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Abstract
We enrich the operational semantics of a simple process calculus with ACP-style commu-
nication with a concurrency relation, so that for every process expression there exists an
associated notion of just path. We then present sufficient conditions on the communication
function and the syntax of process expressions that facilitate the formulation of justness on
the level of labels rather than on individual transitions, taking a designated set of signals
into account. This paves the way for the formulation of liveness properties under justness
assumptions in the modal μ-calculus and their verification on process specifications with the
mCRL2 toolset.

1 Introduction

In recent work, van Glabbeek and coauthors suggest that the liveness property for Peterson’s
mutual exclusion algorithm [17], stating that any process that wants to enter the critical
section will eventually enter it, cannot be analysed in CCS and related formalisms [4,7]. This
article is the result of our attempt to understand the formal underpinning of this suggestion
and its ramifications. In particular, we address the question whether it also implies that the
liveness property for Peterson’s algorithm cannot be convincingly established by means of
a verification with the mCRL2 toolset [2], which has a process-algebra based specification
formalism. Before we discuss our contributions, we briefly recap the arguments presented in
[4].

1.1 Recap of the arguments in [4]

The authors of [4] note that every process-algebraic specification of a distributed algorithm
or system includes unrealistic finite or infinite computations in which some component never
makes progress. Since such unrealistic computations typically violate liveness properties,
their mere existence is in the way of a proof that all realistic computations do satisfy these
properties. Unrealistic computations are then often excluded from consideration by imposing
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additional assumptions such as progress and fairness (see [8] for a comprehensive overview
of such assumptions).

For the analysis of implementations of so-called fair schedulers—of which Peterson’s
algorithm is an example—one should, however, take care that the fairness assumptions are
not too strong, since fair schedulers are, themselves, intended to realise fairness in a system.
Van Glabbeek and Höfner [7] have proposed justness as a criterion that is just strong enough
to exclude unrealistic computation of fair schedulers, but not too strong:

Once a transition is enabled that stems from a set of parallel components, one (or more)
of these components eventually partake in a transition. [8]

It turns out, however, that the proposed notion of justness, when formalised in the context
of CCS, still does not exclude certain unrealistic (or at least: unintended) computations of
Peterson’s algorithm, and some of these computations have liveness violations. The culprit is
that in a process-algebraic specification shared variables are components (processes) them-
selves, and hence reading the value of a shared variable is modelled as an interaction of the
component that reads and the component that models the variable. Hence, an infinite com-
putation in which one component continuously wants to assign a new value to the variable,
but never actually does, can, nevertheless, be just because another component time and again
reads the value of the variable. Yet, in the context of Peterson’s algorithm, reading the value
of a variable should not be considered to really affect the component corresponding to that
variable.

To counteract this problem, it is proposed in [4] to extend the syntax and semantics of
CCS with a so-called signal emission operator, providing an alternative mechanism to com-
municate information about the state of a component (e.g., a variable) to other components.
Although adding this operator does not increase the absolute expressiveness of the calculus,
it does facilitate a refined definition of justness. In this refined definition, the reading of a
signal is given special treatment by which computations such as the one described above are
not considered just, and thus excluded from consideration. Assuming the refined definition
of justness, it is proved in [4] that the specification of Peterson’s algorithm in CCS extended
with the signal emission operator satisfies the liveness property.

1.2 Our contributions

The signal emission operator is a non-standard process-algebraic construction. It is not part of
the specification formalism of mCRL2, nor, to the best of our knowledge, of the specification
formalism of any other process-algebra based automated verification tool. The question arises
whether the addition of such an operator is essential. If so, a non-trivial overhaul of established
verification tools is called for. Our first contribution is to show that it is not, if one is willing to
pay a small price: there is no general formal definition of justness for the entire calculus; the
formal definition must be tuned to the process expression under consideration. When aiming
for an automated verification, this is indeed a negligible price, since one is just interested in
the process expression that models the system under verification.

Semantically, the signal emission operator simply adds a self-loop labelled with a signal
to the state representing the process expression to which it is applied. A signal is just a special
type of label, so the self-loop can easily be specified by other means (e.g., using recursion)
if a particular subset of the set of labels is designated as signals. Because the choice of an
appropriate set of signals depends on how those labels are used in the process expression at
hand, the formal definition of justness needs to be specific for a particular process expression.
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In the absence of tools supporting the verification under justness of specifications such
as Peterson’s algorithm, establishing that a specification meets a property remains a manual
activity. This is problematic, as the complexity of a typical specification easily leads to cases
being missed in the analysis. Therefore, to conduct a convincing automated verification of
a property of an algorithm, we not only need to specify the algorithm in a process-algebra
based formalism; we also need to formulate the property in a suitable modal logic. Moreover,
in the verification of the property, justness has to be taken into account. It is unclear, however,
whether this can be achieved without changing the verification algorithms that are used to
evaluate the validity of a modal-logic formula with respect to the labelled transition system
associated with the process expression. A complication is, for instance, that the definition of
justness refers to a notion of component, which naturally exists at the level of the syntactic
representation of the system (i.e., the process expression), but not at the labelled transition-
system level.

Our second contribution is derived from the observation that with theACP-style communi-
cation mechanism [1] of mCRL2, which is more general than the communication mechanism
of CCS, Peterson’s algorithm can be specified in such away that justness can be defined refer-
ring to labels rather than to components. The idea is to achieve a partitioning of the set of
labels that reflects the component structure of the process expression. It is then possible to
reformulate justness referring to labels, rather than to components. We generalise the obser-
vation regarding Peterson’s algorithm and formulate general syntactic conditions that ensure
that such a partitioning is possible.

Our third contribution is a template modal μ-calculus formula that expresses a typical
liveness property, asserting that on all just paths, an action, say a, is eventually followed by
another, say b. This template formula can easily be instantiated by a user wishing to carry
out a liveness verification of an algorithm, and only requires information concerning which
actions are designated as signals. As a result, standard, off-the-shelf tooling such as mCRL2
can be used to automatically verify liveness properties of algorithms such as Peterson’s. In
case such verifications fail, evidence [3,18] can be provided, helping the user to pinpoint the
root cause.

This paper is organised as follows. In Sect. 2, following [9], we take the notion of labelled
transition systemwith concurrency (LTSC) as technical starting point, and present a definition
of justness for it. In Sect. 3 we present a process calculus that is very similar to CCS, except
that it has the more general ACP-style communication mechanism. Inspired by the LTSC-
semantics that van Glabbeek gives for CCS and its extension with signals in [9], we propose
anLTSC-semantics for the process calculus. Then, in Sect. 4we recapitulate inmore detail the
argument presented in [4] that Peterson’s algorithm cannot be rendered in the process calculus
in such a way that all unrealistic paths are excluded by assuming justness. In Sect. 5 we then
include a semantic treatment of special labels that take the role of signals. In Sect. 6, we define
when an LTSC admits a label-based treatment of justness, proposing a subclass of LTSCs
that have a concurrency-consistent labelling. In Sect. 7, we present sufficient conditions on
process expressions ensuring that the associatedLTSChas a concurrency-consistent labelling.
Process expressions satisfying these syntactic conditions are amenable to verifications that
take justness into account. In Sect. 8 we formalise a general liveness property under justness
assumptions for an LTSC that has a concurrency-consistent labelling. In Sect. 9 we comment
on the actual verification of the liveness property for Peterson’s algorithm with the mCRL2
toolset. In Sect. 10 we present some conclusions.
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2 Justness

We recap the definition of labelled transition system with concurrency and the associated
notion of just path from [9].

We presuppose disjoint sets A and S of actions and signals, respectively, and let L =
A ∪ S; elements of L are generally referred to as labels. A labelled transition system (LTS)
is a tuple (St,Tr, src, target, �) with St and Tr sets of states and transitions, respectively,
src, target : Tr → St and � : Tr → L.

We call a transition t ∈ Tr a signal transition if its label is a signal and it does not change
state, i.e., if �(t) ∈ S and src(t) = target(t); otherwise, t is called an action transition.

Remark 1 Van Glabbeek mentions in [9] that signal transitions are not supposed to change
state, but does not include it as an explicit requirement. Rather, in his work, it is a consequence
of the operational semantics of the process calculi under consideration that transitions labelled
with signals indeed never change state. The syntax and operational semantics of our process
calculus will, by design, admit process specifications that give rise to transitions labelled
with signals that do change state. We prefer that such transitions are not treated as signal
transitions in the notion of justness. To this end it is convenient to include the requirement
explicitly.

Signal transitions are disregarded in the definition of the notion of path. A path in a transition
system (St,Tr, src, target, �) is a finite or infinite alternating sequence s0t1s1t2s2 · · · of states
and action transitions, starting with a state and if it is finite also ending with a state, satisfying
src(ti ) = si−1 and target(ti ) = si for all relevant i . We say that a state s′ is reachable from
a state s if there exists a path that starts with s and ends with s′. We say that a transition t is
reachable from a state s if there exists a state s′ that is reachable from s and src(t) = s′.

Labelled transition systems abstract entirely from the notion of component. For the defi-
nition of justness, the notion of component is relevant, at least to the extent that it should be
possible to determine that, whenever some transition is enabled, eventually the component
(or set of components) fromwhich the transition stems, makes progress. For the formalisation
of justness, it turns out to be sufficient to consider labelled transition systems enriched with
a concurrency relation on transitions [9]. We first give the formal definition of labelled tran-
sition system with concurrency; the requirements on the concurrency relation are explained
after the definition.

Definition 2 A labelled transition system with concurrency (LTSC) is a tuple (St,Tr, src,
target, �,�•) consisting of an LTS (St,Tr, src, target, �) and a concurrency relation �• ⊆
Tr × Tr such that

1. �• is irreflexive on action transitions (i.e., if t is an action transition, then t ��• t), and
2. if t is an action transition and π is a path from src(t) to s ∈ St such that t �• v for all

transitions v occurring on π , then there is an action transition u such that src(u) = s,
�(u) = �(t) and t ��• u.

Intuitively, transitions are concurrent if they stem from different (sets of) components, and
they interfere if they have a component in common. It is then natural to require that the
concurrency relation on transitions is irreflexive: a transition cannot be concurrent with
itself. Furthermore, if some component (or set of components) can perform some activity,
represented by a transition t in the labelled transition system, then after executing transitions
concurrent with t—which, by assumption, then stem from different components than t—it
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should still be possible for the component to perform that same activity. The activity can be
represented by a different transition u in the labelled transition system, but this transition
should not be concurrent with t (it should interfere with t , i.e., t ��• u) and should have the
same label.

As explained in [9], justness is a completeness criterion: it is used to specify which paths
should be considered representing a complete computation of the system. For complete-
ness one wants to distinguish between so-called blocking actions and non-blocking actions.
Intuitively, a blocking action is not entirely under the control of the system that is being spec-
ified; it may depend on interaction with the environment. A non-blocking action is thought
to be completely under control of the system. A complete computation may end in a state in
which only blocking actions are enabled, but not in a state in which non-blocking actions are
enabled. The definition of justness takes a set of blocking actions as parameter.

Definition 3 Let B ⊆ A be a set of blocking actions. A path π in an LTSC is B-just if for
every action transition t with �(t) /∈ B and src(t) ∈ π , a transition u occurs in the suffix of
π starting at src(t) such that t ��• u.

The example below illustrates the concept of justness.

Example 4 Consider a situation in which Alice drinks coffee and eats a croissant in a small
cafe, and Bob is engaged in a series of phone calls. The situation can be modelled by the
following LTSC:

s0 s1 s2
coffee croissant

phone phone phone

Suppose that all labels in the above LTSC are non-blocking actions. In case all actions only
interfere with themselves, the infinite path consisting of only phone transitions from state
s0 is not ∅-just since the coffee transition is enabled in s0 but no interfering transition is
ever taken on this path. In case the phone transitions in s0, s1 and s2 do interfere with the
coffee transition and the croissant transition—for instance because Bob is also the waiter
who serves Alice, preferring to make phone calls instead of taking her orders—then the same
infinite path is ∅-just.

3 Process calculus

In [4], the authors claim that information exchanged through signals is essential for the
characterisation of just paths in the context of Peterson’s algorithm; without signals, paths
representing unrealistic executions of Peterson’s algorithm are considered just. In [4], justi-
fications for the claim are presented in the context of CCS. First, a version of CCS without
signals is considered, Peterson’s algorithm ismodelled, and then it is shown that justness does
not exclude all unrealistic computations. Then, Peterson’s algorithm is modelled in a variant
of CCS with signals, and it is shown that the corresponding notion of justness works well
for Peterson’s algorithm. We retrace their steps and in this section introduce a very simple
process calculus to specify LTSCs that, as we show in the next section, indeed illustrates the
phenomenon observed by the authors. In Sect. 5, we shall also introduce signals, but without
changing the syntax of the calculus.
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Aspecial feature of our calculus, compared toCCS as considered in [4,9], is that it includes
an ACP-style communication mechanism [1]: We presuppose a binary communication func-
tion on the set of labels L, i.e., a partial function

γ : L × L⇀L

that is

• commutative: γ (λ1, λ2) is defined if, and only if, γ (λ2, λ1) is defined, and if both are
defined, then we have γ (λ1, λ2) = γ (λ2, λ1); and

• associative: γ (λ1, γ (λ2, λ3)) is defined if, and only if, γ (γ (λ1, λ2), λ3) is defined, and
if both are defined then we have γ (λ1, γ (λ2, λ3)) = γ (γ (λ1, λ2), λ3).

This communication function defines which actions may communicate, and what is the result
of that communication. Thus, communication transitions are not all labelled with the same
action, as they are in CCS (in CCS all transitions that are the result of communications are
labelled with τ ). The advantage is that transitions that involve multiple components can be
labelled such that from the label it can be determined which components are involved.

We proceed to introduce the syntax of our process calculus and associate an LTSC with
it. The LTSC we get is in line with the LTSC that van Glabbeek associates with CCS in [9],
though our way of defining it deviates somewhat from van Glabbeek’s in [9], as we shall
explain below. For now, we presuppose that the set of signals is empty, i.e., L = A. (In
Sect. 5, we shall consider the general case in which the set of signals S is not empty and
adapt the structural operational semantics accordingly.) For the purpose of recursion, we also
presuppose a set I of agent identifiers. The set P of process expressions is generated by the
following grammar (with A ranging over I, λ ranging over L, and H ranging over subsets
of L):

P, Q::= 0 | λ.P | P + Q | P ‖ Q | ∂H (P) | A . (1)

The constructs 0, λ. and + are familiar from basic CCS, respectively denoting inaction,
action prefix and non-deterministic choice. The construct ‖ stands for ACP-style parallel
composition. It represents the arbitrary interleaving of the behaviours of its components, and
additionally allows its components to execute communication steps in accordance with the
communication function γ : if the left component of the parallel composition can execute
label λ1 and the right component can execute label λ2 and γ (λ1, λ2) is defined, then the
parallel composition can execute γ (λ1, λ2). The process calculus includes the encapsulation
operator ∂H (similar to the restriction operator in CCS) by which the execution of certain
labels can be blocked, and thus communication between components can be enforced. The
behaviour of the agent identifiers is defined through a recursive specification E , which is a
set of defining equations

A
def= P ,

with P a process expression, including precisely one such equation for every A ∈ I.
We now proceed to associate an LTSC (St,Tr, src, target, �,�•) with our process calcu-

lus. The set of states St of this LTSC is the set of process expressions P , as usual. To define a
suitable set Tr of transitions, as in [9], we take the collection of derivations in a formal proof
system based on the structural operational semantics of the process calculus.We deviate from
[9] in how we define the concurrency relation. In [9], van Glabbeek inductively associates
a set of synchrons with a derivation, which can be thought of as extracting from the deriva-
tion all the required component information necessary to define a concurrency relation. We
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Table 1 Structural operational semantics

(Pref)
λ.P

λ,{ε}−→ P
(Rec) P

λ,α−→ P ′ A
def= P

A
λ,{ε}−→ P ′

(Sum-l) P
λ,α−→ P ′

P + Q
λ,{ε}−→ P ′

(Sum-r)
Q

λ,α−→ Q′

P + Q
λ,{ε}−→ Q′

(Par-l) P
λ,α−→ P ′

P ‖ Q
λ,l�α−→ P ′ ‖ Q

(Par-r)
Q

λ,α−→ Q′

P ‖ Q
λ,r�α−→ P ‖ Q′

(Comm)
P

λ1,α1−→ P ′ Q
λ2,α2−→ Q′ γ (λ1, λ2) = λ

P ‖ Q
λ,l�α1∪r�α2−→ P ′ ‖ Q′

(Enc) P
λ,α−→ P ′ λ /∈ H

∂H (P)
λ,α−→ ∂H (P ′)

prefer to annotate the transition relation defined by the structural operational semantics with
component information directly.

First, we associate with a process expression P its static component architecture, which
is determined by the top-level occurrences of ‖ and ∂H in P . Let C = {l, r}; we shall refer
to a component in a process expression P as a sequence in C∗ (the empty sequence will be
denoted by ε). We recursively associate with every process expression P a set of components
C(P) ⊆ C∗ as follows:

• if P = 0, P = λ.P ′ (for some λ ∈ L), P = P1 + P2, or P = A (for some A ∈ I), then
C(P) = {ε};

• C(P1 ‖ P2) = l � C(P1) ∪ r � C(P2), and C(∂H (P)) = C(P).

(If X ⊆ C∗, then l � X = {lσ | σ ∈ X} and r � X = {rσ | σ ∈ X}.) Note that every
σ ∈ C(P) uniquely identifies a component of P: we denote this component byP|σ .

We keep track of which components contribute to a transition in the structural operational

semantics for our process calculus, presented in Table 1. It defines a transition relation
λ,α−→

on process expressions, which is not only endowed with a label λ ∈ L, but also with a set
α ⊆ C∗ of components.
The rule (Pref) expresses that a prefix λ.P can do a λ-labelled transition to P; furthermore,
λ.P is by itself a component. So the set of components associated with the transition is {ε}.
The rules (Sum-l) and (Sum-r) express that a non-deterministic choice P + Q can execute
a λ-labelled transition from P or from Q. Also P + Q is by itself a component, denoted by
ε. So the set of components associated with the transition is {ε}.

The rules (Par-l), (Par-r) and (Comm) express, respectively, that a parallel composition
P ‖ Q can execute a transition of the components of P , a transition of the components of Q,
or execute a transition in which both components of P and Q are involved. In the latter case,
the communication function γ must be defined on the labels of the transitions of P and Q and
the combined transition is labelled with the result of applying the communication function
to these labels. In the case of an application of (Par-l) or (Par-r), the sets of components
involved in the resulting transitions need to be updated by prefixing all components suitably
with l or r, respectively. In the case of an application of (Comm), the involved components
of P are prefixed with l, and the involved components of Q are prefixed with r. Finally, the
rule (Enc) expresses that ∂H blocks transitions labelled with λ ∈ H ; the set of components
is simply inherited.
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The example below illustrates the operational rules, and how they can be used to construct
derivations.

Example 5 The recursive specification given belowmodels the second situation of Example 4,
i.e., the situation in which Alice orders coffee and a croissant, and Bob is her waiter.

Bob
def= coffeer .Bob + croissantr .Bob + phone.Bob , and

Alice
def= coffees .croissants .0 ,

Assume that γ is a communication function satisfying

γ (coffeer, coffees) = coffee and γ (croissantr, croissants) = croissant .

Then we can derive the following transition with conclusion Bob
coffeer ,{ε}−→ Bob, with source

process Bob, target process Bob, and label coffeer :

(Rec)

(Sum-l)

(Pref)
coffeer .Bob

coffeer ,{ε}−→ Bob

coffeer .Bob + croissantr .Bob + phone.Bob
coffeer ,{ε}−→ Bob

Bob
coffeer ,{ε}−→ Bob

In a similar vein, we can derive a transition that has as conclusionAlice
coffees ,{ε}−→ croissants .0,

and which allows us to derive a transition witnessing the communication that can take place
between Alice and Bob:

(Comm)

...

Bob
coffeer ,{ε}−→ Bob

...

Alice
coffees ,{ε}−→ croissants .0

Bob ‖ Alice
coffee,{l,r}−→ Bob ‖ croissants .0

The above derivation shows that both Alice and Bob contribute equally to the transition that
results in Alice drinking a cup of coffee.

Now we let Tr be the set of all derivations1 that can be constructed using the structural
operational rules in Table 1, and we define src, target and � by stipulating that if t ∈ Tr is a

derivation and P
λ,α−→ P ′ is its conclusion, then src(t) = P , target(t) = P ′ and �(t) = λ.

Furthermore, we write comp(t) to denote the set of components α contributing to t .
It remains to define the concurrency relation �•. We define that transitions t and u are

concurrent (notation: t �• u) if comp(t) ∩ comp(u) = ∅, i.e., if none of the components
contributing to t are contributing to u.

Lemma 6 For all transitions t and v, if src(t) = src(v) and t �• v, then there exists a
transition u with src(u) = target(v), �(u) = �(t) and comp(u) = comp(t).

Proof By induction on v; see Lemma 44 in “Appendix A” for details. �
Proposition 7 The structure P = (St,Tr, src, target, �,�•) with components as defined
above is an LTSC.

1 The notion of derivation with respect to a set of derivation rules can be defined inductively as usual; we omit
it here.
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Fig. 1 Peterson’s algorithm (pseudocode)

Proof From the rules in Table 1 it is immediate that whenever P
λ,α−→ P ′, then α /= ∅. So for

every t ∈ Tr we have that comp(t) ∩ comp(t) = α /=∅. It follows that t ��• t and hence �•

is irreflexive. That �• also satisfies the second requirement of Definition 2 follows with a
straightforward induction on the length of π using Lemma 6. �

4 Modelling Peterson’s algorithm

Peterson’s algorithm for mutual exclusion provides a classical solution to enable two pro-
cesses to use a shared resource in a mutually exclusive manner. In the algorithm, the shared
resource is referred to as the critical section. The algorithm ensures that at all times only
one of the two processes is in the critical section. A desired liveness property of a mutual
exclusion algorithm is that whenever one of the two processes wishes to enter the critical sec-
tion, then it will eventually do so. In this section, we shall discuss how Peterson’s algorithm
can be modelled in the process calculus introduced in the previous section. Then, we shall
recap the argument, already presented in [4], that the notion of justness associated with the
process calculus is too weak to exclude all unrealistic paths violating the liveness property. In
the next section, we shall refine the definition of justness in order to facilitate an exhaustive
verification under this notion of justness of the aforementioned liveness property using the
mCRL2 toolset.

Peterson’s algorithm is shown in Fig. 1. Processes A and B communicate via shared
variables. By setting Boolean variables readyA and readyB, respectively, they signal to the
other process their wish to enter the critical section. In addition, a shared variable turn is used
to keep track of whose turn it is to enter the critical section next; the idea is that a process,
before entering its critical section, courteously always first grants access to the other process.
This way of using turn is essential for ensuring both deadlock freedom and mutual exclusion.

In amessage-passing process calculus, global variables aremodelled as separate processes
with which other processes can interact. Processes modelling a variable keep track of the
value of the variable and can communicate with other processes in read and write operations.
In our model, to read a variable, the variable that is being read performs an action s_rdvalvar and
the process that reads the variable performs an action r_rdvalvar . Together they communicate to
a transition labelled with rdvalvar . A similar communication, labelled with asgnvalvar , is defined
to write to a variable. To cover all the interactions with variables in Peterson’s algorithm we
define the communication function γ in such a way that it satisfies the following equations
and is undefined otherwise:
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γ (r_asgnbP, s_asgnbP) = asgnbP (b ∈ {true, false}, P ∈ {RA,RB}),
γ (r_rdbP, s_rdbP) = rdbP (b ∈ {true, false}, P ∈ {RA,RB}),
γ (r_asgntT , s_asgntT ) = asgntT (t ∈ {A,B}), and
γ (r_rdtT , s_rdtT ) = rdtT (t ∈ {A,B}).

(2)

Wemodel the behaviour of the three variables readyA, readyB and turnwith process identifiers
RAb, RBb and Tt (with the superscripts referring to the current value of the variable), defined
by the following equations:

RAb = r_asgntrueRA .RAtrue + r_asgnfalseRA .RAfalse + s_rdbRA.RAb (b ∈ {true, false}),
RBb = r_asgntrueRB .RBtrue + r_asgnfalseRB .RBfalse + s_rdbRB.RBb (b ∈ {true, false}), and
Tt = r_asgnAT .TA + r_asgnBT .TB + s_rdtT .Tt (t ∈ {A, B}).
Our specification uses labels noncritA, noncritB, critA, critB, to represent exiting the

noncritical and critical sections, respectively. Process identifiers procA and procB model the
behaviour of processes A and B. They are defined by the following equations [using the
abbreviation (λ1 + λ2).P for λ1.P + λ2.P]:

procA = noncritA.s_asgntrueRA .s_asgnBT .(r_rdfalseRB + r_rdAT ).critA.s_asgnfalseRA .procA, and

procB = noncritB.s_asgntrueRB .s_asgnAT .(r_rdfalseRA + r_rdBT ).critB.s_asgnfalseRB .procB.

Together, the process definitions form the recursive specification EPet consisting of eight
process identifiers: procA, procB, RAtrue, RAfalse, RBtrue, RBfalse, T A and T B . With the set H
defined by

H = {s_asgnbP, r_asgnbP, s_rdbP, r_rdbP | b ∈ {true, false}, P ∈ {RA,RB}}
∪ {s_asgntT , r_asgntT , s_rdtT , r_rdtT | t ∈ {A,B}},

we can now specify Peterson’s algorithm with the process expression

Pet = ∂H (procA ‖ (procB ‖ (RAfalse ‖ (RBfalse ‖ TA)))) .

Remark 8 Our specification of Peterson’s algorithm is almost identical to the CCS model
presented in [4]. The difference is in how communication is defined. CCS presupposes a
standard communication function by which an action a can communicate with its co-named
action ā, resulting in a special action τ . In our setting, the exact same behaviour as defined by
the specification in [4] would be obtained by using, instead of the communication function
γ defined above, a communication function γCCS defined by

CCS(r_asgnbP, s_asgnbP) = τ (b ∈ {true, false}, P ∈ {RA,RB}),
CCS(r_rdbP, s_rdbP) = τ (b ∈ {true, false}, P ∈ {RA,RB}),
CCS(r_asgntT , s_asgntT ) = τ (t ∈ {A,B}), and
CCS(r_rdtT , s_rdtT ) = τ (t ∈ {A,B}).

(3)

To get an appropriate notion of just path starting from Pet, we define the set of blocking
actions.

B = {noncritA,noncritB}
Let π denote the unique path starting with Pet such that if all states are omitted from it then
we obtain the following sequence of labels:

noncritA.(noncritB.asgntrueRB .asgnAT .rd f alse
RA .critB.asgn f alse

RB )∞ .
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The path π violates the liveness criterion as process A wants to enter the critical section
but is never able to, waiting to write to the variable readyA. It is deemed unrealistic, as
process B reading readyA intuitively cannot prevent process A from writing it. To assess
whether π is just we need to examine whether for every action transition t with �(t) /∈ B
and src(t) ∈ π , a transition u occurs in the suffix of π starting at src(t) such that t ��• u.
The only component of interest here is procA as all other components partake in infinitely
many transitions. Let t denote some transition labelled with asgntrueRA , with src(t) ∈ π . There

always exists a transition u labelled with rd f alse
RA in the suffix of π starting at src(t). The

components partaking in t are l and rrl and the components partaking in u are rl and rrl.
Hence, due to the overlap, t ��• u; the path violating the liveness property is just.

A more refined definition of the concurrency relation is needed to specify that certain
interactions, such as reading a variable, do not interfere with other interactions with the same
component. This requires distinguishing between components contributing passively to a
transition and components really affected by a transition.

5 Signals

In the previous section it was observed that the specification of Peterson’s algorithm in the
proposed process calculus does not yield the appropriate notion of just path, at least not with
the given semantics. The culprit is a combination of two aspects. First, shared variables need
to be modelled as separate processes. Second, the process calculus does not offer a facility
to distinguish between the activities of reading and writing a variable while, intuitively, if
some component reads the value of a variable then this should not prevent another process
from writing a new value to it.

The solution proposed in [4] is to extend the syntax ofCCSwith a signal emission operator,
in order to treat signals differently in the definition of the concurrency relation. A separate
set S of signals is presupposed, and the signal emission operator adds a λ-labelled self-loop
to a state if it can emit signal λ ∈ S. Variables, modelled as processes, then emit their values
in the form of signals, and reading the value of a variable can then be treated as not affecting
the variable. As a consequence, paths on which some component wants to write to a variable
but never succeeds because the variable is perpetually read by some other component is not
considered just.

Adding a signal emission operator solves the problem uniformly: with every process
expression of the process calculus an appropriate notion of just path is associated: if a com-
ponent only contributes to a transition by emitting a signal, then this contribution is considered
passive. A disadvantage of the solution, however, is that it requires an addition to the syntax of
the calculus. As a consequence, standard verification technology such as the mCRL2 toolset,
which does not include a signal emission operator, cannot be used to perform verifications
taking justness into account.

Here we opt for a different solution, which does not require an addition to the syntax
of the process calculus. Instead, it suffices to distinguish a separate set of signals S and
tune the notion of justness to take signals into account. We need to modify the structural
operational semantics, giving signals a special status: whenever a transition labelled with a
signal indeed does not change state, then it is considered to be a signal. But this modification
of the structural operational semantics is only necessary to get an appropriate definition of the
concurrency relation. In Sects. 6 and 7, we shall propose sufficient conditions on a process
expression (and the underlying recursive specification) that ensure that all transitions labelled
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Table 2 Structural operational semantics taking signals into account

(Pref)
λ.P

λ,{ε},∅−→ P

(Rec) P
λ,α,ς−→ P ′ A

def= P

A
λ,α′,ς ′
−→ P ′

{
α′ = ∅, ς ′ = {ε} if λ ∈ S and P ′ = A
α′ = {ε}, ς ′ = ∅ otherwise

(Sum-l) P
λ,α,ς−→ P ′

P + Q
λ,α′,ς ′
−→ P ′

{
α′ = ∅, ς ′ = {ε} if λ ∈ S and P ′ = P + Q
α′ = {ε}, ς ′ = ∅ otherwise

(Sum-r)
Q

λ,α,ς−→ Q′

P + Q
λ,α′,ς ′
−→ Q′

{
α′ = ∅, ς ′ = {ε} if λ ∈ S and Q′ = P + Q
α′ = {ε}, ς ′ = ∅ otherwise

(Par-l) P
λ,α,ς−→ P ′

P ‖ Q
λ,l�α,l�ς−→ P ′ ‖ Q

(Par-r)
Q

λ,α,ς−→ Q′

P ‖ Q
λ,r�α,r�ς−→ P ‖ Q′

(Comm)
P

λ1,α1,ς1−→ P ′ Q
λ2,α2,ς2−→ Q′ γ (λ1, λ2) = λ

P ‖ Q
λ,l�α1∪r�α2,l�ς1∪r�ς2−→ P ′ ‖ Q′

(Enc) P
λ,α,ς−→ P ′ λ /∈ H

∂H (P)
λ,α,ς−→ ∂H (P ′)

with signals are indeed signal transitions. This, in combination with the use of an appropriate
communication function that preserves component information, will eventually obviate the
need for explicitly defining a concurrency relation on transitions, because it can be deduced
from the labelling.

Henceforthwe allowS to be non-empty. The syntax of the process calculus [see (1) on p. 6]
remains the same. In the structural operational semantics, however, we distinguish between
components contributing actively and components contributing passively to a transition. A
component contributes passively to a transition if another component reads one of its signals,
i.e., the component participateswith a transition that is labelledwith a signal and this transition
does not change the state of the component. The modified structural operational semantics

in Table 2 defines a transition relation
λ,α,ς−→ on process expressions, which is endowed with a

label λ ∈ L, a set α ⊆ C∗ of active components and a set ς ⊆ C∗ of signalling components.
Note that λ.P /= P , and therefore a transition emanating from a prefix always changes

state. Thus, according to the rule (Pref), the transition from a prefix has an active component
ε and no signalling components.

If an identifier A is the source of a transition that has A also as its target, and this tran-
sition is labelled with a signal, then this transition has a signalling component ε and no
active components; otherwise, the transition has an active component ε and no signalling
components.

Due to the presence of recursion, it may also happen that P + Q is both the source and
the target of a transition, and if such a transition is labelled with a signal, then we want to
treat it as a signal transition. This is reflected in (Sum-l) and (Sum-r) by distinguishing
whether the target of the transition equals P + Q and is labelled with a signal: if so, then the
transition has no active components and a signalling component ε; otherwise, the transition
has an active component ε and no signalling components.
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In an application of (Par-l), both the active and signalling components of the premise
are prefixed with an l; in an application of (Par-r), they are prefixed with an r; in an
application of (Comm) the components of the left premise are prefixed with an l and those
of the right premise are prefixed with an r. In an application of (Enc), both the sets of active
and signalling components are simply inherited from the premise.

Example 9 Consider the recursive specification of Peterson’s algorithm—and in particular
the specification of RAfalse—given in the previous section. Suppose that s_rdfalseRA ∈ S but

rdfalseRA , r_rdfalseRA /∈ S. Then we have the following (fragment of a) derivation:

(Comm)

(Rec)
...

RAfalse s_rdfalseRA ,∅,{ε}−→ RAfalse r_rdfalseRA .0
r_rdfalseRA ,{ε},∅−→ 0

(Pref)

RAfalse ‖ r_rdfalseRA .0
rdfalseRA ,{r},{l}−→ RAfalse ‖ 0

The component RAfalse contributes a signal transition, and hence does not actively contribute
to the communication. As a consequence, the path we identified earlier as constituting a
liveness violation of Peterson’s algorithm is, with the revised semantics, no longer just.

We now associate a revised LTSC with our process calculus as follows. Its set of states St
is again the set of process expressions. Its set of transitions Tr is the set of all derivations in
accordance with the new structural operational semantics in Table 2. Again, if t ∈ Tr is a

derivation with conclusion P
λ,α,ς−→ P ′, then src(t) = P , target(t) = P ′ and �(t) = λ. We

define the concurrency relation using a refined notion of component, in which we distinguish
between necessary participants and affected components. The set of necessary participants
of a transition t , denoted by npc(t), is defined as

npc(t) = α ∪ ς ,

and the set of affected components of t , denoted by afc(t), is defined as

afc(t) = α .

Wedefine that transitions t and u are concurrent (notation: t�•u) if none of the components
necessary for t are affected by u, i.e., if npc(t) ∩ afc(u) = ∅.

To satisfy the requirements on �• that it is irreflexive on action transitions, it is important
that the set of affected components afc(t) of an action transition t is non-empty, for otherwise
npc(t) ∩ afc(t) = ∅. The following example illustrates that we need to formulate some mild
restrictions on the communication function for this.

Example 10 Consider the recursive specification consisting of the following two defining
equations:

A
def= λ1.A , and

B
def= λ2.B ,

and suppose that γ is a communication function satisfying

γ (λ1, λ2) = γ (λ2, λ1) = λ3 .
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Furthermore, suppose thatλ1, λ2 ∈ S, while λ3 ∈ A. Thenwe have the following derivation:

(Comm)

(Rec)

(Pref)
λ1.A

λ1,{ε},∅−→ A

A
λ1,∅,{ε}−→ A

λ1.B
λ2,{ε},∅−→ B

(Pref)

B
λ2,∅,{ε}−→ B

(Rec)

A ‖ B
λ3,∅,{l,r}−→ A ‖ B

Since λ3 ∈ A, this derivation is an action transition, but the set of affected components is
empty. The culprit in this example is that communication between the two signals λ1 and λ2
results in an action λ3.

We can exclude the situation as described in the preceding example by requiring that the
communication of two signals never results in an action. It is convenient and natural to also
require the converse: the communication of an action with another label should never result
in a signal.

Definition 11 A communication function γ is signal-respecting if γ (λ1, λ2) ∈ S if, and only
if, λ1, λ2 ∈ S.

Lemma 12 If the communication function γ is signal-respecting, then a transition t is a
signal transition if, and only if, afc(t) = ∅.

Proof By induction on t ; see Lemma 45 in “Appendix A” for details. �

In the following corollary, which is an immediate consequence of the preceding lemma,
we establish that �• satisfies condition 1 of Definition 2.

Corollary 13 If the communication function γ is signal-respecting, then �• is irreflexive on
action transitions, i.e., for all action transitions t we have t ��• t .

Proof Let t be an action transition. Then, by Lemma 12, afc(t) /= ∅. Since afc(t) ⊆ npc(t),
it follows that npc(t) ∩ afc(t) /= ∅, and hence t ��• t . �

Lemma 14 For all transitions t and v, if src(t) = src(v) and npc(t) ∩ afc(v) = ∅, then
there exists a transition u with src(u) = target(v), �(u) = �(t) and npc(u) = npc(t). If γ is
signal-respecting and t is an action transition, then so is u.

Proof By induction on v; see Lemma 46 in “Appendix A” for details. �

It follows from the preceding lemma that the relation �• associated with our process
calculus satisfies condition 2 of Definition 2, as established in the following corollary.

Corollary 15 If γ is signal-respecting, t is an action transition and π is a path from src(t) to
some process expression P such that t �• v for all transitions v occurring on π , then there
is an action transition u such that src(u) = P, �(u) = �(t) and t ��• u.

Proof Straightforward induction on the length of π using Lemma 14. �

From Corollaries 13 and 15 we get the following proposition.
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Proposition 16 Let γ be signal-respecting, let St = P , let Tr be the set of all derivations
of transitions in accordance with the operational semantics, stipulating that if t ∈ Tr is a

derivation with conclusion P
λ,α,ς−→ P ′, then src(t) = P, target(t) = P ′ and �(t) = λ,

npc(t) = α∪ς and afc(t) = α, and defining�• by t �• u if, and only if, npc(t)∩afc(u) = ∅.
Then

P = (St,Tr, src, target, �,�•)

is an LTSC.

Example 17 Returning to the running example of Peterson’s algorithmwe reconsider the path
that violates liveness. First,we define the signal actions and checkwhether the communication
function is signal-respecting.

S = {s_rdbP | b ∈ {true, false}, P ∈ {RA,RB}} ∪ {s_rdtT | t ∈ {A,B}}
It is easy to see that the communication function γ , defined in Eq. (2) on p. 9, is signal-
respecting. Taking the LTSC as defined in Proposition 16we re-examine the liveness violating
path π presented at the end of Sect. 4, which gives rise to the following sequence of labels:

noncritA.(noncritB.asgntrueRB .asgnAT .rd f alse
RA .critB.asgn f alse

RB )∞.

Let t and u be any two transitions with labels asgntrueRA and rd f alse
RA , respectively. Then

npc(t) = {l, rrl} and afc(u) = {rl}. Therefore npc(t) ∩ afc(u) = ∅ and thus t �• u.
We conclude that path π contains transition t , src(t) ∈ π , for which there does not exist a
transition v in the suffix of π such that t ��• v. The path π is therefore not just and can be
ruled out. Note that this does not constitute a proof of liveness, we have only reasoned about
a single path. To prove liveness we need to prove that there does not exist another liveness
violating path that is just.

6 Concurrency-consistent labelling

The semantics we associatedwith our process calculus in the previous section enables reason-
ing about just paths without the need for additional operators in the language. This allows one
to manually analyse, e.g., the required liveness property of Peterson’s algorithm in a standard
process algebra, by reasoning directly about the relevant just paths in the LTSC under analy-
sis. Our aim, however, is to facilitate the automated verification of liveness properties for just
paths, using toolsets such as mCRL2. Such toolsets are based on labelled transition systems
without a concurrency relation. Moreover, in these toolsets, properties need to be expressed
in a modal logic that has modalities that refer to labels, and not to individual transitions.

Our specification of Peterson’s algorithm is such that it allows a characterisation of its
just paths in terms of labels rather than referring to individual transitions in the LTSC. This
is possible, because the labelling of transitions reachable from Pet is consistent with the
concurrency relation on those transitions.

In this section, we formally define when an LTSC has a concurrency-consistent labelling,
and we prove that LTSCs with a concurrency-consistent labelling allow a characterisation
of just paths in terms of labels instead of individual transitions. In the next section, we
shall provide a sufficient syntactic criterion on specifications in our process calculus that
ensure that the associated LTSC has a concurrency-consistent labelling, and we argue that
our specification of Peterson’s algorithm satisfies this syntactic criterion.
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Definition 18 An LTSC (St,Tr, src, target, �,�•) has a concurrency-consistent labelling if
for every t ∈ Tr, �(t) ∈ S implies src(t) = target(t), and there exists a binary relation �•

on the set of labels L such that for all transitions t, u ∈ Tr we have that t �• u if, and only
if, �(t) �• �(u).

Clearly, there is no harm in the overloading of the symbol �•. In an LTSC with a
concurrency-consistent labelling the relation on L is uniquely determined by the relation
on Tr. Furthermore, it will be clear from the context whether we mean the relation on tran-
sitions or the relation on labels. For an LTSC with concurrency-consistent labelling, we can
reformulate the notion of B-justness referring to labels instead of transitions. A label λ ∈ L
is enabled in a state s ∈ St if there is a transition t with src(t) = s and �(t) = λ. An action
λ ∈ A is eliminated on a path π if there is a transition t on π such that λ ��• �(t). In an LTSC
with a concurrency-consistent labelling, action transitions are not labelled by signals, so a
non-blocking action transition is labelled by an element of the complement B = A\B of B
relative to A.

Proposition 19 Let B ⊆ A be a set of blocking actions. If (St,Tr, src, target, �,�•) has a
concurrency-consistent labelling, then a path π is B-just if, and only if, for every state s on
π and every λ ∈ B enabled in s, λ is eliminated in the suffix of π starting at s.

Proof Let π be a path in (St,Tr, src, target, �,�•).
To prove the implication from left to right, suppose that π is B-just and suppose that

λ ∈ B is enabled in some state s on π . Then there is an action transition t with src(t) = s
and �(t) = λ, so, by B-justness, a transition u occurs in the suffix of π starting at src(t) = s
such that t ��• u. Since the LTSC has a concurrency-consistent labelling, it follows that
λ = �(t) ��• �(u), and hence λ is eliminated on the suffix of π starting at s.

To prove the implication from right to left, let t be an action transition such that �(t) /∈ B
and src(t) ∈ π . Then �(t) is enabled and, since t is an action transition and the LTSC has
a concurrency-consistent labelling, it follows that �(t) ∈ B, so λ is eliminated in the suffix
of π starting at src(t). So there is a transition u in the suffix of π starting at src(t) such that
�(t) ��•�(u). Hence, since the LTSC has a concurrency-consistent labelling, t ��•u, confirming
that π is B-just. �

7 Specifying an LTSC with concurrency-consistent labelling

The LTSC P associated with the process calculus in Sect. 5 does not have a concurrency-
consistent labelling, simply because there exist process expressions (e.g., λ.0 with λ ∈ S)
that give rise to state-changing transitions labelled with signals. In automated verification,
however, we are often only interested in the restriction of P to the set of process expressions
reachable from some initial process expression; for example, when verifying Peterson’s
algorithm we are only interested in states and transitions reachable from Pet. We shall now
first formally define the LTSC associated with a process expression P , and then formulate
sufficient syntactic conditions that guarantee that this LTSC has a concurrency-consistent
labelling.

Definition 20 Let P be a process expression. The LTSC associated with P has as set of states
the set of all process expressions reachable from P in P, as transitions the set of all transitions
reachable from P , and functions src, target, � and relation �• obtained by restricting those
of P to the set of transitions reachable from P .
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In Sect. 5, the concurrency relation �• on transitions was derived from assignments
npc : Tr → 2C

∗
and afc : Tr → 2C

∗
of necessary participants and affected components to

individual transitions. It is convenient to formulate sufficient conditions in terms of assign-
ments npc� : L → 2C

∗
and afc� : L → 2C

∗
of necessary and affected components to labels,

respectively, satisfying for every transition t

npc(t) = npc�(�(t)), and (4)

afc(t) = afc�(�(t)) . (5)

It is not possible to satisfy these equations in general: an appropriate assignment of com-
ponents to labels largely depends on the process expression under consideration. Moreover,
it may not even be possible to define npc� : L → 2C

∗
and afc� : L → 2C

∗
in such a way that

the equations above are satisfied for all reachable transitions.

Example 21 Consider the specification Pet of Peterson’s algorithm presented in Sect. 4, and
consider the state reached from Pet by first executing noncritA and then executing noncritB.
In that state, two transitions are enabled: let us denote by t the transition corresponding to
the activity of process A assigning the value true to the variable readyA (this is statement
�2 in Fig. 1) and let us denote by u the transition corresponding to the activity of process
B assigning the value true to the variable readyB (this is statement m2 in Fig. 1). Then
npc(t) = {l, rrl} and npc(u) = {rl, rrrl}. Now observe that, in the context of the CCS
communication function γCCS, defined in Eq. (3) on p. 10, we have that �(t) = �(u) = τ ,
and hence it is not possible to define a mapping npc� : L → 2C∗

satisfying (4). Note that
with the communication function γ , defined in Eq. (2) on p. 9 the problem disappears, since
t and u have distinct labels asgntrueRA and asgntrueRB , respectively.

The goal in this section is to formulate sufficient conditions on the communication function
γ and a process expression P that allow us to define npc� and afc� satisfying (4) and (5) for
all transitions t reachable from P . Furthermore, we show that our specification of Peterson’s
algorithm satisfies these restrictions.

We first formulate some basic requirements on npc� and afc�, expressing that the set of
affected components associated with a label is included in the set of necessary components,
and that signals do not have active components.

Definition 22 Let C ⊆ C∗ be a finite set of static components. A C-assignment is a pair
(npc�, afc�) of mappings npc�, afc� : L → 2C such that

1. afc�(λ) ⊆ npc�(λ) for all λ ∈ L; and
2. afc�(λ) = ∅ for all λ ∈ S.

In the following example, we define a C(Pet)-assignment for our specification of Peterson’s
algorithm.

Example 23 Recall that the set of components C(Pet) associated with Pet is

C(Pet) = {l, rl, rrl, rrrl, rrrr} .

To define the mappings npc�, afc� : L → 2C(Pet) it is convenient to first associate with every
component σ ∈ C(Pet) a set of labels Lσ ⊆ L. We have

Ll = {noncritA, s_asgntrueRA , s_asgnBT , r_rdfalseRB , r_rdAT , critA, s_asgnfalseRA },
Lrl = {noncritB, s_asgntrueRB , s_asgnAT , r_rdfalseRA , r_rdBT , critB, s_asgnfalseRB },
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Lrrl = {r_asgntrueRA , r_asgnfalseRA , r_rdtrueRA , r_rdfalseRA },
Lrrrl = {r_asgntrueRB , r_asgnfalseRB , r_rdtrueRB , r_rdfalseRB }, and
Lrrrr = {r_asgnAT , r_asgnBT , r_rdAT , r_rdBT }.

Now we can define, for all σ ∈ C(Pet) and all λ ∈ Lσ :

npc�(λ) = {σ }, and afc�(λ) =
{ {σ } if λ ∈ A, and

∅ if λ ∈ S .

On the other elements of L, the results of communications, npc� and afc� are defined as
follows:

npc�(asgn
b
RA) = afc�(asgn

b
RA) = {l, rrl} (b ∈ {true, false}),

npc�(asgn
b
RB) = afc�(asgn

b
RB) = {rl, rrrl} (b ∈ {true, false}),

npc�(asgn
B
T ) = afc�(asgn

B
T ) = {l, rrrr},

npc�(asgn
A
T ) = afc�(asgn

A
T ) = {rl, rrrr},

npc�(rd
b
RA) = {rl, rrl}, afc�(rd

b
RA) = {rl} (b ∈ {true, false}),

npc�(rd
b
RB) = {l, rrrl}, afc�(rd

b
RB) = {l} (b ∈ {true, false}),

npc�(rd
A
T ) = {l, rrrr}, afc�(rd

A
T ) = {l}, and

npc�(rd
B
T ) = {rl, rrrr}, afc�(rd

B
T ) = {rl}.

It is easy to verify that (npc�, afc�) satisfies the requirements of Definition 22 and hence is a
C(Pet)-assignment.

We could now proceed to prove directly that the C(Pet)-assignment in the preceding
example satisfies Eqs. (4) and (5) and conclude that the LTSC associated with Pet has a
concurrency-consistent labelling. We prefer to proceed more generally, however, and define
a subclass of process expressions together with assumptions on the underlying recursive
specification that guarantee that an assignment satisfying Eqs. (4) and (5) exists. It will be
easy to verify that Pet is a process expression in the subclass, and that the recursive specifi-
cation EPet satisfies the assumptions, from which it will follow that the C(Pet)-assignment
above indeed satisfies Eqs. (4) and (5). In fact, it can be checked automatically whether a
process expression is in the subclass and the underlying recursive specification satisfies the
assumptions.

We consider parallel compositions of sequential components. These sequential com-
ponents should have disjoint alphabets and respect the use of signals. Moreover, the
communication function should support a consistent assignment of components to labels.
Below, we shall first formulate sufficient conditions on a sequential process expression and
its underlying sequential recursive specification that ensure that transitions labelled with
signals do not change state in the LTSC associated with the process expression. Then, we
associate with every sequential process expression its (reachable) alphabet and its (reachable)
action alphabet, so thatwe can formulate the requirement that the alphabets of components are
disjoint. And finally we shall define when an assignment is consistent with a communication
function.

Sequential components The set of sequential process expressions is generated by the
following grammar (with A ranging over I and λ ranging over L):

S::= 0 | λ.S | S + S | A .
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By a sequential recursive specification E we mean a set of defining equations

A
def= SA ,

with SA a sequential process expression, including precisely one such equation for every
A ∈ I.

A sequential process expression S is syntactically guarded if all occurrences of process
identifiers in S are within the scope of an action prefix. A sequential recursive specification

E is syntactically guarded if for every defining equation A
def= SA in E it holds that SA is

syntactically guarded.

Respect for signals Let E be a sequential recursive specification, and let us denote, for all
A ∈ I, by SA the right-hand side of the defining equation for A in E . We say that A ∈ I
is signalling if SA has a subexpression λ.A with λ ∈ S. A process identifier A ∈ I is
signal-respecting if

1. for every subexpression λ.S′ of SA with λ ∈ S it holds that S′ = A and the occurrence
of the subexpression is not in the scope of another prefix, and

2. for every subexpression S1 + S2 of SA it holds that S1 and S2 are not signalling process
identifiers.

E is signal-respecting if it is syntactically guarded and all process identifiers in I are signal-
respecting. A sequential process expression S is signal-respecting with respect to a signal-
respecting sequential recursive specification E if S does not have subexpressions of the form
λ.S′ with λ ∈ S, and for every subexpression S1+S2 it holds that S1 and S2 are not signalling
process identifiers.

Example 24 It is straightforward to check that EPet is a syntactically guarded sequential
recursive specification and that it is signal-respecting.

Lemma 25 Let E be a signal-respecting recursive specification and let t be a transition such
that src(t) is a signal-respecting sequential process expression. Then target(t) is again a
signal-respecting sequential process expression, and t is a signal transition if, and only if,
�(t) ∈ S.

Proof To establish that target(t) is again a signal-respecting sequential process expression,

we first note that if A
def= SA is the equation in E defining some process identifier A, and

SA
λ,α,ς−→ S′, then S′ is signal-respecting. For by syntactic guardedness, S′ is a subexpression

of SA, by the first requirement satisfied by signal-respecting process identifiers S′ cannot
have subexpressions of the form λ.S′′ with λ ∈ S, and by the second requirement satisfied
by signal-respecting process identifiers, whenever S1 + S2 is a subexpression of S′, then S1
and S2 cannot be signalling process identifiers. We can now argue that target(t) is a signal-
respecting sequential process expression with a straightforward induction on the structure of
src(t).

It remains to show that t is a signal transition if, and only if, �(t) ∈ S.
For the implication from left to right, note that if t is a signal transition, then, by definition,

�(t) ∈ S.
For the converse implication, suppose that �(t) ∈ S; we need to establish that src(t) =

target(t). To this end, we first establish with induction on the structure of S that if S is a
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signal-respecting process expression, λ ∈ S and S
λ,α,ς−→ S′, then S = A for some process

identifier A. Clearly, S cannot be 0. Furthermore, since signal-respecting sequential process
expressions do not have subexpressions of the form λ.S′′ with λ ∈ S, we cannot have that
S = λ.S′′ for some process expression S′′. Note that if wewould have S = S1+S2, then either

S1
λ,α,ς−→ S′ or S2

λ,α,ς−→ S′, so by the induction hypothesis either S1 or S2 would be a signalling
process identifier, contradicting the assumption that for every subexpression S1 + S2 of S it
holds that S1 and S2 are not signalling process identifiers. It follows that S = A for some

(signalling) process identifier A. Hence, assuming that (A
def= SA) ∈ E , t has a subderivation

t ′ with src(t ′) = SA and �(t ′) ∈ S. From the first requirement satisfied by signal-respecting
process identifiers it now follows that target(t) = target(t ′) = A. �

Alphabet We also wish to associate with each sequential process expression S its alphabet
L(S) and its action alphabet A(S), the sets of labels of transitions and action transitions
reachable from S, respectively. To this end, we first define L(A) for all process identifiers
defined in E , using two auxiliary notions. First, we associate with every sequential process
expression S its non-recursive alphabet L′(S) inductively by: L′(0) = ∅, L′(A) = ∅ for all
A ∈ I, L′(λ.S) = {λ} ∪ L′(S), and L′(S1 + S2) = L′(S1) ∪ L′(S2). Second, we define on
I a binary relation � by A � A′ if A def= S in E and A′ occurs in S, and denote by �∗ the
reflexive-transitive closure of �. Then we can define the alphabet L(A) of A by

L(A) =
⋃

{L′(S) | A �∗ A′ and A′ def= S} .

Now, we inductively extend L(_) to all sequential process expressions defining L(0) = ∅,
L(λ.S) = {λ} ∪ L(S), and L(S1 + S2) = L(S1) ∪ L(S2). Furthermore, we define A(S) =
L(S) ∩ A.

Lemma 26 Let E be a sequential recursive specification and let S be a sequential process
expression over E. If S′ is a sequential process expression reachable from S, then L(S′) ⊆
L(S) and A(S′) ⊆ A(S).

Proof We first consider the special case that there is a transition t with src(t) = S and
target(t) = S′ and prove with induction on t that L(S′) ⊆ L(S).

If the last rule applied in t is (Pref), then we have S = λ.S′ and hence L(S′) ⊆ {λ} ∪
L(S′) = L(S).

If the last rule applied in t is (Sum- l), then there exist S1 and S2 such that S = S1+S2, and
t has a subderivation t ′ with src(t ′) = S1 and target(t ′) = S′. By the induction hypothesis
we have that L(S′) ⊆ L(S1) ⊆ L(S1) ∪ L(S2) = L(S).

If the last rule applied in t is (Sum- r), then there exist S1 and S2 such that S = S1+S2, and
t has a subderivation t ′ with src(t ′) = S2 and target(t ′) = S′. By the induction hypothesis
we have that L(S′) ⊆ L(S2) ⊆ L(S1) ∪ L(S2) = L(S).

If the last rule applied in t is (Rec), then S = A for some process identifier A ∈ I
with defining equation (A

def= SA) ∈ E , and t has a subderivation t ′ with src(t ′) = SA and
target(t ′) = S′. By the induction hypothesis, L(S′) ⊆ L(SA); it therefore remains to show
that L(SA) ⊆ L(A). We have:

L(SA) = L′(SA) ∪
⋃

{L(A′) | A � A′}
= L′(SA) ∪

⋃
{L′(SA′′) | A � A′ �∗ A′′} =

⋃
{L′(SA′) | A �∗ A′} = L(A) .
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[In the second equality we have used that A �∗ A′′ for all A′ such that A � A′. In the third
equality we have used the definition of L(A).]

Now, if S′ is reachable from S, then the statement of the lemma follows with a straight-
forward induction on the number of transitions in a path from S to S′. Furthermore, it is then
immediate from the definition of action alphabet that A(S′) ⊆ A(S). �

Parallel-sequential processes Presupposing a signal-respecting sequential recursive speci-
fication E , a parallel-sequential process expression over E is a process expression generated
by the following grammar (with S ranging over sequential process expressions and H ⊆ L):

P::= S | P ‖ P | ∂H (P) .

Lemma 27 Let E be a sequential recursive specification and let P be a parallel-sequential
process expression over E. If P ′ is reachable from P, then C(P ′) = C(P) and P ′|σ is
reachable from P|σ for all σ ∈ C(P).

Proof With induction on t it can be established that if t is a transition such that src(t) = P
and target(t) = P ′, then C(P ′) = C(P) and P ′|σ = P|σ for all σ ∈ C(P). The details are
worked out in “Appendix B” (see Lemma 47).

Then, if P ′ is reachable from P , the statement of the lemma follows with a straightforward
induction on the number of transitions in a path from P to P ′. �

Since a communication functionγ is required to be commutative and associative, it induces
a partial function γ : M f (L)⇀L, where M f (L) denotes the set of all finite multisets over
L. We define γ ([λ0, . . . , λn]) with induction on n as follows:

1. If n = 0, then γ ([λ0, . . . , λn]) = λ0.
2. If n = 1, then γ ([λ0, . . . , λn]) = γ (λ0, λn) if γ (λ0, λn) is defined, and undefined

otherwise.
3. If n ≥ 1, then γ ([λ0, . . . , λn+1]) = γ (γ ([λ0, . . . , λn]), λn+1) if both γ ([λ0, . . . , λn])

and γ (γ ([λ0, . . . , λn]), λn+1) are defined, and undefined otherwise.

It is straightforward to prove, with induction on n ≥ 1, that for all λ0, . . . , λn and for all
0 ≤ k < n that γ (γ (λ0, . . . , λk), γ (λk+1, . . . , λn)) = γ (λ0, . . . , λn); we shall use this fact
in the proof of the next lemma, which relates transitions of a parallel-sequential process with
transitions of its components.

Lemma 28 Let t be a transition, let npc(t) = {σ0, . . . , σn}, and suppose that src(t) is
a parallel-sequential process expression. Then t has subderivations t0, . . . , tn such that
src(ti ) is a sequential process expression and src(ti ) = src(t)|σi for all 0 ≤ i ≤ n, and
�(t) = γ ([�(t0), . . . , �(tn)]) (where [�(t0), . . . , �(tn)] denotes the multiset over L consisting
of �(t0), . . . , �(tn)).
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Proof We proceed by induction on t .
If the last rule applied in t is (Pref), (Sum-l), (Sum-r), or (Rec), then npc(t) = {ε},

src(t) = src(t)|ε , and �(t) = γ ([�(t)]). Moreover, from the syntax definition of parallel-
sequential processes it is clear that src(t) is a sequential process expression.

If the last rule applied in t is (Par-l), then t has a subderivation t ′ such that npc(t) =
l�npc(t ′), so there exist static components σ ′

0, . . . , σ
′
n such that σi = lσ ′

i for all 0 ≤ i ≤ n.
By the induction hypothesis, t ′, and hence t , has subderivations t0, . . . , tn such that src(ti )
is a sequential process expression, src(ti ) = src(t ′)|σ ′

i
= src(t)|σ for all 0 ≤ i ≤ n and

�(t) = �(t ′) = γ ([�(t0), . . . , �(tn)]).
If the last rule applied in t is (Par-r), then the proof proceeds analogously.
If the last rule applied in t is (Comm), then t has subderivations t ′ and t ′′ such that

npc(t) = l�npc(t ′)∪r�npc(t ′′). Since npc(t ′) and npc(t ′′) cannot be empty, we have that
n ≥ 1 and there exist static components σ ′

0, . . . , σ
′
n and a 0 ≤ k < n such that npc(t ′) =

{σ ′
0, . . . , σ

′
k} and npc(t ′′) = {σ ′

k+1, . . . , σn}. By the induction hypothesis, t ′ and t ′′, and hence
t , have subderivations t0, . . . , tn such that src(ti ) is a sequential process expression for all
0 ≤ i ≤ n, src(ti ) = src(t ′)|σ ′

i
= src(t)|σi for all 0 ≤ i ≤ k, �(t ′) = γ ([�(t0), . . . , �(tk)]),

src(ti ) = src(t ′′)|σ ′
i
= src(t)|σi for all k < i ≤ n, and �(t ′′) = γ ([�(tk+1), . . . , �(tn)]).

Furthermore, we have that

�(t) = γ (�(t ′), �(t ′′)) = γ (γ ([�(t0), . . . , �(tk)]), γ ([�(tk+1), . . . , �(tn)]))
= γ ([�(t0), . . . , �(tn)]) .

Finally, if the last rule applied in t is (Enc), then t has a subderivation t ′ with npc(t ′) =
{σ0, . . . , σn} and �(t ′) = �(t), so it follows immediately by the induction hypothesis that
there exist subderivations t0, . . . , tn of t ′ and hence of t such that src(ti ) = src(t ′)|σi = src(t)|σi
and �(t) = �(t ′) = γ ([�(t0), . . . , �(tn)]). �
Definition 29 Let C ⊆ C∗ be a finite set of static components. A C-assignment (npc�, afc�)

is consistent with a communication function γ if it satisfies, for all λ1, λ2, λ3 ∈ L such that
γ (λ1, λ2) = λ3:

1. npc�(λ1) ∪ npc�(λ2) = npc�(λ3); and
2. afc�(λ1) ∪ afc�(λ2) = afc�(λ3).

Example 30 Consider the specification of Peterson’s algorithm, it is straightforward to ver-
ify that the C(Pet)-assignment (npc�, afc�) presented in Example 23 is consistent with the
communication function γ . Consider, by way of example, the equation

γ (r_asgntrueRA , s_asgntrueRA ) = asgntrueRA ,

which is part of the definition of γ . We confirm as follows that indeed the conditions of
Definition 29 are satisfied:

npc�(r_asgn
true
RA ) ∪ npc�(s_asgn

true
RA ) = {l, rrl} = npc�(asgn

true
RA ),

afc�(r_asgn
true
RA ) ∪ afc�(s_asgn

true
RA ) = {l, rrl} = afc�(asgn

true
RA ).

If npc� : L → 2C associates with every label a subset of components in C and C ′ ⊆ C , then
we denote by L(C ′) the alphabet of C ′, i.e.,

L(C ′) = npc−1
� (C ′) = {λ ∈ L | npc�(λ) = C ′},

and by A(C ′) the action alphabet of C ′, i.e.,

A(C ′) = afc−1
� (C ′) = {λ ∈ L | afc�(λ) = C ′}.
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Note that by condition 2 of Definition 22 we have A(C ′) ⊆ A.

Theorem 31 Let E be a signal-respecting sequential recursive specification, let P be a
parallel-sequential process expression over E, and let (npc�, afc�) be a C(P)-assignment. If
L(P|σ ) ⊆ L({σ }) and A(P|σ ) ⊆ A({σ }) for all σ ∈ C(P) and γ is signal-respecting and
consistent with (npc�, afc�), then (npc�, afc�) satisfies the requirements (4) and (5) for every
transition t reachable from P.

Proof Let t be a transition reachable from P . Then src(t) = P ′ for some parallel-sequential
process expression P ′ reachable from P . By Lemma 27 we have C(P ′) = C(P) and we have
P ′|c is reachable from P|c for all c ∈ C(P). So, without loss of generality, we may assume
that src(t) = P .

Let npc(t) = {σ0, . . . , σn}. By Lemma 28, t has subderivations t1, . . . , tn such that
src(ti ) is a sequential process expression and src(ti ) = src(t)|σi for 0 ≤ i ≤ n, and
�(t) = γ ([�(t0), . . . , �(tn)]). Since, for all 0 ≤ i ≤ n, �(ti ) ∈ L(P|σi ) ⊆ L({σi }), we
have npc�(�(ti )) = {σi }, and hence, by condition 1 of Definition 29,

npc(t) = {σi | 0 ≤ i ≤ n} =
⋃

0≤i≤n

npc�(�(ti )) = npc�(�(t)) .

Since E is a signal-respecting recursive specification and src(ti ) is a signal-respecting sequen-
tial process expression, byLemma25 ti is a signal transition if, and only if, �(ti ) ∈ S. Since, on
the one hand, afc�(�(ti )) = ∅ for all �(ti ) ∈ S, and, on the other hand, L(P|σ )∩A ⊆ A({σ })
we have

afc(t) = {σi | 0 ≤ i ≤ n & λi ∈ A}
=

⋃
{afc�(�(ti )) | 0 ≤ i ≤ n & �(ti ) ∈ A} = afc�(�(t)) .

This completes the proof of the theorem. �
If E , P , γ and (npc�, afc�) satisfy the requirements of the preceding theorem, then the

relation �• on labels by λ1 �• λ2 if, and only if, npc�(λ1) ∩ afc�(λ2) = ∅ satisfies the
requirements of Definition 18. So we get the following corollary.

Corollary 32 Let E be a signal-respecting sequential recursive specification, let P be a
parallel-sequential process expression over E, and let (npc�, afc�) be a C(P)-assignment
such that L(P|σ ) ⊆ L({σ }) and A(P|α) ⊆ A({σ }) for all σ ∈ C(P) and γ is signal-
respecting and consistent with (npc�, afc�). Then the LTSC associated with P has a
concurrency-consistent labelling.

Example 33 In Example 30 we have established that all the conditions of Corollary 32 are
satisfied for EPet , γ , Pet and the C(Pet)-assignment (npc�, afc�) defined in Example 23, so
the LTSC associated with Pet has a concurrency-consistent labelling.

8 Expressing liveness

A mathematically rigorous method for establishing the correctness of a (finite model of a)
system is by means of model checking. Given a process expression specifying a system, the
behaviours of that system can be scrutinised by verifying which requirements, expressed in
a modal logic, hold true and which ones fail to hold. Among the modal logics that can be
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used to express such requirements is the modalμ-calculus. This is one of the most expressive
logics available, subsuming logics such as LTL, CTL and CTL∗, and it is typically used in
toolset for analysing labelled transition systems, such as the mCRL2 toolset [2] and CADP
[6]. We introduce this logic in Sect. 8.1.

Liveness requirements typically assert that (conditionally or unconditionally) something
good must inevitably happen. Phrasing such properties in the modal μ-calculus is rather
standard, but it is less clear whether the logic permits expressing liveness properties restricted
to just paths only. This is partly due to the fact that justness is a predicate on paths, whereas
the modal μ-calculus is a state-based formalism, and partly due to the ‘dynamic’ nature of
justness, which checks along a path for enabledness of actions and their future elimination. In
particular this dynamic nature rules out a ‘static’ encoding such as the one presented in [5] for
dealing with fairness, as it assumes an a priori fixed—i.e., static—collection of constraints
that need to hold infinitely often for a path to be fair.

We show that liveness requirements of the form ‘along every just path, every a action is
inevitably followed by a b action’ can indeed be expressed in the modal μ-calculus. Other
path-based properties can be defined along the same lines. We discuss the liveness property
in Sect. 8.2.

8.1 Themodal�-calculus

The modal μ-calculus can be viewed as a fixed point extension of Hennessy–Milner Logic
(HML) [13]. In HML one can characterise the capabilities of a state to execute actions
using modal operators [_]_ and 〈_〉_; essentially, this permits to reason about the transitions
emanating from a state. Fixed points add the power of recursion to these basic facilities; this,
intuitively, allows to reason about finite or infinite sequences or trees of transitions and the
capabilities of the states visited along such sequences or trees. The resulting logic, i.e., HML
with fixed points, is referred to as the modal μ-calculus (Lμ). For an in-depth treatment of
this logic, we refer to, e.g. [14].

Our syntax of the modal μ-calculus is given in the context of a set of recursion variables
V , in addition to a finite set of labels L. The set � of formulas of Lμ is generated by the
following grammar (with X ranging over the set of variables V , and λ ranging over the finite
set of labels L):

ϕ ::= X | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈λ〉ϕ | [λ]ϕ | μX . ϕ | νX . ϕ .

The binding precedence of the operators is as usual, with the fixed point operators binding
weakest. We permit ourselves to write

∧
λ∈A φ(λ) and

∨
λ∈A φ(λ) for a set of actions A, as

generalisations of the binary conjunction and disjunction.
Let (St,Tr, src, target, �,�•) be a finite LTSC over L with a concurrency-consistent

labelling. We proceed to give a denotational semantics for our logic by associating every
formula ϕ with the subset �ϕ�ϑ ⊆ St of states in which it holds; since formulas may contain
free variables, �ϕ�ϑ is relative to an assignment ϑ that provides an interpretation of recursion
variables X ∈ V as subsets of St. We define �·�ϑ recursively as follows:

�X�ϑ = ϑ(X);
���ϑ = St;
�⊥�ϑ = ∅;

�ϕ ∧ ψ�ϑ = �ϕ�ϑ ∩ �ψ�ϑ ;
�ϕ ∨ ψ�ϑ = �ϕ�ϑ ∪ �ψ�ϑ ;
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�〈λ〉ϕ�ϑ = {s ∈ St | ∃t ∈ Tr. s = src(t) & �(t) = λ & target(t) ∈ �ϕ�ϑ };
�[λ]ϕ�ϑ = {s ∈ St | ∀t ∈ Tr. (s = src(t) & �(t) = λ) → target(t) ∈ �ϕ�ϑ };

�μX . ϕ�ϑ =
⋂

{F ⊆ St | �ϕ�ϑ[X :=F] ⊆ F)}; and

�νX . ϕ�ϑ =
⋃

{F ⊆ St | F ⊆ �ϕ�ϑ[X :=F])}.
Note that the structure (2St,⊆) is a complete lattice. For an endofunctionT : 2St → 2St ,we

writeμF . T (F) and νF . T (F) to denote the least and greatest fixed points of T , respectively.
The interpretation of a formula ϕ is independent of the valuation ϑ in case it contains no
unbound recursion variables (i.e., all occurrences of a recursion variable are within the scope
of a least or greatest fixed point). We simply write �ϕ� when referring to the semantics of
such a formula, as it yields the same set of states for every possible environment ϑ used to
interpret ϕ.

Example 34 Greatest fixed point formulas typically characterise invariant properties, whereas
least fixed point formulas characterise liveness properties. For instance, the Lμ formula
νX . 〈a〉X ∧ [b]⊥, asserts the existence of an infinite a-path along which no b-action can
be executed; this is an invariant property along the path. On the other hand, the formula
μX . 〈a〉X ∨ 〈b〉� asserts that there is a finite path of a-labelled transitions, leading to a state
in which a b-labelled transition is enabled.

8.2 Expressing liveness along just paths

We consider liveness properties of the kind ‘whenever some non-blocking action a happens,
then inevitably also b happens’; this property will be referred to as a-b-liveness and a state
is said to satisfy a-b-liveness exactly when all paths emanating from that state satisfy a-
b-liveness. An Lμ formula that asserts that this property holds along all paths in a given
(deadlock-free) LTS is the following

νX .

⎛
⎝ ∧

λ∈A
[λ]X ∧ [a]μY .

∧
λ∈A\{b}

[λ]Y
⎞
⎠.

Restricting a-b-liveness to just paths requires that somehow the concept of justness is woven
into this formula. We explain in several steps how this can be achieved.

In order to facilitate our reasoning, we consider the dual problem of characterising an a-
b-liveness violation along some just path. While this problem is technically equally difficult,
it is conceptually simpler since we are now only concerned with constructing a formula that
describes the existence of a just path. Notice that a just path constitutes a violation to a-b-
liveness precisely when (1) this path has a suffix starting at a state s′, reached by an a-labelled
transition, along which action b never takes place and (2) the path is just.

Our approach to characterising states that admit a violating path (should one exist) is based
on the following observation. In our setting, any just path can be prefixed by an arbitrary
finite path, resulting in a new just path (see Proposition 35 below). This means that we can
characterise states that admit a just, b-free path. Given any such state, we can characterise
the states reaching it via a path ending with an a-labelled transition.

For the remainder of this section we fix a finite LTSC (St,Tr, src, target, �,�•) with a
concurrency-consistent labelling. The justness rephrasing of Proposition 19 requires one to
reason about the enabled actions of a state. Let En(s) be the set of enabled non-blocking
actions: En(s) = {λ ∈ B | ∃t ∈ Tr : src(t) = s & �(t) = λ}.
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Table 3 Template formula that characterises the set of states that admit a just path violating a-b-liveness

violate = μW .
(〈a〉invariant ∨ ∨

λ∈A〈λ〉W )
invariant = νY .

∧
λ∈B(〈λ〉� ⇒ elim(λ))

elim(λ) = μQ.
(∨

λ′∈#λ\{b}〈λ′〉Y ∨ ∨
λ′∈A\(#λ∪{b})〈λ′〉Q

)
where #λ = {λ′ | λ ��• λ′}
Subformula invariant characterises the set of states that admit a just, b-free path. The user provides the sets
A and B, the relation �• and the pair of actions a and b to instantiate/generate the formula for checking a
concrete LTSC

Proposition 35 Let π be a B-just path. Then the path s0t1s1 . . . tnπ is B-just.

Proof Let π ′ = s0t1s1t2 . . . tnπ be a path such that π is B-just, and let sπ be the starting state
of π . Suppose s is a state on π ′ and λ ∈ En(s). We distinguish two cases.

• Case s does not occur in the prefix s0t1s1t2 . . . tn . Then s occurs in π and since π is
B-just, λ is eliminated in the suffix of π (and therefore also in the suffix of π ′), starting
in s.

• Case s occurs in the prefix s0t1s1t2 . . . tn . Towards a contradiction, assume that λ is not
eliminated in the suffix of π ′ starting in s. Let t be the transition such that �(t) = λ and
src(t) = s. Since λ is not eliminated in the suffix of π ′ starting in s and sπ is reachable
from s, by condition 2 of Definition 2, there must be an action transition u such that
src(u) = sπ and �(t) = λ = �(u). But then λ ∈ En(sπ ) and, since π is B-just, λ is
eliminated in π . Contradiction. Consequently, λ is eliminated in the suffix of π ′ starting
in s. �
The suffixes of a just path are again just. This is formalised by the following proposition.

Proposition 36 Let π = s0t1s1t2 . . . be a finite or infinite path. If π is B-just then also any
suffix of π is B-just.

Proof Let π be a B-just path and let π ′ be a suffix of π . Pick some state s in π ′ and an action
λ ∈ En(s). Since s is in π ′, s is also in π . Consequently, λmust be eliminated by some action
in the suffix of π starting at s. Since s is in π ′, the suffix of π starting at s also is a suffix of
π ′. �

We next lift the notion of just path to the level of states: a state is just whenever it is
the start of a just path. Note that we are interested in characterising states that admit a just
path that constitute an a-b-liveness violation; such paths must have suffixes that are void of
b-actions. For this reason, we parameterise the notion of a just state with a set of actions K
that limits the set of actions allowed to occur along the just paths.

Definition 37 Let K ⊆ L be a non-empty set of actions. We define J(K ) as follows:

J(K ) = {s ∈ St | there is a B-just path π starting in s
and �(t) ∈ K for all transitions t on π}

As we explained at the beginning of this section, we tackle our problem in two steps. First
we show that formula invariant, see Table 3, characterises the states that admit a just path
alongwhich nob-action ever happens; i.e., those are essentially the states in the setJ(A\{b}).
Then we continue by characterising states that have a just path in which an a-action is never
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followed by a b-action. That is, we show that the formula that characterises the set of states
that admit an a-b-liveness violation are exactly those states satisfying formula violate of
Table 3.

Before we prove our claim that invariant exactly characterises states admitting just, b-free
paths we first prove an auxiliary lemma. This auxiliary lemma claims that elim(λ) captures
exactly those states that have a b-free path that eliminates action λ, and leads to a set of states
represented by Y .

Lemma 38 For all environments ϑ , states s ∈ St, actions λ ∈ A and sets F ⊆ St, we have
s ∈ �elim(λ)�ϑ[Y :=F] iff a state satisfying F can be reached from s via a finite b-free path
ending with an action that eliminates λ.

Proof The construct is a standard construct in the modal μ-calculus; we refer to textbook
proofs for the stated correspondence. �

We continue by substantiating the claim that invariant characterises the states admiting
just, b-free paths. For the sake of conciseness, let J be a shorthand for J(A\{b}). The
following lemma states that invariant exactly characterises the set of states J .

Lemma 39 For all s ∈ St we have s ∈ J iff s ∈ �invariant�.

Proof Let ϑ be an arbitrary environment. We first show, by showing mutual set inclusion,
that J is a fixed point of the transformer Tinvariant defined below:

Tinvariant(F) =
⋂
λ∈A

{s ∈ St | λ ∈ En(s) ⇒ s ∈ �elim(λ)�ϑ[Y :=F]}

• Pick an arbitrary state s ∈ J . Let π be a path that witnesses s ∈ J . Pick an arbitrary
action λ ∈ A and assume that λ ∈ En(s). Wemust show that s ∈ �elim(λ)�ϑ[Y :=J ] holds.
From the fact that π witnesses s ∈ J , we obtain that there must be some transition t on
π such that λ ��• �(t), i.e., �(t) ∈ #λ, and by Proposition 36, target(t) ∈ J . Hence we
can conclude the desired s ∈ �elim(λ)�ϑ[Y :=J ].

• Pick a state s ∈ Tinvariant. Suppose En(s) = ∅. Then state s itself is a just path and hence
s ∈ J . Next, suppose En(s) /= ∅ and let λ ∈ En(s). Then also s ∈ �elim(λ)�ϑ[Y :=J ].
By Lemma 38, there must be some b-free finite path s = s0 t0 s1 t1 . . . t j s j+1 such that
transition t j eliminates λ and s j+1 ∈ J . By Proposition 35, then also the path witnessing
s j+1 ∈ J , prefixed with s0 t0 s1 t1 . . . t j , is a just path witnessing s ∈ J .

We conclude that, indeed, J is a fixed point of Tinvariant. We next show that J is the greatest
fixed point of Tinvariant; that is, for anyF satisfying Tinvariant(F) = F , we haveF ⊆ J . LetF
be a fixed point of Tinvariant, and choose s ∈ F . Our aim is to show that s ∈ J . First, observe
that since F is a fixed point of Tinvariant and s ∈ F , we can conclude s ∈ Tinvariant(F).

We construct a just, b-free path starting in state s by eliminating all actions enabled in s
in an arbitrary but fixed order as follows. Let L denote the set of enabled actions in s. In case
L = ∅, the state s itself witnesses s ∈ J and we are done. Otherwise, fix a total ordering
< on L . Pick the least action λ ∈ L . Since s ∈ Tinvariant(F), also s ∈ �elim(λ)�ϑ[Y :=F]
holds. Consequently, by Lemma 38, there is a finite b-free path s0 t0 s1 t1 . . . t j sλ such that
transition t j eliminates λ and sλ ∈ F . Denote the set of enabled actions in sλ by Lλ. Note
that Lλ contains at least those actions of L that were not eliminated on some path from s
to sλ [it may, however, contain actions that were already eliminated on some path from s to
sλ, but, by Corollary 15, these actions were then not eliminated on all paths from s to sλ
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witnessing s ∈ �elim(λ)�ϑ[Y :=F].] We now repeat this construction by choosing the least
λ′ ∈ {λ′′ ∈ Lλ ∩ L | λ < λ′′}, leading to a state sλ′ , etcetera, until we have constructed
a finite path that eliminates all obligations in L and ends in a state s′ ∈ F . Note that this
construction terminates since |L| ≤ |L| < ∞.

This means that for any state s ∈ F , we can construct a finite path to another state in F
such that all actions from En(s) are eliminated on that path. Since this holds invariantly for
all states in F , this construction can be repeated to yield a finite b-free just path or (in case
it can be continued indefinitely) an infinite b-free just path starting in s. Hence, s ∈ J and
therefore F ⊆ J . �

We illustrate the correspondence between invariant and J on the example we provided
earlier.

Example 40 Reconsider Example 4, in which Alice drinks coffee and subsequently eats a
croissant, Bob is engaged in a series of phone calls, and none of their activities interfere; see
the following LTSC:

s0 s1 s2
coffee croissant

phone phone phone

Suppose we claim that whenever Alice orders coffee, she eventually also orders a croissant.
A counterexample to such a claim consists of a just path that contains a coffee event but is free
of croissant actions following this coffee event. A state admits such a violating, coffee-less
path iff it satisfies formula invariant.

We argue that in this case, s1 does not satisfy formula invariant. To this end, we first
show that s1 does not satisfy elim(croissant). Notice that the set #croissant\{croissant} is
the empty set, while the setA\(#croissant ∪ {croissant}) is the set {coffee, phone}. Formula
elim(croissant) therefore effectively holds in s1 iff formula 〈phone〉Q holds in state s1. Due
to the self-loop, this is the case exactly when state s1 satisfies elim(croissant). Since this
chain of reasoning must be continued indefinitely and we are looking for the least solution to
Q, we must conclude that s1 does not satisfy elim(croissant). As an immediate consequence
we find that s1 also does not satisfy invariant since croissant is one of the enabled actions in
that state. Observe that this is in line with the fact that s1 /∈ J ({coffee, phone}).

We now return to the original problem of characterising those states that have a just path
that violates a-b-liveness. So far, we have established that formula invariant characterises
those states that admit a b-free, just path. A state that admits a path violating a-b-liveness
is therefore one that admits a finite path that, via an a-labelled transition, leads to a state
satisfying invariant. Given the similarities with the formula for elim, we claim, without
further proof, that formula violate indeed describes the set of states that admit an a-b-liveness
violating just path.

Theorem 41 Let (St,Tr, src, target, �,�•) be a finite LTSC with a concurrency-consistent
labelling. Then all just paths starting in state s ∈ St satisfy a-b-liveness if and only if
s /∈ �violate�.

Example 42 Wecontinue our previous example, showing that, indeed, the claim thatwhenever
Alice orders coffee, she eventually also orders a croissant, holds true in state s0.
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Wefind that s0 satisfies violate if, and only if, it satisfies 〈coffee〉invariant, 〈coffee〉violate,
〈phone〉violate, or 〈croissant〉violate. Notice that there is no croissant action enabled in s0,
so s0 cannot satisfy 〈croissant〉violate. In order for s0 to satisfy 〈phone〉violate, we require
s0 to again satisfy violate. Like before, such a cyclic chain of reasoning does not permit us
to conclude that s0 satisfies violate. Therefore, the only way to show that s0 satisfies violate
is to show that s0 satisfies 〈coffee〉invariant. But as we may conclude from our previous
example, also this will fail since s1 does not satisfy invariant, which is required when we
are to conclude that s1 satisfies invariant. We can therefore conclude that state s0 does not
satisfy violate. Since the LTSC has a concurrency-consistent labelling, we may conclude by
Theorem 41 that our liveness claim holds and Alice enjoys a croissant after drinking coffee.

Example 43 In Example 30, we concluded that all the conditions of Corollary 32 are satisfied
for EPet , γ , Pet and the C(Pet)-assignment (npc�, afc�), so the LTSC associated with Pet
has a concurrency-consistent labelling. As a consequence, by Theorem 41 we can therefore
conclude that the formula in Table 3, with B = {noncritA,noncritB}, a = noncritA and
b = critA expresses noncritA-critA-liveness.

9 Automated liveness analysis in mCRL2

A complete mCRL2 specification of Peterson’s algorithm is listed in “Appendix C”. The
recursive specification EPet presented in Sect. 4 served as the starting point and the reader
will easily recognise it under the mCRL2 keyword proc. That the mCRL2 specification looks
somewhat more involved than the specification presented in Sect. 4 is because we have used
some convenient extra features of mCRL2. Before we comment on these extra features, we
emphasise that the use of these features is by no means essential. We could have also verified
liveness for all just paths with the mCRL2 toolset with a specification that almost literally
corresponds to the one presented in Sect. 4.

In an mCRL2 specification, labels can be parameterised with data, defined by means of an
algebraic specification. In our specification we have included an enumerated type of which
the elements correspond to the labels of Peterson’s specification. This allows us to define, in
a natural way, the functions npc� and afc� as mappings npc and afc, respectively, on the
Label datatype. We then define a predicate interfere(a,a’) that evaluates to true if,
and only if, npc�(a) ∩ afc�(a’) /= ∅ using the mappings npc and afc. In a similar vein, a
predicate blocking(a) defines whether a is blocking or not.

The correspondence between labels and the data values representing them is achieved by
turning the labels of Pet into multi-actions, ‘labelling’ the original actions with a parame-
terised action label(<action>), where <action> identifies the original action. For
instance, we represent the label critA using data value a_critA. In the equation defin-
ing procA, we have, instead of the occurrence of critA appearing in procA in Sect. 4, a
multi-action critA|label(a_critA). We can then choose to either hide the labels of
the form label(<label>), or hide the labels representing those in the specification of
Peterson’s algorithm in Sect. 4. The former allows us to generate a labelled transition system
that is identical to that associated with Pet; the latter yields a labelled transition system in
which transitions are labelled with actions of the form label(<label>).

The toolset accepts the first-order modal μ-calculus of [12], which generalises the
logic Lμ. With the labels available as a datatype and using the predicates interfere
and blocking, we can express the formula expressing liveness for all just paths as
an almost direct instantiation (with noncritA for a and critA for b) of the formula in
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Fig. 2 Non-just liveness counterexample generated by the mCRL2 toolset

Table 3. The formula we have used to verify that the mCRL2 specification of Peter-
son’s algorithm satisfies the required liveness property is listed in “Appendix D”. The
extra features of mCRL2 described above facilitate writing the generalised disjunctions
and conjunctions as existential and universal quantifications. Note, however, that, since the
quantifications are over finite sets, they can be replaced by finite disjunctions and conjunc-
tions.

Verifying whether the mCRL2 specification of Peterson’s algorithm satisfies noncritA-
critA-liveness requires under half a second using the toolset and results in an affirmative
verdict.2 This once more confirms the manual correctness proof of [4]. If we modify the
specification of the mapping afc by including c_ReadyA in afc(a_read_readyA),
c_ReadyB in afc(a_read_readyB), and c_Turn in both afc(a_read_turnA)
and afc(a_read_turnB), then the toolset produces the counterexample shown in Fig. 2.
Note that the modification corresponds to not treating these actions as signals and that the
counterexample represents the non-just path discussed in Sect. 4.

2 The mCRL2 sources can be found in the academic example directory of the mCRL2 repository, which can
be obtained from https://github.com/mCRL2org/mCRL2, revision b45856d9.
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10 Conclusions

To facilitate the automated verification of liveness properties, we have proposed a notion
of concurrency-consistent labelling for labelled transition system with concurrency together
with a formulation of justness in terms of states and actions.We have presented sufficient con-
ditions on a process specification in a calculus with ACP-style communication that guarantee
that the associated labelled transition system with concurrency has a concurrency-consistent
labelling. Moreover, for LTSCs with a concurrency-consistent labelling we have shown how
to formalise a liveness property under justness assumptions in the modal μ-calculus.

We have built on the firm foundation laid by van Glabbeek in [9], but had to slightly
deviate from it to enable a special treatment of signal transitions in a regular process calcu-
lus. Furthermore, we essentially relied on the ACP-style communication mechanism in our
calculus.

As an example of our theory, we have shown that Peterson’s mutual exclusion algo-
rithm can be specified in such a way that the associated LTSC has a concurrency-consistent
labelling. Using the mCRL2 toolset we were able to verify that the specification satisfies the
required liveness property for all just paths. We conjecture that similar specifications can be
realised for the generalisation of Peterson’s algorithm to N processes [17], and for Lamport’s
bakery algorithm [15]; it remains to confirm liveness properties for all just paths for these
specifications with the mCRL2 toolset.

We see several directions in which our current work can be extended. For example, it
would be useful to automate the verification of the syntactic conditions that guarantee that a
specification induces an LTSC that has a concurrency-consistent labelling. A more challeng-
ing task is to identify to which extent the fragment of the process calculus can be extended
without losing the guarantee that the LTSCs associatedwith expressions in that fragment have
a concurrency-consistent labelling. We believe it may even be possible to check sufficient
conditions for the LTSC to have a concurrency-consistent labelling by phrasing appropriate
modal μ-calculus formulas. Finally, an open issue in the context of justness is the definition
of behavioural equivalences, such as component-preserving variants of strong bisimilarity
[16] or divergence-preserving branching bisimilarity [10]. The latter is a particularly inter-
esting starting point because it deals with abstraction and is the coarsest congruence included
in branching bisimilarity that distinguishes livelock from deadlock and is compatible with
parallel composition [11].
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Appendix A: Detailed proofs of lemmas in Sects. 3 and 5

In this “Appendix” we present elaborate proofs of Lemmas 6, 12 and 14, restated below as
Lemmas 44, 45 and 46, respectively.

Lemma 44 For all transitions t and v, if src(t) = src(v) and t �• v, then there exists a
transition u with src(u) = target(v), �(u) = �(t) and comp(u) = comp(t).

Proof Let P = src(t) = src(v) and suppose that t �• v, hence comp(t) ∩ comp(v) = ∅. We
prove with induction on v that there exists a transition u with src(u) = target(v), �(u) = �(t)
and comp(u) = comp(t).

If the last rule applied in v is (Pref), (Sum-l), (Sum-r) or (Rec), then comp(v) = {ε},
and, due to the syntactic form of P , the last rule applied in t must also be one of these rules, so
comp(t) = {ε}. Thus, we find that comp(t) ∩ comp(v) = {ε}, contradicting the assumption
of the lemma.

Suppose that the last rule applied in v is (Par-l). Then there exist P1 and P2 such
that P = P1 ‖ P2, and a subderivation v′ of v such that src(v′) = P1, �(v) = �(v′),
target(v) = target(v′) ‖ P2 and comp(v) = l � comp(v′). From the syntactic shape of
src(t) = src(v) = P1 ‖ P2 we conclude that the last rule applied in t must be (Par-l),
(Par-r) or (Comm). We distinguish these three cases:

• If the last rule applied in t is (Par-l), then t has a subderivation t ′ with src(t ′) = P1
and �(t ′) = �(t). Since comp(t) = l � comp(t ′) and comp(v) = l � comp(v′), and
comp(t)∩comp(v) = ∅, we have that comp(t ′)∩comp(v′) = ∅, so t ′�• v′. Hence, by the
induction hypothesis, there exists a transition u′ with src(u′) = target(v′), �(u′) = �(t ′)
and comp(u′) = comp(t ′). We can now construct from u′ with an application of (Par-l)
a derivation u with src(u) = target(v′) ‖ P2 = target(v), �(u) = �(u′) = �(t ′) = �(t)
and comp(u) = l � comp(u′) = l � comp(t ′) = comp(t).

• If the last rule applied in t is (Par-r), then t has a subderivation t ′ with src(t ′) = P2 and
�(t ′) = �(t). Then with an application of (Par-r) we can construct from t ′ a derivation
u with src(u) = target(v′) ‖ P2 = target(v), �(u) = �(t ′) = �(t) and comp(u) =
r � comp(t ′) = comp(t).

• If the last rule applied in t is (Comm), then t has subderivations t1 and t2 with src(t1) = P1,
src(t2) = P2, and γ (�(t1), �(t2)) = �(t). From comp(t) = l� comp(t1) ∪ r� comp(t2)
and comp(t) ∩ comp(v) = ∅, we conclude that comp(t1) ∩ comp(v′) = ∅, so t1 �• v′,
and hence, by the induction hypothesis, there exists a derivation u1 with src(u1) =
target(v′), �(u1) = �(t1) and comp(u1) = comp(t1). From u1 and t2 we can now, with
an application of (Comm), construct a derivation u with src(u) = src(u1) ‖ src(t2) =
target(v′) ‖ P2 = target(v), �(u) = γ (�(u1), �(t2)) = γ (�(t1), �(t2)) = �(t) and
comp(u) = l � comp(u1) ∪ r � comp(t2) = l � comp(t1) ∪ r � comp(t2) = comp(t).

If the last rule applied in v is (Par-r), then the argument is symmetric to the argument for
the case that the last rule applied in v is (Par-l).

Suppose last rule applied in v is (Comm). Then there exist subderivations v1 and v2 of v

with src(v) = src(v1) ‖ src(v2), �(v) = γ (�(v1), �(v2), target(v) = target(v1) ‖ target(v2)
and comp(v) = l�comp(v1)∪r�comp(v2). From the syntactic shape of src(t) = src(v) =
src(v1) ‖ src(v2), we conclude that the last rule applied in t must be (Par-l), (Par-r) or
(Comm). We distinguish these three cases:

• If the last rule applied in t is (Par-l), then t has a subderivation t ′ with src(t ′) = src(v1)
and �(t ′) = �(t). Since comp(t) = l�comp(t ′), comp(v) = l�comp(v1)∪r�comp(v2),
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and comp(t)∩comp(v) = ∅,wehave that comp(t ′)∩comp(v1) = ∅. So t ′�•v1, andhence,
by the induction hypothesis, there exists a transition u′ with src(u′) = target(v1), �(u′) =
�(t ′) and comp(u′) = comp(t ′). We can now construct from u′ with an application of
(Par-l) a derivation u with src(u) = src(u′) ‖ target(v2) = target(v1) ‖ target(v2) =
target(v), �(u) = �(u′) = �(t ′) = �(t) and comp(u) = l� comp(u′) = l� comp(t ′) =
comp(t).

• If the last rule applied in t is (Par-r), then the argument is similar to the argument in the
previous case, using the induction hypothesis for v2 instead.

• If the last rule applied in t is (Comm), then t has subderivations t1 and t2 with
src(t1) = src(v1), src(t2) = src(v2), γ (�(t1), �(t2)) = �(t). Since comp(t) =
l � comp(t1) ∪ r � comp(t2) and comp(v) = l � comp(v1) ∪ r � comp(v2), and
comp(t) ∩ comp(v) = ∅, we have that comp(t1) ∩ comp(v1) = ∅ and comp(t2) ∩
comp(v2) = ∅. Hence, by the induction hypothesis, there exist action transitions u1 and
u2 with src(u1) = target(v1), src(u2) = target(v2), �(u1) = �(t1), �(u2) = �(t2),
comp(u1) = comp(t1) and comp(u2) = comp(t2). We can now construct from u1 and
u2 with an application of (Comm) a derivation u with src(u) = src(u1) ‖ src(u2) =
target(v1) ‖ target(v2) = target(v), �(u) = γ (�(u1), �(u2)) = γ (�(t1), �(t2)) = �(t),
and comp(u) = l�comp(u1)∪r�comp(u2) = l�comp(t1)∪r�comp(t2) = comp(t).

Suppose that the last rule applied in v is (Enc). Then there exists a subderivation v′ with
src(v) = ∂H (src(v′)) for some H ⊆ L, �(v′) = �(v) /∈ H and comp(v) = comp(v′). From
the syntactic shape of src(t) = src(v) = ∂H (src(v′)) it follows that the last rule applied in t
must be (Enc) too. So t has a subderivation t ′ with src(t ′) = src(v′) and �(t ′) = �(t). Since
comp(t) = comp(t ′) and comp(v) = comp(v′), from comp(t) ∩ comp(v) = ∅ it follows that
comp(t ′)∩ comp(v′) = ∅. Hence, by the induction hypothesis, there exists u′ with src(u′) =
target(v′), �(u′) = �(t ′) and comp(u′) = comp(t ′). With an application of (Enc) we can now
construct from u′ a derivation u with src(u) = ∂H (src(u′)) = ∂H (target(v′)) = target(v),
�(u) = �(u′) = �(t ′) = �(t) and comp(u) = comp(u′) = comp(t ′) = comp(t). �
Lemma 45 If the communication function γ is signal-respecting, then a transition t is a
signal transition if, and only if, afc(t) = ∅.
Proof We prove with induction on the derivation t that t is a signal transition if, and only if,
afc(t) = ∅.

If the last rule applied in t is (Pref), then src(t) /= target(t) so t is not a signal transition
and afc(t) /= ∅.

If the last rule applied in t is (Sum-l), (Sum-r) or (Rec), then t is a signal transition if,
and only if, �(t) ∈ S and src(t) = target(t), if, and only if, afc(t) = ∅.

If the last rule applied in t is (Par-l), then t has a subderivation t ′ such that, for some
process expression P , src(t) = src(t ′) ‖ P , target(t) = target(t ′) ‖ P and �(t) = �(t ′).
On the one hand, if t is a signal transition, then from src(t) = target(t) it follows that
src(t ′) = target(t ′) and �(t ′) = �(t) ∈ S, so t ′ is a signal transition too. By the induction
hypothesis, afc(t ′) = ∅, and, since afc(t) = l � afc(t ′), it follows that afc(t) = ∅. On the
other hand, if afc(t) = ∅, then afc(t ′) = ∅. So by the induction hypothesis it follows that t ′
is a signal transition. So src(t ′) = target(t ′) and hence src(t) = target(t), and therefore t is
a signal transition too.

If the last rule applied in t is (Par-r), then the argument is similar to the argument in the
previous case.

If the last rule applied in t is (Comm), then there exist subderivations t1 and t2 such that
src(t) = src(t1) ‖ src(t2), target(t) = target(t1) ‖ target(t2), and γ (�(t1), �(t2)) = �(t).
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On the one hand, if t is a signal transition, then from src(t) = target(t) it follows that
src(t1) = target(t1) and src(t2) = target(t2) and, since γ is signal-respecting, from �(t) ∈ S
it follows that �(t1), �(t2) ∈ S. Hence both t1 and t2 are signal transitions too. By the induction
hypothesis, afc(t1) = afc(t2) = ∅, and since afc(t) = l�afc(t1)∪r�afc(t2), it follows that
afc(t) = ∅. On the other hand, if afc(t) = ∅, then since afc(t) = l � afc(t1) ∪ r � afc(t2),
it follows that afc(t1) = afc(t2) = ∅, so, by the induction hypothesis, t1 and t2 are signal
transitions. Hence, src(t1) = target(t1), src(t2) = target(t2) and �(t1), �(t2) ∈ S. It follows
that src(t) = src(t1) ‖ src(t2) = target(t1) ‖ target(t2) = target(t) and, since γ is signal-
respecting, �(t) = γ (�(t1), �(t2)) ∈ S, so t is a signal transition.

If the last rule applied in t is (Enc), then there exists a subderivation t ′ such that src(t) =
∂H (src(t ′)) for some H ⊆ L, �(t ′) = �(t) and target(t) = ∂H (src(t ′)). Furthermore,
note that afc(t ′) = afc(t). On the one hand, if t is a signal transition, then t ′ is a signal
transition too, so by the induction hypothesis, afc(t ′) = ∅. Since afc(t) = afc(t ′), it follows
that afc(t) = ∅. On the other hand, if afc(t) = ∅, then afc(t ′) = ∅. So, by the induction
hypothesis, t ′ is a signal transition, and hence src(t ′) = target(t ′) and �(t ′) ∈ S. It follows
that src(t) = target(t) and �(t) ∈ S, so t is a signal transition. �
Lemma 46 For all transitions t and v, if src(t) = src(v) and npc(t) ∩ afc(v) = ∅, then
there exists a transition u with src(u) = target(v), �(u) = �(t) and npc(u) = npc(t). If γ is
signal-respecting and t is an action transition, then so is u.

Proof Let P = src(t) = src(v) and suppose that npc(t) ∩ afc(v) = ∅. We prove with
induction on v that there exists u with src(u) = target(v), �(u) = �(t) and npc(u) = npc(t).

If the last rule applied in v is (Pref), then there exist λ and P ′ such that P = λ.P ′ and
afc(v) = {ε}. Due to the syntactic form of P , the last rule applied in t must also be (Pref)
and therefore npc(t) = {ε}. Thus, we find that npc(t) ∩ afc(v) = {ε}, contradicting the
assumption of the lemma.

If the last rule applied in v is (Sum-l) or (Sum-r). Then either then P = P1 + P2, so the
last rule applied in t is also (Sum-l) or (Sum-r). Since npc(t) = {ε} and npc(t)∩afc(v) = ∅,
we have that afc(v) /= {ε}, and hence afc(v) = ∅. So, by Lemma 12, v is a signal transition,
and hence λ ∈ S and P = P ′. Then we have that src(t) = src(v) = target(v), so we can
take u = t to satisfy the requirements of the lemma. Clearly, if t is an action transition, then
so is u.

If the last rule applied in v is (Rec), then P = A, so also the last rule applied in t is
(Rec). Since npc(t) = {ε} and npc(t) ∩ afc(v) = ∅, it we have that afc(v) = ∅. So, by
Lemma 12, v is a signal transition, and hence P ′ = A and λ ∈ S. Then we have that
src(t) = src(v) = target(v), so we can take u = t to satisfy the requirements of the lemma.
Clearly, if t is an action transition, then u is an action transition too.

Suppose that the last rule applied in v is (Par-l). Then there exists a subderivation
v′ of v and a process expression P ′ such that src(v) = src(v′) ‖ P ′, �(v) = �(v′) and
afc(v) = l � afc(v′). From the syntactic shape of src(t) = src(v) = src(v′) ‖ P ′ we
conclude that the last rule applied in t must be (Par-l), (Par-r) or (Comm). We distinguish
these three cases:

• If the last rule applied in t is (Par-l), then t has a subderivation t ′ with src(t ′) = P1
and �(t ′) = �(t). Since npc(t) = l � npc(t ′) and afc(v) = l � afc(v′), it follows from
npc(t)∩afc(v) = ∅ that npc(t ′)∩afc(v′) = ∅. Hence, by the induction hypothesis, there
exists a transition u′ with src(u′) = target(v′), �(u′) = �(t ′) and npc(u′) = npc(t ′). We
can now construct from u′ with an application of (Par-l) a derivation u with src(u) =
target(v′) ‖ P2 = target(v), �(u) = �(u′) = �(t ′) = �(t) and npc(u) = l � npc(u′) =
l � npc(t ′) = npc(t).
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It remains to argue that if γ is signal-respecting and t is an action transition, then u is an
action transition too. To this end, first note that if γ signal-respecting and t is an action
transition, then, by Lemma 12, afc(t) /= ∅, say lσ ∈ afc(t) for some σ ∈ C∗. Then, since
afc(t) = l� afc(t ′), it follows that σ ∈ afc(t ′), so t ′ is an action transition too. Then, by
the induction hypothesis, also u′ is an action transition, so there exists σ ∈ afc(u′), and
hence lσ ′ ∈ afc(u), which therefore is also an action transition.

• If the last rule applied in t is (Par-r), then t has a subderivation t ′ with src(t ′) = P2 and
�(t ′) = �(t). Then with an application of (Par-r) we can construct from t ′ a derivation
u with src(u) = target(v′) ‖ P2 = target(v), �(u) = �(t ′) = �(t) and npc(u) =
r � npc(t ′) = npc(t).
If t is an action transition, then, by Lemma 12, afc(t) /= ∅, and hence there exists σ ∈ C∗
such that rσ ∈ afc(t). From the construction of u it is then easy to see that also rσ ∈
afc(u), proving that u is an action transition too.

• If the last rule applied in t is (Comm), then t has subderivations t1 and t2 with src(t1) = P1,
src(t2) = P2, and γ (�(t1), �(t2)) = �(t). From npc(t) = l � npc(t1) ∪ r � npc(t2) and
npc(t)∩afc(v) = ∅weconclude thatnpc(t1)∩afc(v′) = ∅, so by the induction hypothesis
there exists a derivation u1 with src(u1) = src(v′), �(u1) = �(t1) and npc(u1) = npc(t1).
From u1 and t2 we can now, with an application of (Comm), construct a derivation u with
src(u) = src(u1) ‖ src(t2) = target(v′) ‖ P2 = target(v), �(u) = γ (�(u1), �(t2)) =
γ (�(t1), �(t2)) = �(t) and npc(u) = l � npc(u1) ∪ r � npc(t2) = l � npc(t1) ∪ r �
npc(t2) = npc(t).
If γ is signal-respecting and t is an action transition, then, by Lemma 12, afc(t) /= ∅.
Hence, since afc(t) = l � afc(t1) ∪ r � afc(t2), we have that afc(t1) /= ∅ or afc(t2) /= ∅.
In the first case, t1 is an action transition, so we get from the induction hypothesis that u1
is an action transition. It follows that afc(u1) /= ∅, and hence afc(u) /= ∅, so u is an action
transition. In the second case, we simply get that r� afc(t2) ⊆ afc(u), so afc(u) /=∅ and
therefore u is an action transition.

If the last rule applied in v is (Par-r), then the argument is symmetric to the argument
for the case that the last rule applied in v is (Par-l).

Suppose that the last rule applied in v is (Comm). Then there exist subderivations v1 and
v2 of v with src(v) = src(v1) ‖ src(v2), �(v) = γ (�(v1), �(v2) and afc(v) = l � afc(v1) ∪
r � afc(v2). From the syntactic shape of src(t) = src(v) = src(v1) ‖ src(v2), we conclude
that the last rule applied in t must be (Par-l), (Par-r) or (Comm). We distinguish these
three cases:

• If the last rule applied in t is (Par-l), then t has a subderivation t ′ with src(t ′) = src(v1)
and �(t ′) = �(t). Since npc(t) = l � npc(t ′) and afc(v) = l � afc(v1) ∪ r � afc(v2),
it follows from npc(t) ∩ afc(v) = ∅ that npc(t ′) ∩ afc(v1) = ∅. So, by the induction
hypothesis, there exists a transition u′ with src(u′) = target(v1), �(u′) = �(t ′) and
npc(u′) = npc(t ′). We can now construct from u′ with an application of (Par-l) a
derivation u with src(u) = src(u′) ‖ target(v2) = target(v1) ‖ target(v2) = target(v),
�(u) = �(u′) = �(t ′) = �(t) and npc(u) = l � npc(u′) = l � npc(t ′) = npc(t).
If γ is signal-respecting and t is an action transition, then, by Lemma 12, we have that
afc(t) /= ∅, and hence afc(t ′) /= ∅. So t ′ is an action transition, and hence, by the induction
hypothesis, u′ is an action transition. Therefore, by construction, u is an action transition
too.

• If the last rule applied in t is (Par-r), then the argument is similar to the argument in the
previous case, using the induction hypothesis for v2 instead.
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• If the last rule applied in t is (Comm), then t has subderivations t1 and t2 with src(t1) =
src(v1), src(t2) = src(v2), γ (�(t1), �(t2)) = �(t). Since npc(t) = L � npc(t1) ∪ r �
npc(t2) and afc(v) = L � afc(v1)∪r�afc(v2), it follows from npc(t)∩afc(v) = ∅ that
npc(t1) ∩ afc(v1) = ∅ and npc(t2) ∩ afc(v2) = ∅. Hence, by the induction hypothesis,
there exist action transitions u1 and u2 with src(u1) = target(v1), src(u2) = target(v2),
�(u1) = �(t1), �(u2) = �(t2), npc(u1) = npc(t1) and npc(u2) = npc(v2). We can now
construct from u1 and u2 with an application of (Comm) a derivation u with src(u) =
src(u1) ‖ src(u2) = target(v1) ‖ target(v2) = target(v), �(u) = γ (�(u1), �(u2)) =
γ (�(t1), �(t2)) = �(t), and npc(u) = l � npc(u1) ∪ r � npc(u2) = l � npc(t1) ∪ r �
npc(t2) = npc(t).
If γ is signal-respecting and t is an action transition, then, by Lemma 12, afc(t) /= ∅.
Hence, since afc(t) = l � afc(t1) ∪ r � afc(t2), we have that afc(t1) /= ∅ or afc(t2) /= ∅.
In the first case, t1 is an action transition, so we get from the induction hypothesis that
u1 is an action transition. It follows that afc(u1) /= ∅, and hence afc(u) /= ∅, so u is an
action transition. In the second case, t2 is an action transition, sowe get from the induction
hypothesis that u2 is an action transition. It follows that afc(u2) /= ∅, and hence afc(u) /= ∅,
so u is an action transition.

Suppose that the last rule applied in v is (Enc). Then there exists a subderivation v′ with
src(v) = ∂H (src(v′)) for some H ⊆ L, �(v′) = �(v) /∈ H and npc(v) = npc(v′). From
the syntactic shape of src(t) = src(v) = ∂H (src(v′)) it follows that the last rule applied in
t must be (Enc) too. So t has a subderivation t ′ with src(t ′) = src(v′) and �(t ′) = �(t).
Since npc(t) = npc(t ′) and afc(v) = afc(v′), from npc(t) ∩ afc(v) = ∅ it follows that
npc(t ′) ∩ afc(v′) = ∅. Hence, by the induction hypothesis, there exists u′ with src(u′) =
target(v′), �(u′) = �(t ′) and npc(u′) = npc(t ′). With an application of (Enc) we can now
construct from u′ a derivation u with src(u) = ∂H (src(u′)) = ∂H (target(v′)) = target(v),
�(u) = �(u′) = �(t ′) = �(t) and npc(u) = npc(u′) = npc(t ′) = npc(t).

If γ is signal-respecting and t is an action transition, then, by Lemma 12 and afc(t ′) =
afc(t), t ′ is an action transition too, so by the induction hypothesis also u′ is an action
transition, and thus it follows, by Lemma 12 and afc(u) = afc(u′), that u is an action
transition. �

B Detailed proof of a lemma in Sect. 7

In this “Appendix”, we present a detailed proof of Lemma 27, restated below as Lemma 47.

Lemma 47 Let E be a sequential recursive specification and let P be a parallel-sequential
process expression over E. If P ′ is reachable from P, then C(P ′) = C(P) and P ′|σ is
reachable from P|σ for all σ ∈ C(P).

Proof Let us first consider the special case that there is a transition t such that src(t) = P
and target(t) = P ′. With induction on t we establish that C(P ′) = C(P) and P ′|σ = P|σ for
all σ ∈ C(P).

If the last rule applied in t is (Pref), (Sum- l), (Sum- r) or (Rec), then P is a sequential
process expression and, since E is a sequential recursive specification, so is P ′. It follows
that C(P ′) = {ε} = C(P) and P ′|ε= P ′ is reachable from P = P|ε .

If the last rule applied in t is (Par-l), then there exist P1, P ′
1 and P2 such that P = P1‖P2,

P ′ = P ′
1 ‖ P2, and t has a subderivation t ′ with src(t ′) = P1 and target(t ′) = P ′

1. By the
induction hypothesis, C(P1) = C(P ′

1) and P1|σ = P ′
1|σ for all σ ∈ C(P1). It follows that
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C(P) = L � C(P1) ∪ r � C(P2) = L � C(P ′
1) ∪ r � C(P2) = C(P ′). Moreover, since

P1|σ = P ′
1|σ for all σ ∈ C(P1), it also follows that P|σ = P ′|σ for all σ ∈ C(P).

If the last rule applied in t is (Par-r), then the argument is analogous to the argument in
the case that the last rule applied is (Par-l).

If the last rule applied in t is (Comm), then there exist P1, P ′
1, P2 and P ′

2 such that
P = P1 ‖ P2, P ′ = P ′

1 ‖ P ′
2, and t has a subderivations t1 and t2 with src(t1) = P1,

target(t1) = P ′
1, src(t2) = P2 and target(t2) = P ′

2. By the induction hypothesis, C(P1) =
C(P ′

1), C(P2) = C(P ′
2), P1|σ = P ′

1|σ for all σ ∈ C(P1), and P2|σ = P ′
2|σ for all σ ∈ C(P2). It

follows that C(P) = L � C(P1)∪r�C(P2) = L � C(P ′
1)∪r�C(P ′

2) = C(P ′). Moreover,
since P1|σ = P ′

1|σ for all σ ∈ C(P1) and P2|σ = P ′
2|σ for all σ ∈ C(P2), it also follows that

P|σ = P ′|σ for all σ ∈ C(P).
If the last rule applied in t is (Enc), then there exist P1 and P ′

1 such that P = ∂H (P1) and
P ′ = ∂H (P ′

1), and t has a subderivation t ′ with src(t ′) = P1 and target(t ′) = P ′
1. By the

induction hypothesis, C(P) = C(P1) = C(P ′
1) = C(P ′) and P|σ = P1|σ = P ′

1|σ = P ′|σ for
all σ ∈ C(P).

Now, if P ′ is reachable from P , then the statement of the lemma follows with a straight-
forward induction on the number of transitions in a path from P to P ′. �

CmCRL2 specification of Peterson’s algorithm

sort Label =
struct

a_assign_readyA | a_read_readyA | a_assign_readyB| a_read_readyB
|

a_assign_turnA | a_assign_turnB | a_read_turnA | a_read_turnB |
a_critA | a_critB | a_noncritA | a_noncritB

;

sort
TurnType= struct A | B;

act
assign_readyA ,r_assign_readyA ,s_assign_readyA: Bool;
assign_readyB ,r_assign_readyB ,s_assign_readyB: Bool;
assign_turnA ,r_assign_turnA ,s_assign_turnA;
assign_turnB ,r_assign_turnB ,s_assign_turnB;
read_readyA ,r_read_readyA ,s_read_readyA: Bool;
read_readyB ,r_read_readyB ,s_read_readyB: Bool;
read_turnA ,r_read_turnA ,s_read_turnA;
read_turnB ,r_read_turnB ,s_read_turnB;
noncritA , critA , noncritB , critB;
label:Label;

proc
ReadyA(b: Bool) =

sum b’:Bool.r_assign_readyA(b’). ReadyA(b’)
+ s_read_readyA(b)| label(a_read_readyA ). ReadyA ();

ReadyB(b: Bool) =
sum b’:Bool.r_assign_readyB(b’). ReadyB(b’)

+ s_read_readyB(b)| label(a_read_readyB ). ReadyB ();

Turn(t: TurnType) =
r_assign_turnA.Turn(A)

+ r_assign_turnB.Turn(B)
+ (t==A) -> s_read_turnA|label(a_read_turnA ).Turn()
+ (t==B) -> s_read_turnB|label(a_read_turnB ).Turn ();

procA =
noncritA|label(a_noncritA ).
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s_assign_readyA(true)|label(a_assign_readyA ).
s_assign_turnB|label(a_assign_turnB ).

sum rA ,rB: Bool , t:TurnType.
(r_read_readyB(false )+ r_read_turnA ).

critA|label(a_critA ).
s_assign_readyA(false )| label(a_assign_readyA ).procA;

procB =
noncritB|label(a_noncritB ).

s_assign_readyB(true)|label(a_assign_readyB ).
s_assign_turnA|label(a_assign_turnA ).

sum rA ,rB: Bool , t:TurnType.
(r_read_readyA(false )+ r_read_turnB ).

critB|label(a_critB ).
s_assign_readyB(false )| label(a_assign_readyB ).procB;

init
hide({ assign_readyA ,read_readyA ,assign_readyB ,read_readyB ,

assign_turnA ,assign_turnB ,read_turnA ,read_turnB ,
critA ,critB ,noncritA ,noncritB},

allow ({ assign_readyA|label , read_readyA|label ,
assign_readyB|label , read_readyB|label ,
assign_turnA|label , assign_turnB|label ,
read_turnA|label , read_turnB|label ,
critA|label , critB|label , noncritA|label , noncritB|label},
comm({ r_assign_readyA|s_assign_readyA ->assign_readyA ,

r_read_readyA|s_read_readyA -> read_readyA ,
r_assign_readyB|s_assign_readyB ->assign_readyB ,

r_read_readyB|s_read_readyB -> read_readyB ,
r_assign_turnA|s_assign_turnA ->assign_turnA ,
r_assign_turnB|s_assign_turnB ->assign_turnB ,
r_read_turnA|s_read_turnA -> read_turnA ,
r_read_turnB|s_read_turnB -> read_turnB},

procA ||procB || ReadyA(false )|| ReadyB(false )|| Turn(A)
)

)
);

sort Labels=Set(Label );

sort Component =
struct

c_ReadyA | c_ReadyB | c_Turn | c_procA | c_procB
;

sort Components=Set(Component );
map

npc:Label -> Components;
eqn

npc(a_assign_readyA )={ c_procA ,c_ReadyA };
npc(a_read_readyA )={ c_procB , c_ReadyA };
npc(a_assign_readyB )={ c_procB , c_ReadyB };
npc(a_read_readyB )={ c_procA , c_ReadyB };
npc(a_assign_turnA )={ c_procB , c_Turn };
npc(a_assign_turnB )={ c_procA , c_Turn };
npc(a_read_turnA )={ c_procA , c_Turn };
npc(a_read_turnB )={ c_procB , c_Turn };
npc(a_critA )={ c_procA };
npc(a_critB )={ c_procB };
npc(a_noncritA )={ c_procA };
npc(a_noncritB )={ c_procB };

map
afc:Label -> Components;

eqn
afc(a_assign_readyA )={ c_procA , c_ReadyA };
afc(a_read_readyA )={ c_procB };

% afc(a_read_readyA )={ c_procB , c_ReadyA };
afc(a_assign_readyB )={ c_procB , c_ReadyB };
afc(a_read_readyB )={ c_procA };

% afc(a_read_readyB )={ c_procA , c_ReadyB };
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afc(a_assign_turnA )={ c_procB , c_Turn };
afc(a_assign_turnB )={ c_procA , c_Turn };
afc(a_read_turnA )={ c_procA };

% afc(a_read_turnA )={ c_procA , c_Turn };
afc(a_read_turnB )={ c_procB };

% afc(a_read_turnB )={ c_procB , c_Turn };
afc(a_critA )={ c_procA };
afc(a_critB )={ c_procB };
afc(a_noncritA )={ c_procA };
afc(a_noncritB )={ c_procB };

map
elim: Label -> Labels;
interfere: Label#Label -> Bool;

var
a,a’: Label;

eqn
elim(a) = {a’’:Label | exists c:Component. c in npc(a’’) && c in

afc(a)};
interfere(a,a’)= exists c:Component .(c in npc(a) && c in afc(a’));

map
blocking:Label -> Bool;

eqn
blocking(a_noncritA )=true;
blocking(a_noncritB )=true;
blocking(a_assign_readyA )=false;
blocking(a_read_readyA )= false;
blocking(a_assign_readyB )=false;
blocking(a_read_readyB )= false;
blocking(a_assign_turnA )=false;
blocking(a_assign_turnB )=false;
blocking(a_read_turnA )= false;
blocking(a_read_turnB )= false;
blocking(a_critA )= false;
blocking(a_critB )= false;

D Formula expressing liveness for all just paths

! mu W. (
<action(a_noncritA)>(

nu Y. forall a:Action .(val(! blocking(a)) && <action(a)>true) =>
mu Q. (

( exists a’: Action.val(interfere(a,a’) && (a’!= a_critA )) &&
<action(a’)>Y)

||
( exists a’: Action.val(! interfere(a,a’) && (a’!= a_critA )) &&

<action(a’)>Q )
)
)

||
exists a:Action.<action(a)>W

)
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