each Bi
is a biconnected subgraph of G. Let D∗ = ⋃

i∈[x ′] Di . We construct a circuit X in D∗ in the
following way: select one of the two edge-disjoint paths, say P1

1 , between u and v1,2 in D1;
let P2

1 ⊆ D1 be the path that was not selected. For all i ∈ [2, x ′ − 2], select one of the two
edge-disjoint paths, say P1

i , between vi−1,i and vi,i+1, and let P2
i ⊆ Di be the path that was

not selected. Once vx ′−1,x ′ is reached, do the same as before but pick a path P1
x ′ between
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vx ′−1,x ′ and u′, and let P2
x ′ ⊂ Dx ′ be the path that was not selected. Let X be the walk formed

by following all P1
i (in the direction of u′) in increasing order of index, then following all

P2
i (in the direction of u) in decreasing order of index. Since X begins at u, travels to u′ and

then returns to u, it is clear that X is a closed walk in D∗ ⊆ G. Furthermore, since all paths
P1
i and P2

i are pairwise edge-disjoint, it is clear that X does not repeat edges. It follows that
X is a circuit in G.

Observe that X visits exactly the vertices in V (D∗) and traverses every edge in E(D∗)
exactly once. Hence, to bound the number of edges in E(X) it suffices to bound the number
of edges in E(D∗). Note that, for all i ∈ [x ′ − 1], the degree of vi,i+1 in D∗ is 4 since
vi,i+1 has degree 2 in Di and degree 2 in Di+1; also note that the degree of every other
vertex in D∗ is exactly 2 (since these vertices each belong to exactly one Di ). Since there
are at most n − x ′ + 1 vertices of degree 2 in D∗, we have that the sum of the degrees of all
vertices in D∗ is at most 4(x ′ − 1) + 2(n − x ′ + 1) ≤ 4n; halving this quantity gives that
|E(D∗)| = |E(X)| ≤ 2n as required. 
�
Note that the edges which belong to no 2-ecc of an arbitrary connected graph G are precisely
the bridges of G. Hence, one can represent the structure ofG as a tree T , called the 2-ecc tree
of G, by identifying each 2-ecc with a vertex, and joining two vertices by an edge in T if and
only if their corresponding 2-eccs are connected by a bridge in G. In the proof of Theorem
6, we will therefore reuse standard terminology for trees: we choose a 2-ecc C as the root
component. If C ′ and C ′′ are 2-eccs such that C ′ lies on the path from C to C ′′ in T , then
C ′′ is a descendant of C ′. If C ′ and C ′′ correspond to neighbouring nodes in T and C ′′ is a
descendant of C ′, then C ′′ is a child of C ′ and C ′ is the parent of C ′′. The subtree rooted at a
2-ecc C ′ consists of all 2-eccs that are descendants of C ′, and the subgraph of G consisting
of all those 2-eccs and the bridge edges between them is said to correspond to that subtree.
For any child C ′ of the root C of the 2-ecc tree, we call the subgraph of G that corresponds
to the subtree rooted at C ′ a child subgraph.

Lemma 6 Let G be an arbitrary connected graph on n vertices. Then, there is a 2-ecc C∗
of G such that rooting the 2-ecc tree of G at C∗ ensures that the child subgraphs (i.e. the
subgraphs of G corresponding to the subtrees rooted at children of C∗) each contain at most
n/2 vertices.

Proof Consider the 2-ecc tree T in which each 2-edge-connected component C of G is
represented by a vertex vC . Root T at an arbitrary node vĈ , then process the vertices in
a bottom up manner, labelling a vertex vC with the integer xC = |{u ∈ V (G) : u ∈
V (C ′) for a descendant C ′ of C in T }|. Select a vertex vC∗ such that xC∗ ≥ n/2 and such
that vC∗ has the largest depth in T amongst all such vertices. If vC∗ is already the root of T , we
are done. Otherwise, let vC ′ be the parent of vC∗ and reroot T at vC∗ to form a 2-ecc tree T ∗,
in which vC ′ is a child of vC∗ . Note that we have xC < n/2 for every child vC �= vC ′ of vC∗
in T ∗, because otherwise the algorithm would have picked vC rather than vC∗ . Furthermore,
we have xC∗ ≥ n/2, and so the total number of vertices in all components C ′′ such that vC ′′
is a descendant of vC ′ in T ∗ must be ≤ n/2. 
�
Theorem 6 LetG = 〈G1, . . . ,GL 〉be analways-connected,1-edge-deficient temporal graph
with arbitrary underlying graph G and lifetime L ≥ 51n, and let |V (G)| = n. Then, for any
start vertex s ∈ V (G), there is an exploration schedule W of G that starts at s and has arrival
time α(W ) ≤ 51n. Moreover, such a schedule can be computed in polynomial time.

Proof Apply Lemma 4 toG in order to obtain a spanning subgraphG∗ ⊆ G (with |E(G∗)| ≤
5n) such that each 2-ecc C of G induces a 2-ecc C∗ in G∗ satisfying |E(C∗)| ≤ 4|V (C∗)|.
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Apply Lemma 6 to G∗ to obtain a 2-ecc tree T of G∗ with a root component C1 such that
the child subgraphs Gi ⊆ G∗ satisfy |V (Gi )| ≤ n/2. Let k denote the number of 2-eccs in
G∗. Let T (n, k) denote the maximum number of time steps required to explore an arbitrary
1-edge-deficient, always-connected temporal graph with n vertices whose underlying graph
has k 2-eccs, at most 5n edges, and is such that every 2-eccC∗ satisfies |E(C∗)| ≤ 4|V (C∗)|,
starting from an arbitrary vertex s of the graph at time step 1.We now specify our exploration
algorithm and prove by induction on k that it produces an exploration schedule with arrival
time at most T (n, k) ≤ 51n steps.

Base case (Arbitrary n, k = 1): In this case, G∗ consists of a single 2-ecc C1; without
loss of generality, assume that |V (C1)| ≥ 3. Apply Theorem 5 toC1, obtaining a circuit cover
{X1, . . . , Xc} of C1 containing c circuits, where 1 ≤ c ≤ 3. Consider now the following
three time intervals, noting that |E(Xi )| ≤ |E(C1)| ≤ 5n for all i ∈ [c]: I1 = [n +
1, 6n], I2 = [7n + 1, 12n] and I3 = [13n + 1, 18n]. During the steps of Ii apply Theorem
4 to Xi to determine a vertex vi ∈ Xi such that an exploration schedule of Xi using at most
|E(Xi )| − 1 ≤ 5n − 1 time steps begins at vi at the first step of Ii . Beginning at the start
vertex s ∈ V (G) in time step 1, employ Lemma 1 to move in at most n steps to vertex v1,
wait until the first step of interval I1, then follow the walk obtained by the application of
Theorem 4 during interval I1. If c > 1, repeat these steps for all remaining circuits Xi in
the computed circuit cover of C1. Once Theorem 4 has been applied to Xc, notice that, for
all i ∈ [c], all vertices of Xi have been visited. Since {X1, . . . , Xc} covers all edges of C1

(and also all edges of G∗ since G∗ consists only of C1), it follows that all vertices of G∗
have been visited at least once. The number of time steps taken to achieve this is at most
c(n + 5n) ≤ 18n.

Inductive step (Arbitrary n, k > 1): Assume that T (n′, k′) ≤ 51n′ for all n′ and all
k′ < k and consider the root component C1 of G∗. We now distinguish two cases:

Case 1: |C1| ≥ 2.Apply Theorem5 toC1 and obtain a circuit cover X∗ = {X1, . . . , Xc} of
C1 containing c circuits, where 1 ≤ c ≤ 3. Let V ′ = {v ∈ V (C1) : v ∈ e for some bridge e}
be the set of vertices in V (C1) that are incident with at least one bridge in G∗. Construct a
function γ : V ′ → X∗ by arbitrarily mapping each vertex v ∈ V ′ to some circuit Xi ∈ X∗
such that v ∈ Xi . Recall that we root the 2-ecc tree T ofG∗ atC1. For each childCi ofC1 in T ,
we denote byGi the child subgraph ofG∗ corresponding to the subtree of T rooted atCi . Let
Br = {e ∈ E(G∗) : e is a bridge and e∩V ′ �= ∅}, i.e.Br is the set of bridges ofG∗ that connect
C1 to child subgraphs. For any v ∈ V ′, let β(v) = {Gi : {v, u} ∈ Br for some u ∈ Gi }. In
other words, β(v) is the set of child subgraphs that are connected to v via a bridge. For
i ∈ [c], let Fi = ⋃

{v∈V ′:γ (v)=Xi } β(v). This means that Fi is the set of child subgraphs with
the property that the bridge that connects the child subgraph to C1 is incident with a vertex
v ∈ V ′ that has been mapped to Xi by γ . See Fig. 1 for an illustration of a circuit Xi and the
child subgraphs in Fi that are attached to it via bridges.

For i ∈ [c], let GXi ⊆ G∗ be the subgraph of G∗ induced by the vertices of Xi and
of all the child subgraphs in Fi , i.e. by the vertex set {v ∈ V (G) : v ∈ V (Xi ) or v ∈
V (G j ) for some G j ∈ Fi }. Our aim is, for each i ∈ [c], to move a real agent from its current
vertex to some vertex si ∈ V (Xi ) (by Lemma 1 the agent uses at most n steps when initially
moving to V (C1) from s and then at most |V (C1)| steps for each of the remaining c − 1
circuits), then construct a closed walk in GXi that will be followed (in opposite directions)
by two virtual agents whenever it is possible for them to do so; i.e. whenever they are not
blocked on the next edge they need to traverse. We then let the real agent follow the walk of
the virtual agent that finishes their walk first. Let ti be the time step after the real agent first
reaches si ∈ V (Xi ). Place the virtual agents at si at the start of time step ti and let them do the
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Fig. 1 Illustration of a circuit Xi and the child subgraphs in Fi (indicated as shapes filled in solid grey) that
are attached to it via bridges (drawn dashed), as well as the walk followed by agent CW (drawn in red) starting
at si

following:move along the edges of Xi , one in the clockwise direction (agentCW) and the other
in the counterclockwise direction (agent CCW).Whenever an agentA∗ ∈ {CW,CCW} reaches
for the first time a vertex v ∈ V ′ such that γ (v) = Xi , that agent processes the subgraphs
G j ∈ β(v), in increasing order of indices if A∗ = CW and in decreasing order otherwise,
in the following way (the only exception is with vertex si : if si ∈ V ′ and γ (si ) = Xi , then
agent CW processes each G j ∈ β(si ) immediately at the start of the walk before traversing
any edge of Xi , whilst agent CCW processes them only when it returns to si after having
traversed all edges of Xi ): check (1) if the other agent, say A∗∗ ∈ {CW,CCW}−A∗, currently
occupies some vertex in G j ; if not, then check (2) if A∗∗ is currently positioned at vertex v

and needs to process next the same subgraph G j as agent A∗.
If neither (1) or (2) hold, then agentA∗ traverses the bridge connectingG j and v ∈ V (Xi ),

follows a DFS in G j (i.e. traverses edges of G j in the order of a static DFS in G j , and waits
at the current vertex whenever the next edge to be traversed is not available), then re-traverses
the connecting bridge towards Xi and continues processing the remaining G j ′ ∈ β(v) with
j ′ �= j in the sameway. If (1) holds, then agent A∗ should ignoreG j and continue processing
the other G j ′ ∈ β(v). If (2) holds, then arbitrarily select one of the agents to process G j

in the same way as when neither (1) nor (2) hold, and let the other agent ignore G j and
continue processing the remaining G j ′ ∈ β(v) with j ′ �= j . See Fig. 1 for an illustration of
the walk followed by agent CW if it is never prevented from entering a child subgraph due
to an occurrence of (1) or (2).

Note that neither agent should traverse the next edge of Xi until all G j ∈ β(v) have been
processed in the above way. Since the two agents process the subgraphs in opposite orders,
it is ensured that at most a single subgraph G j ∈ Fi is ignored by an agent during the entire
execution of the virtual agent procedure on GXi . This is because, after either case (1) or (2)
occurs for the first time, the subgraphsG j ∈ Fi that remain to be explored byA∗ are precisely
those that have already been explored by A∗∗, and vice versa. Also note that if either (1) or
(2) occurs, then at no point during the remainder of the procedure’s execution on GXi will
the agents become blocked on the same edge.
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Both agents continue in this way until the first time step in which both agents are blocked
on the same edge e (if this happens at all). Note that we must have e ∈ E(Xi ), since the
way the agents process each subgraph G j ensures that they will never be positioned in any
subgraph G j ∈ Fi during the same time step.

Now, if every edge of G∗ were to be present in every time step, it would take each agent
at most Exp(Xi ) = |E(Xi )| + ∑

G j∈Fi 2|V (G j )| steps to carry out their respective walk in
GXi : 1 step to traverse each of the edges of Xi , 2|V (G j )| − 2 steps spent exploring G j via
a DFS, and 2 steps spent traversing each of the bridge edges connecting Xi and a G j ∈ Fi .
Since G∗ is 1-edge-deficient, it is possible for the agents to both be blocked on the same edge
during the same time step. We distinguish two subcases, first recalling that ti denotes the
time step in which the exploration of GXi begins. We use t ′i to denote an upper bound on the
time step by which the exploration of GXi (possibly except one subgraph G j∗ ) is completed
by at least one of the two agents.

Case 1.1: If the agents are never blocked on the same edge e during any step t in [ti , t ′i ] for
t ′i = ti + 2Exp(Xi ), then, in each time step t ∈ [ti , t ′i ], at least one of the two agents is able
to cross the next edge of their respective walk. In this case, we have that by the end of time
step t ′i , the agent A

∗ that was blocked on an edge in the least number of time steps t ∈ [ti , t ′i ]
will have not been blocked in ≥ Exp(Xi ) time steps and, as such, will have arrived again at
si ∈ V (Xi ). At this point, A∗ will have finished an exploration of at least the subgraph of
G∗ induced by V (GXi ) − V (G j ) in at most 2Exp(Xi ) steps (for some G j ∈ Fi which was
possibly ignored by A∗ when it was about to process G j because the other agent occupied
some vertex in V (G j )).

Case 1.2: The agents are both blocked on the same edge e ∈ Xi during a time step
t ∈ [ti , ti + 2Exp(Xi )]. Let t ′i = ti + 2Exp(Xi ) + |E(Xi )|. Check whether or not e is present
during any step t ′ ∈ [t+1, t+|E(Xi )|]. If yes, wait until that step, then let both agents cross e.
If not, let both agents apply Lemma 1 in Xi , using at most |E(Xi )| − 1 time steps to move to
the opposite endpoint of e, then continue attempting to traverse the next edge of their walk
whenever possible. Notice that, during any step t ′ ∈ [ti , t − 1], at least one of the two agents
was able to cross the next edge in their respective walk, since t is the first time step in which
both agents are blocked on the same edge. When the agents are blocked on e during step t ,
they either wait at their current vertex for at most |E(Xi )| − 1 steps until e is present again,
or spend ≤ |E(Xi )| − 1 steps reaching the opposite endpoint of e by applying Lemma 1 in
Xi . In either case, it takes at most |E(Xi )| − 1 steps for them to reach the opposite endpoint
of e. At this point, observe that the vertices x ∈ V (Xi ) and the G j ∈ Fi that remain to be
explored/processed by agent CW are exactly those that have already been explored/processed
by agent CCW (and vice versa). Hence, it follows that the two agents will not be blocked on
the same edge again for the remainder of their respective walks. In all the remaining steps,
since the sets of vertices unexplored by the walks of the two agents are disjoint, we again have
that at least one of the two agents will be able to cross the next edge of their respective walk
in all steps t ′ ∈ [t + |E(Xi )|, t ′i ]. Concluding, during the entire time interval [ti , t ′i ], there
are ≤ |E(Xi )| steps in which neither of the agents can cross the next edge of their respective
walk, and by step t ′i = ti + 2Exp(Xi ) + |E(Xi )| ≤ ti + 2Exp(Xi ) + 4|V (C1)| (where the
inequality holds since |E(Xi )| ≤ |E(C1)| ≤ 4|V (C1)| by our application of Lemma 4), it is
ensured that the agent who was blocked during the least number of steps since the start of
step ti has completed their exploration of GXi in at most 2Exp(Xi ) + 4|V (C1)| steps. Note
that this agent has not skipped any of the child subgraphs in Fi , since the two agents were
blocked on the same edge of Xi and thus it could never happen that one agent skipped a child
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subgraph because the other was already in that subgraph or wanted to enter it in the same
step.

After processing all c circuits Xi in this way, there will be at most c subgraphs that have
not yet been explored. We next reduce those unexplored subgraphs to at most one: whilst
there are two or more unexplored subgraphs, we repeatedly (1) choose a circuit X in C1 with
|E(X)| ≤ 2|V (C1)| that contains two vertices of V ′ that have an incident bridge leading
to an unexplored subgraph (this is possible by Lemma 5), and then (2) move to a vertex
in X in at most |V (C1)| steps (by Lemma 1) and process X and 2 of the at most three
unexplored subgraphs in the same way that we processed Xi for i ∈ [c] (i.e. via the virtual
agent procedure). Since we have |E(X)| ≤ 2|V (C1)| and there are two subgraphs G j and
G j ′ (both satisfying |V (G j )|, |V (G j ′)| ≤ n/2), we have:

Exp(X) = |E(X)| + 2|V (G j )| + 2|V (G j ′)| (2)

≤ 2(|V (C1)| + |V (G j )| + |V (G j ′)|) (3)

≤ 2n (4)

Therefore, by the same reasoning that was used in Case 1.1 and Case 1.2, the virtual agent
that completes their walk in the subgraph induced by V (C1) ∪ V (G j ) ∪ V (G j ′) first will
have either explored at least one of G j and G j ′ in ≤ 2Exp(X) steps, or explored both G j

and G j ′ in ≤ 2Exp(X) + |E(X)| ≤ 2Exp(X) + 2|V (C1)| steps. Note that, since there are at
most three subgraphs that remain unexplored by the real agent after applying the virtual agent
procedure in all GXi , we can be required to perform the above subgraph reduction procedure
at most twice. After doing so, the real agent will have visited all vertices in

⋃
i∈[c][V (GXi )],

possibly apart from those that belong to a single subgraphG ′ ∈ Fi (for exactly one i ∈ [c]). If
such a subgraph G ′ exists then we move the real agent (in |V (C1)|−1 steps using Lemma 1)
to the unique vertex v in C1 such that G ′ ∈ β(v), then use an additional time step to traverse
the bridge {v, v′} (recall that bridges are always present since the temporal graph is always-
connected); this requires |V (C1)| steps in total. We then apply the algorithm recursively to
G ′, starting at vertex v′.

In order to now bound the overall worst-case exploration time of the algorithm, we assume
that there does exist a subgraph G ′ that requires a recursive application of the algorithm,
and determine the worst-case number of time steps required by the real agent to explore⋃

i∈[c][V (GXi )] − V (G ′) = V (G∗) − V (G ′), then reach an arbitrary vertex in V (G ′). We
can assume w.l.o.g. that our computed circuit cover {X1, . . . , Xc} has size c = 3 – it is clear
that this is the worst-case number of circuits we need to process. Let r = |V (C1)|. Recall
that in Case 1.1 we have an upper bound of 2Exp(Xi ) on the amount of time required to
explore all of V (GXi ) − V (G ′′) for a single subgraph G ′′ ∈ Fi that was possibly missed by
the virtual agent that finished their walk in GXi first; in Case 1.2 we obtained a 2Exp(Xi ) +
4r upper bound on the amount of time required to explore all of GXi . Since Exp(Xi ) =
|E(Xi )|+∑

G j∈Fi 2|V (G j )| ≤ 4r + 2
∑

G j∈Fi |V (G j )| (where the inequality follows from
our application of Lemma 4), we have:

∑

i∈[3]
2Exp(Xi ) ≤ 24r + 4

∑

i∈[3]

∑

G j∈Fi
|V (G j )| ≤ 24r + 4(n − r) = 20r + 4n

and so in the worst case at least 20r + 4n steps are spent exploring all Xi (possibly missing
a single subgraph G ′′ ∈ Fi for each i ∈ [3]) and an additional 4r steps may also be needed
whilst processing each Xi if the virtual agents get blocked on the same edge e ∈ E(Xi )

during the same time step. Similarly, in the worst case, we require up to 2Exp(X) steps whilst
processing each of up to two additional circuits X (with two child subgraphs attached to each
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X ) using the virtual agent procedure. By Eqs. (2)–(4) we have 2Exp(X) ≤ 4n, so in the worst
case at least 4n steps are spent processing each additional circuit, and an additional 2r steps
may be needed whilst processing each circuit if the virtual agents get blocked on the same
edge of a circuit X .

We now introduce four parameters to be used in order to distinguish the cases that can
arise during an execution of the algorithm: let x ∈ {0, . . . , 3} be the number of times we miss
a subgraph over all applications of the virtual agent procedure to the circuits in {X1, . . . , X3}.
Let y ∈ {0, . . . , 2} be the number of times we need to compute an additional circuit X and
carry out the virtual agent procedure on the subgraph induced by X and two unexplored
subgraphs. Let y′ ∈ {0, . . . , y} be the number of times we do not miss a subgraph across
all y applications of the virtual agent procedure on additionally constructed circuits X (note
that we have y′ ≤ 1 because as soon as we explore both unexplored subgraphs attached to
some circuit X we either (1) have no unexplored subgraphs remaining and exploration is
complete; or (2) have 1 remaining subgraph and we need to recursively apply the algorithm).
Let z ∈ {0, 1} be the number of times we recursively apply the algorithm to a final unexplored
subgraph.

The worst-case number of time steps required to explore all but at most a single subgraph
G ′ (and then be positioned at some vertex in G ′) for each possible combination of x, y, y′, z
can then be upper bounded by the following sum:

f (x, y, y′, z) = (20r + 4n)

+(3 − x)4r

+y · 4n
+y′ · 2r
+(n + (2 + y + z)r);

where 20r+4n steps (and possiblymore) are needed to process all circuits Xi ; (3−x)4r is an
upper bound on the number of additional steps needed to process circuits Xi (incurred when
the virtual agents become blocked on the same edge of some Xi ); y · 4n steps (and possibly
more) are needed to process y ≤ 2 additional circuits X with two unexplored subgraphs
attached to each; y′ · 2r is an upper bound on the amount of additional steps needed to
process y additional circuits X (incurred when the virtual agents get blocked on the same
edge of some X ); and n+ (2+ y + z)r is an upper bound on the number of steps spent using
the reachability lemma to: (1) reach, in at most n steps, an arbitrary vertex in X1 from start
vertex s; (2) reach, in at most r steps, an arbitrary vertex in each Xi with i ∈ [2, 3] from
some vertex in V (C1) at which the last application of the virtual agent procedure finished;
(3) reach, in at most r steps, each of y additional circuits as part of the unexplored subgraph
reduction procedure; and (3) reach, in at most r steps, the final unexplored subgraph should
one exist.

Next, we enumerate all combinations of values for x, y, y′ and z attainable during a run of
the exploration algorithm, before listing the worst-case exploration time for each case. First
note that if x = 0, then no applications of the subgraph reduction procedure or any recursive
call are required and so wemust have y = y′ = z = 0 (Case A). If x = 1, then no application
of the subgraph reduction procedure is required, so we must have y = y′ = 0, and we need
z = 1 recursive calls to explore the x = 1 missed subgraph (Case B). If x = 2, then we
require y = 1 application of the subgraph reduction procedure; after this application, we
may either explore both subgraphs and have y′ = 1 so that z = 0 recursive calls are required
(Case C), or have y′ = 0 and require exactly z = 1 recursive calls (Case D). Note that if
x = 3, then we require at least 1 application (and at most two applications) of the subgraph
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reduction procedure. If we have x = 3 and y = 1, then we must have y′ = 1 since our single
application of the subgraph reduction procedure reduced the number of unexplored subgraphs
from 3 to 1, and we require exactly z = 1 recursive calls (Case E). If x = 3 and y = 2,
then a subgraph must have been missed during the first application of the subgraph reduction
procedure, so we can either have: y′ = 1 (so that both remaining unexplored subgraphs are
explored during the second application) and require z = 0 recursive calls (Case F); or y′ = 0,
so that we miss a subgraph during both applications of the subgraph reduction procedure and
require z = 1 recursive calls to explore the final remaining subgraph (Case G).

Note that in any of the identified cases, if z = 0, then no recursive call is required
and so the worst-case exploration time achievable in that case is upper bounded by the
maximum corresponding value of f (x, y, y′, z) over all possible values of r . If z = 1, then
there is one remaining subgraph G ′ that contains k′ < k 2-eccs (since G ′ surely does not
contain C1) and satisfies |V (G ′)| ≤ min{n/2, n − r} (by our application of Lemma 6).
Then, by the induction hypothesis, the time required to explore G ′ is upper bounded by
T (|V (G ′)|, k′) ≤ T (min{n/2, n − r}, k′) ≤ 51min{n/2, n − r}. As such, the worst-case
exploration time achieved in any case in which z = 1 is upper bounded by the sum of the
maximum corresponding value of f (x, y, y′, z) plus 51min{n/2, n − r}, over all possible
values of r . The list below gives the worst-case bounds on the arrival time α(W ) of the
exploration scheduleW obtained by our exploration algorithm in Cases A–G; we distinguish
two subcases—namely r ≤ n/2 and r > n/2—whenever z = 1:

– Case A x = 0, y = 0, y′ = 0, z = 0: α(W ) ≤ f (0, 0, 0, 0) = 34r + 5n ≤ 39n
– Case B x = 1, y = 0, y′ = 0, z = 1: f (1, 0, 0, 1) = 31r + 5n

r ≤ n/2: α(W ) ≤ 15.5n + 5n + 51(n/2) = 46n
r > n/2: α(W ) ≤ 31r + 5n + 51(n − r) = 56n − 20r < 46n

– Case C x = 2, y = 1, y′ = 1, z = 0: α(W ) ≤ f (2, 1, 1, 0) = 29r + 9n ≤ 38n
– Case D x = 2, y = 1, y′ = 0, z = 1: f (2, 1, 0, 1) = 28r + 9n

r ≤ n/2: α(W ) ≤ 14n + 9n + 51(n/2) = 48.5n
r > n/2: α(W ) ≤ 28r + 9n + 51(n − r) = 60n − 23r < 48.5n

– Case E x = 3, y = 1, y′ = 1, z = 1: f (3, 1, 1, 1) = 26r + 9n

r ≤ n/2: α(W ) ≤ 13n + 9n + 51(n/2) = 47.5n
r > n/2: α(W ) ≤ 26r + 9n + 51(n − r) = 60n − 25r < 47.5n

– Case F x = 3, y = 2, y′ = 1, z = 0: α(W ) ≤ f (3, 2, 1, 0) = 26r + 13n ≤ 39n
– Case G x = 3, y = 2, y′ = 0, z = 1: f (3, 2, 0, 1) = 25r + 13n

r ≤ n/2: α(W ) ≤ 12.5n + 13n + 51(n/2) = 51n
r > n/2: α(W ) ≤ 25r + 13n + 51(n − r) = 64n − 26r < 51n

Clearly then, the overall worst-case time required of the described algorithm to visit all
v ∈ V (G∗) at least once (and hence complete an exploration of G) is upper bounded by the
maximum value appearing in the above list, i.e. by 51n which occurs in Case G. Hence, we
have T (n, k) ≤ 51n, as required.

Case 2: |C1| = 1. Let v be the single vertex contained in V (C1). Move the real agent to
v in at most n steps using Lemma 1; once arrived at v, we know C1 has been fully explored.
Consider the set β(v) of the child subgraphs that are connected to v via bridges. Again we
use a virtual agent approach: the agents CW and CCW process the G j ∈ β(v) in increasing
and decreasing order of their indices, respectively. Each time they begin processing a new
G j , they (1) check to see if the other agent is situated at a vertex of G j . If so, they ignore G j

123



404 T. Erlebach, J. T. Spooner

and continue processing the other G j ′ ∈ β(v) with j ′ �= j . Then, if (1) does not hold, they
check (2) if the other agent is currently positioned at v and also needs to process G j next.

If neither of (1) or (2) hold, then the agent moves over the bridge edge connecting v and
G j ∈ β(v), follows a DFS in G j and then returns to v via the same bridge edge before
processing the next G j . If (1) holds, then the agent ignores subgraph G j and the other agent
continues their DFS in G j ; if (2) holds, we arbitrarily nominate one of the two agents to
explore G j via a DFS and the other agent ignores G j . Note that in this way, the two agents
will never both be blocked on the same edge in some time step t—they cannot be blocked on
a bridge edge incident to v (since G is always-connected and so bridges in E(G∗) are always
present), and they cannot be blocked on an edge e ∈ E(G j ) for any j , since the exploration
procedure ensures they are never positioned in G j at the same time.

Since traversing a bridge edge towards a subgraph G j , carrying out a DFS in G j and then
re-traversing the bridge towards v again takes 2|V (G j )| steps in total, it would require of
an agent completing a static exploration of G∗ exactly

∑
G j∈β(v) 2|V (G j )| steps to process

all G j in this way. Since G is 1-edge-deficient, it is possible for an individual agent to be
blocked on an edge during some time step, but not both agents on the same edge in the
same time step. Hence, in every time step at least one of the two agents will be able to cross
the next edge of their respective walk, and so in the worst case the agent that first finishes
processing all subgraphs in the describedmanner does so in at most 2 ·∑G j∈β(v) 2|V (G j )| ≤
4|V (G∗)| = 4n steps, having missed a single unexplored subgraph G ′ ∈ β(v) which has
k′ < k 2-eccs (since G ′ surely does not contain C1) and satisfies |V (G ′)| ≤ n/2 (by our
application of Lemma 6). In this situation, we move the real agent to an arbitrary vertex in
G ′ in 1 step (since G ′ is connected to v by a bridge, and since bridges must be present in
every layer of an always-connected temporal graph) and recursively apply the exploration
algorithm to G ′. By the inductive hypothesis, the amount of time required to explore G ′
is at most T (|V (G ′)|, k − 1)) ≤ T (n/2, k − 1) ≤ 51(n/2) = 25.5n. Therefore, since by
Lemma 1 we require ≤ n steps to initially reach vertex v ∈ V (C1) from the start vertex
s of the exploration, which can be anywhere in the graph, then ≤ 4n steps to follow the
walk of the best agent, 1 step to move from v to a vertex in G ′ over a bridge, and finally
another ≤ 25.5n steps to explore all of G ′, it follows that the entire exploration of G takes
≤ 5n+1+25.5n = 30.5n+1 steps in total, which is less than 51n for all n ≥ 1, as required.

Finally, we remark that all steps in the construction of the exploration schedule can be
implemented to run in polynomial time, and thus we have a polynomial-time algorithm for
computing such schedules. 
�
Note that, in Theorem 6, it was sufficient to assume a lifetime of at least 51n since our explo-
ration method ensures that the exploration is completed after at most 51n steps. Furthermore,
our upper bound of Theorem 6 together with the obvious lower bound of n − 1 on the arrival
time of any exploration schedule implies the following corollary.

Corollary 2 There exists a polynomial-time O(1)-approximation algorithm for F- TEXP on
always-connected 1-edge-deficient temporal graphs.

5 Lower bound

To complement the upper bounds from Sects. 3 and 4, we also present a lower bound on
the worst-case exploration time of k-edge-deficient temporal graphs. For this, we adapt the
construction of a lower bound of Ω(n log n) on the exploration time of temporal graphs with
underlying planar graphs of maximum degree 4 from [6, Theorem 4.1]. That construction
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Fig. 2 Underlying graph of the temporal graph constructed in the proof of Theorem 7 for k = 14. Edges
present from time n/2+ 1 to n are drawn solid (with the dotted line representing a longer path of solid edges),
the remaining edges are drawn dashed

has a time-varying part (in which n/2 edges are missing in each time step) and a fixed part
(a static path of n/2 edges). By reducing the size of the time-varying part and increasing the
size of the static part, we can show the following theorem.

Theorem 7 For arbitrarily large n and every k with 2 ≤ k ≤ n
2 − 2, there is an always-

connected k-edge-deficient temporal graph with n vertices and lifetime (n − 1)2 for which
an optimal exploration takes Ω(n log k) steps.

Proof Assume without loss of generality that k + 2 is a power of two (otherwise, consider
the next smaller value of k that satisfies this condition) and that n is even. Consider the
following underlying graph G = (V , E) (see Fig. 2): the vertex set V contains k + 2
vertices V0 = {ti , bi | 0 ≤ i ≤ k/2}, edges {ti , ti+1}, {bi , bi+1}, {ti , bi+1} and {bi , ti+1} for
0 ≤ i < k/2, and a path P with n − (k + 2) new internal vertices (drawn solid in Fig. 2) that
connects t0 and b0.

Let h = 1+k/2. For 1 ≤ i < h, we refer to the edges {ti−1, ti } and {bi−1, bi } as horizontal
edges of column i , and to the edges {ti−1, bi } and {bi−1, ti } as cross edges of column i .

We describe the first n
2 log2 h = Θ(n log k) steps of a temporal realization of G and show

that it cannot be explored within these steps. For the remaining time steps of the temporal
realization of G, we let each layer be equal to the layer in step n

2 log2 h.
Consider the following construction of the first n2 log2 h time steps of a temporal realization

of G, consisting of log2 h phases, each of which is n/2 time steps long and consists of n/2
identical layers: the path P is always present. In the first phase of n/2 time steps, the graph
additionally contains the horizontal edges of all columns. At the start of the next phase of n/2
time steps, the horizontal edges of column h/2 are replaced by the cross edges (this is the
state shown in Fig. 2), and this replacement is permanent until the end of the construction. At
the start of the next phase of n/2 time steps, the horizontal edges of columns h/4 and 3h/4
are replaced (permanently) by the cross edges. This continues for a total of log2 h phases as
follows: at the start of each phase, the horizontal edges of the middle column in each stretch
of consecutive horizontal edges are permanently replaced by the cross edges. This implies
that, throughout the steps of the last of the log2 h phases, all cross edges but none of the
horizontal edges are present.

Let V ′
0 = V0 − {t0, b0}. In each phase, we say that a vertex of V ′

0 is on the t0-side if it
is in the same connected component as t0 in the subgraph induced by V0 in the layers of
that phase, and on the b0-side otherwise. Observe that in each of the phases, any algorithm
can explore either vertices in V ′

0 on the t0-side or vertices in V ′
0 on the b0-side, but not both

(because the path P has n − (k + 2) + 1 ≥ n
2 + 1 edges). If the algorithm visits any vertex

of V ′
0 in a phase and if that vertex is on the t0-side, we assume that the algorithm visits all

vertices of V ′
0 on the t0-side in that phase, and similarly if it visits a vertex of V ′

0 on the
b0-side. This assumption can only decrease the exploration time. No matter which of the two
sets of vertices the algorithm visits in a phase, in the next phase half of the unvisited vertices
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in V ′
0 will be on the t0-side and half on the b0-side. Therefore, each phase halves the number

of unvisited vertices. At the end of phase log2 h, the number of unvisited vertices in V ′
0 is at

least 2k/2log2 h = 2k/(k + 1
2 ) > 1. Hence, the exploration time is Ω(n log k), independent

of the start vertex.
Furthermore, it is easy to see that the constructed temporal graph is k-edge-deficient: in

each column i , 1 ≤ i < h, two edges from the underlying graph are missing in each step, so
the total number of missing edges in each step is 2(h − 1) = k. 
�

6 Conclusion

We have shown that always-connected k-edge-deficient temporal graphs admit an explo-
ration schedule with arrival time O(kn log n); if k = 1, the arrival time improves to
O(n). The proofs are constructive, yielding polynomial-time algorithms for computing
such exploration schedules. As n − 1 steps are necessary to explore any graph, our results
also yield O(k log n) and O(1)-approximation algorithms for F- TEXP for the k ∈ N and
k = 1 cases, respectively, as well as an O(log n)-approximation if k = O(1). Further-
more, we have given an infinite family of k-edge-deficient temporal graphs that require
Ω(n log k) time steps to be explored. It would be interesting to close the gap between
the lower and upper bounds. In particular, an interesting question is whether always-
connected k-edge-deficient graphs for k = O(1) can be explored in O(n) steps. For
k = 1, there is the question of whether (and by how much) the constant factor in our
upper bound of 51n on the exploration time can be improved. It is known that there
are 1-deficient temporal graphs whose underlying graph is a cycle with n nodes that
require 2n − 3 steps for exploration [6], which implies that the constant factor in the
upper bound for arbitrary always-connected 1-edge-deficient temporal graphs must be at
least 2.
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