
Acta Informatica (2021) 58:497–528
https://doi.org/10.1007/s00236-020-00374-7

ORIG INAL ART ICLE

Indecision and delays are the parents of failure—taming
them algorithmically by synthesizing delay-resilient control

Mingshuai Chen1 ·Martin Fränzle2 · Yangjia Li3,4 · Peter N. Mosaad2 ·
Naijun Zhan4,5

Received: 16 January 2019 / Accepted: 10 February 2020 / Published online: 20 February 2020
© The Author(s) 2020

Abstract
The possible interactions between a controller and its environment can naturally be modelled
as the arena of a two-player game, and adding an appropriate winning condition permits
to specify desirable behavior. The classical model here is the positional game, where both
players can (fully or partially) observe the current position in the game graph, which in turn
is indicative of their mutual current states. In practice, neither sensing and actuating the envi-
ronment through physical devices nor data forwarding to and from the controller and signal
processing in the controller are instantaneous. The resultant delays force the controller to
draw decisions before being aware of the recent history of a play and to submit these deci-
sions well before they can take effect asynchronously. It is known that existence of a winning
strategy for the controller in games with such delays is decidable over finite game graphs and
with respect to ω-regular objectives. The underlying reduction, however, is impractical for
non-trivial delays as it incurs a blow-up of the game graph which is exponential in the mag-
nitude of the delay. For safety objectives, we propose a more practical incremental algorithm
successively synthesizing a series of controllers handling increasing delays and reducing
the game-graph size in between. It is demonstrated using benchmark examples that even a
simplistic explicit-state implementation of this algorithm outperforms state-of-the-art sym-
bolic synthesis algorithms as soon as non-trivial delays have to be handled. We furthermore
address the practically relevant cases of non-order-preserving delays and bounded message
loss, as arising in actual networked control, thereby considerably extending the scope of
regular game theory under delay.

1 Introduction

Two-player games played over game arenas are established models for the synthesis of
correct-by-construction reactive controllers [10,23]. A finite game graph is used to formalize
the possible actions of the players; it is complemented by a winning condition specifying
desirable properties of infinite paths by means of an acceptance condition or a specification

Attributed to George Canning, 1770–1827.
This article is an extended version of the paper [11] presented at the 16th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2018).

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-020-00374-7&domain=pdf
http://orcid.org/0000-0001-9663-7441

498 M. Chen et al.

in temporal logic. Frequently, the game is played on a finite graph alternating moves by two
players; the first player is the controller (sometimes called “ego” player) and the second player
is its environment (“alter”), which may be uncooperative, erratic, or even malicious. Correct
controllers thus have to be able to counteract any environmental actions, i.e., they need a
sure winning strategy in the game. Controller synthesis can thus be understood as search for
a winning strategy for ego. In this paper, we are interested in the synthesis problem when
the interaction of a controller and its environment is described by a safety game [23], i.e., an
infinite two-player game on finite graphs comprising “unsafe” states that the controller should
avoid visiting. The controller consequently loses whenever the play eventually reaches such
an unsafe state.

These safety games have traditionally been investigated in a setting where the current
position in the game is either fully known (“perfect information”) or known up to certain
observability constraints (“imperfect/incomplete information”). In this article, we address the
problem of control under delays in perception and action. This can be understood as a form
of imperfect information, as decisions by the controller have to be drawn based on delayed
state observation—i.e., with the recent game history being opaque to the controller—and in
advance—i.e., well before the actual situation where the action takes effect is fully deter-
mined. Such games have numerous practical applications, especially in networked control
settings like cooperative driving, where observation of and influence on other cars’ states
are delayed by communication protocols severely restricting frequency of certain message
types in order to keep overall channel usage sustainable under the pertinent severe bandwidth
constraints. Other sources of delay can be found in complex signal processing chains, for
example when interpretation of the environmental situation is based on computer vision.

It is intuitively obvious that such delay renders control harder: the controller has to decide
in advance and based on dated information. Already at the time of decision, this dated
information may no longer be fully indicative of the current situation due to the interim
development, and it will even less provide a precise prediction of the expected situation at
the time of the decision taking effect in the environment. The existence of a winning strategy
for the controller under such delays nevertheless is decidable over finite game graphs andwith
respect to ω-regular objectives. A straightforward reduction to delay-free games based on a
product construction is impractical for non-trivial delays as it incurs a blow-up of the game
graphwhich is strictly exponential in themagnitude of the delay, as observed byTripakis [30].

In this article, we follow Tripakis’ quest for more efficient algorithms. For safety objec-
tives, we therefore expose a more practical incremental algorithm synthesizing a series of
controllers handling increasing delays and reducing game-graph size in between.We demon-
strate on benchmark examples that even a simplistic explicit-state implementation of this
algorithm outperforms state-of-the-art symbolic synthesis algorithms as soon as non-trivial
delays have to be handled. Beyond the case of message- and order-preserving, sequential
delay, we furthermore address the practically relevant cases of non-order-preserving delays
as well as of bounded message loss, as arising in actual networked control. We thereby
considerably extend the scope of regular game theory under delay as explained below.

Relatedwork. In the literature on games and reactive synthesis, constraints on observation and
interaction are reflected by corresponding restrictions on the information frames available to
the players. Themajority of the results about two-player games adopt the hypothesis of perfect
information (or synchronous behavior in reactive synthesis), where fixed-point algorithms
for the computation of winning strategies exist [7,8,10]. In this case, the controller is aware
of the exact current (and past) state of its environment when selecting its next control action.
In practice, the hypothesis of perfect state information is often not justified due to only part of

123

Indecision and delays are the parents of failure 499

the environment state being observable by the controller. Reif [26] has consequently studied
games of incomplete information and Pnueli and Rosner [25] have considered the synthesis
of a reactive asynchronousmodule, where the program to be synthesized may observe only a
subsequence of a play in the game (though not over an explicit game graph). It is known that
this approach can handle linear temporal logic (LTL) synthesis with incomplete information.
Essentially, non-determinism of the automata can be used to guess the missing information,
guaranteeing that no guess violates the specification [31]. Alternative methods have been
proposed thereafter for asynchronous synthesis, see e.g. [2,21,27]. An orthogonal direction
has been exploited by Kupferman and Vardi in [22] to consider the problem of synthesis with
incomplete information for branching-time logics captured by computational tree logic (CTL)
andCTL∗. In their setting, the current position in the game is knownup to certain observability
constraints, that is, the state space of the game graph is partitioned into finite observations
while the controller cannot distinguish states pertaining to the same observation. Such of
setting of partial observability has been recently carried further to the synthesis of LTL f

(LTL over finite traces) and LDL f (linear dynamic logic over finite traces) [12]. Similarly,
Wulf, Doyen, and Raskin in [32] and Chatterjee, Doyen, Henzinger, and Raskin in [10] study
two-player games on graphs with ω-regular objectives subject to partial observability of the
current (and past) game state. Recent state information however is well available in these
settings, as no restriction concerning the minimum age of observable state information is
imposed. As the latter is an increasingly relevant problem in, e.g., networked control with its
non-trivial end-to-end communication latencies, we here address the problem of two-player
safety games played over an explicit game arena subject to delayed observation and delayed
action of the controlled process, obtaining a specific and practically extremely relevant case
of imperfect information amenable to optimized synthesis algorithms.

A seminal theory of delayedω-regular games dates back to the 1970s, shortly after the sem-
inal Büchi–Landweber theorem [9], when Hosch and Landweber [17] investigated constant
delay strategies in regular games and exploited a result of Even andMeyer [13] fromBoolean
circuit theory to establish a bound for delays. The problem was then revisited by Holtmann,
Kaiser, and Thomas [15,16] and more recently by Klein and Zimmermann [19,20,33], lead-
ing to the first comprehensive study with a flurry of new theoretical results concerning, e.g.,
the complexity of solving such games and the necessary and sufficient constant delay. The
setting underlying these notions of delayed games, however, is complementary to ours, as
they are rooted in the setting of Gale-Stewart games [14], where an input player chooses
an input sequence and an output player tries to add a corresponding output sequence such
that the combined sequence satisfies a specification. In the Gale-Stewart setting, turn-based
playing means that the output player has to issue the i th output letter in immediate response
to the first i input letters, while a delay according to [13,15–17,19,20,33] implies that the
delayed output player is allowed to lag behind and issue the i th output letter after seeing
more than just i input letters. In detail, there is a function f : N → N such that the output
player has to produce the i th letter of the output string only when i + ∑i

j=0 f (j) letters of
the input string are available. Thus, delay comes as an advantage to the output player, as the
input player actually grants the output player a lookahead; the burden for the output player
is just that she may have to memorize (a finite abstraction of) infinite lookahead if delay is
unbounded in that

∑i
j=0 f (j) diverges. As delay is an advantage in this setting, questions

like “what delay suffices for winning the game if it is winnable at all” make sense and have
been answered by proving exponential bounds in the size of the state-space of the ω-regular
specification automaton.

123

500 M. Chen et al.

In the setting of such Gale-Stewart games, our notion of reactive control based on delayed
state information and thus imperfect information coincides to the notion of “shift” introduced
by Büchi and Landweber in [8] rather than to the notion of “delay”. While this may provoke
the conception that our setting can thus be understood as asking for a strategy of the input
player—whose strategic strength suffers from having to grant that lookahead—rather than
for the output player in a delayed Gale-Stewart game, this is not the case. The notions of
“delay” and “shift” are unfortunately not duals that could be transformed into each other by
exchanging the roles of the input and the output player. Just like concurrent games [15], and
in contrast to Gale-Stewart games under delay, games under shift are not even determined,
as the following example shows: consider the Gale-Stewart game where both players play
actions from alphabet {0, 1} and the output player wins whenever it in turn i issues the very
same letter as the input player submits in the same turn i . Clearly, the output player here
has a winning strategy when there is neither shift nor delay, but with a shift of 1—i.e., if the
output player has to submit its i th letter of the input based on knowing the input up to letter
i − 1—neither the input nor the output player have a winning strategy.

For the simplest setting of our notion of delay, namely that the delay between in- and output
is constant, we can nevertheless exploit a similar reduction to games of perfect information
as the oblivious-delay construction of Zimmermann [33], which in the case of constant delay
exploits a product construction on the game graph essentially representing a synchronous
concurrent composition of the graph with a shift register implementing the delays. As in the
Gale-Stewart setting, such a reduction proves that strategy synthesis procedures for games
without delay do in principle suffice for solving gameswith finite or constantly bounded delay.
As this comes at the price of an exponential blow-up in the game graph (for our ω-regular
game-graph setting) or specification automaton (for the Gale-Stewart setting), we share with
[13,15–17,19,20,33] the objective of finding more efficient strategy synthesis methods. Due
to the reversed roles of delay or rather shift, the lines of work do, however, depart from here:
while the Gale-Stewart-based approach aims to minimize the necessary delay of the output
player and the amount of memory that the output player additionally has to manipulate in
order to ensure a win, we in contrast essentially ask for maximizing the shift under which the
input player can still enforce a win against the output player and for efficiently constructing
a delay-resilient winning strategy for the input player. As delay and shift are not duals that
could be transformed into each other by exchanging the roles of input and output player, the
resulting constructions are substantially different.

To this setting of constant delay, we add two practically relevant notions of delay that are
not covered by the setting of delay in [13,15–17,19,20,33] and its counterpart “shift”, namely
out-of-order delivery of messages and message loss (see Sect. 4). Notions of out-of-order
delivery of messages and of message loss are natural in embedded control, but would be
awkward to describe in the Gale-Stewart setting, as they would there amount to the output
player having to select her next action based on a permutation (out-of-order) of a subsequence
(message loss) of a prefix (delay, a.k.a. shift) of the outputs. It therefore comes as no surprise
that these in practice frequently arising variants of imperfect delayed state information have
not yet been addressed in the Gale-Stewart setting.

It is finallyworth noting that the notion of delay employed in this paper aswell as the related
notion in the aboveGale-Stewart setting are substantially different fromdelays in timedgames
and their synthesis algorithms, like Uppaal-Tiga [3], as well as from the notion of delay
used in the discrete-event system community, e.g. [1,24]. In timed games, delay refers to
the possibility to deliberately protract the next control action, i.e., a single event. Up-to-date
positional information, however, is always fully transparent to both players in timed games.
In our setting, delay refers to a time lag imposed when obtaining positional information,

123

Indecision and delays are the parents of failure 501

modelling the end-to-end latency of information distribution in a communication network.
Up-to-date positional information thus is opaque to the players as long as it resides in a
queue modelling the network, where state information as well as control events of multiple
different ages coexist and pipeline towards delivery. Such pipelining of control actions is
lacking in the models of delay from [3] or [24], where only one controllable event can be
latent at any time and just the time of its actual execution is determined by the controller or
the environment, respectively. Meanwhile, the model of delay in [1] is different from ours as
it leads to non-regular languages.

2 Safety games under delayed information

Given a set A, we denote its powerset by 2A, the set of finite sequences over A by A∗, and the
set of infinite sequences over A by Aω. The relative complement of a set B in A is denoted
by A\B = {x ∈ A | x /∈ B}. An empty sequence is denoted by ε, and N is the set of
non-negative integers.

2.1 Games with perfect information

The plays we consider are played on finite bipartite game graphs as known from ω-regular
games, see e.g. [29]:

Definition 1 (Two-player game graph) A finite game graph is of the form G = 〈S, s0, S0,
S1,Σ0,Σ1,→〉, where S is a finite (non-empty) set of states and S0 ⊂ S and S1 ⊂ S define
a partition of S, with Si containing the states where it is the turn of player i to perform an
action. s0 ∈ S0 is the initial state.Σ0 andΣ1 are disjoint finite alphabets of actions for player
0 and player 1, respectively.→⊆ S× (Σ0 ∪Σ1)× S is a set of labeled transitions satisfying
the following conditions:

Absence of deadlock: for each s ∈ S there exist σ ∈ Σ0 ∪ Σ1 and s′ ∈ S s.t. s
σ−→ s′;

such an action σ is said enabled in state s;
Alternation: if s

σ−→ s′ for some σ ∈ Σ0 ∪ Σ1 then σ ∈ Σi iff s ∈ Si and
s′ ∈ S1−i ;

Determinacy of Σ0 moves: if s ∈ S0 and s
σ−→ s1 and s

σ−→ s2 then s1 = s2. �

The state space is required to be deadlock-free and bipartite with respect to the transitions,
which thus alternate between S0 and S1 states. Furthermore, the actions of player 0 are from
Σ0 and deterministic, while all actions of player 1 in Σ1 can be lumped together into a non-
deterministic u action, since we are interested in synthesizing a winning strategy merely for
player 0, who models the controller. Hence for brevity, we will in the sequel drop Σ1 in G
while denoting Σ0 simply as Σ .

The game is played by a controller (player 0, ego) against an environment (player 1, alter)
in turns. Starting from s = s0 and in each second turn, the controller chooses an action σ ∈ Σ

that is enabled in the current state s. By s
σ−→ s′, this leads the game to a unique successor

state s′ ∈ S1. From s′, it now is the environment’s turn to select an action, which it does by

selecting a successor state s′′ ∈ S0 with s′ u−→ s′′. As s′′ again is a position controlled by
player 0, the game alternates between moves of player 0 (the controller) and player 1 (the
environment) forever, leading to the definition of infinite play as in Definition 2.

123

502 M. Chen et al.

Remark 1 Definition 1 assumes that the game graph is bipartite, as is in [29]. We remark,
however, that this assumptions is non-substantial: the game graph defined in Definition 1
can be reduced equivalently to that used in [10] with the bipartition assumption (and the
determinacy of Σ moves) dropped. For instance, a bipartite graph consisting of transitions

s
σ−→ s′, s′ u−→ s′′1 and s′ u−→ s′′2 can be reduced to a non-partite one with transitions s

σ−→ s′′1
and s

σ−→ s′′2 , where ego chooses an action in Σ and then alter resolves non-determinism by
choosing the successor state. �

Definition 2 (Infinite play) A play on game graph G = 〈S, s0, S0, S1,Σ,→〉 is an infinite

sequence π = π0σ0π1 . . . σn−1πnσn . . . satisfying π0 = s0 and ∀i ∈ N : πi
σi−→ πi+1. �

To define a game over the game graph, which merely determines the possible positions
and moves in the game, the game graph comes with an associated winning condition. In a
safety game, this is a set of unsafe positions U ⊆ S and the controller loses (and thus the
environment wins) the play π as soon as the play reaches an unsafe state πi ∈ U . Conversely,
the controller wins (and the environment loses) iff the play π goes on forever without ever
visiting U .
Definition 3 (Regular two-player safety game) A (regular) two-player safety game is of the
formG = 〈S, s0, S0, S1,Σ,U,→〉, whereG ′ = 〈S, s0, S0, S1,Σ,→〉 is a finite game graph
and U ⊆ S is a set of unsafe positions. Π(G) denotes the set of plays over the underlying
game graph G ′. The play π0σ0π1 . . . ∈ Π(G) is won by player 0 iff ∀i ∈ N : πi /∈ U and
won by player 1 otherwise. �
The objective of the controller in a safety game thus is to always select actions avoiding
unsafe states, while the hostile or just erratic environment would try to drive the game to a
visit of an unsafe state by picking adequate successor states on u actions.

For a given play π ∈ Π(G), its prefix up to position πn is denoted by π(n). This prefix
thus is the finite sequence π(n) = π0σ0π1 . . . σn−1πn , whose length is |π(n)| = n + 1 and
whose last element is Last(π(n)) = πn . The set of prefixes of all plays in Π(G) is denoted
by Pref(G), in which we denote those ending in a controller state by Prefc(G) = {ρ ∈
Pref(G) | Last(ρ) ∈ S0}. Likewise, Prefe(G) = {ρ ∈ Pref(G) | Last(ρ) ∈ S1}
marks prefixes of plays ending in environmental positions.

For a game G = 〈S, s0, S0, S1,Σ,U,→〉, a strategy for the controller is a mapping
ξ : Prefc(G) → (

2Σ\{∅}) such that all σ ∈ ξ(ρ) are enabled in Last(ρ) and ξ(ρ) = ∅
for any ρ ∈ Prefc(G). The outcome of the strategy ξ in G is defined as O(G, ξ) = {π =
π0σ0π1 . . . ∈ Π(G) | ∀i ∈ N : σ2i ∈ ξ(π(2i))} and denotes all plays possible when player
0 respects strategy ξ while player 1 plays arbitrarily.

Definition 4 (Winning strategy for the controller) A strategy ξ for the controller in a safety
game G = 〈S, s0, S0, S1,Σ,U,→〉 is winning for the controller (or just winning for short)
iff ∀π = π0σ0π1 . . . ∈ O(G, ξ).∀i ∈ N : πi /∈ U . �

A strategy for the environment canbedefined similarly as being amapping ξ̃ : Prefe(G) →(
2S0\{∅}) with equivalent well-definedness conditions as above, namely that ξ̃ (ρ) is a non-
empty subset of the successor states reachable from Last(ρ) via an environmental player
move whenever Last(ρ) ∈ S1. It is winning for the environment iff all plays consistent with
the strategy satisfy the complement of the above winning condition, i.e., eventually visit U .

It is a classical result of game theory that such safety games under perfect observation are
determined: one of the two players has a sure winning strategy enforcing a win irrespective
of the opponent’s particular choice of actions.

123

Indecision and delays are the parents of failure 503

Theorem 1 (Determinacy [14]) Safety games are determined, i.e., in each safety game G =
〈S, s0, S0, S1,Σ,U,→〉 exactly one of the two players has a winning strategy. �

We call a (controller) strategy ξ : Prefc(G) → 2Σ positional (or memoryless) if for
any ρ and ρ′ ∈ Prefc(G), Last(ρ) = Last(ρ′) implies ξ(ρ) = ξ(ρ′). Being positional
implies that at any position in a play, the next decision of a controller applying the strategy
only depends on the current position in the game graph and not on the history of the play. As a
consequence, such a positional strategy can also be described by a function ξ ′ : S0 → 2Σ that
maps every state of the controller in the game to a set of actions to be performed whenever
that state is visited. The reduction to positional strategies is motivated by the fact that in
delay-free safety games, whenever there exists a winning strategy for the controller, then
there also exists a positional strategy for it.

Theorem 2 (Existence of positional strategies [9,29]) Given a two-player safety game G,
the set of states from which player 0 (player 1, resp.) can enforce a win is computable, and
memoryless strategies are sufficient for the winning party. �

The construction of memoryless strategies behind Theorem 2 builds on a backward search
for the set E of states from which a visit in U can be enforced by player 1. More precisely,
the computation is based on recursively, starting from E0 = U , computing the sets Ei ⊆ S
from which player 1 can enforce a visit of U in at most i ∈ N steps:

Ei+1 = Ei ∪ {s ∈ S1 | ∃σ ∈ Σ1 : s σ−→ s′ for some s′ ∈ Ei }
∪ {s ∈ S0 | ∀σ ∈ Σ0 : s σ−→ s′ (if defined) for some s′ ∈ Ei }

As S is finite this ascending chain of state sets (Ei) eventually reaches a fixed-point E . If
s0 ∈ E , then the positional winning strategy for player 1 is obtained by admitting in each
state from S1 ∩ Ei+1 exactly those actions leading to a successor in S0 ∩ Ei . Otherwise, a
positional winning strategy for player 0 applies to any state in S0\E , specifying a transition
to a successor state again outside E (which exists by the definition of E). An algorithmic
fixed-point-based construction of positional strategies will be presented in Sect. 3. For more
details, we refer the readers to [29].

2.2 Games under delayed control

It is immediately obvious from the fact that memoryless strategies suffice in the above setting,
that being able to fully observe the current state and to react on it immediately is an essen-
tial feature of the above games. In practice, this is often impossible due to delays between
sensing the environmental state, computing the control action, submitting it, and it taking
effect. In embedded control applications, such delays are induced by latencies in sensing and
actuating devices as well as by the communication networks connecting all the components.
The winning strategy for the control player 0, if existent, thus cannot resort to the full state
history, but only to a proper prefix thereof due to the remainder of the state history becoming
visible too late or even arising only after the control action has been submitted. These delays
consequently reduce the strength of the control player 0, who suffers from lacking access
to recent state information. It is worth noting, however, that the delays do neither increase
the strength of the environmental player 1, as she realistically lacks introspection into the
local state of the delay-inducing components (sensors, actuators, communication network
infrastructure, etc.) and thus cannot exploit the already submitted, yet latent control informa-
tion residing therein. This is in stark contrast to the Gale-Stewart-game setting investigated

123

504 M. Chen et al.

Fig. 1 Playing a safety game subject to sequential discrete delay: FIFO-type delays (not necessarily of equal
magnitude) arise in the downlink stream through which the controller perceives its environment as well as in
the uplink stream through which it actuates effects on the game state

by Holtmann, Kaiser, Thomas, Klein, and Zimmermann [15,16,19,20,33], where the output
player is granted perfect introspection and thus a lookahead into the input player’s delayed
actions.

In the simplest possible of a sequence of different settings investigated by us, delayed
information is forwarded sequentially and thus in order from the plant to the controller as well
as back, equalling two FIFO-buffers or shift-registers (not necessarily of matching lengths)
in the two information channels between environment and controller, as depicted in Fig. 1.
As can also be inferred from this figure, it does not make any observable difference for the
strategy to be playedwhether delays originate from the downlink connecting the environment
to the controller (ego) or the uplink to the controlled plant (adversary) or both; only the total
sum of the delays is important: at the interface to the game graph. It is indistinguishable
whether the ego player due to a downlink delay of n receives at time t + n the state that
the game graph has had at time t , processes it, delivers its reaction at the next time instant
t + n + 1, which then finally takes effect at time t + n + 1+m due to an uplink delay of m,
or whether any other combination of delays n′ and m′ with n′ + m′ = n + m applies. The
sequence of events at the interface to the game graph remains unchanged as states observed
at time t lead to effects at time t + n + 1 + m = t + n′ + 1 + m′; only the absolute time
when game states are observed by the controller and reactions are submitted to the network
will change, yet the overall turnaround time of n + 1+ m = n′ + 1+ m′ from a game state
arising to the corresponding selected action taking effect stays the same, as does consequently
the sequence of events observed at the plant’s interfaces. As the sequence of events at the
interfaces of the game graph remains unchanged, a strategy consequently is winning under
downlink delay m and uplink delay n iff it is winning under downlink delay m + n and
no uplink delay. Likewise, a strategy is winning under downlink delay m and uplink delay
n iff it is winning under no downlink delay and uplink delay m + n, provided the uplink
channel—here modelled by a shift register—is properly initialized to provide corresponding
uplink messages to the environments in steps n to n+m. We will therefore in the sequel not
distinguish between downlink and uplink delays, yet just speak of a single delay of δ steps.
We will freely switch between allocating this delay either within the downlink or the uplink,
depending on which choice suits intuition better. Note that in the absence of any observable
difference at the interface to the plant, this choice is only a presentational issue without any
impact on the theory developed.

For the moment we assume the delay to be constant and equal to δ ∈ N steps. The
controller would therefore have to decide about the action to be taken after some finite play
π0σ0π1 . . . π2n already after just seeing its proper prefix π0σ0π1 . . . π2n−δ . Furthermore, a
constant strategy not dependent on any historic observations would have to be played by the
controller initially for the first δ steps. That motivates the following definition:

123

Indecision and delays are the parents of failure 505

Definition 5 (Playing under delay) Given a delay δ ∈ N, a strategy for the controller under
delay δ is a map ξ : Prefx (G) → 2Σ , where x = c if δ is even and x = e else, together

with a non-empty set α ⊆ Σ� δ
2 � of initial action sequences. The outcome of playing strategy

(α, ξ) in G under delay δ is O(G, α, ξ, δ) =
{

π = π0σ0π1 . . . ∈ Π(G)

∣
∣
∣
∣
(∃a ∈ α.∀i ∈ N : 2i < δ ⇒ σ2i = ai)∧
(∀i ∈ N : 2i ≥ δ ⇒ σ2i ∈ ξ(π(2i − δ)))

}

.

We call the strategy (α, ξ) playable by the controller iff it always assigns permitted moves,
i.e., iff for each prefix ρ = π0σ0π1 . . . σ2n−1π2n of a play in O(G, α, ξ, δ), we have that the
set of next actions

Σρ =
{
{an | 〈σ0, σ2, σ4, . . . , σ2n−2, an〉 is a prefix of a word in α} iff 2n < δ,

ξ(π(2n − δ)) iff 2n ≥ δ

suggested by the strategy is non-empty and contains only actions enabled in π2n . A strategy
(α, ξ) is winning (for the controller) under delay δ iff it is playable and for each π =
π0σ0π1 . . . ∈ O(G, α, ξ, δ), the condition ∀i ∈ N : πi /∈ U holds, i.e., no unsafe state is
ever visited when playing the strategy. A strategy (α, ξ) is positional iff it is playable and
for any prefixes ρ and ρ′ ∈ Prefc(G) of plays in O(G, α, ξ, δ), Last(ρ) = Last(ρ′)
implies that the sets of next actions suggested by the strategy satisfy Σρ = Σρ′ . A winning
strategy (α, ξ) for the controller ismaximally permissive iff O(G, α′, ξ ′, δ) ⊆ O(G, α, ξ, δ)

for every winning strategy (α′, ξ ′) for the controller.
The definition of a (winning) strategy for the environment remains unchanged under

delay δ, as lacking introspection into the state of the components inducing the delay (cf.
Fig. 1), the environment still has to base its strategy on just the current (without lookahead)
history of actions and game-graph state. A strategy for the environment thus is a mapping
ξ̃ : Prefe(G) → 2S0 assigning as ξ̃ (ρ) a non-empty subset of the successor states reachable
from Last(ρ) via an environmental player move whenever Last(ρ) ∈ S1. It is winning for
the environment iff all plays consistent with the strategy ξ̃ eventually visit U . �

Playing under a delay of δ thus means that for a play π = π0σ0π1 . . ., the choice of
actions suggested by the winning strategy at state π2i has to be pre-decided at state π2i−δ

for any i ≥ � δ
2� and decided without recourse to positional information for the first δ − 1

steps. Playing under delay 0 is identical to playing a safety game under complete positional
information.

From Definition 5 it is obvious that existence of a (delay-free) winning strategy in the
complete information game G is a necessary, yet not sufficient condition for existence of a
strategy that is winning under a delay of δ > 0. Likewise, existence of a strategy winning
under some relatively small delay δ is a necessary, yet not sufficient condition for existence
of a strategy that is winning under a delay of δ′ > δ: having a strategy that wins for δ′ > δ,
the strategy that wins for δ′ can successfully be played for δ also by simply waiting δ′ − δ

steps before implementing the respective control action.
Intuitively, a maximally permissive winning strategy in Definition 5 subsumes the behav-

ior of every winning strategy (cf. [4]). The maximal permissiveness consequently admits
non-deterministic strategies, i.e., the controller non-deterministically selects from the set of
all guaranteed to be winning actions upon decisions, instead of committing itself to exactly
one particular action. Such non-deterministic strategies come with the advantage of avoiding
the implementation bias of selecting a particular action, which would likely impede compo-
sitionality of strategies. As we need to combine different strategy parts in our incremental
synthesis algorithm, we need such compositionality. Insisting on maximal permissiveness

123

506 M. Chen et al.

of strategies therefore guarantees the completeness of our incremental synthesis algorithm
to be proposed, as shown later in the proof of Theorem 3, since the algorithm can always
find a winning strategy under delay for the controller if there exists one, by incrementally
hardening the maximally permissive strategy against larger and larger delays.

Lemma 1 LetG = 〈S, s0, S0, S1,Σ,U,→〉bea safety game. If the controller has nowinning
strategy under delay δ ∈ N, then it has no winning strategy under any delay δ′ ∈ N with
δ′ ≥ δ. �

Proof We prove the contraposition that if G has a winning strategy (α′, ξ ′) under delay δ′,
then G has a winning strategy (α, ξ) under delay δ ≤ δ′ too. This however is intuitively
obvious: we can apply the winning strategy that computes an appropriate reaction for delay
δ′ and delay its action by further δ′ − δ steps as follows. If (α′, ξ ′) is the winning strategy
corresponding to delay δ′ then (α, ξ) with α = {a′(�δ/2�) | a′ ∈ α′} and

ξ(π(2n)) =
{
a′n iff 2n < δ′,
ξ ′

(
π

(
2n − (δ′ − δ)

))
iff 2n ≥ δ′

wins G under delay δ. ��
Before wemove on to complexmodels of delay including out-of-order delivery of actions,

we first explore the above scenario of playing under strictly sequential delay with guaranteed
in-order delivery of the delayed information as captured by Definition 5. We will show in
Sect. 4 how the setting can be extended to cater for out-of-order delivery and boundedmessage
loss, which are present in many practical applications of networked control.

2.3 Insufficiency of memoryless strategies

Recall that in safety games with complete information, the existence of a winning strategy for
the controller, i.e., for player 0, implies existence of a memoryless strategy for player 0. For
games with delayed information, however, memoryless strategies are not powerful enough,
as the following example demonstrates:

Example 1 Consider the safety game G = 〈S, s0, S0, S1,Σ,U,→〉 shown in Fig. 2, where
S = S0 ∪ S1, S0 = {c1, c2, c3}, S1 = {e1, e2, e3, e4, e5}, s0 = c1, Σ = {a, b}, and U = {e3}.
Player 0 can obviously win this safety game if no delay is involved.

Now consider a memoryless strategy with ξ ′ : S0 → 2Σ for the controller under delay 2.
We obviously need ξ ′(c2) = {b}, indicating that the controller executes b two steps later at
either c1 or c3, as action a at c3 would yield the unsafe state e3. Analogously, ξ ′(c3) = {a} is
necessary since a always leads to a safe state two steps later at either c1 or c2. At c1, however,
the controller has to draw a pre-decision for both c2 and c3. If the controller picks a (or b)
at c1 without knowing whether it will move towards c2 or c3, then two steps later at c3 (c2,
resp.) it executes the unsafe action a (b, resp.). For a win, extra memory keeping track of the
historic sequence of actions is necessary such that the controller can retrieve the still latent
action previously emitted at c2 or c3 and can thus determine whether it will next visit c2 or
c3 from c1. �

The above example shows thatmemoryless strategies are generally insufficient forwinning
a safety game under delays. A straightforward generalization of the situation shown in Fig. 2,
namely deeply nesting triangles of the shape spanned by c1, c2, and c3, demonstrates that the

123

Indecision and delays are the parents of failure 507

Fig. 2 A safety game winnable with memoryless strategies for delay δ ≤ 1, yet not beyond

amount of memory needed will in worst case be exponential in the delay. Any reduction of
delayed safety games to safety games under complete information—i.e., to delay-free safety
games—will have to introduce a corresponding blow-up of the game graph. We will next
elaborate such a reduction.

2.4 Reduction to delay-free games

As playing a game under delay δ amounts to pre-deciding actions δ steps in advance, the
problem of finding a winning strategy for the controller in G that wins under delay δ can be
reduced to the problem of finding an undelayedwinning strategy for the controller in a related
safety game which is obtained by building a synchronous product of the original game graph
with a shift register implementing the delay by queueing the latent actions in FIFO manner.
Within this derived game depicted in Fig. 3, actions submitted by the controller have to queue
in a FIFO buffer of length δ before they affect the game state. The controller in its first step
can thus preload that FIFO buffer (which requires an alphabet extension for the controller
such that it can select an initial FIFO contents in a single sweep) and will then always submit
its subsequently single action σ ∈ Σ to the tail of the buffer while the environment retrieves
player-0 actions from the head of the buffer such that actions get delayed by the FIFO-buffer
length. This reduction can be formalized as follows:

Lemma 2 Let G = 〈S, s0, S0, S1,Σ,U,→〉 be a safety game and δ ∈ N a delay. Then the
controller has a strategy that wins G under delay δ iff the controller has a winning strategy

in the game Ĝ = 〈S′, s′0, S′0, S′1,Σ ∪ Σ� δ
2 �,U ′,→′〉 given by

1. S′ =
(
S × Σ� δ

2 �
)
� {s′0} �

(
{s′0} × Σ� δ

2 �
)
, where � denotes disjoint union, S′0 =

(
S0 × Σ� δ

2 �
)
∪ {s′0}, and S′1 =

(
S1 × Σ� δ

2 �
)
∪

(
{s′0} × Σ� δ

2 �
)
,

123

508 M. Chen et al.

Fig. 3 An illustration of the reduction to delay-free games. Direct input of the ego player to the game graph is
replaced by an input to a shift register, whose output is connected to the game graph via an internal channel.
Note that the shift register represents an automaton of size exponential in the magnitude of the delay such
that game graph resulting from the synchronous product with the original game graph incurs an exponential
blow-up. Here, “Intern” abbreviates internal actions

2. s
σ

→′ s′ iff

s = s′0 ∧ σ = a1 . . . an ∈ Σn ∧ s′ = (s′0, a1 . . . an) [trans. from initial state s′0 to (s′0, α)]
∨ s = (s′0, α) ∧ σ = u ∧ s′ = (s0, α) [trans. from (s′0, α) to (s0, α)]
∨ s = (ŝ, a1 . . . an) ∧ ŝ ∈ S0 ∧ σ ∈ Σ ∧ ŝ

a1−→ ŝ′ ∧ s′ = (ŝ′, a2 . . . anσ) [trans. from S′0 to S′1]
∨ s = (ŝ, α) ∧ ŝ ∈ S1 ∧ σ = u ∧ ŝ

u−→ ŝ′ ∧ s′ = (ŝ′, α) [trans. from S′1 to S′0]

where n = δ
2 if δ is even and n = δ+1

2 if δ is odd, i.e., n = � δ
2�.

3. U ′ = U × Σ� δ
2 �. �

Proof Wefirst concentrate on the case of even delay δ. For an even delay δ, game Ĝ simulates
playing G under delay δ by first forcing the controller to guess an initial action sequence

α ∈ Σ
δ
2 and then maintains a shift register of player-0 actions. It subsequently determines

actions of player 0 by the head of the shift register while appending fresh actions to its tail,
thus delaying the effect of player-0 actions by δ steps. As each action that thus comes to
effect has been decided δ time units ago, this is equivalent to deciding actions at step i based
on the play prefix π(i− δ), as a strategy under delay would have to. Consequently, a winning
strategy for the controller in this safety game Ĝ exists iff a strategy winning for the controller
in G under delay δ exists.

For the case of odd delay δ = 2k + 1, we observe that the move from a state at πi−δ−1 to
πi−δ is a player-0 action if i itself is an even position, i.e., under control of the controller. If
playing a deterministic strategy, which obviously is as powerful as playing potentially non-
deterministic strategies, the controller consequently cannot gain any additional information
frombeing able to observe the playprefixπ(i−δ) rather than just the shorter prefixπ(i−δ−1).
The problem of finding a strategy under odd delay δ thus is equivalent to that of finding a
strategy for even delay δ + 1, which warrants using reduction to the same safety game Ĝ in
both cases. ��

The essential idea of the above reduction is to extend the game graph by a synchronous
product with a shift register appropriately delaying the implementation of the control action

decided by the controller. The blow-up in graph size incurred is by a factor |Σ |� δ
2 � and thus

exponential in the delay. It is obvious that due to this, a winning strategy for the controller

in the delayed game can, if existent, be synthesized with |Σ |� δ
2 � memory.

123

Indecision and delays are the parents of failure 509

Note that the above reduction to delay-free safety games does not imply that games under
delay are determined, as the reduction to delay-free games from Lemma 2 does not apply
symmetrically for the environment. Rather, due to it lacking introspection into the states of
delay-inducing components, the environment interacts with the game graph in an unaltered
fashion. This implies that the environment’s strategies as well as its winning strategies remain
unchanged (cf. the definition of (winning) strategy for the environment in Definition 5)
under delay. For the environmental player, the reduction of a safety game under delay to a
corresponding delay-free game thus is trivial: it just recovers the underlying delay-free game.
As consequently, delays impact the strength of the control player while leaving the strength
of the environmental player unchanged, situations where none of the two players owns a
winning strategy may arise. Delayed games may thus be undetermined, as demonstrated by
the following simple example: Consider a simple guessing game, where player 1 suggests in
each of her moves either a “head” or a “tail” and player 0 in the next step has to repeat that
exact guess by revealing a corresponding “head” or “tail” action, losing as soon as he fails to
properly repeat the previous guess. In this guessing game, player 0 has a surewinning strategy
under delay 0, as he just has to repeat the most recent observation. Yet none of the two players
has one under any strictly positive delay: while player 1 could enforce a win with probability
1 in a probabilistic setting by just playing a random sequence, she cannot enforce a win in
the qualitative setting where player 0 may just be lucky to draw the right guesses throughout.
Determinacy is only obtained if one of the players is granted a lookahead equivalent to the
other’s delay, as in the settings of Hosch and Landweber [17] and the Gale-Stewart setting
of Holtmann, Kaiser, Thomas, Klein, and Zimmermann [15,16,20]. Such lookahead does
not, however, correspond to any physical reality in distributed control, where both players
are subject to the same positive end-to-end latency (i.e., delay) in their mutual feedback
loop. The FIFO queue thus is opaque to and thus hinders both players, rather than granting
advantage to player 0 by providing introspection into actions scheduled by player 1 for the
future, as in [20].

3 Synthesizing controllers

As stated above, controller synthesis for games under delay δ can be obtained using a reduc-
tion to a delay-free safety game involving the introduction of a shift register. The exponential
blow-up incurred by this reduction, however, seems impractical for any non-trivial delay. We
therefore present a novel incremental synthesis algorithm, which starts from synthesizing a
winning strategy for the underlying delay-free safety game (with delay k = 0) and then incre-
mentally hardens the strategy against larger and larger delays (till the final delay of interest
k = δ, if existent), thus avoiding explicit reductions. We further optimize the algorithm by
pruning the otherwise exponentially sized game graph after each such hardening step: as con-
trollability (i.e., the controller wins) under delay k is a necessary condition for controllability
under delay k′ > k, each state already uncontrollable under delay k can be removed before
proceeding to the next larger delay. The algorithm thus alternates between steps extending
memory and thus effectively enlarging the game graph underlying the reduction to delay-free
safety games, and steps compressing the game graph.

Reflecting the fact that the additional memory is a FIFO memorizing �δ/2� latent actions,
we will for the sake of clarity of presentation in this section denote our strategies slightly
differently from that in Sect. 2: rather than saying a strategy under delay δ is a pair (α, ξ)with
α ∈ Σ�δ/2� and ξ : Prefx (G) → 2Σ , we denote strategies as pairs (α, ξ̂) with α ∈ Σ�δ/2�

123

510 M. Chen et al.

Algorithm 1: Synthesizing winning finite-memory strategy
input : δ ∈ N, a fixed constant delay;

G = 〈S, s0, S0, S1, Σ,U ,→〉, a safety game played under delay δ.
/* initialization */

1 k ← 0 ; α ← {ε} ;
/* computing maximally permissive strategy under no delay */

2 ξ̂0 ← FPIteration(G);
/* lifting delays from 0 to δ */

3 while k < δ do
/* with an odd delay k + 1 */

4 if k ≡ 0 (mod 2) then
5 for s ∈ S, σ1 . . . σ k

2
∈ α do

6 if s ∈ S1 \ U then
7 ξ̂k+1(s, σ1 . . . σ k

2
) ← ⋂

s′ : s u−→s′ ξ̂k (s
′, σ1 . . . σ k

2
);

/* shrinking the possibly-spurious strategy */

8 if ξ̂k+1(s, σ1 . . . σ k
2
) = ∅ and

∧

s′ : s u−→s′ ξ̂k (s
′, σ1 . . . σ k

2
) = ∅ then

9 Shrink(ξ̂k+1, ξ̂k ,G, (s, σ1 . . . σ k
2
));

10 else
11 ξ̂k+1(s, σ1 . . . σ k

2
) ← ∅;

12 α ← {σ0σ1 . . . σ k
2
| s0 σ0−→ s′, σ1 . . . σ k

2
∈ α, ξ̂k+1(s

′, σ1 . . . σ k
2
) = ∅};

13 if α = ∅ then
14 return (LOSING, k + 1);

/* with an even delay k + 1 */
15 else
16 for s ∈ S, σ1 . . . σ k−1

2
∈ α do

17 if s ∈ S0 \ U then

18 for σ0, s
′ : s σ0−→ s′ do

19 ξ̂k+1(s, σ0σ1 . . . σ k−1
2

) ← ξ̂k (s
′, σ1 . . . σ k−1

2
);

20 else
21 ξ̂k+1(s, σ0σ1 . . . σ k−1

2
) ← ∅;

22 k ← k + 1;

23 return (WINNING, (α, ξ̂k));

and ξ̂ : Sx × Σ�δ/2� → 2Σ . Such a pair (α, ξ̂) corresponds to a delay strategy (α, ξ) by the
recursive equation

ξ(π(n)) = ξ̂
(
πn, 〈ξ ′(π(n − 2δ)), ξ ′(π(n − 2δ + 2)) . . . , ξ ′(π(n − 2))〉)

where

ξ ′(σ0π1 . . . σk−1πk) =
{

ξ(π0σ0π1 . . . σn−1πk) iff k ≥ δ,

αk else.

The key idea of the synthesis procedure (Algorithm 1) is to compute a series of finite-
memory winning strategies ξ̂k while incrementing delays from k = 0 to the final delay of
interest k = δ. The algorithm takes as input a delayed safety gameGδ (notational abbreviation

123

Indecision and delays are the parents of failure 511

of a safety game G played under the fixed delay δ), and returns either WINNING paired with
a winning strategy (α, ξ̂δ) for the controller if Gδ is controllable, or LOSING otherwise
with an integer m indicating that the winning strategy vanishes at delay m ≤ δ. Line 2
invokes the classical fixed-point iteration to generate the maximally permissive strategy for
the controller in G without delay. The procedure FPIteration (Algorithm 2) first conducts
a backward fixed-point iteration computing the set E of states from which a visit to U can
be enforced by the alter player 1 [29]. The maximally permissive strategy for the controller
is then obtained by admitting in each state from S0\E exactly those actions leading to a
successor in S1\E . Then the delays are lifted from k = 0 to δ by a while loop in line 3,
and within each iteration of the loop the strategy ξ̂k+1 is computed based on its predecessor
ξ̂k as follows:

1. If k + 1 is an odd delay, the controller needs to make pre-decisions at safe states of
the environment, namely at each s ∈ S1\U . The controller needs to pre-decide at s a
set of actions that are safe to perform at any of the possible successors s′ ∈ Succ(s),
irrespective of which successor state s′ actually happens to arise. For each such successor
state, a corresponding set of winning actions has however already been computed in the
strategy ξ̂k(s′, ·). In line 7, we therefore compute ξ̂k+1(s, ρ) as the intersection of the
ξ̂k(s′, ρ) for all s′ ∈ Succ(s) with the same history sequence of actions ρ. The derived
strategy can be spurious however, inasmuch as the intersection may itself be empty or
lead to successor states with an empty strategy, i.e., which are uncontrollable. At line 9
we therefore remove all uncontrollable predecessors of freshly unwinnable states by a
Shrink procedure depicted in Algorithm 3, which will be explained below.

2. In case of an even delay k+1, the controller needs to make pre-decisions at safe states of
its own, i.e. at each s ∈ S0\U . In contrast to an intersection in the odd case, the controller
can inherit the winning strategy ξ̂k(s′, ρ) directly from each successor s′ of s. However,
we have to prepend, if s

σ0−→ s′, the action σ0 to the history sequence ρ to record the
choice in the shift register (line 19).

The synthesis aborts at line 14 if the controller does not have any actions available at the
initial state s0, declaring LOSING at k + 1 where the winning strategy vanishes. Otherwise,
the algorithm continues and eventually produces a winning strategy ξ̂δ for the controller in
G.

Only when a fresh unwinnable state s for the controller is detected (line 8), the Shrink
function (Algorithm 3) will be launched to carry out two tasks in a recursive manner: (1) it
traverses the graph backward and removes from the current strategy all the actions that may
lead the play to this unwinnable state, and consequently (2) it gives a state-space pruning
that removes all states no longer controllable under the given delay before proceeding to the
next larger delay. The latter accelerates synthesis, while the former is a key ingredient to the
correctness of Algorithm 1, as can be seen from the proof of Theorem 3: it avoids “blind
alleys” where locally controllable actions run towards subsequent unwinnable states.

The worst-case complexity of Algorithm 1 follows straightforwardly as O(δ · |S0| · |S1| ·
|Σ |� δ

2 �), as is the case for the reduction to a delay-free safety games. In practice, the advantage
however is that we avoid explicit construction of the graph of the corresponding delay-free
game, which yields an exponential blow-up, and interleave the expansion by yet another
shift-register stage with state-set shrinking removing uncontrollable states.

Theorem 3 (Correctness and Completeness) Algorithm 1 always terminates. If its output is
(WINNING, (α, ξ̂)) then (α, ξ̂) is a maximally permissive winning strategy of Gδ; otherwise,
when (LOSING, k + 1) is the output of the algorithm, Gδ has no winning strategy. �

123

512 M. Chen et al.

Algorithm 2: FPIteration: Generating permissive strategy under no delay
input : G = 〈S, s0, S0, S1, Σ,U ,→〉, a safety game played under no delay.
/* initialization */

1 E ← U ;
2 for s ∈ S0 do
3 if s ∈ U then
4 ξ̂0(s, ε) ← ∅ ;

5 else

6 ξ̂0(s, ε) ← {σ | ∃s′ : s σ−→ s′} ;
/* computing fixed-point on set of unwinnable states E */

7 while E = ∅ do
8 s′ ← Pop(E) ;
9 if s′ ∈ S0 then

10 Push(E, {s | s u−→ s′} \ E) ;

11 else

12 for s : s σ−→ s′ do
13 ξ̂0(s, ε) ← ξ̂0(s, ε) \ {σ };
14 if ξ̂0(s, ε) = ∅ and s /∈ E then
15 Push(E, s) ;

16 return ξ̂0 ;

Algorithm 3: Shrink: Shrinking the possibly-spurious strategy

input : ξ̂2n+1, the strategy under an odd delay 2n + 1;
ξ̂2n , the strategy under an even delay 2n;
G = 〈S, s0, S0, S1, Σ,U ,→〉, a safety game played under delay δ;
(s, σ1 . . . σn), a freshly unwinnable state with the sequence of actions.

1 for s′ : s′ σ−→ s do
2 if σn ∈ ξ̂2n(s′, σσ1 . . . σn−1) then
3 ξ̂2n(s′, σσ1 . . . σn−1) ← ξ̂2n(s′, σσ1 . . . σn−1) \ {σn};

/* s̃ < s indicates the existence of ξ̂2n+1(s̃, ·), i.e., we visit
merely states that have already been attached with (possibly
deadlocking) actions by Algorithm 1 */

4 for s̃ : s̃ u−→ s′ and s̃ /∈ U and s̃ < s do
5 if σn ∈ ξ̂2n+1(s̃, σσ1 . . . σn−1) then
6 ξ̂2n+1(s̃, σσ1 . . . σn−1) ← ξ̂2n+1(s̃, σσ1 . . . σn−1) \ {σn};
7 if ξ̂2n+1(s̃, σσ1 . . . σn−1) = ∅ then
8 Shrink(ξ̂2n+1, ξ̂2n ,G, (s̃, σσ1 . . . σn−1));

Proof Termination is trivially guaranteed by the strictly increasing index k bounded by the

final delay of interest δ. For convenience,we define the union of twomaps ξ̂1, ξ̂2 : S×Σ� δ
2 � →

2Σ as ξ̂1 ∪ ξ̂2 : S×Σ� δ
2 � → 2Σ by (ξ̂1 ∪ ξ̂2)(s, α) = ξ̂1(s, α)∪ ξ̂2(s, α) ∀s ∈ S, α ∈ Σ� δ

2 �.
It then follows that if (α, ξ̂1) and (α, ξ̂2) are both winning strategies of a game with delay δ,

then (α, ξ̂1 ∪ ξ̂2) is also a winning strategy. This fact allows us to specify for any α ∈ Σ� δ
2 �

the maximally permissive winning strategy w.r.t. α as (α,∪ξ̂), where the union is over all
such ξ̂ ’s that (α, ξ̂) is a winning strategy with delay δ.

123

Indecision and delays are the parents of failure 513

Now we prove that with output (WINNING, α, ξ̂δ), the strategy (α, ξ̂δ) is actually a max-
imally permissive winning strategy of game Gδ . We prove by induction on k that during
execution of the algorithm, (α, ξ̂k) is always a maximally permissive winning strategy of
the game with delay k. The initial case of k = 0 is guaranteed by FPIteration in line 2 of
Algorithm 1 (cf. Fact 3.1 in [4] and the proof thereof), and the induction from k to k + 1 is
achieved by two steps. First, we prove that (α, ξ̂k+1) is a winning strategy. It suffices to prove
the fact ∅ = O(G, α, ξ̂k+1, k+1) ⊆ O(G, α, ξ̂k, k), which is demonstrated in the following
two cases:

1. For an even k, the strategy (α, ξ̂k+1) is playable, as for any path π = π0σ0π1σ1 . . .

obtained under (α, ξ̂k+1), ξ̂k+1(π2i+1, σ2i+2σ2i+4 . . . σ2i+k) = ∅; otherwise, the config-
uration (π2i+1, σ2i+2 . . . σ2i+k) will be removed by the Shrink procedure in line 9 and
thus cannot be reached under the strategy. Furthermore, the assignment in line 7 implies
that for any play π0σ0π1σ1 . . . ∈ Π(G),

α2i ∈ ξ̂k+1(π2i−k−1, σ2i−kσ2i−k+2 . . . σ2i−2) ⇒ α2i ∈ ξ̂k(π2i−k, σ2i−k . . . σ2i−2),

thus we have O(G, α, ξ̂k+1, k + 1) ⊆ O(G, α, ξ̂k, k). So, all the outcomes are safe from
the induction.

2. For an odd k, playing under (α, ξ̂k+1) is as the same as playing under (α, ξ̂k), since
O(G, α, ξk+1, k + 1) = O(G, α, ξk, k) can be verified from the assignment in line 19.
So, (α, ξ̂k+1) is guaranteed to be a winning strategy, as it is the same as (α, ξ̂k).

Second, the maximality of (α, ξ̂k+1) can be argued by the maximality of (α, ξ̂k), together
with the following fact: for any winning strategy (α, ξ̂ ′k+1) for an odd delay k+ 1, a winning

strategy (α′, ξ̂ ′k) for delay k can be constructed by

α′ = {α0 . . . α k
2−1 | α0 . . . α k

2
∈ α} and ξ̂ ′k(s′, σ1 . . . σ k

2
) = ξ̂ ′k+1(s, σ1 . . . σ k

2
), (1)

where s
u−→ s′, and the maximality of the winning strategy is preserved.

To prove that with output (LOSING, k) the game has no winning strategy even for delay k,
we note that k should be an odd number in this case. Suppose that there is a winning strategy
(α, ξ̂ ′k) for delay k. We can then construct a winning strategy (α′, ξ̂ ′k−1) for delay k− 1 as by

Eq. (1). It is easy to check that ξ̂k−1 ∪ ξ̂ ′k−1 = ξ̂k−1, which contradicts to the maximality of

ξ̂k−1. ��
Example 2 Consider the safety game G under delayed information in Fig. 2. The series of
finite-memory winning strategies produced by Algorithm 1 is:

ξ̂0(c1, ε) = {a, b}, ξ̂0(c2, ε) = {a}, ξ̂0(c3, ε) = {b}.
ξ̂1(e1, ε) = {a}, ξ̂1(e2, ε) = {b}, ξ̂1(e3, ε) = ∅, ξ̂1(e4, ε) = {b}, ξ̂1(e5, ε) = {a}.

ξ̂2(c1, a) = {a}, ξ̂2(c2, a) = {b}, ξ̂2(c3, a) = ∅,

ξ̂2(c1, b) = {b}, ξ̂2(c2, b) = ∅, ξ̂2(c3, b) = {a}.

Winning strategies for the controller vanish when the delay reaches 3. �

3.1 Upper bounding delay where winning strategy vanishes

From the structure of Algorithm 1 it is obvious that there must exist a magnitude of delay
beyond which the strategy does not change any more, as the algorithm essentially just builds

123

514 M. Chen et al.

intersections of finitely many different action sets present in the maximally permissive mem-
oryless strategy for the original safety game. As there are only finitely many combinations
of these sets, the strategy has to stabilize eventually, implying that it either vanishes at some
delay (which is detected by Algorithm 1) or there is a strategy suitable for arbitrarily large
delay, which furthermore is eventually constructed by the synthesis algorithm. Klein and
Zimmermann have shown in [19, Theorem 2] that there exist safety game graphs that may
be lost by the input player (corresponding to the controller in our setting) only under a delay
that is, up to a constant factor, exponential in the size of the game graph. This bound, how-
ever, constitutes a lower bound on the worst-case and may not be indicative for game graphs
featuring a different structure than these hard instances. We therefore complement this result
here by a variant that refers to the particular structure of the game graph under investigation.

From the wayAlgorithm 1 combines the original action sets from thememoryless strategy
along the transitions in the game graph, it is obvious that in worst case it can take the least
common multiple (LCM) of the lengths of all cycles in the game graph plus the maximum
lengths of the acyclic paths leading from the initial state into cycles and the acyclic paths
leading out of cycles to states in U to compute all combinations. As the algorithm is complete
in the sense that it computes a delay-resilient strategy for a delay δ whenever such exists, we
therefore conjecture:

Conjecture 1 Let G = 〈S, s0, S0, S1,Σ,U,→〉 be a safety game and let δ be the LCM of
the lengths of all cycles in the game graph plus the maximum lengths of the acyclic paths
leading from the initial state into cycles and the acyclic paths leading out of cycles to states
in U . If G has a winning strategy under delay δ then it also has a winning strategy under any
delay δ′ > δ. �

4 Extension to out-of-order delivery of messages and bounded
message loss

From a practical standpoint of networked control, the assumptions may not be justified that
all messages between the environment and the controller are actually delivered and that they
arrive with a constant delay and thus especially in the order of sending. These assumptions
do however underlie our above model of games under delay. The control strategies that are
synthesized by Algorithm 1 are consequently only known to be correct under these rather
strong assumptions.Within this sectionwewill show that they are equally adequate in settings
relaxing these assumptions. The relaxed settings we are looking into are, first, out-of-order
delivery with a guaranteed maximal message delay and, second, potential message loss with
a fixed bound on the maximum number of consecutive message losses.

Throughout this section, we adopt the assumption that, during the play, any state observed
is associated with a timestamp τ ∈ N indicating when it arose. This convention is necessary
as out-of-order delivery or message loss would else prohibit reconstruction of the time instant
a reported state pertains to. With the timestamp, the controller is capable of recognizing the
order of the action delivery. In particular we denote the current time by now ∈ N.

4.1 Out-of-order delivery

In the definition of playing a safety game under delay (Definition 5), we assumed strictly
sequential and constant delay, i.e., reliable in-order delivery of the delayed information
exactly δ time units late. While this cannot be guaranteed in many practical applications

123

Indecision and delays are the parents of failure 515

(a)

(b)

Fig. 4 An example of out-of-order delivery of messages. The maximum message delay here is 5, while the
factual delay for the state information pertaining to actual time 60 is 3, as that data item arrives at time 63. But
as even more recent state information pertaining to time instant 61 > 60 becomes available already at time
instant 62, the effective delay is just 2

of networked control, the assumption does not impede applicability of the theory developed
so far, as random out-of-order delivery with a maximum delay of δ has in-order delivery with
an exact delay of δ as its worst-case instance: whenever a data item is delivered out-of-order
then it is delivered before δ, implying earlier availability of more recent state information
and thus enhanced controllability. In a qualitative setting, solving the control problem for
out-of-order delivery with a maximum delay of δ consequently is—up to the necessity of
appropriately delaying reactions to data items arriving early—identical to solving the control
problem under in-order delivery with an exact delay of δ, as the latter is the former’s worst
case. This fact is illustrated in Fig. 4 and further formalized in Proposition 1.

Proposition 1 For a two-player safety game, there exists a winning strategy under out-of-
order delivery of state information with a maximum delay of δ iff there exists a winning
strategy under in-order delivery with an exact delay of δ. �

Proof The “only if” part is for free, since playing under out-of-order deliverywith amaximum
delay of δ subsumes the case of playing under in-order delivery with an exact delay of δ. For
the “if” part, it suffices to prove that awinning strategy (α, ξ̂δ) for the controller under in-order
delivery with an exact delay of δ, if existent, is also a winning strategy for the controller under
out-of-order delivery with a maximum delay of δ. For the latter, whenever an observation
of the game state πt arrives early at time τ < t + δ, it can be cached till time τ ′ = t + δ,
thus facilitating to play the strategy (α, ξ̂δ) that expects all data items to arrive with an exact
constant delay of δ. Note that due to absence of message loss and the maximum delay being
δ, all data items are guaranteed to arrive before or at δ time units after their generation. The
caching of early arrivals (on top of Algorithm 1, with adequate timestamping) thus supplies
the strategy (α, ξ̂δ) with an uninterrupted sequence of historic states up to δ time units before
now. The winning strategy (α, ξ̂δ) can thus be applied without any modification. ��

Strictly speaking, the discussion in the above proof only dealt with the case of (fixedly
bounded, yet not necessarily constant) delays in the downstream link from the environment
to the controller, yet not back. But timestamping control actions with the time they ought to

123

516 M. Chen et al.

Fig. 5 An illustration of how to win a safety game in the presence of message loss leveraging delay-resilient
strategies. In the simple setting depicted here, messages cannot be delayed, but up to two consecutive messages
can get lost. The controller compensates for these potential losses by at any time t when fresh state information
is received, pre-computing two delay-resilient actions σt+2 and σt+4 in addition to the immediate action σt .
These delayed actions become activated at their scheduled times whenever no fresh state information has
arrived in the meantime

be applied and buffering them at the control interfaces of the environment until their expected
time of application works the same way. We can consequently conclude that Algorithm 1
solves the problem of computing winning strategies for the out-of-order setting too.

Corollary 1 Let G be a safety game and let the controller be connected to the environment
via channels ensuring a maximum message delay of δ, yet allowing for out-of-order delivery.
If all messages are timestamped then Algorithm 1 provides a sound and complete method for
synthesizing a winning strategy for the controller in G after out-of-order delay δ. �

4.2 Message loss

A further interesting setting that arises in practice is message loss. We will show that Algo-
rithm 1 can also solve this problem if the number of consecutive message losses in a channel
is bounded by a constant k ∈ N and that messages actually delivered are delayed by at most
2k time units. We will first demonstrate the principle on message losses in the downstream
channel from the environment to the controller and will later explain how it could vice versa
be applied to message losses in the upstream channel. If up to k consecutive losses can occur
in the downstream channel and if messages can further be delayed by at most 2k then we
always have some state information at our disposal which is no older than 2k time units, yet
state information for intermediate steps may be missing.

Fig. 5 depicts the central idea behind an application of Algorithm 1 for coping with that
situation: at each of its turns, the controller owns some state information that has an age
t = 2k′ with k′ ≤ k. If there is a strategy (αt , ξt) that is resilient against delay t = 2k′ then
this strategy can be leveraged for computing an adequate control action despite current state
information not being available. The only issue that we have to resolve in order to be able to
switch forth and back between the delay-free strategy (ε, ξ0) and different delayed strategies
(α2, ξ2) to (α2k, ξ2k) is that all these strategies have to be compatible in that the strategies
pertinent to smaller delays, though in general being more permissive, do always only visit
states that are controllable under maximum delay 2k. This can, however, be achieved easily:
as Algorithm 1 generates maximally permissive strategies and as the states from which a
winning strategy originates under delay 2(m+ n) are a subset of those winnable under delay
2m due to Lemma 1 (which w.l.o.g. expresses this property with respect to initial states), the

123

Indecision and delays are the parents of failure 517

maximally permissive strategies for smaller delays can be specialized such that they only
traverse states winnable under the maximum delay 2k.

This construction justifies the following proposition:

Proposition 2 For a two-player safety game, there exists a winning strategy that wins when
at any time t = 2n, i.e., any player-0 move, information on the game state at some time
t ′ ∈ {t − 2k, . . . , t} is available, iff there exists a winning strategy under an exact delay of
2k as formalized in Definition 5. �

Proof The “only if” part is trivial, as in-order delivery of messages with an exact delay of
2k is a special case of at any time t = 2n possessing information on the game state at some
time t ′ ∈ {t − 2k, . . . , t}. The winning strategy for the latter case thus has to win the former
also. The “if” direction is covered by the above construction. ��

At any time t = 2n possessing information on the game state at some time t ′ ∈ {t −
2k, . . . , t} in turn is equivalent to having a lossy downstream channel from the environment
to the controller where the number of consecutive message losses in a channel is bounded
by a constant k ∈ N and that messages actually delivered are delayed by at most 2k time
units. The construction can be extended to losses and delays in the upstream channel to the
environment by in each time unit sending (or rather trying to send, as the channel is lossy) all
the precomputed actions σt to σt+2k and have the environment buffer them. By the condition
on the loss sequence, the environment will for any time t = 2n, i.e., for any player-0 move,
have a pertinent control action at its disposal.

Now, we are ready to present the main result of this section, which claims the equivalence
of qualitative controllability:

Theorem 4 (Equivalence) Given a two-player safety game, the following statements are
equivalent if δ is even:

(a) There exists a winning strategy under an exact delay of δ, i.e., if at any point of time t
the control strategy is computed based on a prefix of the game that has length t − δ.

(b) There exists awinning strategy under time-stampedout-of-order deliverywith amaximum
delay of δ, i.e., if at any point of time t the control strategy is computed based on the
complete prefix of the game of length t − δ plus potentially available partial knowledge
of the game states between t − δ and t.

(c) There exists a winning strategy when at any time t = 2n, i.e., any player-0 move, infor-
mation on the game state at some time t ′ ∈ {t − 2k, . . . , t} is available, i.e., under
out-of-order delivery of messages with a maximum delay of δ and a maximum number of
consecutively lost upstream or downstream messages of δ

2 .

The first two equivalences do also hold for odd δ. �

Proof The statement follows immediately from Propositions 1 and 2. ��

5 Case study and experimental evaluation

Avoiding collisions is a central issue in transportation systems as well as in many other
applications. The task of a collision avoidance (CA) system is to track objects of potential
collision risk and determine any action to avoid or mitigate a collision. One of the challenges
in designing a CA system is to determine the correct action in presence of the end-to-end
latency of the overall control system.

123

518 M. Chen et al.

Fig. 6 The robot escape game

In the context of avoiding collisions, we present in this section an escape game as an
artificial scenario to illustrate our synthesis approach to handling fixed delays, out-of-order
delivery and bounded message loss, followed by a performance comparison of our proto-
typical implementation in Mathematica1 of Algorithm 1 against existing reduction-based
methods and tools.

5.1 Robot escape games under delays

The game we consider is a two-player game between a robot (i.e., the controller) and a kid
(i.e., the dynamical part of its environment), which are moving in a closed room with some
fixed obstacles as shown in Fig. 6. In this scenario, the robot has to make decisions (a.k.a.
actions) under δ-delayed information.

Definition 6 (Two-player escape game in a p × q room under delay) A two-player escape
game under delay δ is of the form Ĝ = 〈S, s0, S0, S1,O,Σ,U,→〉, where
– S = X ×Y × X ×Y ×B is a non-empty set of states providing x ∈ X = {0, . . . , p− 1}

and y ∈ Y = {0, . . . , q − 1} coordinates for the robot as well as for the kid, together
with a flag denoting whose move is next. Concretely, a state (x0, y0, x1, y1, b) encodes
that the robot currently is at position (x0, y0), while the kid is at (x1, y1), and that the
next move is the robot’s iff b holds. Here p, q ∈ N≥1 denote the width and length of the
room.

– O ⊆ X × Y is a finite set of positions occupied by fixed obstacles.
– Σ is a finite alphabet of actions for player 0 (i.e., the robot), which consists of kinemat-

ically constrained moves explained below.
– U ⊆ S is the finite set of undesirable states,which are characterized by featuring collisions

with the obstacles or the kid.
– →⊆ S × (Σ ∪ {u}) × S is a set of labelled transitions, and
– δ is the delay in information retrieval s.t. the robot has to react on δ old information. �

1 Available at http://lcs.ios.ac.cn/~chenms/tools/DGame.tar.bz2. We opted for an implementation in Mathe-
matica due to its built-in primitives for visualization.

123

http://lcs.ios.ac.cn/~chenms/tools/DGame.tar.bz2

Indecision and delays are the parents of failure 519

Fig. 7 A snippet of the game
graph

In our scenario, we first consider a room of extent 4 × 4, as shown in Fig. 6. The fixed
obstacles are located at o1 = (1, 2) and o2 = (3, 0) and the initial state s0 where the robot
and the kid are located in the room is s0 = (0, 0, 3, 3, true) ∈ S0. The kid can move in the
room and her possible moves (i.e., the uncontrollable actions) are unilaterally denoted by u
for unpredictable, yet amount to moves either one step to the right R, left L, up U, or down
D. The robot has a finite set of moves (i.e., controllable actions), which are kinematically
constrained as being a combination of two moves, e.g., up then right UR, denoted as Σ =
{RU,UR,LU,UL,RD,DR,LD,DL, ε}, and ε means doing nothing. We assume that the two
players respect the geometry of the room and consequently never take any action leaving
the inside area of the room or running through an obstacle. Hence, each action taken by the
players should satisfy certain conditions to meet these assumptions. For instance, when the
robot takes UR action that leads a play from (x0, y0, x1, y1, true) to (x ′0, y′0, x ′1, y′1, false),
this action should satisfy the constraint C, which consists of the following four conditions:

– C1 := (x ′0 − x0 = 1)∧ (y′0 − y0 = 1)∧ (x ′1 = x1)∧ (y′1 = y1), which describes how the
robot moves.

– C2 := ¬(y1 − y0 = 1 ∧ x0 = x1), which prohibits the robot from running into the kid,
namely the collision with the kid occurs in the first direction of its move.

– C3 := (x0, y0 + 1) /∈ O, which prohibits the robot from running through an obstacle
during the first direction of its move (that the endpoint of the move is outside obstacles
is taken care off by the safety condition).

– C4 := ∀x0, y0, x ′0, y′0 : 0 ≤ x0, y0, x ′0, y′0 ≤ 3, which restricts the robot to move inside
the room area and avoid running into the walls.

The four conditions are instantiated for each available action and the robot must during the
game only choose from legal actions satisfying the corresponding constraint C. An analogous
constraint system E defines the possible actions of the kid.

The safety objective for the robot is to move inside the working room while avoiding
to ever be collocated with the kid or the fixed obstacles. We consequently define the set of
unsafe states as

U = {(x0, y0, x1, y1, b) | (x0, y0) ∈ O ∨ (x0, y0) = (x1, y1)}.
For simplicity encoding a state (x0, y0, x1, y1, b) by x0y0x1y1 inside a blue circular node

if b and inside a red square node if¬b, we can depict the game graph as shown in Fig. 7. The
states where the robot takes actions selected from Σ are thus circles in blue, and the states

123

520 M. Chen et al.

where the kid takes uncontrollable actions are the rectangles in red. From the initial state s0,
where the robot and the kid are located in the room, the robot in this example has only two
moving actions from Σ (i.e., RU and UR), with the other options being blocked by contact to
obstacles or the walls of the room, and do nothing action ε. Suppose that the robot will choose
from its legal moving action, on both actions, the robot ends up in position (1, 1), leading
to state s1 = (1, 1, 3, 3, false), where it is the kid’s turn to move. The kid in this example
now has only two uncontrollable actions from u, namely a left move L and a down move D.
The uncontrollable actions lead us to two possible successor states s2 = (1, 1, 2, 3, true) or
s3 = (1, 1, 3, 2, true) .

5.2 Syntheses of delay-resilient control

Under constant delays. There obviously exists a winning strategy for the robot in a delay-
free setting, namely to cycle around the obstacle at o1 to avoid being caught by the kid. To
investigate the controllability resilient to fixed delays, we first construct the graph structure
from the symbolic descriptionby aC++program. It consists of 224 states, 16unsafe states, and
738 legal transitions satisfying the respective conditions C and E . The obtained game graph
is then used as input to our implementation of Algorithm 1, which declares WINNING paired
with a finite-memory winning strategy (i.e., a safe controller) ξ̂δ under delays 0 ≤ δ ≤ 2
(see Appendix A), while LOSING when the delay is 3. The latter indicates that the problem
is uncontrollable under any delay δ′ ≥ 3.

With out-of-order delivery and bounded message loss. Strictly sequential delay may likely
not be guaranteed in the communication networks underlying practical transportation sys-
tems, where, e.g., the wireless vehicle-to-vehicle communication is subject to collisions and
thereby prone to out-of-order delivery due to retries or even lost messages due to exceeding
the maximum number of retries. These issues, however, can be tackled by the qualitative
equivalence result established in Theorem 4, thereby exploiting the very same underlying
strategy as the in-order case: the delay-resilient strategies (cf. Appendix A) derived under
incremental delays can be utilized to assemble winning strategies for the latter cases, fol-
lowing the constructive proofs to Propositions 1 and 2. We therefore in the sequel do not
provide any independent measurements for runtimes of strategy synthesis for the cases of
out-of-order delivery or bounded message loss, as these coincide with the runtimes for the
in-order case.

5.3 Evaluation of performance

To further investigate the scalability and efficiency of our method, we have evaluated the
implementation on evasion games instantiated to rooms of different sizes (marked with prefix
Escp.) as well as two additional examples (Examples 3 and 4):

Example 3 Consider the safety game G = 〈S, s0, S0, S1,Σ,U,→〉, illustrated in Fig. 8,
where S = S0∪ S1, with S0 = {c1, c2, c3, c4, c5, c6}, and S1 = {e1, e2, e3, e4, e5, e6, e7, e8},
while s0 = c1, Σ = {a, b}, and U = {e1, e3, e5, e7}. �

Example 4 The game in this example shares the same graph structure as that in Fig. 8, except

that we empower the environment there a bit by introducing two fresh transitions e4
u−→ c2

and e4
u−→ c6 in G. The winning strategy then vanishes when the delay is lifted to 3. �

123

Indecision and delays are the parents of failure 521

Fig. 8 A safety game winnable for the controller with finite-memory strategies with δmax ≥ 30

A slightly adapted scenario (denoted by prefix Stub.) was also investigated, where the kid
plays in a rather stubborn way, namely she always moves either one step to the left or down,
yet never goes right nor up, which yields potentially larger affordable delays for the robot.
In particular, a comparison of the performance of our incremental algorithm was done with
respect to two points of reference: to the same Mathematica-based algorithm using δ = 0
(the underlying explicit-state delay-free safety synthesis) employed after reducing the games
to delay-free ones by shift registers (cf. Lemma 2), and to the state-of-the-art synthesizer
SafetySynth2 for solving safety games applied to an appropriate symbolic form of that shift-
register reduction. All experiments were pursued on a 2.5GHz Intel Core-i7 processor with
8GB RAM running 64-bit Ubuntu 17.04.

From the upper part of Table 1, it can be seen that our incremental algorithm significantly
outperforms the use of the shift-register reduction. On all cases involving delay, Algorithm 1
is faster than the same underlying explicit-state implementation of safety synthesis employed
to the reduction of Lemma 2. Algorithm 1 furthermore consistently succeeds in producing
an exact bound δmax on the controllable delay by proving the game uncontrollable under
δ = δmax + 1, except for Example 3, where it still goes 8 steps of delay further than the
reduction-based approach. In particular, the result δmax ≥ 30 suffices to tell that Conjecture 1,
if proved, implies that the game in Example 3 is controllable under arbitrarily large delay.
The benefits from not resorting to an explicit reduction, instead taking advantage of incre-
mentally generated strategies and on-the-fly pruning of already-uncontrollable branches, are
thus obvious. In contrast, the reduction-based approach suffers inevitably from the state-
explosion problem: for e.g. Escp.4 × 5 under δ = 3, the reduction yields a game graph
comprising 29242 states and 107568 transitions.

2 https://www.react.uni-saarland.de/tools/safetysynth/.

123

https://www.react.uni-saarland.de/tools/safetysynth/

522 M. Chen et al.

Ta
bl
e
1

B
en
ch
m
ar
k
re
su
lts

in
re
la
tio

n
to

re
du
ct
io
n-
ba
se
d
ap
pr
oa
ch
es

(t
im

e
in

se
co
nd
s)

B
en
ch
m
ar
k

R
ed
uc
tio

n
+
ex
pl
ic
it-
st
at
e
sy
nt
he
si
s

A
lg
or
ith

m
1

N
am

e
|S|

|→
|

|U
|

δ m
ax

δ
=

0
δ
=

1
δ
=

2
δ
=

3
δ
=

4
δ m

ax
δ
=

0
δ
=

1
δ
=

2
δ
=

3
δ
=

4
%

E
x
a
m
p
l
e
3

14
20

4
≥

22
0.
00

0.
00

0.
01

0.
02

0.
02

≥
30

0.
00

0.
00

0.
00

0.
01

0.
01

E
x
a
m
p
l
e
4

14
22

4
=

2
0.
00

0.
01

0.
01

0.
02

–
=

2
0.
00

0.
00

0.
00

0.
01

–
81

.9
7

E
s
c
p
.
4
×

4
22

4
73

8
16

=
2

0.
08

11
.6
6

11
.7
3

10
59

.2
3

–
=

2
0.
08

0.
13

0.
22

0.
25

–
99

.0
2

E
s
c
p
.
4
×

5
36

0
13

26
20

=
2

0.
18

34
.0
9

33
.8
0

30
84

.5
8

–
=

2
0.
18

0.
27

0.
46

0.
63

–
99

.0
2

E
s
c
p
.
5
×

5
59

8
23

01
26

≥
2

0.
46

96
.2
4

97
.1
0

?
?

=
2

0.
46

0.
68

1.
16

1.
71

–
98

.9
8

E
s
c
p
.
5
×

6
84

0
35

16
30

≥
2

1.
01

21
7.
63

21
6.
83

?
?

=
2

1.
00

1.
42

2.
40

4.
30

–
99

.0
0

E
s
c
p
.
6
×

6
12

24
54

24
36

≥
2

2.
13

51
6.
92

51
1.
41

?
?

=
2

2.
06

2.
90

5.
12

10
.3
0

–
98

.9
7

E
s
c
p
.
7
×

7
23

50
11

09
7

50
≥

2
7.
81

21
67

.8
6

21
83

.0
1

?
?

=
2

7.
71

10
.6
7

19
.0
4

52
.4
7

–
98

.9
9

E
s
c
p
.
7
×

8
30

24
14

82
0

56
≥

0
13

.0
7

?
?

?
?

=
2

13
.4
4

18
.2
5

32
.6
9

10
8.
60

–
99

.0
1

B
en
ch
m
ar
k

R
ed
uc
tio

n
+
Y
os
ys

+
Sa

fe
ty
Sy

nt
h4

(s
ym

bo
lic
)

A
lg
or
ith

m
1
(s
im

pl
e
ex
pl
ic
it-
st
at
e
im

pl
em

en
ta
tio

n)

N
am

e
δ m

ax
δ
=

0
δ
=

1
δ
=

2
δ
=

3
δ
=

4
δ
=

5
δ
=

6
δ
=

0
δ
=

1
δ
=

2
δ
=

3
δ
=

4
δ
=

5
δ
=

6
%

S
t
u
b
.
4
×

4
=

2
1.
07

1.
24

1.
24

1.
80

–
–

–
0.
04

0.
07

0.
12

0.
18

–
–

–
98

.9
8

S
t
u
b
.
4
×

5
=

2
1.
16

1.
49

1.
49

2.
83

–
–

–
0.
08

0.
14

0.
25

0.
44

–
–

–
98

.9
7

S
t
u
b
.
5
×

5
=

2
1.
19

2.
61

2.
50

13
.6
7

–
–

–
0.
21

0.
37

0.
63

1.
17

–
–

–
98

.9
7

S
t
u
b
.
5
×

6
=

2
1.
18

2.
60

2.
59

23
.3
0

–
–

–
0.
42

0.
69

1.
20

2.
49

–
–

–
98

.9
6

S
t
u
b
.
6
×

6
=

4
1.
17

2.
76

2.
74

19
.9
6

19
.6
9

65
5.
24

–
0.
93

1.
47

2.
60

5.
79

7.
54

7.
60

–
99

.8
9

S
t
u
b
.
7
×

7
=

4
1.
23

2.
50

2.
48

24
.5
7

23
.0
1

22
24

.6
2

–
3.
60

5.
52

10
.0
8

22
.7
5

31
.1
8

32
.9
8

–
99

.8
8

B
ol
df
ac
e
in
di
ca
te
be
tte
r
pe
rf
or
m
an
ce

in
te
rm

s
of

ef
fic
ie
nc
y

δ m
ax
:t
he

m
ax
im

um
de
la
y
un

de
r
w
hi
ch

G
δ
is
co
nt
ro
lla
bl
e

δ m
ax

=
δ
′ :
G

δ
is
ve
ri
fie
d
co
nt
ro
lla
bl
e
un
de
r
de
la
ys

0
≤

δ
≤

δ
′ w

hi
le
un

co
nt
ro
lla

bl
e
un

de
r
an
y
de
la
y

δ
>

δ
′

δ m
ax

≥
δ
′ :
G

δ
is
ve
ri
fie
d
co
nt
ro
lla
bl
e
un
de
r
de
la
ys

0
≤

δ
≤

δ
′ w

ith
in

1
h
C
PU

tim
e
bo

un
d,
ye
tu

nk
no
w
n
un

de
r
δ

>
δ
′ d

ue
to

th
e
lim

ita
tio

n
of

co
m
pu
tin

g
ca
pa
bi
lit
y

–:
al
re
ad
y
fo
r
sm

al
le
r
δ
th
e
co
nt
ro
lle

r
ha
s
no

w
in
ni
ng

st
ra
te
gy

?:
al
go
ri
th
m

fa
ils

to
an
sw

er
th
e
co
nt
ro
l/s
yn
th
es
is
pr
ob
le
m

w
ith

in
1
h
of

C
PU

tim
e

%
:p

er
ce
nt
ag
e
of

sa
vi
ng

s
in

st
at
e
sp
ac
e
co
m
pa
re
d
to

th
e
re
du

ct
io
n-
ba
se
d
m
et
ho

ds
,a
s
ob

ta
in
ed

on
δ m

ax
+

1

123

Indecision and delays are the parents of failure 523

Within the lower part of Table 1, the performance of the current explicit-state implemen-
tation of Algorithm 1 is compared with that of SafetySynth, the winner in the AIGER/safety
Synthesis Track, sequential mode, of the Reactive Synthesis Competition3 (SYNTCOMP
2016–2018). In order to be able to examine the efficiency of our incremental algorithm under
larger delays, we used a slight modification of the escape game forbidding the kid to take
moves to the right or up, thus increasing the controllability for the robot. Note that Algo-
rithm 1 completes synthesis faster in these “stubborn” scenarios due to the reduced action set.
SafetySynth implements a symbolic backward fixed-point algorithm for solving delay-free
safety games using theCUDDpackage. Its input is an extension of theAIGER4 format known
from hardware model-checking and synthesis. We therefore provided symbolic models of
the escape games in Verilog5 and compiled them to AIGER format using Yosys.6 Verilog
supports compact symbolic modelling of the coordinates other than an explicit representation
of the game graph as in Fig. 7, and further admits direct use of shift registers for memorizing
actions of the robot under delays. Therefore, as visible in Table 1, SafetySynth outperforms
our explicit-state safety synthesis for some large room sizes under small delays. For larger
delays it is, however, evident that our incremental algorithm always wins, despite its use of
non-symbolic encodings.

Remark 2 It would be desirable to pursue a comparison on standard benchmarks like the
synthesis track of SYNTCOMP. As these are conveyed either in the AIGER format and
not designed for modifiability, like the introduction of shift registers ; or in the TLSF/LTL
format [18] where the introduction of delays may need an appropriate extension of LTL (e.g.,
MTL) with time constraints, this unfortunately is not yet possible. Likewise, other state-of-
the-art synthesizers from the SYNTCOMP community, like AbsSynthe [6], could not be
used for comparison as they do not support the state initializations appearing in the AIGER
translations of the escape game. �

6 Conclusions

Designing controllers that work safely and reliably when exposed to delays is a crucial chal-
lenge in many application domains, like transportation systems or industrial robots. In this
paper, we have used a straightforward, yet exponential reduction to show that the existence
of a finite-memory winning strategy for the controller in games with delays is decidable with
respect to safety objectives. As such a reduction being exponential in the magnitude of the
delay would rapidly become unwieldy, we proposed an algorithm that incrementally synthe-
sizes a series of controllers withstanding increasingly larger delays, thereby interleaving the
unavoidable introduction of memory with state-space pruning removing all states no longer
controllable under the given delay before proceeding to the next larger delay.We furthermore
address the practically relevant cases of non-order-preserving delays and bounded message
loss, as arising in actual networked control. To the best of our knowledge, we also provided
the first implementation of such a state-space pruning within an algorithm for solving games
with delays, and we demonstrated the beneficial effects of this incremental approach on a
number of benchmarks.

3 http://www.syntcomp.org/.
4 http://fmv.jku.at/aiger/.
5 http://www.verilog.com/.
6 http://www.clifford.at/yosys/.

123

http://www.syntcomp.org/
http://fmv.jku.at/aiger/
http://www.verilog.com/
http://www.clifford.at/yosys/

524 M. Chen et al.

The benchmarks used were robot escape games indicative of collision avoidance scenar-
ios in, e.g., traffic maneuvers. Control under delay here involves selecting appropriate safe
actions or movements without yet knowing the most recent positions of the other traffic
participants. Experimental results on such escape games demonstrate that our incremental
algorithm outperforms reduction-based safety synthesis, irrespective of whether this safety
synthesis employs naïve explicit-state or state-of-the-art symbolic synthesis methods, as
available in the SafetySynth tool.

An extension to hybrid control, dealing with infinite-state game graphs described by
hybrid safety games, is currently under development and will be exposed in future work,
as will be extensions of the finite-state case to liveness properties by means of addressing
more general acceptance conditions like Büchi acceptance. We are also moving forward to
a more efficient implementation of Algorithm 1 based on symbolic encodings, like BDDs
[28] or SAT [5]. A further subject of future investigation is stochastic models of out-of-order
delivery of messages. As these result in a high likelihood of state information being available
before the maximum transportation delay, such models can quantitatively guarantee better
controllability than the worst-case scenario of always delivering messages with maximum
delay addressed in this paper. We will therefore attack synthesis towards quantitative safety
targets in such stochastic settings and may also exploit constructive means of manipulating
probability distributions of message delays, like QoS control, within the synthesis.

Acknowledgements Open Access funding provided by Projekt DEAL. The authors would like to thank Bernd
Finkbeiner andRalfWimmer for insightful discussions on theAIGER format for synthesis andLeanderTentrup
for extending his tool SafetySynth by state initialization, thus facilitating a comparison. We would also like to
thank the anonymous reviewers for the exceptional scrutiny in reading and commenting on our work and for
the detailed suggestions raised in the reviewing process. Mingshuai Chen and Naijun Zhan have been funded
partly by NSFC under Grant Nos. 61625206 and 61732001. Mingshuai Chen is additionally funded partly
by the ERC Advanced Project FRAPPANT under Grant No. 787914. Martin Fränzle and Peter N. Mosaad
have been supported by DFG under Grant No. DFG RTG 1765 SCARE and Grant No. DFG FR 2715/4.
Yangjia Li has been funded by NSFC under Grant No. 61502467 and by the US AFOSR via AOARD Grant
No. FA2386-17-1-4022.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Finite-memory winning strategies in Escp.4 × 4

Relabelling states: r for robot, k for kid.
Relabelling actions: {a : UL,b : LU,c : UR,d : RU,e : DL,f : LD,g : DR,h : RD,i : ε}.

Fig. 9 depicts snapshots of the game Escp.4×4 under different delays and the resulting
different observations of the robot. The intuition tells that

– Under δ = 0, the robot always wins by cycling around o1 = (1, 2), which is encoded
in the following generated maximally permissive winning strategy (see, e.g., the colored
components):

ξ̂0 = {(r0033, ε) → {c,d,i}, (r1123, ε) → {b,e,f,g,h,i}, (r1132, ε) → {b,e,f,g,h,i},
(r0023, ε) → {i,c,d}, (r0032, ε) → {i,c,d}, (r0213, ε) → {g,i},

123

http://creativecommons.org/licenses/by/4.0/

Indecision and delays are the parents of failure 525

(r0233, ε) → {g,c,i}, (r0222, ε) → {c,g,i}, (r2213, ε) → {e,g,h,i},
(r2233, ε) → {a,e,g,h,i}, (r2222, ε) → {}, (r0013, ε) → {c,d,i},
(r0022, ε) → {c,d}, (r2013, ε) → {a,b,c,i}, (r2033, ε) → {a,b,c,i},
(r2022, ε) → {a,b}, (r1113, ε) → {i,b,d,e,f,g,h}, (r1133, ε) → {i,e,f,b,d,g,h},
(r1122, ε) → {b,i}, (r0231, ε) → {c,g,i}, (r2231, ε) → {a,e,i}, (r0031, ε) → {c,d},
(r2031, ε) → {a,b}, (r1131, ε) → {b,d,i}, (r1303, ε) → {h}, (r1323, ε) → {f},
(r1103, ε) → {d,e,f,g,h,i}, (r0203, ε) → {g}, (r0223, ε) → {g,i},
(r1332, ε) → {f,i}, (r0232, ε) → {i,g,c}, (r1321, ε) → {f,i}, (r1121, ε) → {b},
(r0221, ε) → {c,i}, (r3303, ε) → {e,f,i}, (r3323, ε) → {}, (r3103, ε) → {a,b,f,i},
(r3123, ε) → {f}, (r2203, ε) → {c,d,e,g,h,i}, (r2223, ε) → {e}, (r3332, ε) → {},
(r3132, ε) → {f}, (r2232, ε) → {a,e}, (r3321, ε) → {}, (r3121, ε) → {},
(r2221, ε) → {a}, (r0003, ε) → {i,c,d}, (r0021, ε) → {}, (r2003, ε) → {i,a,b,c},
(r2023, ε) → {a,b,i}, (r2032, ε) → {a,b,i}, (r2021, ε) → {},
(r2202, ε) → {a,c,d,e,g,h,i}, (r1313, ε) → {}, (r1302, ε) → {h,i},
(r1333, ε) → {i,f,h}, (r1322, ε) → {f,i}, (r0202, ε) → {}, (r0002, ε) → {c,d},
(r2002, ε) → {a,b,c,i}, (r1102, ε) → {d,g,h,i}, (r1331, ε) → {i,f,h},
(r0211, ε) → {c,i}, (r0220, ε) → {c,g,i}, (r2211, ε) → {a,i}, (r2220, ε) → {a,e,i},
(r1311, ε) → {i,f,h}, (r1320, ε) → {i,f,h}, (r0011, ε) → {}, (r0020, ε) → {c,d},
(r2011, ε) → {}, (r2020, ε) → {}, (r1111, ε) → {}, (r1120, ε) → {b,d,i},
(r3313, ε) → {e,f}, (r3302, ε) → {i,e,f}, (r3333, ε) → {}, (r3322, ε) → {},
(r3113, ε) → {i,a,b,f}, (r3102, ε) → {i,a,b,f}, (r3133, ε) → {i,a,b,f},
(r3122, ε) → {}, (r3331, ε) → {e,f}, (r3131, ε) → {}, (r3311, ε) → {e,f},
(r3320, ε) → {e,f}, (r3111, ε) → {a,b}, (r3120, ε) → {a,b}, (r1301, ε) → {h,i},
(r3301, ε) → {e,f,i}, (r1101, ε) → {d}, (r3101, ε) → {a,b,i},
(r2201, ε) → {a,c,d,g,h,i}, (r0201, ε) → {c}, (r0001, ε) → {}, (r2001, ε) → {c},
(r1310, ε) → {f,h,i}, (r1110, ε) → {b,d}, (r0210, ε) → {c,i}, (r3310, ε) → {e,f,i},
(r3110, ε) → {a,b,i}, (r2210, ε) → {a,c,d,g,h,i}, (r0010, ε) → {}, (r2010, ε) → {c},
(r0200, ε) → {c,g,i}, (r2200, ε) → {a,e,c,d,g,h,i}, (r1300, ε) → {i,f,h},
(r3300, ε) → {i,e,f}, (r0000, ε) → {}, (r2000, ε) → {a,b,c,i},
(r1100, ε) → {b,d,g,h,i}, (r3100, ε) → {i,a,b,f} }.

– Under δ = 1, the robot wins by 1-step pre-decision, with the generated winning strategy
as

ξ̂1 = {(k1133, ε) → {b,e,f,g,h,i}, (k0033, ε) → {c,d,i}, (k0223, ε) → {g,i},

(a) (b) (c) (d)

Fig. 9 Different observations of the robot in Escp.4 × 4 when he has to make a decision at (1, 1) under
different delays, with δ ranging from 0 to 3

123

526 M. Chen et al.

(k2223, ε) → {}, (k0023, ε) → {c,d}, (k2023, ε) → {a,b}, (k1123, ε) → {b,i},
(k0232, ε) → {c,g,i}, (k2232, ε) → {}, (k0032, ε) → {c,d}, (k2032, ε) → {a,b},
(k1132, ε) → {b,i}, (k1313, ε) → {}, (k1113, ε) → {e,f,g,h,i}, (k0213, ε) → {g},
(k1333, ε) → {f}, (k0233, ε) → {g,i}, (k1322, ε) → {f}, (k1122, ε) → {b},
(k0222, ε) → {i}, (k3313, ε) → {}, (k3113, ε) → {f}, (k2213, ε) → {e}, (k3333, ε) → {},
(k3133, ε) → {f}, (k2233, ε) → {e}, (k3322, ε) → {}, (k3122, ε) → {}, (k2222, ε) → {},
(k0013, ε) → {c,d,i}, (k0022, ε) → {}, (k2013, ε) → {a,b,i}, (k2033, ε) → {a,b,i},
(k2022, ε) → {}, (k1331, ε) → {f,i}, (k1131, ε) → {b}, (k0231, ε) → {c,i},
(k3331, ε) → {}, (k3131, ε) → {}, (k2231, ε) → {a}, (k0031, ε) → {}, (k2031, ε) → {},
(k2203, ε) → {e,g,h,i}, (k1303, ε) → {}, (k1323, ε) → {}, (k0203, ε) → {},
(k0003, ε) → {c,d}, (k2003, ε) → {a,b,c,i}, (k1103, ε) → {d,g,h,i},
(k1332, ε) → {f,i}, (k0221, ε) → {c,i}, (k2221, ε) → {}, (k1321, ε) → {f,i},
(k0021, ε) → {}, (k2021, ε) → {}, (k1121, ε) → {}, (k3303, ε) → {e,f}, (k3323, ε) → {},
(k3103, ε) → {a,b,f,i}, (k3123, ε) → {}, (k3332, ε) → {}, (k3132, ε) → {},
(k3321, ε) → {}, (k3121, ε) → {}, (k1302, ε) → {h}, (k3302, ε) → {e,f,i},
(k1102, ε) → {d}, (k3102, ε) → {a,b,i}, (k2202, ε) → {c,d,g,h,i}, (k0202, ε) → {},
(k0002, ε) → {}, (k2002, ε) → {c}, (k1311, ε) → {i}, (k1111, ε) → {}, (k0211, ε) → {c},
(k1320, ε) → {f,i}, (k1120, ε) → {b}, (k0220, ε) → {c,i}, (k3311, ε) → {},
(k3111, ε) → {}, (k2211, ε) → {a}, (k3320, ε) → {}, (k3120, ε) → {}, (k2220, ε) → {a},
(k0011, ε) → {}, (k0020, ε) → {}, (k2011, ε) → {}, (k2020, ε) → {}, (k0201, ε) → {},
(k2201, ε) → {a,i}, (k1301, ε) → {h,i}, (k3301, ε) → {e,f}, (k0001, ε) → {},
(k2001, ε) → {}, (k1101, ε) → {}, (k3101, ε) → {a,b}, (k0210, ε) → {c,i},
(k2210, ε) → {a,i}, (k1310, ε) → {f,h,i}, (k0010, ε) → {}, (k2010, ε) → {},
(k1110, ε) → {}, (k3310, ε) → {e,f}, (k3110, ε) → {a,b}, (k1300, ε) → {h,i},
(k1100, ε) → {d}, (k0200, ε) → {c}, (k3300, ε) → {e,f,i}, (k3100, ε) → {a,b,i},
(k2200, ε) → {a,c,d,g,h,i}, (k0000, ε) → {}, (k2000, ε) → {c} }.

– Under δ = 2, the robot still wins, yet extramemory is needed. The correspondingwinning
strategy is analogous to that under δ = 1, except that an action is prepended in the history
sequence (which is previously ε). Thus we omit the detailed strategy here for the sake of
brevity.

– Under δ = 3, however, our synthesis algorithm reports LOSING, since the robot is no
longer winnable (controllable), as can be seen immediately from Fig. 9d.

References

1. Balemi, S.: Communication delays in connections of input/output discrete event processes. In: CDC 1992,
pp. 3374–3379 (1992)

2. Bansal, S., Namjoshi, K.S., Sa’ar, Y.: Synthesis of asynchronous reactive programs from temporal spec-
ifications. In: CAV 2018, pp. 367–385 (2018)

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga: time for
playing games! In: CAV 2007, Lecture Notes in Computer Science, vol. 4590, pp. 121–125 (2007)

4. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to safety games. Theoret.
Informat. Appl. 36(3), 261–275 (2002)

5. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: VMCAI 2014,
Lecture Notes in Computer Science, vol. 8318, pp. 1–20 (2014)

6. Brenguier, R., Pérez, G.A., Raskin, J., Sankur, O.: AbsSynthe: abstract synthesis from succinct safety
specifications. In: SYNT 2014, EPTCS, vol. 157, pp. 100–116 (2014)

123

Indecision and delays are the parents of failure 527

7. Brenguier, R., Pérez, G.A., Raskin, J., Sankur, O.: Compositional algorithms for succinct safety games.
In: SYNT 2015, pp. 98–111 (2015)

8. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc.
138, 295–311 (1969)

9. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math.
Soc. 138(1), 295–311 (1969)

10. Chatterjee,K.,Doyen, L.,Henzinger, T.A.,Raskin, J.:Algorithms for omega-regular gameswith imperfect
information. Log. Methods Comput. Sci. 3(3), 1–23 (2007)

11. Chen, M., Fränzle, M., Li, Y., Mosaad, P.N., Zhan, N.: What’s to come is still unsure — synthesizing
controllers resilient to delayed interaction. In: ATVA 2018, Lecture Notes in Computer Science, vol.
11138, pp. 56–74 (2018)

12. De Giacomo, G., Vardi, M.Y.: LTL f and LDL f synthesis under partial observability. In: IJCAI 2016, pp.
1044–1050 (2016)

13. Even, S., Meyer, A.R.: Sequential boolean equations. IEEE Trans. Comput. 18(3), 230–240 (1969)
14. Gale, D., Stewart, F.M.: Infinite games with perfect information. Contrib. Theory Games II Ann. Math.

Stud. 266, 28–245 (1953)
15. Holtmann, M.: Memory and delay in regular infinite games. Ph.D. thesis, RWTH Aachen (2011)
16. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in regular infinite games. Log Methods

Comput Sci 8(3), 1–15 (2012)
17. Hosch, F.A., Landweber, L.H.: Finite delay solutions for sequential conditions. In: ICALP 1972, pp.

45–60 (1972)
18. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1. In: SYNT@CAV 2016,

pp. 112–132 (2016)
19. Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games? In: ICALP 2015,

Lecture Notes in Computer Science, vol. 9135, pp. 452–463 (2015)
20. Klein, F., Zimmermann, M.: What are strategies in delay games? Borel determinacy for games with

lookahead. In: CSL 2015, Leibniz International Proceedings in Informatics, vol. 41, pp. 519–533 (2015)
21. Klein, U., Piterman, N., Pnueli, A.: Effective synthesis of asynchronous systems from GR(1) specifica-

tions. In: VMCAI 2012, pp. 283–298 (2012)
22. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Advances in Temporal Logic.

Springer, Berlin, pp. 109–127 (2000)
23. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2), 149–184 (1993)
24. Park, S., Cho, K.: Delay-robust supervisory control of discrete-event systems with bounded communica-

tion delays. IEEE Trans. Autom. Control 51(5), 911–915 (2006)
25. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: ICALP 1989, Lecture

Notes in Computer Science, vol. 327, pp. 652–671 (1989)
26. Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst. Sci. 29(2),

274–301 (1984)
27. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: ATVA 2007, pp. 474–488 (2007)
28. Somenzi, F.: Binary decision diagrams. In: Calculational System Design, volume 173 of NATO Science

Series F: Computer and Systems Sciences. IOS Press, Amsterdam, pp. 303–366 (1999)
29. Thomas, W.: On the synthesis of strategies in infinite games. In: STACS 95, Lecture Notes in Computer

Science, vol. 900, pp. 1–13 (1995)
30. Tripakis, S.: Decentralized control of discrete-event systems with bounded or unbounded delay commu-

nication. IEEE Trans. Autom. Control 49(9), 1489–1501 (2004)
31. Vardi,M.Y.:An automata-theoretic approach to fair realizability and synthesis. In:CAV1995, pp. 267–278

(1995)
32. Wulf, M.D., Doyen, L., Raskin, J.: A lattice theory for solving games of imperfect information. In: HSCC

2006, Lecture Notes in Computer Science, vol. 3927, pp. 153–168 (2006)
33. Zimmermann, M.: Finite-state strategies in delay games. In: GandALF 2017, EPTCS, vol. 256, pp. 151–

165 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

528 M. Chen et al.

Affiliations

Mingshuai Chen1 ·Martin Fränzle2 · Yangjia Li3,4 · Peter N. Mosaad2 ·
Naijun Zhan4,5

B Mingshuai Chen
chenms@informatik.rwth-aachen.de

B Martin Fränzle
fraenzle@informatik.uni-oldenburg.de

1 Lehrstuhl für Informatik 2, RWTH Aachen University, Aachen, Germany
2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg, Oldenburg,

Germany
3 University of Tartu, Tartu, Estonia
4 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing, China
5 University of Chinese Academy of Sciences, Beijing, China

123

http://orcid.org/0000-0001-9663-7441

	Indecision and delays are the parents of failure—taming them algorithmically by synthesizing delay-resilient control
	Abstract
	1 Introduction
	2 Safety games under delayed information
	2.1 Games with perfect information
	2.2 Games under delayed control
	2.3 Insufficiency of memoryless strategies
	2.4 Reduction to delay-free games

	3 Synthesizing controllers
	3.1 Upper bounding delay where winning strategy vanishes

	4 Extension to out-of-order delivery of messages and bounded message loss
	4.1 Out-of-order delivery
	4.2 Message loss

	5 Case study and experimental evaluation
	5.1 Robot escape games under delays
	5.2 Syntheses of delay-resilient control
	5.3 Evaluation of performance

	6 Conclusions
	Acknowledgements
	Appendix A Finite-memory winning strategies in Escp.4 times4
	References

