
Acta Informatica (2022) 59:183–209
https://doi.org/10.1007/s00236-021-00403-z

ORIG INAL ART ICLE

An automated system repair framework with signal temporal
logic

Mert Ergurtuna1 · Beyazit Yalcinkaya1 · Ebru Aydin Gol1

Received: 29 September 2020 / Accepted: 18 May 2021 / Published online: 17 June 2021
© The Author(s) 2021

Abstract
We present an automated system repair framework for cyber-physical systems. The proposed
framework consists of three main steps: (1) system simulation and fault detection to generate
a labeled dataset, (2) identification of the repairable temporal properties leading to the faulty
behavior and (3) repairing the system to avoid the occurrence of the cause identified in the
second step. We express the cause as a past time signal temporal logic (ptSTL) formula and
present an efficient monotonicity-basedmethod to synthesize a ptSTL formula from a labeled
dataset. Then, in the third step, we modify the faulty system by removing all behaviors that
satisfy the ptSTL formula representing the cause of the fault. We apply the framework to two
rich modeling formalisms: discrete-time dynamical systems and timed automata. For both
of them, we define repairable formulae, the corresponding repair procedures, and illustrate
them over case studies.

1 Introduction

Fromautonomous vehicles, to smart agriculture systems,medical devices and robotics, cyber-
physical systems (CPSs) are in use in a very wide range of areas. A common approach in
development of CPSs is usingmodel-based development techniques and prototyping to verify
the correctness of the design via simulation, and if possible, formal techniques before the
development of the actual system. Automated testing including model-based testing has
proven to be cost-effective for fault detection [29] and supported in various CPS modeling
tools such as Simulink [30]. Furthermore, robustness guided falsification techniques for
CPSs can significantly reduce the fault localization time [8,18,39]. When a faulty behavior

This work has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant Agreement No. 798482.

B Ebru Aydin Gol
ebrugol@metu.edu.tr

Mert Ergurtuna
mert.ergurtuna@metu.edu.tr

Beyazit Yalcinkaya
beyazit.yalcinkaya@metu.edu.tr

1 Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-021-00403-z&domain=pdf
https://orcid.org/0000-0002-3369-5553
https://orcid.org/0000-0001-9987-635X
http://orcid.org/0000-0002-5813-9836

184 M. Ergurtuna et al.

is detected, first the model is analyzed to identify the root cause, and then the system is
improved (“repaired”) to eliminate the cause. Both cause identification and system repair
steps are challenging, and they are, in general, performed manually. As the system gets more
complex, identifying the causes and modifying the system manually become even more
challenging and time-consuming for the system designers. In this work, we propose a repair
framework to automate these steps with formal guarantees.

The proposed framework consists of three mains steps: (1) generation of a labeled dataset
via simulation and testing, (2) synthesis of a “repairable” past time signal temporal logic
(ptSTL) formula that describes the labeled events and (3) performing the associated repair
process for the identified formula. Repairable formula and the associated repair process are
the core concepts of the framework. A formula is called repairable if there exists a Repairer
that can modify the system to guarantee that the formula will not be satisfied, i.e., the root
cause will not occur, along the modified system’s traces. Furthermore, we require that the
repair process does not introduce any new behavior. We formalize these requirements over
the system traces and parametric ptSTL formulae.

We illustrate the framework over two rich modeling formalisms, namely, discrete-time
dynamical systems and timed automata [4,5]. For dynamical systems, we define a repairable
formula as a conjunction of a control formula and system formula and define Repairer
as a controller-refinement procedure. On the other hand, for timed automata, we identify
formula templates that address absence of timing constraints and define associated Repairer
procedures that introduce new clocks and timing constraints. Hence, we present a fully
automated framework to find the causes of faulty behaviors and repair the system to avoid
these causes for discrete-time dynamical systems and timed automata.

As a part of the proposed framework, we present an efficient method to synthesize a
ptSTL formula from a given set of parametric formulae and a labeled dataset of system traces
such that the evaluation of the resulting formula matches the labels. Past time fragment of
temporal logics includes only past operators, thus when evaluating a ptSTL formula φ at
time t , only events occurred prior to time t are considered, which is essential in cause-effect
relation. Considering that the faulty behavior can have multiple causes, our synthesis method
iteratively generates a formula as a disjunction of optimized formulae from the given set. At
each iteration, a candidate set of parametric formulae are optimized, and the best formula is
added to the final formula via disjunction until it is not possible to further improve the final
formula.

1.1 Related work

Following the success in automated fault detection methods [8,18,29,39], automated repair
problem is getting more attention. In [3], machine learning and verification techniques
are combined to repair system specifications. Similarly, in [13], a machine learning-based
approach is developed to automatically repair system models written in B formal specifi-
cation language. Automatic repair has also been studied for software, see [21] for a recent
survey. The automated software repair methods include fixing an existing code, e.g., a genetic
programming-based approach in [37], introducing new expressions as in [32]. In this work,
we present a repair framework using ptSTL for CPSs.

Signal temporal logic (STL) is a rich specification language used for describing tempo-
ral properties of real-time signals [16]. Due to its expressivity and efficient algorithms for
checking continuous signals against STL formulae, it is used in different areas including
monitoring [10,11], fault detection via falsification [18] and formal control [33]. Synthe-

123

An automated system repair framework... 185

sizing an STL formula from a dataset is studied in the literature in different forms such as
finding a formula that is satisfied by all system traces to identify the system requirements
[24,25], finding a formula that differentiates the given sets of good and bad signals [31],
signal clustering [36] or finding a formula that would identify the bad events as they occur
[10,17]. The proposed formula synthesis method as a part of the repair framework extends
[17] by performing parameter synthesis in each iteration and eliminating formulae that can-
not be part of the result for efficiency. In a recent work [12], STL formula synthesis is used
as a part of a fault explanation framework for CPSs, where the authors synthesized a formula
describing the “good” behaviors and checked it against the faulty behaviors to find a fault
explanation. Their results also support the use of STL formulae for cause explanation.

In this work, we find explanatory formulae in a special form, which we call repairable, and
define automated procedures to fix the system to avoid the satisfaction of the formula. Thus,
while we limit the synthesis to specific formula types, we present auto-repair procedures,
which was not possible in [12]. Identification of the temporal pattern leading to the violation
of a temporal logic formula over a signal is studied in [20]. Different from our work and
[12], a particular signal (execution) is analyzed in [20]. As in [12], fault localization for
Simulink models is studied in [28], where a test case selection process is defined to identify
the Simulink blocks causing the observed fault. A fault localization method accompanied
with a repair approach for Simulink models is presented in [35], where the fault is localized
by applying amatrix decomposition approach over the internal signals leading to the fault and
the system is repaired by tuning the parameters of the blocks identified in the localization step.
In [40], fault localization for autonomous mobile systems composed of a set of sub-systems
is considered. The authors of [40] define a library of parametric STL formulae for specifying
system requirements and develop a localization technique that identifies the likeliest sub-
system that has a fault leading to the violation of the requirement. In this work, we propose
an STL-based fault localization and repair framework and apply it to discrete-time dynamical
systems and timed automata.

The repair for dynamical systems is defined as a controller-refinement procedure guar-
anteeing satisfaction (or violation) of a ptSTL formula. Control strategies from STL
specifications are synthesized by solving mixed integer linear programs [33]. A main differ-
ence of the developed refinement method is that it only restricts possible control choices to
guarantee that new behavior is not formed via the repair mechanism. The repair framework
for discrete-time dynamical systems improves the controller-synthesis approach presented
in [34] by generalizing the constraints defined over the template formula and control set
definitions.

Repair of timed automata (TA) models has not been studied until recently [6,26,27]. In
[26,27], a repair suggestion is generated by analyzing a faulty timed trace of a TA. The
analysis is based on running an SMT solver on a linear arithmetic encoding of the trace. The
repair suggestions include changing the clock bounds in constraints and modifying clock
resets. As such modifications can significantly change the TA behavior, they perform an
additional step to check the equivalence of the resulting and original models. In our case,
instead of modifying existing constraints or clocks, we introduce new clocks and constraints
over the new clocks, which allows us to prove that the traces of the repaired TAA R is a subset
of the traces of the original TA A . Thus, if A satisfies a universal property such as a metric
temporal logic formula, then A R is also guaranteed to satisfy the same property. In [6], the
authors assume that the causes of the faults are the incorrect timing constraints. In order to
repair the system, they parametrize these constraints and generate parameters by analyzing
the traces via an oracle that can decide whether a trace belongs a system (i.e., good) or not.
While the procedure from [6] only modifies existing constraints, we propose to identify fault

123

186 M. Ergurtuna et al.

causes as a ptSTL formula and repair the system in an automated way by introducing new
clocks and constraints.

The contribution of thiswork is fourfold. First, it defines an automated system repair frame-
work based on ptSTL. The framework includes dataset generation, synthesis of repairable
causes as ptSTL formula and system repair steps. The second contribution is the efficient
formula synthesis method employed in the second step. Finally, the application of the frame-
work to the discrete-time dynamical systems and timed automata together with the repairable
formula sets and automated repair procedures constitute the third and the fourth contributions,
respectively. We implemented the developed methods in a proof-of-concept tool [1].

The paper is organized as follows. Preliminary information on signal temporal logic is
given in Sect. 2. In Sect. 3, the proposed system repair framework is presented in detail.
Repairable cause identification method is explained in Sect. 4. In Sects. 5 and 6, application
of the proposedmethod for dynamical systems and timed automata is presented, respectively.
Finally, the paper is concluded with closing remarks and future research directions in Sect. 7.

2 Signal temporal logic

2.1 Signals

An n-dimensional continuous signal x is defined as a mapping from time domain R≥0 to
the real numbers Rn . For any given time t from the time domain of a signal, the value of
the signal is denoted by x(t), and the prefix of the signal from 0 to t is denoted by x≤t ,
i.e., x≤t = {x(t ′) | t ′ ∈ [0, t]}. The projection of the state on the i th dimension at time t is
denoted by xi (t).

2.2 Past time signal temporal logic

A past time signal temporal logic (ptSTL) formula is:

φ = T | xi ∼ c | ¬φ | φ1 ∧ φ2 | φ1SIφ2 (1)

where xi is a signal variable, ∼ ∈ {>,≥,<,≤,=}, and c is a constant. T is the Boolean
constant true, ¬ and ∧ are the Boolean operators negation and conjunction, respectively. SI

is the temporal operator since with time interval I that can be any open or closed interval
from the time domain R≥0.

For a ptSTL formulaφ, a continuous signal x, and a time value t , the satisfaction relation |�
is defined by (where F(t, [a, b]) = [t−b, t−a]∩[0, t], F(t, [a, b)) = (t−b, t−a]∩[0, t],
F(t, (a, b]) = [t − b, t − a) ∩ [0, t], and F(t, (a, b)) = (t − b, t − a) ∩ [0, t]):

(x, t) |� T

(x, t) |� xi ∼ c iff xi (t) ∼ c,∼ ∈ {>,≥,<,≤,=}
(x, t) |� ¬φ iff not (x, t) |� φ

(x, t) |� φ1 ∧ φ2 iff (x, t) |� φ1 and (x, t) |� φ2

(x, t) |� φ1SIφ2 iff ∃t ′ ∈ F(t, I), (x, t ′) |� φ2,∀t ′′ ∈ [t ′, t](x, t ′′) |� φ1 (2)

Twoadditional temporal operatorsF−
I (previously) andG−

I (always) are defined asF−
I φ :=

T SIφ and G−
I φ := ¬F−

I ¬φ.

123

An automated system repair framework... 187

In case of a discrete-time signal x = x0x1 . . ., that is defined as a mapping from N to
R
n , ptSTL semantics are interpreted over the piece-wise constant continuous signal xPWC

derived from x as xPWC (t) = xi when t ∈ [i, i + 1). With a slight abuse of notation, we
write (x, t) |� φ when (xPWC , t) |� φ.

Parametric past time signal temporal logic is an extension of ptSTL [9]. In a parametric
ptSTL formula, parameters can be used in place of numerical constants (c in (1)) or time
bounds (interval bounds in (1)). For a parametric formulaφ and a suitable parameter valuation,
v,φ(v) denotes the ptSTL formula obtained by replacing each parameterwith the correspond-
ing value from v. As an example, consider the parametric formula φ = F−

[p1,p2]x < p3 with

parameters p1, p2 and p3. ptSTL formula φ(v) = F−
[3,5]x < 10.2 is obtained with valuation

v = [p1 → 3, p2 → 5, p3 → 10.2].

3 System repair framework

In this work, our goal is to repair a system such that the resulting system does not generate
a faulty behavior. The overall framework that includes system S, fault detection mechanism
IsFaulty, template formula set F , and the repair mechanism Repairer is introduced in this
section.

The system is denoted by S. A trace of S is a finite n-dimensional signal x, and the set of
all traces of S is denoted by Traces(S). IsFaulty is a fault detection mechanism that takes a
trace (or a partial trace) as input and generates a label indicating whether a faulty behavior
is encountered at the end of the given trace (te denotes the last time point):

IsFaulty(x) =
{
1 if fault at te
0 otherwise

. (3)

Here, we do not make any additional assumptions on the fault detection mechanism. As
illustrated in the examples, it can be a safety specification checking a property of the last
state (e.g., xi ≤ c), a temporal logic formula (e.g., F−

[0,3]xi > 0—the value of xi should be
positive at least once within the last 3 time units), or it can compute a function that cannot
be encoded as temporal formula (e.g.,

∑k
j=0 x

i
t− j ≤ 0).

We assume that F consists of a set of repairable parametric ptSTL formulae over the
system S such that the Repairer can modify the system S to avoid the satisfaction of an
instance of a formula from the set F as stated in Assumption 1.

Assumption 1 For a parametric ptSTL formula φ ∈ F and a valid parameter valuation v for
φ, the repaired system S ′ = Repairer(φ(v),S) satisfies the following conditions:

1. ¬φ(v) is satisfied along each trace from Traces(S ′)
2. Traces(S ′) ⊂ Traces(S)

The first condition states that the formula φ(v) will not be satisfied at any time step of a
trace of the repaired system. In particular for each template φ, Repairer has a mechanism
to avoid φ in S. Thus, when the cause of the faulty behavior is expressed as a formula φ(v),
the repaired system will not generate this cause. The second condition guarantees that the
changes performed by the Repairer will not introduce any new behavior.

An important step of the proposed system repair framework is the identification of the
fault cause in the form of a ptSTL formula. To achieve this, first a dataset of labeled signals
is produced by simulating system S and labeling the generated traces with IsFaulty where te

123

188 M. Ergurtuna et al.

is the last time point of trace x and Simulation(S) ⊆ Traces(S) is a set of traces generated
by simulating S:

D(S) ={(x, l) | x ∈ Simulation(S), l(t) = IsFaulty(x≤t) for t ≤ te). (4)

Then, the optimal formula representingD(S) (4) from F is computed. Here, we assume that
the faulty behavior can have multiple causes, for this reason we synthesize a formula in a
disjunctive form (5) such that φi ∈ F for each i .

Φ = φ1(v1) ∨ φ2(v2) ∨ . . . φp(vp). (5)

The process of finding a ptSTL formula Φ (5) that would identify the cause(s) of the
faulty behavior boils down to identifying a set of sub-formulae (φi) from F and finding
a valuation vi for the parameters in each sub-formula φi such that, the label generated by
evaluating Φ mimics the label given in the dataset D(S). As the dataset labels are generated
according to the fault identification process (3), if the formula evaluation along the traces
matches the labels of the dataset, we canmodify the system for each φi (vi) fromΦ according
to Assumption 1 such that the traces of the modified system will satisfy ¬φi (vi) for each
φi (vi). Thus, the modified system will not generate the identified causes.

The proposed system repair framework is summarized in Fig. 1. It requires a system S,
a fault detection mechanism IsFaulty, a set of repairable formulae F and the corresponding
repairer Repairer . The first step is the computation of a labeled dataset as in D(S) (4).
In the second step, a ptSTL formula Φ (5) explaining the causes of the faulty points in
D(S) is computed from F . Finally, Repairer is called for each sub-formula φi (vi) of Φ (5)
iteratively.

The framework can remove the causes of the faults observed in the dataset D(S) (4),
i.e., it guarantees that the repaired system will not generate the identified causes. However,
the repaired system S ′ can still have faults as the synthesized formula represents a set of
causes and these might mask others. Furthermore, due to the particular dataset generation
(simulation) process, some of the faultsmight not be observed in the considered datasetD(S).
To gain confidence that the repaired system has no faults, falsification techniques [8,19] can
be used during the dataset generation step. In addition, if S ′ has faults, the overall process
can be repeated to further refine the system.

Example 1 We illustrate the proposed framework with a toy example. Consider a two-
dimensional discrete-time switched system S :

x(t + 1) =Au(t)x(t), u(t) ∈ {1, 2} (6)

A1 =
[
1.2 0
0 1.3

]
, A2 =

[
0.8 0
0 0.7

]
. (7)

The signal variables are x0, x1 and u. Thus, we have a three-dimensional signal that contains
the state x and the control input u. The system is assumed to operate under normal conditions

Fig. 1 Proposed system repair framework

123

An automated system repair framework... 189

if both x0 and x1 are in the range [0.1, 0.9]. Our goal here is to find state-based constraints
on u to keep the system in normal conditions. To achieve this, we apply our framework
as follows. First, we generate a labeled dataset by simulating S. Each trace is initialized
randomly, at each time step t , ut ∈ {1, 2} is picked randomly and the labels are assigned
according to the fault detection mechanism:

IsFaulty(x) =
{
0 if xi (te) ∈ [0.1, 0.9] for i = 0, 1

1 otherwise
(8)

where te is the last time point of signal x. The dataset D(S) consists of 200 traces of length
50. A trace from D(S) is shown in Fig. 2. As seen in Fig. 2, the trace leaves the “safe” set
[0.1, 0.9] × [0.1, 0.9] several times that we aim to avoid.

We define four parametric ptSTL formula to form F = {φ(0,<), φ(1,<), φ(0,>), φ(1,>)},
where φ(i,∼) for ∼ ∈ {<,>} and i = 0, 1 is

φ(i,∼) = F−
[1,1](x

i ∼ px) ∧ F−
[1,1](u = pu). (9)

Each formula has two parameters px ∈ [0, 1] and pu ∈ {1, 2}. Let g : R2 → 2{1,2} be a
set valued feedback control strategy for S. The system is controlled in closed loop with g(·)
when u(t) ∈ g(x(t)) for each t . Given a formula φ(i,∼) ∈ F , a parameter valuation v, and a
control strategy g(·) of S, Repair procedure generates a new strategy gR defined by:

gR([x0, x1]) = g([x0, x1]) \
{

{v(pu)} if xi ∼ v(px)

∅ otherwise
. (10)

The resulting system S ′ violates (xi ∼ px) ∧ (u = pu) at each time step. Furthermore, as
only possible control choices are reduced, Traces(S ′) ⊆ Traces(S). Thus, both conditions
fromAssumption 1 are satisfied. The formula synthesis method described in Sect. 4 generates
the repairable cause formula Φ toy as in (5) by combining optimized formulae from F . This
result is found in 85 s on a PowerEdge T430 machine with Intel Xeon E5-2650 24C/48T
processor.

Φ toy = φ1 ∨ φ2 ∨ φ3 ∨ φ4

φ1 = F−
[1,1](x

1 < 0.14) ∧ F−
[1,1](x

2 = 1)

φ2 = F−
[1,1](x

0 > 0.75) ∧ F−
[1,1](x

2 = 0)

φ3 = F−
[1,1](x

1 > 0.69) ∧ F−
[1,1](x

2 = 0)

φ4 = F−
[1,1](x

0 < 0.12) ∧ F−
[1,1](x

2 = 1). (11)

Fig. 2 A trace of system (6), its label according to (8), and the evaluation of Φtoy along the trace (in green)

123

190 M. Ergurtuna et al.

We iteratively apply the repair procedure (10) for each sub-formula φi from Φ toy and
obtain the repaired system S ′. In Fig. 3, to visualize the modification we plot arrows from
x to Aux, u ∈ g(x) for both systems, that mimics a vector field representation. The sub-
systems are shown with different colors (red for A1 and blue for A2). The normal operating
conditions are shown with green bounds, and the restrictions imposed by φi are highlighted.
As it is clearly seen in Fig. 3 (right plot), the system stays in the green box.

Example 1 explains the proposed framework over a toy example by defining S, IsFaulty,
F and Repairer for it. While the system is quite simple, it illustrates how the framework
can be used in an automated way once the required components are defined. The idea of
restricting the controller as a repair mechanism is generalized in Sect. 5.

4 Repairable cause identification

In this section, the proposed formula generation method is explained in detail. The goal is
to generate a ptSTL formula Φ in the form of (5) from a set of parametric ptSTL formulae
F and a set of labeled traces D(S) such that evaluation of Φ along the traces matches the
labels. To generate such a formula (5), an iterative approach is designed. At each iteration,
a set of candidate parametric ptSTL sub-formulae are optimized and the optimized ptSTL
formula (φi (vi)) with the highest evaluation score over the given dataset is added to the final
formula Φ via disjunction.

First, the formula evaluation metrics that are used in the formula synthesis method are
explained. For a finite signal x, the binary label signal lφ(v) for a parametric ptSTL formula
φ and a valuation v is defined as follows:

lφ(v)(t) = 1((x, t) |� φ(v)), (12)

where 1maps the Boolean evaluation result to a binary value. The total duration of correctly
identified positives (True Positives) (13) and the total duration of incorrect positive results
(False Positives) (14) by a formula φ(v) over the given datasetD(S) are defined with respect
to the labels generated by the formula φ(v) and the dataset labels:

Fig. 3 Arrows from x to Aux, u ∈ g(x) for the original (on the left) and the repaired system (on the right)

123

An automated system repair framework... 191

T P(φ(v),D(S)) =
∑

(x,l)∈D(S)

∫
t∈[0,te]

l(t) · lφ(v)(t) (13)

FP(φ(v),D(S)) =
∑

(x,l)∈D(S)

∫
t∈[0,te]

(1 − l(t)) · lφ(v)(t). (14)

T P(φ(v)) is used instead of T P(φ(v),D(S)) when the dataset is clear in the context. In
formula synthesis, the goal is to find a formula Φ that identifies all positive labels in the
dataset, which maps to maximization of the total TP (13). In addition, as in the subsequent
steps of the repair framework, the system will be modified to avoid the satisfaction of the
generated formula, it is important to minimize FP (14) to limit unnecessary restrictions. An
optimal formula would match all labels. However, due to the particular labeling process or
non-determinism of the underlying system, it might not be possible to find such a formula.
Here, our goal is to maximize TP (13) of the resulting formula, while bounding FP (14). The
proposed synthesis method starts from Φ := False, and iteratively finds a formula φ(v)

with φ ∈ F that maximizes TP for Φ ∨ φ(v) and updates Φ as Φ ∨ φ(v). Within the repair
framework, F is a set of repairable parametric ptSTL formulae satisfying Assumption 1 and
it depends on the considered system. We provide how F is generated for dynamical systems
and timed automata in Sects. 5 and 6, respectively. Since the disjunction operator (∨) carries
error (FP) to the resulting formula, the error is bounded in the parameter optimization step
to bound the error in the resulting formula Φ.

Algorithm 1 FormulaSynthesis
Require: F : a set of parametric ptSTL formulae. D(S): a dataset of labeled traces.
Ensure: Φ: a ptSTL formula representing D(S).
1: φ(v�) = Optimize(φ) and T P�(φ) = T P(φ(v�)) for each φ ∈ F
2: Φ0 = False, F0 = F , i = 0
3: Φi+1,Fi+1 = I terate(Φi ,Fi , T P�(φ))

4: while T P(Φi+1) > T P(Φi) do
5: i = i + 1
6: Φi+1,Fi+1 = I terate(Φi ,Fi , T P�(φ))

7: end while
8: return Φi+1

The iterative synthesis method is summarized in Algorithm 1. Initially, the optimal
parameter valuation v� and the corresponding optimal T P(φ(v�)) (13) values, denoted as
T P�(φ), are computed via Optimize(φ)method for each parametric ptSTL formula φ ∈ F .
Optimize(φ) finds the parameter valuation v� that maximize T P(φ(v)) (13) while guar-
anteeing that FP(φ(v)) (14) is less than a predefined bound B. The diagonal parameter
synthesis method based on monotonicity properties from [17] is used in this step. Then,
starting from i = 0, Φ0 = False and F0 = F ; Φi+1 and Fi+1 are computed iteratively via
Algorithm 2. Here, Φi is in the form of (5) and it represents the optimal formula found in
the i-th iteration, and Fi is the set of parametric ptSTL formulae to be used in the following
iteration. Algorithm 2 finds φi ∈ Fi and valuation vi , that maximize the number of true posi-
tives for Φi+1 = Φi ∨φi (vi) while bounding the cumulative error. Furthermore, it computes
Fi+1 ⊆ Fi for the next iteration with a guarantee that no formula from Fi \ Fi+1 can be
selected in the subsequent iterations. The iteration continues until there is no more increase
in T P(Φ) (line 4).

123

192 M. Ergurtuna et al.

Algorithm 2 I terate
Require: Fi : a set of parametric ptSTL formulae, Φi : a ptSTL formula, T P�(φ) optimal T P values for

each parametric formula φ ∈ Fi
Ensure: Φi+1 = argmaxφ∈Fi

T P(φ(v) ∨ Φi), Fi+1 ⊆ Fi
1: Φi+1 = Φi ,Fi+1 = Fi
2: for φ ∈ Fi do
3: if T P�(φ) + T P(Φi) > T P(Φi+1) then

4: φ
′ = φ ∨ Φi

5: φ
′
(v) = Optimize(φ

′
)

6: if T P(φ
′
(v)) > T P(Φi+1) then Φi+1 = φ

′
(v)

7: if T P(Φi) == T P(φ
′
(v)) then Fi+1 = Fi+1 \ {φ}

8: end if
9: end for
10: return Φi+1,Fi+1

In Algorithm 2, parameter optimization of the combined formula φ ∨ Φi (line 5) for each
φ ∈ Fi is performed in a loop and the best known formula is stored inΦi+1 (line 6). Note that
at each iteration, only the parameters of the formula φ ∈ Fi are optimized.While considering
parametric formulae used to form Φi and optimizing the whole formula could potentially
lead to a higher TP count, due to the computational complexity, it is not feasible. In addition,
the optimization is only performed for the formulae that can have a higher score than the
current best solution Φi+1, which is checked in line 3 via inequality (15) that holds for any
valuation v.

T P(Φi ∨ φ(v)) ≤ T P(Φi) + T P�(φ). (15)

Lastly, it might not be possible to increase the total TP count of Φi by optimizing parametric
formula φ (line 7). In particular, it might be the case that all positive labels that can be
identified by φ are already identified in previous iterations and integrated to Φi . Thus, it
is no longer necessary to perform parameter optimization for φ in the subsequent iterations
(line 7). Note that bothFi reduction in line 7 and TP check in line 3 reduce the total number of
parameter optimizations that is the computationally expensive step of the overall algorithm.

Algorithm 1 iteratively selects parametric formulae fromF and optimizes their parameters
to maximize the total TP while bounding FP. If the set F is not sufficiently general, i.e.,
if the cause is not expressible with the formulae from F , Algorithm 1 generates an over
approximation of the actual cause. The approximation error is captured in FP and it can be
adjusted via B.

5 Application to dynamical systems

In this section, we describe how the proposed repair framework is applied to dynamical
systems with a finite control set via controller refinement.

We consider a discrete-time control system S:

x(t + 1) = f (x(t), u(t), w(k)), u(t) ∈ g(x[t−K ,t−1], x(t)) ⊆ U (16)

where the state is x(t) = [x0(t), . . . , xn−1(t)] ∈ X ⊂ R
n , the control input is u(t) =

[u0(t), . . . , um−1(t)] ∈ U ⊂ R
m that takes value from a finite set U and it is determined

by a set valued feedback control strategy with a finite memory g : (X × U)K × X → 2U,

123

An automated system repair framework... 193

and w(t) ∈ W ⊂ R
l is the noise at time step t . Furthermore, x[t−K ,t−1] is defined as

(x(t − K ′), u(t − K ′), . . . , (x(t − 1), u(t − 1)), and K ′ = min(t, K), that is necessary to
guarantee that indices are positive when t < K . A finite trace of system (16) is denoted
by x = (x(0), u(0)), . . . , (x(N), u(N)) such that x(t + 1) = f (x(t), u(t), w(t)) for some
u(t) ∈ g(x[t−K ,t−1], x(t)) and w(t) ∈ W for each t = 0, . . . , N − 1.

A repairable parametric ptSTL formula for system S (16) is in the following form:

φ := G−
[1,b](u

i = c) ∧ F−
[1,1]φ

′, (17)

where b and c are parameters, ui is a control variable and φ′ is any parametric ptSTL formula
over the state {x0, . . . , xn−1} and control {u0, . . . , um−1} variables of system S (16). The set
of all parametric ptSTL formulaeF≤oc that contain up to oc operators (temporal or Boolean)
over a given set of variables is defined in [10]. By using F≤oc over {x0, . . . , xn−1} and
{u0, . . . , um−1}, a set of formulae in the form of (17) is defined as:

F := {G−
[1,b](u

i = c) ∧ F−
[1,1]φ

′ | ui ∈ {u0, . . . , um−1}, φ′ ∈ F≤oc}. (18)

Remark 1 Both control and system formulae are shifted by 1 time unit relative to the fault
location so that the controller can avoid the fault before it occurs if the fault is state based,
which is the case for the considered examples. Based on the studied system, different relative
time values can be used, e.g., G−

[k1,b](u
i = c) ∧ F−

[k2,k2]φ
′, or it can be embedded into the

F≤oc set. The repair method presented in this section applies to formulae in the form of
G−

[k,b](ui = c) ∧ F−
[k,k]φ′ for any k ≥ 0. A particular k value, i.e., k = 1 is used to simplify

the notation as it is also used in the examples. In addition, the repair method also applies
to the case when k2 > k1 via formula equality G−

[k1,b](u
i = c) ∧ F−

[k2,k2]φ
′ ≡ G−

[k1,b](u
i =

c) ∧ F−
[k1,k1]F

−
[k2−k1,k2−k1]φ

′.

Next, we describe a repair procedure for an instance φ(v) of a parametric formula φ ∈
F (18). The procedure is based on the refinement of the control strategy g(·) (16) such that the
trajectories of the resulting system are guaranteed to violate φ(v). The refined strategy gR :
(X×U)K̄ ×X → 2U is also a finite memory feedback controller, where K̄ = max(K , Kφ)

and Kφ is the oldest time relative to k that is required to evaluate φ(v) at time k. The refined
strategy is defined as:

gR(x[t−K̄ ,t−1], x(t)) = g(x[t−K̄ ,t−1], x(t))\
{u ∈ g(x[t−K̄ ,t−1], x(t)) | ((x[t−K ,t−1], (x(t), u)), K̄ + 1) |� φ−1(v)}, (19)

where φ−1(v) = G−
[0,b−1](ui = v(c)) ∧ φ′(v), i.e., shifts the evaluation by k = 1 time unit

(see Remark 1). The refined strategy simply removes the control inputs that lead to satisfying
φ(v) at the next time step. We first state an assumption to guarantee that gR(x, x) �= ∅ for
any (x, x) ∈ (X × U)K̄ × X, and then prove that gR(·) guarantees the satisfaction of ¬φ(v)

at each time step.

Assumption 2 The strategy g(·) (16) satisfies
{u ∈ g(x, x) | ui �= c} �= ∅

for each (x, x) ∈ (X × U)K × X, i = 0, . . . ,m − 1, and c ∈ U ↓i , where U ↓i= {ci |
[c0, . . . , cm−1] ∈ U} is the projection of U on the i th dimension.

Definition 1 (Repaired system) Let S (16) be a control system, φ be a parametric ptSTL
formula over the state and control variables of S as in (17), v be a valuation for φ, and gR(·)

123

194 M. Ergurtuna et al.

be a strategy as defined in (19) with respect to S and φ(v). Then, the repaired system S ′ is
defined as

x(t + 1) = f (x(t), u(t), w(t)), u(t) ∈ gR(x[t−K ,t−1], x(t)) ⊆ U. (20)

Proposition 1 Given a control systemS (16), a ptSTL formulaφ as in (17) overS, a valuation
v, if Assumption 2 holds, then the traces of the repaired system S ′ as given in Definition 1
satisfy ¬φ(v) at each time step.

Proof By construction of the refined strategy gR(·) (19), if gR(x[t−K ,t−1], x(t)) �= ∅, then
at each time step t ≥ 0, the resulting trace x = (x(0), u(0)), . . . (x(t), u(t)) with u(t) ∈
gR(x[t−K ,k−1], x(t)) is guaranteed to satisfy ¬φ(v) . Note that any control input u with
ui �= c is sufficient to satisfy ¬φ(v) at the next time step due to the first part G−

[1,b](ui = c)

of φ. Consequently, by Assumption 2, we conclude that gR(x[t−K ,t−1], x(t)) �= ∅ and¬φ(v)

is satisfied at each time step. ��
Proposition 1 ensures that the proposed repair procedure satisfies the first condition of

Assumption 1. Next, we show that the second condition holds.

Proposition 2 Givena control systemS (16), a ptSTL formulaφ as in (17)overS, its valuation
v, let be S ′ the repaired system as given in Definition 1, then Traces(S ′) ⊆ Traces(S).

Proof By construction of gR(·), gR(x, x) ⊆ g(x, x) holds for each (x, x) ∈ (X × U)K × X

for any K ≥ 0. The proof trivially follows from this set inclusion property. ��
As stated in Sect. 3, the repair procedure is iteratively applied for a set of formulae from

F . We first present a stronger version of Assumption 2, and then present a sufficient condition
such that refinement gR′

(·)of a refined strategy gR(·) satisfies Proposition 1 under the stronger
assumption.

Assumption 3 The strategy g(·) (16) satisfies
{u ∈ g(x, x) |

∧
i∈M

ui �= ci } �= ∅

for each (x, x) ∈ (X × U)K × X, M ⊆ {0, . . . ,m − 1}, and ci ∈ U ↓i .

Assumption 3 states that when g(x, x) is filtered with an inequality (up to) each control
dimension, the resulting set is not empty.

Proposition 3 For a systemS (16)with g(·) satisfying Assumption 3, letφ j := G−
[1,b j](u

j,i =
c j)∧F−

[1,1]φ′
j , for j = 1, . . . , M be instances of the parametric ptSTL template given in (17)

with b j ≥ 2 for each j , and let gR j (·) (19) be the refinement of gR j−1(·) w.r. to φ j for j ≥ 1
and gR0(·) = g(·). Then, gRM (x, x) �= ∅ for any (x, x) ∈ (X × U)K × X.

Proof First, observe that applying the refinement procedure iteratively maps to applying
the procedure for φ1 ∨ . . . ∨ φM , i.e., the control strategy gRM (·) found at the end of the
iterative procedure equals to the refined strategy w.r.to φ1 ∨ . . . ∨ φM . Consider an arbitrary
control dimension α ∈ {0, . . . ,m − 1}, and let αM ⊆ {1, . . . , M} be the indices of the
formulae restricting uα , e.g., if j ∈ αM then i = α for u j,i = c j part of the formula. For
any α1, α2 ∈ αM , u ∈ U and (x, x) ∈ (X × U)K × X if (x, (x, u)) |� φ−1

α,1 then either

(1) (x, (x, u)) �|� φ−1
α,2 or (2) cα1 = cα2 since b j ≥ 2. As it holds for an arbitrary control

dimension α, and two arbitrary formulae along this dimension, we reach that at most one c j
is eliminated for each j = 0, . . . ,m − 1. By, Assumption 3, we conclude that gRM (·) is not
empty for any (x, x). ��

123

An automated system repair framework... 195

By Propositions 1, 2 and 3, we reach that for a control system S (16), the repair framework
outlined in Sect. 3 can be applied with the set of repairable formulae F as in (18), and
repairer that implements controller refinement as given in Definition 1.

5.1 Case study: traffic system

As a case study, we consider a traffic system that consists of 6 links and 2 traffic signals
shown in Fig. 4. The state variables are xi (number of vehicles on link i) for each link i
and the control variables are u0 and u1 (configuration of traffic signals). Thus, a trace of the
system is an eight-dimensional signal over the state and the control variables. The dynamics
of the traffic network is modeled as piece-wise affine system:

xi (t + 1) = xi (t) + wi (t) − f i (xi (t), si (t)) +
∑

j=0,...,n−1

β j i f
j (x j (t), s j (t))where

f l(xl(t), sl(t)) = sl(t)min{xl(t), cl , min
p=0,...,n−1,βlp �=0

{
αlp

βlp
(x p

cap − x p(t))}
}

. (21)

In (21), the number of vehicles that leave link i at time step t is computed as
f i (xi (t), si (t)), where si (t) ∈ {0, 1} is computed w.r.to the control input u(t). si (t) is 1
if flow from i is allowed, otherwise it is 0. A traffic signal (u0, u1) can be 0 or 1, where
u j = 0 means that the flow is allowed in the horizontal direction and u j = 1 means that the
flow is allowed in the vertical direction. The capacity xicap of a horizontal link (i ∈ {0, 1, 2})
and a vertical link (i ∈ {3, 4, 5}) are 40 and 20, respectively. The saturation flow ci is 20 for
i ∈ {0, 1, 2} and 10 for i ∈ {3, 4, 5}. The vehicles that flow from links outside of the network
are modeled via the noise w. The following bounds are used for the links: wi ∈ [4, 8] for
i = 0, wi ∈ [0, 4] for i = 3, 4 and wi = 0 for i = 1, 2, 5. The ratio of the free space in
link j that is reserved for link i is denoted as αi j (when the flow from i to j is allowed —
determined w.r.to u(t)), the ratio of vehicles in link i that flow to j is denoted by βi j , and the
following values are used to define the network: βi j = 0.75 for i − j ∈ {0− 1, 1− 2, 3− 5},
βi j = 0.25 for i − j ∈ {0− 5, 3− 1, 4− 2}, αi j = 1 for i − j ∈ {0− 1, 1− 2, 0− 5, 3− 5},
αi j = 0.5 for i − j ∈ {3 − 1, 4 − 2} and the other ratio parameters are 0. We refer the
interested reader to [14] for more information on the system dynamics.

A faulty behavior is defined as a traffic congestion on link-1, and it is assumed that
congestion occurs when the number of vehicles is greater than 75% of the link’s capacity.
Thus, we define the fault detection mechanism as:

Fig. 4 Traffic network with 2 traffic signals and 6 links (on the left). A sample trace of the traffic network is
given on the right. In the top plot, red, green and blue lines show that the label, control u1 and control u0 are
1, respectively

123

196 M. Ergurtuna et al.

IsFaulty(x) =
{
1 if (x1(te) > 30)

0 otherwise
. (22)

A datasetD(S) of 20 labeled traces as in (4) is generated with (22) by simulating the system
from random initial conditions for 100 time steps with g(x) = {[u0, u1] | u0, u1 ∈ {0, 1}}
for each x . Out of 2000 data points, 217 of them are labeled with 1, which means that link-1
is congested 10.85% of the time. A sample trace of the system is given in Fig. 4. Our aim in
this example is to modify the faulty system to avoid the congestion on link-1.

We generate the set F≤1 of all parametric ptSTL formulae with at most 1 operator over
the system variables as in [10] which contains 133 parametric ptSTL formulae, and define F
w.r. to F≤1 as in (18). The parameter domains are defined as: pa, pb ∈ {i | i = 1, . . . , 4} for
G−

[pa ,pb],F
−
[pa ,pb] from F≤1, pc ∈ {2i + 1 | i = 0, . . . , 14} for c ∈ {0, 1, 2}, pc ∈ {2i + 1 |

i = 0, . . . , 7} for c ∈ {3, 4, 5}. Algorithm 1 generates Φ tn (23) when run over the dataset
D(S), F and these parameter domains with a bound B = 30.

Φ tn = φ1 ∨ φ2, where

φ1 = (G−
[1,2](u

1 = 1)) ∧ (F−
[1,1](x

1 > 23))

φ2 = (G−
[1,1](u

1 = 1)) ∧ (F−
[1,1]((x

1 > 15) ∧ (u0 = 0))). (23)

Each sub-formula explains a condition that leads to congestion on link-1.The sub-formulae
read as there will be a congestion (φ1) when there are more than 23 vehicles on x1 and u1

does not allow the traffic flow from link-1 at the current and previous time steps, or (φ2) when
the flow from link-0 to link-1 is allowed, link-1 to link-2 is blocked and there are more than
15 vehicles on link-1. T P(Φ tn,D(S)) and FP(Φ tn,D(S)) are 217 and 59, respectively, and
there are no false negatives. Thus, Φ tn identifies all conditions leading to a congestion on
link-1.

For each iteration of Algorithm 2, the number of parametric formulae (|Fi |), the number
of optimized formulae (i.e., number of formulae that satisfies the condition from line 3), the
resulting formulaΦi and its T P(Φi ,D(S)), and FP(Φi ,D(S))) values are given in Table 1.
As seen in Table 1, the number of parameter optimizations performed in the second iteration
is dropped drastically to 101 from 266 thanks to the formula analysis.

We iteratively refine the strategy g(·) to repair the system as in the repair procedure defined
in Definition 1 for φ1 and φ2 from (23). Let gR1(·) and gR2(·) denote the strategies obtained
after the first and the second refinement. Note that even though Φ tn does not satisfy the
condition from Proposition 3 (b = 1), the resulting strategy gR2(·) is not empty for any x
since gR1(·) satisfies Assumption 2. The congestion rate drops to 3.7% when the system is
run in closed loop with gR1(·), and it drops to 0% when the system is run in closed loop
with gR2(·). Thus, we are able to identify the cause of the congestion on link-1 and repair
the system to avoid it in a fully automated way. The computation took 332 s on the same
machine as Example 1.

Table 1 Numerical results of Algorithm 2 over the traffic example for each iteration

Iteration i | Fi | Optimized Φi T P(Φi ,D(S)) FP(Φi ,D(S))

1 266 266 φ1 153 25

2 247 101 φ1 ∨ φ2 217 59

123

An automated system repair framework... 197

Over the same traffic network, we apply our framework to avoid congestion on any link.
For this purpose, we define the fault detection mechanism as:

IsFaulty(x) =

⎧⎪⎨
⎪⎩
0 if xi (te) ≤ 30 for each i ∈ {0, 1, 2}
and xi (te) ≤ 15 for each i ∈ {3, 4, 5}

1 otherwise

. (24)

A dataset D′(S) of 20 labeled traces as in (4) is generated with (24) by simulating the
system from random initial conditions for 100 time steps with the same control strategy
g(·). Out of 2000 data points, 1093 of them are labeled with 1, which means that the traffic
network is congested 54.65% of the time. Algorithm 1 generates Φ tn′

when run with D′(S),
the formula set F and parameter domains introduced for the first case (with the exception of
pb ∈ {2, 3, 4}), and bound B = 150.

Φ tn′ = φ1 ∨ φ2 ∨ φ3 ∨ φ4

φ1 = G−
[1,2](u

0 = 0), φ2 = G−
[1,2](u

0 = 1)

φ3 = G−
[1,2](u

1 = 0), φ4 = G−
[1,2](u

1 = 1). (25)

T P(Φ tn′
,D(S)) and FP(Φ tn′

,D(S)) are 982 and 111, respectively. This formula states
that if a traffic signal (u0 or u1) is kept the same for two consecutive time steps, there will
be a traffic congestion. As in the previous case, we obtain a strategy gR4(·) from Φ tn′

by
iteratively refining g(·) with respect to each sub-formula. We simulate the system in closed
loop gR4(·) and there are no time points labeled with 1, thus the congestion is avoided. The
computation took 586 s on the same machine as Example 1. In addition, the analysis of the
system dynamics reveals that a congested state is unreachable. Thus, the proposed data-driven
repair framework is able to avoid the unsafe (congested) states without explicitly considering
the system dynamics.

The size of the set F (18) increases with the number of system variables and the number
of operators (oc). The traffic system has 6 states and 2 control variables, and each formula
φ ∈ F1 has up to 6 parameters. Formula Φ tn (23) includes 8 operators and 7 parameters
and formula Φ tn′

(25) includes 3 operators and 8 parameters. An alternative approach to
Algorithm 1 is to perform a parameter optimization for each parametric ptSTL formula in
the form of (5). However, due to the complexity of the parameter optimization step, only
4% of the formulae from Φ ∈ {φ1 ∨ φ2 | φ1, φ2 ∈ F1} are optimized over the dataset D(S)

(congestion on link-1) in 10 hours on the same machine. In addition, we run the synthesis
method from [17] onD(S). The computation takes 306s, the resulting formulaΦ tn−c includes
18 operators, T P(Φ tn−c,D(S)) = 201 and FP(Φ tn−c,D(S)) = 101. These results show
that the proposed method achieves higher TP with more compact formulae compared to
[17]. Finally, the resulting formulae show that the proposed method can generate complex
formulae in an efficient way. Even though the size of F increases with the number of system
variables, the formula synthesis is parallelizable.

6 Application to timed automata

In this section, we first introduce the timed automata formalism and then define repairable
formulae together with the corresponding repair mechanisms.

A timed automaton (TA) [4,5] is a finite-state machine extended with a finite set of real-
valued clocks progressingmonotonically andmeasuring the time spent after their latest resets.

123

198 M. Ergurtuna et al.

Φ(C) is a set of clock constraints over a set of clocks C . A clock constraint ϕ ∈ Φ(C) is
given by the grammar:

ϕ := c ∼ n | c1 − c2 ∼ n | ϕ ∧ ϕ,

where c, c1, c2 ∈ C , n ∈ N, and ∼ ∈ {<,≤,>,≥,=}. A clock interpretation ν for a set
of clocks C is a mapping from C to R≥0, i.e., it assigns a nonnegative real value to each
clock in C . ν satisfies a clock constraint ϕ (shown as ν |� ϕ) if and only if that constraint
evaluates to true when ν is used. Two operations are defined for clock interpretations: delay
and reset. For ν and δ ∈ R≥0, the delay operation ν′ := ν + δ increments each clock by δ,
i.e., ν′(c) = ν(c) + δ for each c ∈ C . For ν and λ ⊆ C , the reset ν[λ] operation assigns 0 to
each c ∈ λ and agrees with ν for each c′ ∈ C \ λ.

Definition 2 (Timed Automata) A timed automaton1 is a tuple A = (L, l0,C, I nv, T),
where (i) L is a finite set of locations, (ii) l0 ∈ L is an initial location, (iii) C is a finite set of
clocks, (iv) I nv : L → Φ(C) is an invariant function, and (v) T ⊆ L × L × 2C × Φ(C) is
a finite transition relation.

The semantics of a TA A is given by a timed transition system (TTS) induced by A :

Definition 3 (Timed Transition System) A timed transition system of a TA A =
(L, l0,C, I nv, T) is a tuple T (A) = (Q, q0,→), where

– Q = {(l, ν) | l ∈ L, ν ∈ R
|C |
≥0 , ν |� I nv(l)} is the set of states,

– q0 = (l0, ν0) ∈ Q where ν0(c) = 0 for each c ∈ C is the initial state, and
– →⊆ (Q ×R≥0 × Q) ∪ (Q × Q) is the transition relation defined by the following rules

1. (delay) (l, ν)
δ−→ (l, ν + δ) if ν + δ′ |� I nv(l),

2. (discrete) (l, ν) → (l ′, ν[λ]) if there exists (l, l ′, λ, ϕ) ∈ T such that ν |� ϕ, and
ν[λ] |� I nv(l ′).

A run ρ of A is an alternating sequence of delay and discrete transitions

ρ : q0 δ0−→ q0 → q1
δ1−→ q1 → q2

δ2−→ . . . (26)

Run ρ induce a time sequence τρ = τ0τ1τ2 . . . such that τ0 = 0 and τi+1 = τi + δi for i ≥ 0.
We define a one-dimensional signal x from an automaton run ρ (26) as follows:

x(t) = l j , when t ∈ [τ j , τ j+1), (27)

where q j = (l j , ν j) is a state from run ρ as in (26) for a clock interpretation ν j . The set of all
such signals is denoted as Traces(A). A network of timed automata (NTA) A 1, . . . ,A N ,
with A i = (Li , li0,C

i , I nvi , T i), is used to model complex systems. The behavior of the
overall system is defined via the product automaton A = A 1 | . . . | A N , where L =
L1 × . . . × LN is the location set of A . We refer the interested reader to [4] for a detailed
product automatondefinition.Theproduct is also a timed automaton as defined inDefinition2.
Thus, the same derivations (e.g., Definition 3) and the same analysis apply. For the proposed
data-driven repair framework, when the automatonA is defined as a product of N automata,
we map a run ρ (26) of A into an N -dimensional signal x:

1 Our method does not include any operation on the particular language of the automaton; therefore, we omit
an alphabet in the TA definition.

123

An automated system repair framework... 199

x(t) = (l1j , l
2
j , . . . , l

N
j), when t ∈ [τ j , τ j+1), (28)

where q j = ((l1j , l
2
j , . . . , l

N
j), ν j) is a state from ρ. The projection of the state on the i th

dimension, i.e., i th TA, at time t is denoted by xi (t), i.e., xi (t) = lij for t ∈ [τ j , τ j+1).

Consequently, ptSTL formulae over {x1, . . . , xN } can be interpreted over signal x as in (2).
We continue by defining the parametric formula set F for the repair framework. The set

F contains two types of parametric formulae:

(xi = li ∧ G−
(0,ε]x

i �= li) ∧ G−
(0,b]φl (29)

(xi = li ∧ G−
(0,ε]x

i �= li) ∧ F−
[0,b)φl (30)

where φl is defined as:

φl := (x j = l j,1) ∨ . . . ∨ (x j = l j,n). (31)

xi , x j ∈ {x1, . . . , xN } are signal variables, ε ∈ R>0 is a small positive constant, li ,
b, l j,1, . . . , l j,n are parameters with domains li ∈ Li , b ∈ [b, b] ⊂ R>0, l j,1, . . . , l j,n ∈ L j .
First part of (29) (and (30)) is satisfied when automaton A i takes a transition to li . Notice
that, φl consists of potential locations for the same TA and j can be equal to i , i.e., φl is used
to refer a set of locations on a particular TA. Given a valuation v for φl (or for (29), (30)),
the set of locations is denoted as locs(φl(v)) = {v(l j,1), . . . , v(l j,n)}. Next, we define repair
procedures and prove that they satisfy Assumption 1 for (29) and (30).

We start with formula (29) which indicates that the source of the error is the time spent in
a set of locations being more than or equal to a threshold before entering a target location,
i.e., it addresses the absence of a constraint on a transition. The proposed repair procedure is
given in Definition 4.

Definition 4 (TALessThanGuardRepair) Given an NTA A 1, . . . ,A N with A k =
(Lk, lk0 ,C

k, I nvk, T k), a parametric ptSTL formulaφ as in (29) and a valuation v, the repaired
system A 1,r , . . . ,A N ,r is defined as follows with A k,r = (Lk, lk0 ,C

k,r , I nvk, T k,r).

– For k �= i and k �= j , A k,r = A k .
– Introduce new clocks c1 and c2 shared by A i,r and A j,r .
– For k = j , A j,r = (L j , l j0 ,C j,r , I nv j , T j,r), where C j,r = C j ∪ {c1, c2} and T j,r =

Tenter ∪ Tleave ∪ Trest , where

Trest = {(ls, lt , λ, ϕ) | (ls, lt , λ, ϕ) ∈ T j , and

{ls, lt } ⊆ locs(φl(v)) or {ls, lt } ∩ locs(φl(v)) = ∅} (32)

Tenter = {(ls, lt , λ ∪ {c1}, ϕ) | (ls, lt , λ, ϕ) ∈ T j ,

ls /∈ locs(φl(v)), and lt ∈ locs(φl(v))} (33)

Tleave = {(ls, lt , λ ∪ {c2}, ϕ) | (ls, lt , λ, ϕ) ∈ T j ,

ls ∈ locs(φl(v)), and lt /∈ locs(φl(v))} (34)

123

200 M. Ergurtuna et al.

(a) (b)

Fig. 5 Two partial TA demonstrating the repair method of Definition 4

– For k = i , A i,r = (Li , li0,C
i,r , I nvi , T i,r), where Ci,r = Ci ∪ {c1, c2} and T i,r =

T�→li ∪ T→li , where

T�→li ={(ls, lt , λ, ϕ) | (ls, lt , λ, ϕ) ∈ T i and lt �= v(li)}
T→li ={(ls, lt , λ, ϕ ∧ c1 < c2 ∧ c1 < v(b)),

(ls, lt , λ, ϕ ∧ c1 > c2),

(ls, lt , λ, ϕ ∧ ϕ′) | (ls, lt , λ, ϕ) ∈ T i and lt = v(li)}, and (35)

ϕ′ =
{

¬T if l j0 ∈ locs(φl(v))

c1 = c2 otherwise
. (36)

The repair procedure given in Definition 4 creates two clocks c1 and c2 shared by A i

and A j , resets c1 on each transition from L j \ locs(φl(v)) to locs(φl(v)), resets c2 on each
transition from locs(φl(v)) to L j \ locs(φl(v)), and checks these clocks on transitions end
in li in A i . The clock resets imply that when c1 < c2, A j is in a location from locs(φl(v))

and c1 measures the time spent in locs(φl(v)). On the other hand, when c1 > c2, A j is not
in a location from locs(φl(v)) and c2 measures the time passed since locs(φl(v)) is left. For
each transition that ends in v(li) on A i , three transitions are added to A i,r in (35) to handle
different cases with respect to the clocks c1 and c22. Fig. 5 visualizes the given procedure
over two partial TA by demonstrating placements of c1 and c2.

Now, we prove that the repair procedure given in Definition 4 satisfies Assumption 1, i.e.,
after the repair procedure is executed, ptSTL formula φ(v) is never satisfied and no new
behavior is introduced.

Proposition 4 Given an NTAA 1, . . . ,A N withA k = (Lk, lk0 ,C
k, I nvk, T k), a parametric

ptSTL formula φ as in (29) and a valuation v, let A 1,r , . . . ,A N ,r be the repaired network
of TA as defined in Definition 4, then each x ∈ Traces(A 1,r | . . . | A N ,r) always satisfies
¬φ(v).

Proof Assume by contradiction that a trace x ∈ Traces(A r) satisfies φ(v) at time t , i.e.,
x(t) |� φ(v). Thus, xi (t) = v(li), xi (t ′) �= v(li) for t ′ ∈ [t − ε, t), and x j (t ′) ∈ locs(φl(v))

for all t ′ ∈ [0, t) ∩ [t − v(b), t) by (29) and (2). As xi is changed to v(li) at time t , a
discrete transition (ls, v(li), λ, ϕr) ∈ T i,r is taken at t . Since x j (t ′) ∈ locs(φl(v)) for
t ′ ∈ [0, t) ∩ [t − v(b), t), either (1) x j (t ′′) ∈ locs(φl(v)) for each t ′′ ∈ [0, t), or (2) a
transition from L j \ locs(φl(v)) to locs(φl(v)) is taken at some time in (0, t − v(b)). We
first analyze case (1). The condition implies that l j0 ∈ locs(φl(v)) since x j (0) ∈ locs(φl(v)).

2 An edge case is passing locs(φl (v))within 0 time units. If such a run exists, the transition with the constraint
ϕ ∧ ϕ′ (35) should be omitted. The existence of such a run can be checked by verifying the original NTA
against formula G[0,∞]

(
φl (v) �⇒ F[0,0]¬φl (v)

)
.

123

An automated system repair framework... 201

By (32), at time t , c1 = t and c2 = t . By construction of T i,r (35), each transition to v(li)
includes c1 < c2 ∧ c1 < v(b), c1 > c2 or ¬T (i.e., false) in its guard when l j0 ∈ locs(φl(v)),
and each guard evaluates to false at x(t) since c1 = c2.

Now consider case (2). Let t ′′ be the time of the last transition from L j \ locs(φl(v)) to
locs(φl(v)) along x prior t , i.e., t ′′ < t − v(b) and x j (t ′′′) ∈ locs(φl(v)) for t ′′′ ∈ (t ′′, t).
By (33), c1 is reset at t ′′, and by (34) c2 is not reset during (t ′′, t). Thus, c2 > c1, and c1 is
t − t ′′ at time t , which implies c1 ≥ v(b) As in the previous case, none of the constraints
(e.g., c1 < c2 ∧ c1 < v(b), c1 > c2, or c1 = c2) introduced on transitions that end in v(li) is
satisfied at x(t), thus we reached a contradiction. As we considered all cases, we conclude
that each trace of the repaired system always satisfies ¬φ(v). ��
Proposition 5 Given an NTAA 1, . . . ,A N withA k = (Lk, lk0 ,C

k, I nvk, T k), a parametric
ptSTL formula φ as in (29), and a valuation v, let A 1,r , . . . ,A N ,r be the repaired network
of TA as defined in Definition 4, then

Traces(A 1,r | . . . | A N ,r) ⊆ Traces(A 1 | . . . | A N).

Proof For each k /∈ {i, j}, A k and A k,r are the same. For j (when i �= j), the traces of A j

andA j,r are the same since the changes only concern the new clocks and no new constraint is
introduced (see (32),(33),(34)). For i , the changes only restrict the behavior via new transition
constraints. Essentially, for each transition of (ls, lt , λ, ϕr) of A i,r , there exists a transition
(ls, lt , λ, ϕ) of A i (see (35)) such that if a clock valuation ν |� ϕr , then ν |� ϕ. Hence,
each trace of the product of the repaired system is also a trace of the product of the original
system. ��

We continuewith formula (30) which indicates that the source of error is the time spent out
of a set of locations being less than or equal to a threshold before entering a target location.
In particular, it states that a location from locs(φl) should not be visited within the last b
time units before entering li in A i . The proposed repair procedure is given in Definition 5.

Definition 5 (TAMoreThanGuardRepair) Given an NTA A 1, . . . ,A N with A k =
(Lk, lk0 ,C

k, I nvk, T k), a parametric ptSTL formulaφ as in (30) and a valuation v, the repaired
system A 1,r , . . . ,A N ,r is defined as follows with A k,r = (Lk, lk0 ,C

k,r , I nvk, T k,r).

– For k �= i and k �= j , A k,r = A k .
– Introduce new clocks c1 and c2 shared by A i,r and A j,r .
– For k = j , A j,r = (L j , l j0 ,C j,r , I nv j , T j,r), where C j,r = C j ∪ {c1, c2} and T j,r =

Tenter ∪Tleave ∪Trest , where Trest , Tenter and Tleave are as defined in (32), (33) and (34),
respectively.

– For k = i , A i,r = (Li , li0,C
i,r , I nvi , T i,r), where Ci,r = Ci ∪ {c1, c2} and T i,r =

T�→li ∪ T→li , where

T�→li ={(ls, lt , λ, ϕ) | (ls, lt , λ, ϕ) ∈ T i and lt �= v(li)}
T→li ={(ls, lt , λ, ϕ ∧ c1 > c2 ∧ c2 > v(b)), (ls , lt , λ, ϕ ∧ ϕ′)

| (ls, lt , λ, ϕ) ∈ T i and lt = v(li)}, (37)

where ϕ′ is defined as in (36).

The repair procedure given in Defn 5 is similar to the one given in Defn 4. Again c1 > c2
implies thatA j is not in a location from locs(φl(v)), c2 > c1 implies thatA j is in a location
from locs(φl(v)) and c2 measures the time passed since locs(φl(v)) is left if it was entered

123

202 M. Ergurtuna et al.

(a)
(b)

Fig. 6 Two partial TA demonstrating the repair method of Definition 5

from L \ locs(φl(v)). Consequently, c1 > c2 and c2 > v(b) implies that A j was not in
a location from locs(φl(v)) within the last v(b) time units. A second transition is added to
handle the special case of c1 = c2 according to the initial location l

j
0
3. In particular, c1 = c2

means that locs(φl(v)) is never entered from a location L j \ locs(φl(v)). Thus, it is safe
to take a transition to v(li) when l j0 /∈ locs(φl(v))2. However, it should be avoided when

l j0 ∈ locs(φl(v)) as A j is still in locs(φl(v)) (36). Fig. 6 demonstrates the repair method by
showing placements of c1 and c2.

Now, we prove that the repair procedure given in Definition 5 satisfies Assumption 1, i.e.,
after the repair procedure is executed, ptSTL formula φ(v) is never satisfied and no new
behavior is introduced.

Proposition 6 Given an NTAA 1, . . . ,A N withA k = (Lk, lk0 ,C
k, I nvk, T k), a parametric

ptSTL formula φ as in (30) and a valuation v, let A 1,r , . . . ,A N ,r be the repaired network
of TA as defined in Definition 5, then each x ∈ Traces(A 1,r | . . . | A N ,r) always satisfies
¬φ(v).

Proof A similar argument to the proof of Proposition 4 applies to this proof as well. Assume
by contradiction that x(t) |� φ(v) for some t . Similar to the proof of Proposition 4, the
satisfaction of φ(v) at t implies that a transition (ls, v(li), λ, ϕr) ∈ T i,r is taken at t . Since
x j (t ′) ∈ locs(φl(v)) for some t ′ ∈ [0, t) ∩ (t − v(b), t), either (1) x j (t ′′) ∈ locs(φl(v)) for
each t ′′ ∈ [0, t], or (2) a transition from L j \ locs(φl(v)) to locs(φl(v)) is taken at some
time in (0, t ′]. Case (1) implies that l j0 ∈ locs(φl(v)) since x j (0) ∈ locs(φl(v)). By (32),
at time t , c1 = t and c2 = t . Construction of T i,r (37) implies that each transition to v(li)
includes c1 > c2 ∧ c2 > v(b) or ¬T in its guard when x j (0) ∈ locs(φl(v)), and neither
is satisfied since c1 = c2. For case (2), let t̄ be the largest time point up to t such that
x j (t̄) ∈ locs(φl(v)), by assumption t̄ > t − v(b). Let t ′′ ∈ (0, t̄] be the time of the last
transition from L j \ locs(φl(v)) to locs(φl(v)) prior to t̄ , thus x j (t ′′′) ∈ locs(φl(v)) for
t ′′′ ∈ (t ′′, t̄]. By (33), c1 is reset at t ′′. Now consider 2 sub-cases: (a) t̄ = t , (b) A j left
locs(φl(v)) at time t ′′′ ∈ [t̄, t). For case (a), since c2 is not reset during [t ′′, t) (see (34)),
c2 > c1 and the condition c1 > c2 from (37) is violated. For case (b), c2 is t − t ′′′ at time
t and t ′′′ > t̄ . By the initial assumption t − v(b) < t̄ ≤ t , thus c2 < v(b). Thus, the
constraint c2 > v(b) from (37) is violated, and the transition cannot be taken. Hence, none
of the constraints introduced on transitions ending in v(li) is satisfied at x(t)which implies a
contradiction. As we considered all cases, we conclude that each trace of the repaired system
satisfies ¬φ(v) at each time step. ��

3 An edge case is a run to locs(φl (v)) within 0 time units. If such a run exists, the second transition should be
omitted. Existence of such a run can be checked by verifying the original NTA against formula F[0,0]φl (v).

123

An automated system repair framework... 203

Proposition 7 Given an NTAA 1, . . . ,A N withA k = (Lk, lk0 ,C
k, I nvk, T k), a parametric

ptSTL formula φ as in (30), and a valuation v, let A 1,r , . . . ,A N ,r be the repaired network
of TA as defined in Definition 5, then

Traces(A 1,r | . . . | A N ,r) ⊆ Traces(A 1 | . . . | A N).

Proof A similar argument to the proof Proposition 5 applies, i.e., for each automaton A i,r ,
and for each transition of (ls, lt , λ, ϕr) of A i,r , there exists a transition (ls, lt , λ, ϕ) of A i

(see (37)) such that if a clock valuation ν |� ϕr , then ν |� ϕ. Hence, no new behavior is
introduced by the procedure. ��

We present two types of ptSTL formulae (29) and (30) and the corresponding repair
procedures for applying the proposed repair framework to TA. Both repair procedures add
two new clocks and up to four unique simple clock constraints (c1 < c2, c1 > c2, c1 = c2,
c1 < v(b)) to the model; therefore, the number of clocks and the number of unique simple
constraints in the repaired TA increase linearly with the number of sub-formulae synthesized
by Algorithm 1. The increase in the number of clocks can be reduced by applying a clock
reduction algorithm [22,38]. In the case studies, we run the algorithm from [38] on the
repaired models and report the results.

Next, we present case studies to demonstrate our framework on TA. In our case studies, we
borrowwell-knownUPPAAL [15]models from the literature, i.e., Fischer’s protocol [23],DB
from [26], SBR from [26,27], and nuclear plant and train models from [7]. To observe a faulty
behavior; for Fischer’s protocol andSBR,we instantiate themodelwith a faulty configuration;
DB is already faulty; and for nuclear plant and train examples, we randomly delete guards and
invariants. Our experiment setup consists of five steps: (i) trace generation using UPPAAL
SMC; (ii) formula synthesis usingAlgorithm1; (iii) automatic repair according to synthesized
formula; (iv) verification of the repaired model using UPPAAL; and (v) running the clock
reduction algorithm from [38] on the repaired model.

In Table 2, we report the results for the case studies. The second column presents the
runtime of steps (ii) and (iii). Note that step (iii) takes significantly less time than (ii). The
third, fourth and fifth columns present the number of clocks of the original model, the number
of clocks after the repair and the number of clocks after running the clock reduction algorithm
on the repaired model, respectively.

6.1 Case study: Fischer’s protocol

We apply the proposed repair framework on a TA shown in Fig. 7 which models Fischer’s
mutual exclusion protocol [23]. The protocol provides a timedmechanismwithout any block-

Table 2 Performance evaluations for case studies

Name of Runtime Clock count Clock count Clock count
case study (s) before repair after repair after running [38]

Fischer [23] 1.11 2 6 4

DB [26] 2.11 3 5 4

SBR [26,27] 2.68 8 14 11

Nuclear Plant [7] 4.94 2 4 4

Train [7] 3.70 2 4 4

123

204 M. Ergurtuna et al.

Fig. 7 TA model implementing the Fischer’s protocol

ing structure for processes sharing the same resource and no two processes are allowed in
the critical section simultaneously, i.e., a non-reachability property is satisfied.

Implementation of the protocol in Fig. 7 is a generic template for each process in the
system, i.e., for each process, the template is instantiated with a different id to form an NTA.
Each process has its own clock for the timed behavior and processes share global variables:
max_rw,min_rw,max_delay,min_delay and lock.max_rw andmin_rw limits the time
spent in the start and set locations. Similarly, max_delay and min_delay limits the time
spent in try_enter location. Integer variable lock indicates which process is currently in
its critical section. The necessary condition for a correct implementation of the protocol is
max_rw ≤ min_delay [23]. For demonstration, we instantiated two processes with the
following configuration:

max_rw = 5, min_rw = 3, max_delay = 6, min_delay = 2. (38)

This configuration does not satisfy the necessary condition for the protocol since both pro-
cesses can simultaneously be in the critical section, i.e., P1.cs ∧ P2.cs is reachable. Our
goal is to repair the system so that P1.cs ∧ P2.cs will be unreachable. We define the fault
detection mechanism with respect to this requirement (see (3)):

IsFaulty(x) =

⎧⎪⎨
⎪⎩
1 if x1(te) = cs ∧ x2(te) = cs ∧
¬(x1(te − 1) = cs ∧ x2(te − 1) = cs)

0 otherwise

. (39)

In particular, we only mark the starting point of the violation (i.e., the first time step that
the violation appears). We generate 100 traces with duration 100 of the model in Fig. 7 using
the configuration in (38) with UPPAAL SMC toolbox [15], and label the traces according
to (39). The total duration for the positive label is 29, i.e., 0.29%. As both processes share
the same template TA and the model is designed to avoid the unsafe state (e.g., fault (39)) via
delay parameters, we define the parametric formulae over a single TA, e.g., only use x1 in
(29) and (30) to form F . Note that, the repair procedure will affect both TA since they share
the same template. Algorithm 1 generates Φ ta when run on this dataset and F .

Φ ta = (x1 = cs ∧ G−
(0,1]x

1 �= cs) ∧ F−
[0,5)((x

1 = set)).

ByDefinition 5, formulaΦ ta implies the following repair procedure: create twonewclocks
c1 and c2; reset c1 on the transition entering set and c2 on the transition leaving set; and

123

An automated system repair framework... 205

control c1 and c2 on two new transitions replacing the transition entering cs with constraints
c > min_delay∧lock = id∧c1 = c2 and c > min_delay∧lock = id∧c1 > c2∧c2 > v(b)
where v(b) = 5. Our automated implementation outputs the repaired TA as described.

Observe that c1 is always more than c2 since c is checked with c > min_rw, where
min_rw = 3, on the transition from set to try_enter. Then, condition c1 > c2 is always
satisfied; hence, c1 can simply be discarded which leaves us with c2 and a transition entering
cs with the constraint c > min_delay ∧ lock = id ∧ c2 > 5. Since c is reset on the same
transition as c2, they have the same value when they are checked on the transition entering cs.
On that transition, c is check with c > min_delay, wheremin_delay = 3, and c2 is checked
with c2 > 5. Clearly, the constraint on c2 dominates the constraint on c. Therefore, discarding
c2 and redefiningmin_delay = 5 gives us the same semantic behavior as the repairedmodel.
Notice that, redefining min_delay induces the following configuration which satisfies the
necessary condition for a correct instantiation of the protocol:

max_rw = 5, min_rw = 3 max_delay = 6,min_delay = 5. (40)

After the repair, P1.cs ∧ P2.cs is not reachable (verified by UPPAAL [15]) and the
condition max_rw ≤ min_delay from [23] is satisfied. Hence, our framework is able to
repair the model in a fully automated way.

First row of Table 2 reports the performance results of this case study. Our framework
repairs the model in 1.11s (0.94s for Algorithm 1), increases the number of clocks to six
(three for each instance of the model), and running [38] on the repaired model reduces this
number to four (two for each instance of the model). Notice that, integrating expression
simplification methods [22] into [38] can further reduce the number of clocks to two (one
for each instance of the model) by automating the presented detailed clock analysis.

6.2 Case study: DB

After the detailed demonstration of the Fischer’s protocol, we present our results on an NTA
modeling the communication between a database server and a database from [26]. Due to
space limitations, we cannot describe the model in detail and refer the reader to [26]. First,
we make two minor modifications on the model in order to generate traces for our tool. We
convert the channels to broadcast channels (a requirement of UPPAAL SMC) and introduce
an error location error that is only reachable from serReceivingwhen the safety specification (
A[] (not dbServer.serReceiving) or (x<= 4)) from the running example
of [26] is violated. We generate 100 traces with duration 100 and feed these traces to our
framework. Our framework repairs the model by introducing two new clocks c1 and c2.
c1 is reset on the transition entering serReceiving and c2 is reset on the transitions leaving
serReceiving. Both clocks checked on two new transitions replacing the transition entering
error with constraints x > 4∧ c1 > c2 and x > 4∧ c1 < c2 ∧ c1 < 1. By carrying a simple
clock analysis similar to the previous example, one can observe that c1 < c2 is always satisfied
and c2 can be discarded which leaves us with the new clock c1 and the new transition to error
with constraint x > 4∧ c1 < 1. In [26], the model was repaired by introducing the invariant
z < 1 in serReceiving. For both repairs, the resulting systems satisfy the safety specification.
Notice that, although our method does not suggest any invariant repairs, it accurately finds
the source of the error in the model and repairs the model with the invariant-free counterpart
of the repair procedure of [26].

123

206 M. Ergurtuna et al.

Second row of Table 2 presents the results of the case study. Proposed framework repairs
the model in 2.11s (1.90s for Algorithm 1), increases the number of clocks to five, and this
number is reduced to four after running [38].

6.3 Case study: SBR

Our next case study is an NTA implementing three cyclic processes, a processor and a feature
deployment machine [26,27]. Due to space limitations, we invite interested reader to [27]
for the details of the model. The safety specification of the model is that all processes shall
finish their execution before their corresponding deadlines. We instantiated the worst case
execution times of each process to ten so that, in their hyper-period (which also has the
duration of ten time units), at least one of the processes misses the deadline. To observe
a violation of the specification, we converted the safety specification to a non-reachability
property by introducing three new locations error1, error2 and error3 only reachable from
processor_idle in the processor TA. Each of these error locations corresponds to a deadline
miss for one of the three processes. To run our framework on themodel,we generate 100 traces
with duration 100. Our framework synthesizes three formulae of the form (29) (one formula
for each process). Essentially, each process is repaired by introducing two new clocks c1 and
c2 (six new clocks in total) and the corresponding constraints limit the worst case execution
time of each process to two. Since the repairs are identical of all three processes, the total
execution time is limited by six, which is less than the duration of the hyper-period. The
semantic analysis of the repaired model shows that our framework accurately finds the cause
of the error. After the repair, we also check themodel against the specification usingUPPAAL
and observe that no violation occurs. Therefore, we conclude that the proposed framework
successfully repairs the model.

SBR is a more complex example than the other case studies presented so far. Moreover,
in the experiments of [26], SBR is the only example that reached their two minutes timeout
limit for some of the timed diagnostic traces. Third row of Table 2 presents the overall results
of this example.

6.4 Case study: nuclear plant model and train model

Finally, we present two more case studies on a nuclear plant model and a train model from
the Imitator package [7]. For both examples, we run an experiment setup inspired from
mutation testing [2]: we delete a guard or an invariant, if this modification causes a violation
of the safety specification, we generate 100 traces with duration 100, run our framework,
and finally, we verify the repaired model against the safety specification. The number of the
mutated models violating the safety specification is six for the nuclear plant model and four
for the train model. Interestingly, in most of the cases, suggested repairs are at the exactly
same positions with the deleted ones but their content is different. Another difference is that
since our framework does not suggest invariants for repairs, instead of the deleted invariants,
the framework suggests guards with less than operators. The same approach is applied to
generate invariant-freemodels in the literature. In spite of the differences between the original
and suggested constraints, our framework successfully repairs the model in all cases, i.e.,
each repaired model satisfies its specification.

Fourth and fifth rows of Table 2 report the average computation time and the maximum
number of clocks observed in the repaired models. In average, our framework repairs the
models in 4.94s (4.69s for Algorithm 1) and 3.70s (3.42s for Algorithm 1).

123

An automated system repair framework... 207

The works from [6,26,27] also aim at repairing timed automata. In [6] and [26], bounds
from the existing constraints are modified. The method from [26] is extended with additional
repair operations including introducing resets, changing comparison operators and clock
references in [27]. Our method adds new clocks and introduces new constraints over the
new clocks, which allows us to detect errors of the model due to the missing clocks. The
approaches relying on modifying existing clocks (resets/constraints) cannot capture such
errors. On the other hand, while modification of the bound of an existing clock can be
achieved via our approach in various cases (e.g., see Fischer’s model), there exist some cases
in which this is not possible. For example, if an automaton has transitions (l ′, l, λ, c < n)

and (l ′′, l, λ′, c < n), then our approach cannot modify only one of the bounds from these
transitions. Finally, resetting an existing clock or increasing an upper bound in a constraint
can introduce new behaviors, which is not possible with our approach. As summarized here,
one approach is not more general than the others. Introducing new clocks and constraints can
be advantageous in a variety of cases as illustrated with the examples.

7 Conclusion

We presented an automated system repair framework for cyber-physical systems and showed
its use on discrete-time dynamical systems and timed automata. The proposed framework
first constructed a dataset of labeled system traces via simulation, identified repairable tem-
poral properties leading the faulty behavior as a ptSTL formula, and finally repaired the
system to avoid the satisfaction of the formula. We developed an efficient iterative method
to generate a ptSTL formula from a labeled dataset. The case studies illustrated that the pro-
posed STL-based repair framework can successfully repair discrete-time dynamical systems
and timed automata. For both modeling formalisms, we defined repairable formulae and the
corresponding repair procedures. Applying the repair framework to a new class of system
requires defining repairable formulae for the considered system and the corresponding repair
procedures, which, in general, are not trivial processes.

Future research directions include expanding the repairable parametric formula sets. For
timed automata, we plan to consider clock values, and TA extensions such as discrete vari-
ables, which will allow us to apply our framework on a larger set of benchmarks. For
dynamical systems, we plan to consider automata-based control strategies. Another research
direction is applying the repair framework on Simulink models, which requires defining
repairable formulae and the corresponding repair procedures.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. System repair toolbox. https://gitlab.com/MertErgurtuna/system_repair_toolbox

123

http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/MertErgurtuna/system_repair_toolbox

208 M. Ergurtuna et al.

2. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants – model-based mutation testing with timed
automata. In: Veanes, M., Viganò, L. (eds.) Tests and Proofs, pp. 20–38. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2013)

3. Alrajeh, D., Craven, R.: Automated error-detection and repair for compositional software specifications.
In: Software Engineering and Formal Methods, pp. 111–127. Springer International Publishing, Cham
(2014)

4. Alur, R.: Principles of Cyber-Physical Systems. The MIT Press, Cambridge (2015)
5. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)
6. André, É., Arcaini, P., Gargantini, A., Radavelli, M.: Repairing Timed Automata Clock Guards Through

Abstraction and Testing. In: International Conference on Tests and Proofs, pp. 129–146. Springer (2019)
7. André, É., Fribourg, L., Kühne, U., Soulat, R.: Imitator 2.5: A tool for analyzing robustness in scheduling

problems. In: D. Giannakopoulou, D. Méry (eds.) FM 2012: Formal Methods, pp. 33–36. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

8. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taliro: A tool for temporal logic falsifica-
tion for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) Tools andAlgorithms for the Construction
and Analysis of Systems, pp. 254–257. Springer, Berlin (2011)

9. Asarin, E., Donze, A., Maler, O., Nickovic, D.: Parametric identification of temporal properties. In: Pro-
ceedings of the Second International Conference on Runtime Verification, RV’11, pp. 147–160. Springer,
Berlin (2012)

10. Aydin, S.K., Gol, E.A.: Synthesis of monitoring rules with STL. J. Circ. Syst. Comput. 29(11), 2050177
(2020). https://doi.org/10.1142/S0218126620501777

11. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D., Sankaranarayanan, S.:
Specification-BasedMonitoring of Cyber-Physical Systems:ASurvey onTheory, Tools andApplications,
pp. 135–175. Springer Int. Pub., Cambridge (2018)

12. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: Automatic failure explanation in CPS
models. In: Software Engineering and Formal Methods, pp. 69–86. Springer International Publishing,
Cambridge (2019)

13. Cai, C.H., Sun, J., Dobbie, G.: Automatic B-model repair using model checking and machine learning.
Automated Software Engineering 26, (2019). https://doi.org/10.1007/s10515-019-00264-4

14. Coogan, S., Gol, E.A., Arcak, M., Belta, C.: Traffic network control from temporal logic specifications.
IEEE Trans. Control Netw. Syst. 3(2), 162–172 (2016)

15. David, A., Larsen, K.G., Legay, A., Mikuăionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw.
Tools Technol. Transf. 17(4), 397–415 (2015)

16. Donze, A.: On signal temporal logic. In: Legay, A., Bensalem, S. (eds.) RV 2013, LNCS 8174, pp.
382–383. Springer, Berlin (2013)

17. Ergurtuna, M., Gol, E.A.: An efficient formula synthesis method with past signal temporal logic. IFAC-
PapersOnLine 52(11), 43 – 48 (2019). https://doi.org/10.1016/j.ifacol.2019.09.116. 5th IFACConference
on Intelligent Control and Automation Sciences ICONS 2019

18. Ernst, G., Arcaini, P., Donze, A., Fainekos, G., Mathesen, L., Pedrielli, G., Yaghoubi, S., Yamagata, Y.,
Zhang, Z.: Arch-comp 2019 category report: Falsification. In: ARCH19. 6th International Workshop on
Applied Verification of Continuous andHybrid Systems,EPiC Series in Computing, vol. 61, pp. 129–140.
EasyChair (2019). https://doi.org/10.29007/68dk

19. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals.
Theoret. Comput. Sci. 410(42), 4262–4291 (2009). https://doi.org/10.1016/j.tcs.2009.06.021

20. Ferrère, T., Maler, O., Ničković, D.: Trace diagnostics using temporal implicants. In: Automated Tech-
nology for Verification and Analysis, pp. 241–258. Springer International Publishing, Cambridge (2015)

21. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: A survey. IEEE Trans. Software Eng.
45(1), 34–67 (2019)

22. Guha, S., Narayan,C.,Arun-Kumar, S.: Reducing clocks in timed automatawhile preserving bisimulation.
In: International Conference on Concurrency Theory, pp. 527–543. Springer, Berlin (2014)

23. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of timed automata.
In: Margaria, T., Yi, W. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp.
189–203. Springer, Berlin (2001)

24. Jha, S., Tiwari, A., Seshia, S.A., Sahai, T., Shankar, N.: Telex: learning signal temporal logic from positive
examples using tightness metric. Form. Methods Syst. Des. 54, 364–387 (2019)

25. Jin, X., Donze, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(11), 1704–1717 (2015)

26. Kölbl, M., Leue, S., Wies, T.: Clock bound repair for timed systems. In: International Conference on
Computer Aided Verification, pp. 79–96. Springer, Berlin (2019)

123

https://doi.org/10.1142/S0218126620501777
https://doi.org/10.1007/s10515-019-00264-4
https://doi.org/10.1016/j.ifacol.2019.09.116
https://doi.org/10.29007/68dk
https://doi.org/10.1016/j.tcs.2009.06.021

An automated system repair framework... 209

27. Kölbl, M., Leue, S., Wies, T.: Tartar: A timed automata repair tool. In: Lahiri, S.K., Wang, C. (eds.)
Computer Aided Verification, pp. 529–540. Springer International Publishing, Cham (2020)

28. Liu, B., Lucia, Nejati, S., Briand, L.C., Bruckmann, T.: Simulink fault localization: an iterative statistical
debugging approach. Softw. Test. Verif. Reliab. 26(6), 431–459 (2016). https://doi.org/10.1002/stvr.1605

29. Mark Utting, B.L.: Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann, Burlington
(2006)

30. MATLAB: version (R2016b). The MathWorks Inc., Natick, Massachusetts (2016)
31. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M., Donzé, A.: Interpretable

classification of time-series data using efficient enumerative techniques. In: Proceedings of the 23rd
International Conference on Hybrid Systems: Computation and Control, HSCC ’20. ACM, New York,
NY, USA (2020). https://doi.org/10.1145/3365365.3382218

32. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: Program repair via semantic analysis.
In: Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, pp. 772–781.
IEEE Press (2013)

33. Raman, V., Donze, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis from signal temporal
logic specifications. In: Proceedings of the 18th International Conference on Hybrid Systems: Computa-
tion and Control, HSCC ’15, pp. 239–248. ACM, New York, NY, USA (2015)

34. Saglam, I., Gol, E.A.: Cause mining and controller synthesis with STL. In: 58th IEEE Conference on
Decision and Control (CDC), pp. 4589–4594 (2019)

35. Singh, N.K., Saha, I.: Specification-guided automated debugging of CPS models. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 39(11), 4142–4153 (2020). https://doi.org/10.1109/TCAD.2020.
3012862

36. Vazquez-Chanlatte, M., Deshmukh, J.V., Jin, X., Seshia, S.A.: Logical clustering and learning for time-
series data. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp. 305–325. Springer
International Publishing, Cambridge (2017)

37. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using genetic pro-
gramming. In: Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, p.
364–374. IEEE Computer Society, USA (2009). https://doi.org/10.1109/ICSE.2009.5070536

38. Yalcinkaya, B., Gol, E.A.: Clock reduction in timed automata while preserving design parameters. In:
2019 IEEE/ACM7th International Conference on FormalMethods in Software Engineering (FormaliSE),
pp. 31–40. IEEE (2019)

39. Yamagata, Y., Liu, S., Akazaki, T., Duan, Y., Hao, J.: Falsification of cyber-physical systems using deep
reinforcement learning. IEEE Transactions on Software Engineering pp. 1–1 (2020)

40. Yamaguchi, T., Hoxha, B., Prokhorov, D., Deshmukh, J.V.: Specification-guided software fault local-
ization for autonomous mobile systems. In: 18th ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE), pp. 1–12 (2020). https://doi.org/10.1109/
MEMOCODE51338.2020.9315067

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1002/stvr.1605
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1109/TCAD.2020.3012862
https://doi.org/10.1109/TCAD.2020.3012862
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/MEMOCODE51338.2020.9315067
https://doi.org/10.1109/MEMOCODE51338.2020.9315067

	An automated system repair framework with signal temporal logic
	Abstract
	1 Introduction
	1.1 Related work

	2 Signal temporal logic
	2.1 Signals
	2.2 Past time signal temporal logic

	3 System repair framework
	4 Repairable cause identification
	5 Application to dynamical systems
	5.1 Case study: traffic system

	6 Application to timed automata
	6.1 Case study: Fischer's protocol
	6.2 Case study: DB
	6.3 Case study: SBR
	6.4 Case study: nuclear plant model and train model

	7 Conclusion
	References

