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Abstract
We study the concept of reversibility in connection with parallel communicating systems of
finite automata (PCFA in short).We define the notion of reversibility in the case of PCFA (also
covering the non-deterministic case) and discuss the relationship of the reversibility of the
systems and the reversibility of its components. We show that a system can be reversible with
non-reversible components, and the other way around, the reversibility of the components
does not necessarily imply the reversibility of the system as a whole. We also investigate the
computational power of deterministic centralized reversible PCFA. We show that these very
simple types of PCFA (returning or non-returning) can recognize regular languages which
cannot be accepted by reversible (deterministic) finite automata, and that they can even accept
languages that are not context-free. We also separate the deterministic and non-deterministic
variants in the case of systems with non-returning communication. We show that there are
languages accepted by non-deterministic centralized PCFA, which cannot be recognized by
any deterministic variant of the same type.

Keywords Finite automata · Reversibility · Systems of parallel communicating automata

1 Introduction

Parallel communicating finite automata (PCFA) are systems of several finite state automata
processing the same inputword in an autonomous and synchronizedway. In certain situations,
automata of the system, depending on the state reached, may request the state of another
automaton. The concept of PCFA has been introduced in [17] and further investigated in,
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e.g., [3–5,7]. The concept can be viewed as a simple model of computer networks, falling
into the line of research as of, e.g., [6] or [11].

In PCFA, spontaneous transitions are allowed so that different automata of a system can
read different symbols of the input word at the same time during computations. This is similar
tomulti-headfinite automata [20]which are shown to be computationally equivalent to PCFA,
see [17] and [7] for the non-deterministic case and [4] for the deterministic case. Inspired by
parallel communicating grammar systems which have been investigated as string generating
variants of the classroom model known from artificial intelligence [8], one distinguishes
between the returning and non-returning working modes. In PCFA, these working modes
refer to the state in which an automaton continues its computation after it has sent its state to
another automaton upon request: In the returning mode, the automaton is set back to its initial
state, while in the non-returning mode, it just keeps the state it has communicated to another
automaton. An interesting special case is centralized PCFA, where only one designated
automaton is allowed to send communication requests to other automata of the system. This
models a particular, star-like network architecturewith restricted power, leading to subclasses
in the hierarchy of language families, strict in most cases [4].

In the present paper, the concept of reversibility is added to PCFA. Roughly, reversibility
means that no information is lost during the computation. This is of interest due to the physical
observation that loss of information involves heat dissipation [2,16]. In abstract models, a
computation is reversible if every configuration has a unique predecessor configuration. Thus,
in deterministic devices the computation step relation is injective. For example, reversible
Turingmachines have been investigated in [2]where it is shown that for everyTuringmachine,
there is an equivalent reversible one. Many other automata models have been considered
under the restriction of reversibility such as the massively parallel cellular automata, see,
e.g., [18], pushdown automata [13], their input driven variants [15], two-way multi-head
finite automata [1,19] and one-way multi-head finite automata [14]. In [10], reversible non-
deterministic finite automata have been considered. Different aspects of reversibility in a
setting of computing devices with a finite number of discrete internal states and a read-only
input tape are addressed in [12]. This work also contains many further references about
reversibility in automata models.

PCFAwere also considered from the point of view of reversibility in [9] where the authors
showed that parallel communicating systems of reversible (deterministic) finite automata
are able to accept all regular languages. They also considered an intuitive notion of the
reversibility of PCFA systems when they remarked that such a system is not necessarily
reversible as a whole, although all of its components are reversible.

In the present paper, we first give a definition of the notion of reversibility for PCFA
by formalizing the way the predecessor configurations are computed, particularly in the
case when communication may have happened. We also discuss the relation between the
reversibility of parallel communicating systems and the reversibility of their components,
and then, we focus on the computational power of reversible systems. Throughout the paper,
both the deterministic and non-deterministic variants are taken into consideration.

2 Definitions and basic properties

We assume that the reader is familiar with basic concepts and terminology of automata theory
as it can be found, e.g., in [22]. We shall use the following notation. For a set S, its powerset
is designated by 2S and its cardinality by |S|. The symbols⊆ and⊂ are used for set inclusion
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Reversible parallel communicating finite automata systems 265

and strict set inclusion, respectively. For a word w, its length is designated by |w|, w(i)
denotes the i-th symbol of w, for 1 ≤ i ≤ |w|, and wR is the reverse (mirror image) of w.
The symbol λ is used for the empty word. Let � be an alphabet. The notation �∗ is used for
the set of all words over � including λ, while �+ = �∗ \ {λ}.

Let A = (S, �, s0, δ, F) be a non-deterministic finite automaton (NFA), where S is the
finite set of states,� is the alphabet of input symbols, s0 ∈ S is the initial state, δ : S×� →
2S is the transition function and F ⊆ S is the set of accepting states. The automaton is
deterministic if |δ(s, a)| = 1 for all s ∈ S and a ∈ �. A configuration of A is a pair in S×�∗.
A computation of A on input word w is a sequence of configurations c0, c1, . . . ck , for some
k ≥ 0 such that c0 is the initial configuration (s0, w), and ci = (s, v) if ci−1 = (q, av) and
s ∈ δ(q, a), for 1 ≤ i ≤ k. We write ci−1 	 ci , 1 ≤ i ≤ k.

An NFA A = (S, �, s0, δ, F) is reversible according to [10] if there is no internal state
s ∈ S, such that s ∈ δ(p, a) ∩ δ(r , a) holds for some a ∈ � and states p, r ∈ S with p �= r .

A non-deterministic parallel communicating finite automata system of degree k (PCFA(k))
is a tuple A = (�, A1, A2, . . . , Ak, Q, �) where � is the input alphabet, Ai =
(Si , �, δi , s0,i , Fi ) for each i, 1 ≤ i ≤ k, is a non-deterministic finite automaton (the
i th component of A) with Si being the set of states, s0,i ∈ Si the initial state, Fi ⊆ Si the
set of accepting states, and δi : Si × (� ∪ {λ, �}) → 2Si the transition function. Further,
Q ⊆ {q1, q2, . . . , qk} is the set of query states, Q ⊆ ⋃k

i=1 Si , and � /∈ � is the end-of-input
symbol.

A configuration c = (w, s1, p1, . . . , sk, pk) ∈ �∗×S1×N× . . .×Sk ×N ofA represents
the tape contents with input wordw ∈ �∗, the current states si ∈ Si , and the current positions
pi ≥ 1 of the reading heads of the component automata Ai , 1 ≤ i ≤ k, where pi > |w|
means that Ai is scanning the end-of-input symbol �. For a word w and an integer i ≥ 1, let
w(i) denote the i-th symbol of w if 1 ≤ i ≤ |w|, and w(i) = � if i > |w|.

An initial configuration is of the form (w, s0,1, 1, s0,2, 1, . . . , s0,k, 1), that is, each compo-
nent is in its initial state and scans the first symbol of an input word w ∈ �∗. The definition
of the successor configuration relation 	A of A is defined as follows. (We may omit the
subscript A in 	A if there is no risk of confusion.) For any w ∈ �∗,

(w, s1, p1, s2, p2, . . . , sk, pk) 	A (w, s′
1, p

′
1, s

′
2, p

′
2, . . . , s

′
k, p

′
k),

if either

1. (Reading step) Q∩{s1, s2, . . . , sk} = ∅, s′
i ∈ δi (si , ai )with ai ∈ {w(pi ), λ}, and p′

i = pi
if ai = λ and p′

i = pi + 1 otherwise, 1 ≤ i ≤ k, or
2. (Communication step) for all i, 1 ≤ i ≤ k, we have p′

i = pi and, if si = q j with q j ∈ Q
and s j /∈ Q, then s′

i = s j ; furthermore,

(a) s′
r = sr for all the other r , 1 ≤ r ≤ k (non-returning communication) or, alternatively,

(b) s′
j = s0, j , and s′

r = sr for all the other r , 1 ≤ r ≤ k (returning communication).

In a reading step, all components are in non-query states and perform an ordinary (non-
communicating) step independently (which may also be a λ-step). Notice that components
with head positions greater than the input length will always scan the end-of-input symbol
in non-λ reading steps. In a communication step, components in query states receive the
requested states as long as the sender is not in a query state itself. This process is repeated
until all requests are resolved, if possible. If the requests are cyclic, no successor configuration
exists. As mentioned above, we distinguish non-returning communication, that is, the sender
remains in its current state, and returning communication, that is, the sender is reset to its
initial state. Both in returning and non-returning communication steps, the heads do not

123
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move. In what follows, every PCFA consistently work with either returning or non-returning
communication steps; thus, we either have returning or non-returning systems.

A computation halts when the successor configuration is not defined for the current situ-
ation. In particular, this may happen when cyclic communication requests appear, or when
the transition function of one component is not defined. (We regard the transition function as
undefined whenever it maps to the empty set.) The language L(A) accepted by a PCFA(k) A
is precisely the set of words w such that there is some computation beginning with w on the
input tape and halting with at least one component having an undefined transition function
and being in an accepting state. Let 	∗

A denote the reflexive and transitive closure of 	A and
set L(A) = {w ∈ �∗ | (w, s0,1, 1, s0,2, 1, . . . , s0,k, 1) 	∗

A (w, t1, r1, t2, r2, . . . , tk, rk), for
some i , 1 ≤ i ≤ k, such that ti ∈ Fi and δi (ti , w(ri )) is undefined }.

If all components Ai are deterministic finite automata, that is, for all s ∈ Si and for all
a ∈ �, the transition function δi (s, a) maps to a set of at most one state and is undefined
whenever δi (s, λ) is defined, then the whole system is called deterministic, and we add the
prefix D (to PCFA) to denote it. The absence or presence of an R in the type of the system
denotes whether it works in non-returning or returning mode, respectively. Finally, if there
is just one component, say A1, that is allowed to query for states, that is, Si ∩ Q = ∅, for
2 ≤ i ≤ k, then the system is said to be centralized. In this case, we refer to A1 as themaster
component and add a C to the notation of the type of the system. Whenever the degree is
missing, we mean systems of arbitrary degree. The family of languages accepted by devices
of type X (with degree k) is denoted by L (X) (L (X(k))).

For the definition of reversibility of a PCFA, we introduce the following notion. A con-
figuration (w, t1, r1, t2, r2, . . . , tk, rk) is reachable by a PCFA A, if there is a computation
(w, s0,1, 1, s0,2, 1, . . . , s0,k, 1) 	∗

A (w, t1, r1, t2, r2, . . . , tk, rk).

Definition 1 A PCFA(k) is reversible if considering any reachable configurations (w, s1, p1,
. . . , sk, pk) and (w, s′

1, p
′
1, . . . , s

′
k, p

′
k), if there are computational steps

(w, t1, r1, . . . , tk, rk) 	 (w, s1, p1, . . . , sk, pk)

and

(w, t ′1, r ′
1, . . . , t

′
k, r

′
k) 	 (w, s′

1, p
′
1, . . . , s

′
k, p

′
k),

then the following holds:

– If (s1, . . . , sk) = (s′
1, . . . , s

′
k), then pi − ri = p′

i − r ′
i for all i, 1 ≤ i ≤ k, and moreover,

– if w(ri ) = w(r ′
i ) for all i with pi �= ri , 1 ≤ i ≤ k, then (t1, . . . , tk) = (t ′1, . . . , t ′k).

Intuitively, if two reachable configurations cannot be distinguished by the states reached,
then it is determined which positions have been increased in the previous computation step
and which have not. This way one can identify the symbols which have been read in the
previous computation step. If the read symbols are identical, then also the states of the two
predecessor configurations have been the same.

In the definition, one might alternatively take all configurations into account instead of
only reachable ones. Due to the motivation of the concept of reversibility, computations
should be reversible that can be performed by the machine model. Therefore, we restrict to
reachable configurations in the definition.

For all the language classes L(XPCFA) and L(XPCFA(k)) with X ∈ {λ, R, C, DR, DC,
DRC}, we add the prefix “rev” in order to refer to the corresponding families of languages
accepted by reversible PCFA.
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Reversible parallel communicating finite automata systems 267

Example 1 Consider the deterministic non-returningPCFAwith twocomponents (DCPCFA(2)
in short) A = ({a, b, $, ¢}, A1, A2, {q2}, �) where for i ∈ {1, 2}

Ai = (Si , {a, b, $, ¢}, δi , s0,i , Fi )
with

S1 = {s0,1, sacc, s1, sa, sb, s$, s�, q2}, F1 = {sacc},
S2 = {s0,2, s1, sa, sb, s$, s�, s f }, F2 = ∅,

δ1(s0,1, λ) = q2, δ1(s$, ¢) = q2, δ1(s�, $) = sacc,
δ1(s1, λ) = q2, δ1(sa, a) = q2,

δ1(sb, b) = q2,

and

δ2(s0,2, ¢) = s1, δ2(s$, a) = sa, δ2(s$, �) = s�,
δ2(s1, a) = s1, δ2(sa, a) = sa, δ2(sa, �) = s�,
δ2(s1, b) = s1, δ2(sb, a) = sa, δ2(sb, �) = s�,
δ2(s1, $) = s$, δ2(s$, b) = sb, δ2(s�, λ) = s f .

δ2(sa, b) = sb,
δ2(sb, b) = sb,

We show that A is reversible and it accepts the language L(A) = {¢w$w | w ∈ {a, b}∗}.
To see how A works, consider an initial configuration (α, s0,1, 1, s0,2, 1). Notice that

α = ¢α′ or the second component cannot start reading the input which results in a non-
accepting blocking configuration. Moreover, α′ contains exactly one $ symbol or the second
component cannot reach the end-of-input symbol�, so the first component (hence, the system)
cannot enter the accepting state. This means that the input string must be of the form ¢w$w′
with w,w′ ∈ {a, b}∗.

The transition relations are defined in such a way that the computation must start with

(¢w$w′, s0,1, 1, s0,2, 1) 	 (¢w$w′, q2, 1, s1, 2) 	 (¢w$w′, s1, 1, s1, 2) 	 . . .

and then

. . . 	 (¢w$w′, s1, 1, s1, k) 	 (¢w$w′, q2, 1, s$, k + 1) 	 (¢w$w′, s$, 1, s$, k + 1)

where ¢w$w′(k) = $, that is, the kth symbol of the input is the $ symbol and it has just been
read by the second component.

We can check that this phase of the computation is reversible by considering the following.

– If the states of the components are (s1, s1) or (s$, s$), then the previous computational
step must have been a communication step, so for any configuration (¢w$w′, s1, i, s1, j)
or (¢w$w′, s$, i, s$, j) with i, j ≥ 1, the previous configuration must have been
(¢w$w′, q2, i, s1, j) or (¢w$w′, q2, i, s$, j), respectively.

– If the states of the components are (q2, s1), then the previous computational step must
have been a reading step where the second component made a non-λ-move. As the sec-
ond component is in s1, it has never sent a state from {s$, sa, sb} to the first component
by a communication step. Therefore, the first component must have entered state q2 by
a λ-move. If the symbol read by the second component was ¢, then for any configu-
ration (¢w$w′, q2, i, s1, j) with i ≥ 1, j > 1, the previous configuration must have
been (¢w$w′, s0,1, i, s0,2, j − 1) which is only reachable if it is the initial configuration
(¢w$w′, s0,1, 1, s0,2, 1). If the symbol read by the second component was a or b, then
the previous configuration is (¢w$w′, s1, i, s1, j − 1).
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268 H. Bordihn, Gy. Vaszil

– Similarly, if the states of the components are (q2, s$), then the previous computational
step must have been a reading step where the first component made a λ-move, and the
second component made a non-λ-move. The symbol read by the second component must
have been a $, so the previous configuration for any (¢w$w′, q2, i, s$, j) with i, j ≥ 1,
is (¢w$w′, s1, i, s1, j − 1).

Notice that i = 1 in any reachable configuration of these forms.
Continuing the computation, we have

(¢w$w′, s$, 1, s$, k + 1) 	 (¢w$w′, q2, 2, sx , k + 2) 	 (¢w$w′, sx , 2, sx , k + 2)

where x ∈ {a, b, �} depending on the (k+1)st symbol on the input tape. First, let x ∈ {a, b}.
If the second symbol of the input is also x , the computation can continue with

(¢w$w′, sx , 2, sx , k + 2) 	 (¢w$w′, q2, 3, sx ′ , k + 3) 	 (¢w$w′, sx ′ , 3, sx ′ , k + 3)

where x ′ ∈ {a, b, �} now depends on the (k + 2)nd symbol on the input tape. Repeating
similar steps, the system now is able to check whether w = w′ in the input string ¢w$w′.
The first component can only read the j th symbol of w (which is the (1+ j)th symbol on the
tape), if it is the same as the j th symbol ofw′ (which is the (k+ j)th symbol on the tape) that
was read in the previous non-communication step by the second component and transferred
in the previous communication step to the first component as the state sx , x ∈ {a, b, �}.

This phase of the computation is also reversible, as can be seen by the following.

– If the states of the components are (sx , sx ) for some x ∈ {a, b, �}, then the previous
computational step must have been a communication step, so for any configura-
tion (¢w$w′, sx , i, sx , j) with i, j > 1, the previous configuration must have been
(¢w$w′, q2, i, sx , j).

– If the states of the components are (q2, sx ) for some x ∈ {a, b, �}, then the previ-
ous computational step must have been a reading step where both components made a
non-λ-move. If the symbol read by the first component is y ∈ {a, b, $}, then for any con-
figuration (¢w$w′, q2, i, sx , j) with i, j > 1, the previous configuration must have been
(¢w$w′, sy, i − 1, sy, j − 1). (Note that configurations of the form (¢w$w′, sx , i, sx ′ , j)
for x �= x ′ are not reachable by the system. Moreover, j = k+ i holds in every reachable
configuration of this form.)

Now, we consider situations in which the second component reaches the end-of-input
symbol �. If the first component reaches the $ symbol before the second component reaches
the end-of-input symbol �, then the system is blocked in a non-accepting state of the form
(¢w$w′, sx , i, sx , j) where ¢w$w′(i) = $, so in order for the computation to be successful,
the second component must reach the end-of-input symbol first through a computational step

(¢w$w′, sx , 1 + j, sx , k + j + 1) 	 (¢w$w′, q2, 1 + j + 1, s�, k + j + 2),

followed by the communication

(¢w$w′, q2, 1 + j + 1, s�, k + j + 2) 	 (¢w$w′, s�, 1 + j + 1, s�, k + j + 2).

Now, if the first component is scanning an a or b symbol, then the computation is blocked in
a non-accepting state. On the other hand, if the first component is scanning the $ symbol (that
is, if the input string is of the form ¢w$w), the system reaches the accepting configuration

(¢w$w′, sacc, j + 3, s f , k + j + 2)
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Reversible parallel communicating finite automata systems 269

where the $ symbol is on the kth position of the input string, that is, j = k − 2 for |¢w$w| =
2k − 2.

The last step of the computation is also reversible, as having the current states (sacc, s f )
implies that the two components made a non-λ-move and a λ-move, respectively, and the
states of the previous configuration must have been s� for both of them.

The next example shows that a similar language can also be accepted by returning systems.

Example 2 Consider the DRCPCFA(2) A = ({a, b, $1, $2, ¢}, A1, A2, {q2}, �) where

A1 = (S1, {a, b, $1, $2, ¢}, δ1, s0,1, {sacc})
with S1 = {s0,1, s′

0,1, s1, s
′
1, sa, sb, s$1 , s¢, sacc, q2} and

δ1(s0,1, λ) = s′
0,1, δ1(s1, a) = s1, δ1(s′

1, λ) = q2,
δ1(s′

0,1, ¢) = s1, δ1(s1, b) = s1, δ1(s¢, $2) = q2,
δ1(s1, $1) = s′

1, δ1(sa, a) = q2,
δ1(sb, b) = q2,

δ1(s$1 , �) = sacc.

Further,

A2 = (S2, {a, b, $1, $2, ¢}, δ2, s0,2,∅)

with S2 = {s0,2, sa, sb, s$1 , s$2 , s¢} and
δ2(s0,2, ¢) = s¢, δ2(s0,2, a) = sa, δ2(s0,2, $1) = s$1 ,
δ2(s¢, λ) = s¢, δ2(s0,2, b) = sb, δ2(s0,2, $2) = s$2 .

We show thatA is reversible and accepts the language L(A) = {¢w$1$2w | w ∈ {a, b}∗}.
To see how A works, consider an initial configuration (α, s0,1, 1, s0,2, 1). Notice that

α = ¢α′ or the first component cannot perform more than one computational step on the
input, which results in a non-accepting blocking configuration of the form (α, s′

0,1, 1, sx , 2)
with x ∈ {a, b, $1, $2}. Such computational step is reversible as it can only be reached from
the initial configuration according to the definition of δ1. Moreover, the first component, thus
the system, cannot read more than one ¢ symbol, so the leading ¢ is the only such symbol in
the input string. Similarly, the first component must read exactly one $1 symbol, or it cannot
reach the accepting state. As a consequence, α′ must contain exactly one $2 symbol, since
the first component may read $2 only after receiving state s¢ from the second component,
which can happen only once, as there is only one ¢ symbol in the input string andAworks in
returning mode. Note also that the $1, $2 symbols must be adjacent, or the first component
cannot reach the accepting state. To see this, note that the first component initiates the first
query after reading the symbol $1. Since leftmost input symbol is ¢, the second component
must respond to this query by sending the state s¢, and after receiving s¢, the first component
can only continue by reading a $2 symbol. This means that the input string must be of the
form ¢α′ where α′ contains exactly one occurrence of the substring $1$2.

The transition relations are defined in such a way that the computation must start with

(¢w$1$2w
′, s0,1, 1, s0,2, 1) 	 (¢w$1$2w

′, s′
0,1, 1, s¢, 2) 	 (¢w$1$2w

′, s1, 2, s¢, 2)
and then

(¢w$1$2w
′, s1, 2, s¢, 2) 	 . . . 	 (¢w$1$2w

′, s1, k, s¢, 2) 	
(¢w$1$2w

′, s′
1, k + 1, s¢, 2) 	 (¢w$1$2w

′, q2, k + 1, s¢, 2) 	

123



270 H. Bordihn, Gy. Vaszil

(¢w$1$2w
′, s¢, k + 1, s0,2, 2)

where ¢w$1$2w′(k) = $1, that is, the kth symbol of the input is the $1 symbol and it has just
been read by the first component.

To see that this phase of the computation is reversible, consider the following.

– If the states of the components are (s′
0,1, s¢), then the previous computational step must

have been a reading step where the first component made a λ-move, and the second
component made a non-λ-move, so for any configuration (¢w$1$2w′, s′

0,1, i, s¢, j) with
i, j ≥ 1, the previous configurationmust have been (¢w$1$2w′, s0,1, i, s0,2, j−1). (This
actually must be the initial configuration of the system, since s0,1 cannot be reached by
the first component later during the computation.)

– If the states of the components are (s1, s¢), then the previous computational step must
have been a reading step where the first component made a non-λ-move, and the sec-
ond component made a λ-move (without changing the internal state). If the symbol
read by the first component was ¢, then the previous configuration must have been
(¢w$1$2w′, s′

0,1, i − 1, s¢, j) for any configuration (¢w$1$2w′, s1, i, s¢, j), i, j > 1. If
the symbol read by the first component was a or b, then the previous configuration must
have been (¢w$1$2w′, s1, i − 1, s¢, j). (Notice that j = 2 in reachable configurations
of these forms. Moreover, computational steps in which the first component has read a
different symbol ($1, $2 or �) are not possible.)

– If the states of the components are (s′
1, s¢), then the previous computational step must

have been a reading step where the first component made a non-λ-move, and the second
component made a λ-move (without changing the internal state). The symbol read by
the first component must have been $1, so the previous configuration must have been
(¢w$1$2w′, s1, i − 1, s¢, j) for any configuration (¢w$1$2w′, s′

1, i, s¢, j), i, j > 1.
– If the states of the components are (q2, s¢), then the previous computational step must

have been a reading step where both components made λ-moves, what is seen as follows.
The first component can enter state q2 in a non-λ-move only from one of the states s¢, sa
or sb. But none of these states can be received by the first component in a communication
step as long as the second component is in s¢ (in reachable configurations). If the second
component would perform a non-λ reading step when entering state s¢, then it must read
a ¢ symbol while changing state s0,2 to s¢. This ¢ symbol cannot be the very first symbol
of the input string since the first component cannot reach state q2 in the very first step. But
it can also not be another occurrence of the ¢ symbol as it has been argued further above.
Therefore, we can conclude that the second component must have been in state s¢ in the
previous configuration, if reachable, which must have been (¢w$1$2w′, s′

1, i, s¢, j) for
any configuration (¢w$1$2w′, q2, i, s¢, j), i, j ≥ 1.

– If the states of the components are (s¢, s0,2), then the previous computational step must
have been a communication step with the previous configuration (¢w$1$2w′, q2, i, s¢, j)
for any (¢w$1$2w′, s¢, i, s0,2, j), i, j ≥ 1.

Continuing the computation, we have

(¢w$1$2w
′, s¢, k + 1, s0,2, 2) 	 (¢w$1$2w

′, q2, k + 2, sx , 3) 	
(¢w$1$2w

′, sx , k + 2, s0,2, 3)

where x depends on the second symbol on the input tape. Now, if x ∈ {a, b} and the (k+2)nd
symbol of the input is also x , the computation can continue with

(¢w$1$2w
′, sx , k + 2, s0,2, 3) 	 (¢w$1$2w

′, q2, k + 3, sx ′ , 4) 	
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(¢w$1$2w
′, sx ′ , k + 3, s0,2, 4)

where x ′ now depends on the third symbol on the input tape. Repeating similar steps, the
system is now able to check whether w = w′ in the input string ¢w$1$2w′. The first com-
ponent can only read the j th symbol of w′ (which is the (k + 1 + j)th symbol on the tape),
if it is the same as the j th symbol of w (which is the (1 + j)th symbol on the tape) that was
read in the previous non-communication step by the second component and transferred in
the previous communication step to the first component as the state sx , for x ∈ {a, b}.

This phase of the computation is also reversible, as can be seen by the following.

– If the states of the components are (q2, sx ) for some x ∈ {a, b} then the previous compu-
tational step must have been a reading step where both components made a non-λ-move.
To see that the first component must also have made a non-λ-move, note that this con-
figuration cannot be the first configuration of the computation where q2 appears, since if
this was the case, then the second component would be in state s¢. This implies that the
first component cannot enter the state q2 with a λ-move from state s′

1, since it can only
be in state s′

1 before any communication happened. If the symbol read by the first com-
ponent is y ∈ {a, b}, then for any configuration (¢w$1$2w′, q2, i, sx , j) with i, j > 1,
the previous configuration must have been (¢w$1$2w′, sy, i − 1, s0,2, j − 1).

– If the states of the components are (sx , s0,2) for some x ∈ {a, b}, then the previous
computational step must have been a communication step, so for any configuration
(¢w$1$2w′, sx , i, s0,2, j) with i, j ≥ 1, the previous configuration must have been
(¢w$1$2w′, q2, i, sx , j).
If the second component reaches the $2 symbol before the first component reaches the end-

of-input�, that is, the configuration reachedwouldbeof the form (¢w$1$2w′, s$1 , 2k, s0,2, k+
1) where ¢w$1$2w′(k + 1) = $2 and ¢w$1$2w′(2k) �= �, then the system is blocked
in non-accepting states, because the first component can continue from state s$1 only
when reading the end-of-input symbol. If the first component reaches the end-of-input
symbol � before the second component reaches the $2 symbol, the system is blocked in
(¢w$1$2w′, sx , 2 j − 1, s0,2, j) for some x ∈ {a, b} and some j > k + 1 which is not
accepting. Note also that the communication steps before these blocking configurations are
reversible.

Thus, in order for the computation to be successful, the two components must reach the
end-of-input symbol � and the symbol $2 simultaneously through the computational steps

(¢w$1$2w
′, sx , 2k − 1, s0,2, k) 	 (¢w$1$2w

′, q2, 2k, s$1 , k + 1) 	
(¢w$1$2w

′, s$1 , 2k, s0,2, k + 1) 	 (¢w$1$2w
′, sacc, 2k + 1, s$2 , k + 2).

These steps of the computation are also reversible, since

– having the current states (q2, s$1) implies that the previous step was a reading step in
whichboth heads havemovedon, because in reachable configurations, thefirst component
has already passed beyond $2 (k ≥ 2, so 2k > k + 1). The state of the first component
must have been sx with x = α(2k−1), x ∈ {a, b}, and the state of the second component
must have been s0,2.

– Having the current states (s$1 , s0,2) implies that the previous step was a communica-
tion step, so for any configurations (¢w$1$2w′, s$1 , i, s0,2, j), i, j ≥ 1, the previous
configuration must have been (¢w$1$2w′, q2, i, s$1 , j).

– If the current states are (sacc, s$2), the two components performed reading move in the
previous computational steps, and the states of previous configuration must have been
s$1 and s0,2, respectively.
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As the components of PCFAare non-deterministic finite automata (NFA),wemay consider
the relationship of the reversibility of a PCFA and the reversibility of its components. Since in
PCFA, there is an end-of-input symbol � and λ-steps are allowed in the component automata,
we extend the definition of reversibility of NFA as it is given in [10] as follows: Let �′ =
� ∪ {�}. An NFA A = (S, �, s0, δ, F) is reversible if

1. there is no internal state s ∈ S, such that s ∈ δ(p, a) ∩ δ(r , a) holds for some a ∈ �′
and states p, r ∈ S with p �= r ;

2. there is no internal state s ∈ S, such that s ∈ δ(p, a)∩δ(r , λ) holds for some a ∈ �′∪{λ}
and states p, r ∈ S with p �= r .

Note that the fact that systems of (deterministic) reversible automata are not necessarily
reversible was already remarked in [9] without giving a formal definition of the notion of
reversibility for PCFA systems. In the second part of the following proposition, we give a
similar, but more simple demonstration than the one in [9].

Proposition 1 1. There are reversible PCFA A = (�, A1, A2, . . . , Ak, Q, �) such that
there is i , 1 ≤ i ≤ k, where Ai is not reversible.

2. There are PCFA A = (�, A1, A2, . . . , Ak, Q, �) such that the components Ai are
reversible for all i, 1 ≤ i ≤ k, and the system A is not reversible.

Proof To show that the first statement holds, we can use the reversible PCFA of Example 1.
Obviously, neither A1 nor A2 are reversible components. Consider for example δ2(s$, a) =
δ2(sa, a) = δ2(sb, a) = sa .

To prove the second statement, consider the PCFA A = ({a, b}, A1, A2, {q2}, �) where
the first component is A1 = ({s0,1, sa, s′

a, q2}, {a, b}, s0,1, δ1,∅) with

δ1(s0,1, a) = q2, δ1(sa, a) = s′
a, δ1(s′

a, a) = sa .
δ1(s0,1, b) = s0,1, δ1(sa, b) = q2,

The second component is defined as A2 = ({sa, s1, sacc}, {a, b}, sa, δ2, {sacc}) with
δ2(sa, a) = s1, δ2(s1, a) = sa, δ2(sa, �) = sacc.
δ2(sa, b) = s1, δ1(s1, b) = sa,

The reader may easily check that both components are reversible. To see that the system
A is not reversible, consider, for example, the computation

(baaa, s0,1, 1, sa, 1) 	 (baaa, s0,1, 2, s1, 2) 	 (baaa, q2, 3, sa, 3) 	
(baaa, sa, 3, sa, 3) 	 (baaa, s′

a, 4, s1, 4) 	 (baaa, sa, 5, sa, 5) 	 . . .

If the states of the two components are (sa, sa), the previous computational step is not unique.
(Therefore, the set of possible previous configurations containsmore than one element.)More
formally (see Definition 1), there are computational steps

(baaa, q2, 3, sa, 3) 	 (baaa, sa, 3, sa, 3)

and

(baaa, s′
a, 4, s1, 4) 	 (baaa, sa, 5, sa, 5)

which lead to the same pair of states (sa, sa), but 3 − 3 �= 5 − 4 (since the first one is a
communication step, while the second is a non-λ reading step).

Notice that we used deterministic centralized systems of degree 2 in both cases.
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3 Some results on the computational capacity

First, we prove that reversible deterministic PCFA are more powerful than reversible deter-
ministic finite automata. It turns out that for accepting a non-reversible regular language with
deterministic PCFA, communication is even unnecessary.

Theorem 1 There is a language in L(revDCPCFA(2)) ∩ L(revDRCPCFA(2)) that cannot
be accepted by any reversible deterministic finite automaton.

Proof First, we prove that for the language L = { 01k | k ≥ 1 }, there is no reversible
deterministic finite state automaton. Let A be any deterministic finite automaton accepting L .
Assume the number of states of A be n. Let

(q0, 01
n) 	 (p0, 1

n) 	 (p1, 1
n−1) 	 (p2, 1

n−2) 	 . . . 	 (pn−1, 1) 	 (pn, λ)

be the accepting computation for 01n , in A, where n > 2, which is seen as follows. If q0 = pi
for some i , 0 ≤ i ≤ n, then the input word 1n−i would be accepted. Hence, q0 �= pi for
all i , 0 ≤ i ≤ n. Furthermore, state p0 is not accepting, while every state pi with i > 1 is
accepting. Thus, p0 �= pi , for 1 ≤ i ≤ n. Since A has n states, there are i and j , 1 ≤ i, j ≤ n,
with i �= j , and pi = p j . Consider the smallest such i , that is, let i be the smallest number
greater than 0 such that there is j > i and pi = p j . Then, δ(pi−1, 1) ∩ δ(p j−1, 1) = pi and
pi−1 �= p j−1. Therefore, A is not reversible.

It is left to show that L ∈ L(revDCPCFA(2)) ∩ L(revDRCPCFA(2)). For proving this,
we consider the deterministic PCFA

A = ({0, 1}, A1, A2,∅, �)

where A1 = ({s0,1, s1, s2}, {0, 1}, s0,1, δ1, {s2}) with
δ1(s0,1, 0) = s1,
δ1(s1, 1) = δ1(s2, 1) = s2,

and A2 = ({s0,2, p1, p2}, {0, 1}, s0,2, δ2,∅) with

δ2(s0,2, λ) = p1,
δ2(p1, 0) = δ2(p2, 1) = p2.

For any 01k , k ≥ 1, the computation of A is as follows:

(01k, s0,1, 1, s0,2, 1) 	 (01k, s1, 2, p1, 1)
	 (01k, s2, 3, p2, 2)
	k−1 (01k, s2, k + 2, p2, k + 1)

This computation is accepting as δ1(s2, �) is undefined and s2 is an accepting state of A1. As
the set of query states is empty, one may consider the DPCFA A to be centralized and both
returning and non-returning. It is left to prove that the PCFA A is reversible.

– If, in a configuration reached, the pair of states is (s1, p1), then the first component
has made a move reading 0 from s0,1, while the second component has made a λ-move
coming from s0,2, and the predecessor configuration must have been the initial one.

– If the states reached are (s2, p2), then both componentsmade a non-λ-move. If the symbol
read by the second component was 0, then, for any configuration (01k, s2, i, p2, j), the
predecessor configuration must have been the configuration (01k, s1, i − 1, p1, j − 1).
In fact, in reachable configurations, i = 3 and j = 2 must hold. If the symbol read by the
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second component was 1, then the predecessor configuration of (01k, s2, i, p2, j) must
have been (01k, s2, i − 1, p2, j − 1).

– Configurations with other states are not reachable.

Examples 1 and 2 show that the following theorem holds.

Theorem 2 There are non-context-free languages in L(revDCPCFA(2)) and in L
(revDRCPCFA(2)).

Next, we study the relationship of deterministic and non-deterministic centralized sys-
tems. In the not necessarily reversible case, deterministic systems are strictly weaker both in
returning and non-returning modes, see [4] for details. For reversible PCFA, we can show a
similar result for the non-returning case.

Theorem 3 L(revDCPCFA) ⊂ L(revCPCFA).

Proof We show that Lnonpal = { $w | w ∈ {a, b}+, w �= wR } ∈ L(revCPCFA). This
is sufficient, since L(revDCPCFA(k)) ⊆ L(DCPCFA(k)) ⊆ L(k-DFA), where L(k-DFA)

is the family of languages accepted by k-head deterministic finite automata as defined in,
e.g., [20]. But Lnonpal /∈ L(k-DFA) for any k ≥ 1. To see this, recall that L(k-DFA) is closed
under complementation and under intersection with regular sets, thus, Lnonpal ∈ L(k-DFA)

would imply that Lnonpal ∩ ({$}{a, b}∗) = {$}{ w | w ∈ {a, b}∗, w = wR } ∈ L(k-DFA),
but this is not the case, as stated, for example, in [21].

To see that Lnonpal ∈ L(revCPCFA), consider the centralized PCFA system

A = ({$, a, b}, A1, A2, A3, {q2, q3}, �)

where A1 = ({s0,1, sa, s′
a, sb, s

′
b, sacc, q2, q3}, {$, a, b}, s0,1, δ1, {sacc}) with

δ1(s0,1, λ) = {s0,1, q2},
δ1(sx , $) = {s′

x } for x ∈ {a, b},
δ1(s

′
x , x) = {s′

x } for x ∈ {a, b},
δ1(s

′
x , y) = {s′

x , q3} for x, y ∈ {a, b}, x �= y.

The second component is A2 = ({s0,2, sa, sb, s�, s f }, {a, b}, s0,2, δ2,∅}) with
δ2(s0,2, $) = {sa, sb},
δ2(sx , x) = {sa, sb, s�} for x ∈ {a, b},
δ2(s�, �) = {s f },

and the third component is A3 = ({s0,3, sacc}, {a, b}, s0,3, δ3,∅}) with
δ3(s0,3, x) = {s0,3} for x ∈ {$, a, b},
δ3(s0,3, �) = {sacc}.

We show that this system is reversible and it accepts the language Lnonpal = { $w |
w ∈ {a, b}+, w �= wR } To see how A works, consider first an initial configuration
(α, s0,1, 1, s0,2, 1, s0,3, 1). Notice that α = $α′ for some α′ ∈ (a + b)∗ or the second
component cannot read through the input. Note also that if $w is accepted, then |w| ≥ 2. To
see this, consider a computation on a (shorter) input of the form $x, x ∈ {λ, a, b}. The first
step of the computation of A is

($x, s0,1, 1, s0,2, 1, s0,3, 1) 	 ($x, s, 1, sy, 2, s0,3, 2)
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where s ∈ {s0,1, q2}, y ∈ {a, b}. Note that this computational step is reversible, since the
states imply that the first component made a λ-reading step with the previous state being
s0,1, while the other two components made non-λ-reading steps. Considering that the $
symbol was read by these components, we can also deduce that their previous states were
s0,2 and s0,3, respectively. Now, if x = λ or y �= x , then the system is in a non-accepting
blocking configuration (or enters such a configuration with the following—also reversible—
communication step) because of the definition of δ2. Because of these observations, it is
sufficient to consider

($x, s, 1, sx , 2, s0,3, 2) (1)

with x ∈ {a, b}. If s = s0,1, we have

($x, s0,1, 1, sx , 2, s0,3, 2) 	 ($x, s, 1, sy, 3, s0,3, 3),

with s ∈ {s0,1, q2}, y ∈ {a, b, �}. If y �= �, then the system is in a non-accepting blocking
configuration (or enters such a configuration with the following communication), so we must
have

($x, s0,1, 1, s�, 3, s0,3, 3) 	 ($x, s, 1, s f , 4, sacc, 4),

with s ∈ {s0,1, q2}, or
($x, q2, 1, s�, 3, s0,3, 3) 	 ($x, s�, 1, s�, 3, s0,3, 3).

In both of these cases, the system is in a non-accepting blocking configuration (or enters such
a configuration with the following communication step), and it is not difficult to see that all
the above steps are also reversible. On the other hand, if in (1) we have s = q2, then

($x, q2, 1, sx , 2, s0,3, 2) 	 ($x, sx , 1, sx , 2, s0,3, 2) 	 ($x, s′
x , 2, sy, 3, s0,3, 3),

where x ∈ {a, b}, y ∈ {a, b, �}. These steps are reversible, as sx at the first component
implies that the previous step was a communication, and the states (s′

x , sy, s0,3) imply that
all components performed non-λ-reading steps. Further, since the first component read the
$ symbol, its previous state must be sx , while the reading of an z ∈ {a, b, �} by the second
component implies that its previous state is sz .

Now, if y �= �, then the system is in a non-accepting blocking configuration, so we must
have

($x, s′
x , 2, s�, 3, s0,3, 3) 	 ($x, s′

x , 3, s f , 4, sacc, 4)

which is also a non-accepting blocking configuration, since, e.g., the first component has no
transition for reading the end-of-input symbol � in state s′

x . (Note that this last step is also
reversible.)

Consider now the computations on an input $w, |w| ≥ 2. These computations must start
with

($w, s0,1, 1, s0,2, 1, s0,3, 1) 	 ($w, s, 1, sx , 2, s0,3, 2)

for some s ∈ {s0,1, q2}, x ∈ {a, b}. If s = q2, we get

($w, q2, 1, sx , 2, s0,3, 2) 	 ($w, sx , 1, sx , 2, s0,3, 2).

Similarly, if the first component enters the query state q2 in a later step, we have

($w, s0,1, 1, sx , 2, s0,3, 2) 	 . . . 	 ($w, s0,1, 1, sx ′ , k − 1, s0,3, k − 1) 	
	 ($w, q2, 1, sy, k, s0,3, k) 	 ($w, sy, 1, sy, k, s0,3, k)
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for x ′, y ∈ {a, b, �} and some head position k. In any of these cases, the system reaches a
configuration

($w, sx , 1, sx , k, s0,3, k)

where x ∈ {a, b, �} and k ≥ 2. If $w(k) �= x , then this configuration is a non-accepting
blocking one due to the definition of δ2. Otherwise, such a configuration records the infor-
mation that the kth symbol on the input tape is x (where k is “nondeterministically chosen”).
This ends the first phase of the computation.

To see that this phase is reversible, consider the following.

– If the states of the components are (s0,1, sx , s0,3) or (q2, sx , s0,3), x ∈ {a, b, �}, then the
first component made a λ reading step, the second and the third non-λ reading steps. If the
symbol read by the second component was a $, then the previous configuration must have
been ($w, s0,1, 1, s0,2, 1, s0,3, 1), the initial configuration. If the second component read a
symbol y ∈ {a, b}, then for any configuration ($w, s, 1, sx , i, s0,3, i) with s ∈ {s0,1, q2},
i ≥ 2, the previous configurationmust have been ($w, s0,1, 1, sy, i−1, s0,3, i−1). (Note
that in any reachable configuration, if the state of the first component is s0,1 or q2, then
its head is on position 1.)

– If the states of the components are (sx , sx , s0,3), for some x ∈ {a, b, �}, then
the previous computational step was a communication, so for any configuration
($w, sx , 1, sx , i, s0,3, i), i ≥ 2, the previous configurationmust have been ($w, q2, 1, sx ,
i, s0,3, i). (Note that in any reachable configuration with states (sx , sx , s0,3), the heads
of the three components must be on positions (1, i, i) for some i ≥ 2.)

Consider now how the computation continues from the configuration

($w, sx , 1, sx , k, s0,3, k)

recording the information that the kth symbol on the input tape is x for some k ≥ 2 and
x ∈ {a, b}. (If $w(k) �= x or x = �, then the computation cannot continue.) The next phase
of the computation makes sure that w is not a palindrome by checking that the symbol at
position (|$w| − (k − 2)) of the input (the kth position counting from the end of the input)
is different from x .

The computation continues by

($w, sx , 1, sx , k, s0,3, k) 	 ($w, s′
x , 2, sy, k + 1, s0,3, k + 1) 	 . . .

. . . 	 ($w, s′
x , 1 + j, sy′ , k + j, s0,3, k + j)

where y, y′ ∈ {a, b, �}, j ≥ 1. Now, due to the construction of δ1, if in such a configuration
the first component enters the communication state q3, then the ( j +1)st symbol of the input
word is different from x . Thus, if the step

($w, s′
x , 1 + j, sy′ , k + j, s0,3, k + j) 	 ($w, q3, 1 + j + 1, s, k + j + 1, s′, k + j + 1)

is performed, then $w( j+1) �= x . Now, it remains to be seen that the accepting configuration
can only be reached if j + 1 = (|$w|− (k − 2)), that is, if w is a non-palindrome. In order to
successfully terminate, the configurations abovemust be with sy′ = s�, s = s f and s′ = sacc,
then we get

($w, q3, 1 + j + 1, s f , k + j + 1, sacc, k + j + 1) 	
($w, sacc, 1 + j + 1, s f , k + j + 1, sacc, k + j + 1)
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which is an accepting configuration. Since the position of the end-of-input symbol on the tape
is the (k+ j)th position, we have that |$w| = k+ j −1 which means that (|$w|− (k−2)) =
j + 1, so the input must have been a non-palindrome.

If j has a different value as above, then either we have a non-accepting blocking config-
uration of the form

($w, s′
x , 1 + j + 1, s f , k + j + 1, sacc, k + j + 1),

or we have

($w, q3, 1 + j + 1, sy, k + j + 1, s0,3, k + j + 1)

for y ∈ {a, b, �}, and then a non-accepting blocking configuration after the communication,
namely

($w, s0,3, 1 + j + 1, sy, k + j + 1, s0,3, k + j + 1).

From these considerations, we can see that L(A) = Lnonpal, what remains to be shown is
the reversibility of the second phase of the computation. To this aim, consider the following.

– If the states of the components are (sx ′ , sy, s0,3), then all three components made non-λ
reading steps. If the symbol read by the first component was a $, and the symbol read by
the second component was z ∈ {a, b}, then for any configuration ($w, sx ′ , 1+ i, sy, k +
i, s0,3, k+i), the previous configurationmust have been ($w, sx , i, sz, k+i−1, s0,3, k+
i − 1). If the symbol read by the first component was different from $, then the previous
configuration is ($w, sx ′ , i, sz, k + i − 1, s0,3, k + i − 1).

– If the states of the components are (q3, s f , sacc), then all components performed non-λ
reading steps. If the symbol read by the first component was x ∈ {a, b}, then for any
configuration ($w, q3, 1+ i, s f , k + i, sacc, k + i), the previous configuration must have
been ($w, s′

y, i, s�, k + i − 1, s0,3, k + i − 1) where y �= x .
– If the states of the components are (q3, sy, s0,3) for some y ∈ {a, b, �}, then all

components performed non-λ reading steps. If the symbol read by the first and
the second components was x and z in {a, b}, respectively, then for any configura-
tion ($w, q3, 1 + i, sy, k + i, s0,3, k + i), the previous configuration must have been
($w, s′

y, i, sz, k + i − 1, s0,3, k + i − 1) where y �= x .
– If the states of the components are (s′

x , s f , sacc), then all components performed non-
λ reading steps. If the symbol read by the first component was $, then for any
configuration ($w, s′

x , 1 + i, s f , k + i, sacc, k + i), the previous configuration must
have been ($w, sx , i, s�, k + i − 1, s0,3, k + i − 1). If the symbol read by the first
component was different from $, then the previous configuration must have been
($w, s′

x , i, s�, k + i − 1, s0,3, k + i − 1).
– If the states of the components are (sacc, s f , sacc) or (s0,3, sx , s0,3) for some x ∈ {a, b, �},

then the previous computational step was a communication. In this case, for any config-
uration ($w, sacc, 1 + i, s f , k + i, sacc, k + i) or ($w, s0,3, 1 + i, sx , k + i, s0,3, k + i),
the previous configurations must have been ($w, q3, 1 + i, s f , k + i, sacc, k + i) or
($w, q3, 1 + i, sx , k + i, s0,3, k + i), respectively.

4 Concluding remarks

In this paper, a definition of the concept of reversibility for systems of parallel communicating
finite automata (PCFA) has been suggested. The definition covers also non-deterministic
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PCFA. It was shown that there are reversible PCFA that have non-reversible components
and there are non-reversible PCFA in which every component is a reversible finite state
automaton. Examples demonstrate that the weakest types of (non-trivial) reversible PCFA,
namely reversible deterministic centralized PCFA of degree 2, can recognize non-context-
free languages, both in returning and in non-returning communication mode. Furthermore,
there is a language which can be recognized with a reversible non-deterministic centralized
PCFA in non-returning mode, but it cannot be accepted by any deterministic PCFA. The
question whether or not the same statement is true also for reversible non-deterministic
returning centralized PCFA is left open here. But there are many more questions regarding
the computational power of reversiblePCFA that are left for future researchwork, for instance:

– What is the relation between reversible centralized and non-centralized PCFA (determin-
istic or not)?

– What is the relation between reversible centralized returning and non-returning PCFA
(deterministic or not)?

– What is the relation between reversible PCFA and reversible one-way multi-head finite
automata (deterministic or not)?

As to the latter question, it is obvious that deterministic (non-deterministic) reversible
one-way multi-head finite automata can simulate any type of reversible deterministic (non-
deterministic) PCFA. It is to be examined whether the proofs showing the other direction
(e.g., see [4]) can be adapted to the reversible case.

Moreover, several decidability problems should be investigated in future research on
reversible PCFA, such as:

– Given a PCFA A, is A reversible?
– Given a PCFA language L , can L be accepted by a reversible PCFA (of the same type)?
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