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Abstract
The manual implementation of local controllers for autonomous agents in a distributed and
concurrent setting is an ambitious and error-prune task. Synthesis algorithms, however, allow
for the automatic generation of such controllers given a formal specification of the system’s
goal. Recently, high-level Petri games were introduced to allow for a concise modeling
technique of distributed systems with a safety objective. One way of solving these games is
by a translation to low-level Petri games and applying an existing solving algorithm. In this
paperwe present a new solving technique for a subclass of high-level Petri gameswith a single
uncontrollable player, a bounded number of controllable players, and a local safety objective.
The technique exploits symmetries in the high-level Petri game. We report on encouraging
experimental results of a prototype implementation generating the reduced state space. The
results for four existing and one new benchmark family show a state space reduction by up
to three orders of magnitude.

1 Introduction

Due to the constant availability of networks and theminimization of powerful devices,modern
systems are increasingly composed of a huge number of networked computers. Even if the
system itself appears to be a single coherent unit, the components of such a distributed
system act autonomously [52]. To avoid a constant communication of every single component
with a central control, systems are more and more decentralized. This comes with the cost
of an incomplete knowledge of the system’s components about the system’s environment.
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Especially in manufacturing there is a rising demand for the development of local controllers
and their mutual communication [40,41].

The growth of these systems in size and complexity makes it even more challenging
for humans to correctly implement sound controllers. Synthesis [11] avoids this error-prune
task by automatically generating controllers from a description of all possible actions in the
system and a specification of the system’s common goal which should be guaranteed against
all possible behavior of the system’s environment.

In this paper we consider Petri games [25], a game-theoretic approach for the synthesis
of distributed systems. The game is played between two teams: the system players (the
controllable behavior) and the environment players (the uncontrollable behavior). Solving
such games means finding a strategy for the system players that is winning, i.e., it satisfies
a given safety objective against all the environment’s decisions. A strategy takes the locally
known decisions of the other players as input and produces a deterministic output in form
of a decision for the next step. In Petri games the players are the tokens of the underlying
place/transition Petri net (P/T Petri net). The places of the net are partitioned into system and
environment places. The assignment of the team membership is done via the place the player
currently resides on. Players in distant locations do not knowanything about each other as long
as they are not communicating, i.e., participating on the firing of a joint transition. During
such communications the players exchange their knowledge about the causal past of the
other players, i.e., the places and transitions the player previously resided on or participated
in firing, as well as his or her own past.

The high-level representation of Petri games [30] allows for a concise description of
these games. Rather than depending on P/T Petri nets, high-level Petri games are based on
schemata of Colored Petri Nets (CPNs) [29,36]. This facilitates to have several individual and
distinguishable tokens residing on a single place. So far high-level Petri games are solved via
a transformation to the equivalent low-level variant of the game and by applying the solving
algorithms for P/T Petri games to the result of the transformation. In practical applications,
modeling with high-level Petri games often results in low-level Petri nets exhibiting a large
amount of symmetric behavior. The main reason is that in many cases the individual tokens,
e.g., robots, processes, work pieces, etc., do not need to behave that differently to win the
game.

In this paper we present a solving algorithm for a subclass of high-level Petri games with
a single environment player, a bounded number of system players, and a safety objective.
This new algorithm exploits the symmetries of the system. The subclass is defined by two
restrictions. First, we consider only set-based high-level Petri games, where the markings
are sets rather than multisets of individual, colored tokens. Second, we consider only Petri
games where the single environment player is recurrently interfering, i.e., in every infinite
sequence of transitions there are infinitely many environment transitions.

The key idea of the algorithm is a combination of the reduction technique of the cor-
responding class of P/T Petri games described in [25] and the construction of a reduced
reachability graph forCPNspresented in [8].We introduce the symbolic two-player gameGH ,
a two-player game over a finite graphwith complete information. This game is solvable if and
only if the corresponding high-level Petri gameH is solvable. The states ofGH are equiva-
lence classes of the states of the two-player gameGL presented in [25] of the corresponding
low-level Petri game, with respect to defined symmetries. The correctness of the construction
is shown via a bisimulation between these two-player games. Furthermore, we provide an
algorithm to create a winning positional strategy inGL from the winning positional strategy
in G

H .
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Fig. 1 A high-level Petri game representing the benchmark family PD. An armada of n drones D =
{d1, . . . , dn} wants to deliver m packages P = {p1, . . . , pm }. The hostile environment, initially residing
in the place Env, destroys via transition destroy one drone d ∈ D and puts its name d into the placeMalfunc-
tion. Small letters d, d ′, and p at the edges are variables ranging over elements from D and P , respectively.
The functioning drones can deliver their assigned packages via transition deliver. After each delivery, a drone
has the option to save the package of the crashed drone via transition save. The system players win when every
package is delivered and thus by firing transition end the place Bad can be avoided

We validate the state space reduction of our approach on a set of benchmark families
introduced in [21,22] in a prototype implementation.Wedevelop the high-level representation
of those benchmark families which had not already been introduced in [30] and introduce
a completely new benchmark family about a package delivery service with drones. The
experimental results calculated with a two hour time out show a state space reduction of a
factor of up to 2366.

The remainder of the paper is structured as follows: We informally introduce the new
benchmark family of a package delivery in Sect. 2 and motivate our approach by providing
an intuition of the symmetries of the system. Section 3 recalls the formalism of low-level
and high-level Petri games. In Sect. 4 the new solving technique for high-level Petri games
is introduced and proven to be correct, before Sect. 5 shows the state-space reduction of
this new technique on several benchmark families. We finish with the related work and a
conclusion in Sects. 6 and 7.

2 Motivating example

We motivate our approach by introducing a new benchmark family for the synthesis of
distributed systems. In this family, called Package Delivery (PD), an armada of autonomous
drones has the mission to deliver packages against a hostile environment. The environment
is able to let one of the drones crash. The other drones, however, get informed of the crash
and can recover the lost package after their own successful delivery. A visual representation
as a high-level Petri game is depicted in Fig. 1.

The n drones are represented by a set D = {d1, . . . , dn} of n individual elements called
tokens, which initially reside on the place with label Drones. Similarly, the m packages
are represented by the set P = {p1, . . . , pm}, which elements initially reside on the place
Packages. The gray colored places belong to the controllable players, i.e., tokens residing
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on such places belong to the team of system players. However, tokens residing on white
places belong to the team of environment players, also called the uncontrollable players.
A transition is depicted as a rectangular node. A mode of a transition is a valuation of the
variables at the transition’s edges. Those variables (like d, d ′, p in Fig. 1) are bound only
locally to the transition. A transition is enabled in a mode iff on the places connected to its
incoming edges the necessary tokens are available in this mode and a predicate, written as
a dashed box connected to the transition, is satisfied in this mode. A missing dashed box
represents the predicate true. The transition fires in a mode by removing the tokens from the
places connected to its incoming edges and by putting tokens to the places connected to its
outgoing edges. A transition can only fire in a mode if it is enabled in the mode.

Initially, the transitions assign and destroy are concurrently enabled. For simplicity rea-
sons, in descriptions we omit the mode of a transition when it is clear from the context. Thus,
the assignment of the packages to drones and the subsequent takeoff (via transition takeoff)
may occur concurrently to the decision of the environment which drone will crash. In Petri
games the players do not have a global view of the whole system. They only learn something
about the other players by taking a joint transition. In this case the participating players
exchange their complete knowledge, i.e., all places and transitions they had previously used
as well as the knowledge they obtained from other player by previous joint transitions. This
knowledge is called their causal past. For the example this means that even in the case that
transition destroy fires before transition assign, the drones, each loaded with a package, take
off without knowing which drone will crash. The non-functioning drone, say d , cannot take
transition deliver due to the predicate d �= d ′. To avoid trivial solutions, where the system
decides to just not move any further even though there is still a possible move and only by this
is able to prevent ending up in a bad place, we are searching for deadlock-avoiding strategies.
Hence, the drone d must take transition crash and has to put its package into the place Lost.
The functioning drones can deliver their packages (via transition deliver) and meanwhile
receive the emergency signal of the crashed drone. Thus, by taking transition deliver, the
drone is getting the environment’s decision for the first time because the environment token
residing in placeMalfunction has the transition destroy in its causal past. This information is
passed to the system player via the joint transition. After each delivery, the drone can decide
in place Wait to pickup another assigned package via transition takeoff ′, or, to recover the
lost package and call it a day via transition save. By taking transition deliver, a drone not
only learns which drone has crashed but also exactly which package is lost and can therewith
recover particularly this package. If no drone decides to recover the lost package, the system
cannot avoid reaching the bad place Bad due to the deadlock-avoiding constraint. Only when
each package is delivered, i.e., all p ∈ P reside on place Delivered, the system can avoid the
bad place and reach the place End via transition end. Even in the case that the environment
decides to destroy a drone without an assigned package, all loaded drones can take transition
Delivered and thus the place End is reached.

Consider for example the case of two drones ordered to deliver three packages. In this
case, the system cannot win the game because two packages have to be assigned to the same
drone. If the environment now destroys this drone, the other, functioning drone, cannot save
both undelivered packages. Therefore, some package has to take transition bad or bad ′, and
the system loses.

In contrast, if three drones, say d1, d2, and d3, have to deliver two packages, say p1 and
p2, the system can win this game. Initially, the packages decide on an assignment, say p1 is
assigned to d1 and p2 is assigned to d2, and the drones take off. In the case of the environment
destroying drone d1, package p1 is lost. Then, d2 can deliver its package, and afterwards can
recover p1 via transition save. Both packages now reside on Delivered, and therefore can
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take the transition end to avoid taking any bad transition. In the case that the environment
decides to let any other drone crash, the system still can win the game because either now
the other drone saves the lost package or no package gets lost anyhow.

We see here that the behavior of the game is highly symmetric: it does not matter to which
drones the packages p1 and p2 get assigned, as long as the two chosen drones are different.
For example, there is no difference in the general behavior in the case that p1 gets assigned
to d3 and p2 to d1. We say, this situation is symmetric to the situation above. It also does
not matter which of the drones loaded with a package is destroyed by the environment – the
other drone, after delivering its own cargo, will save the lost package.

These observations lead to the idea of exploiting symmetric behavior: we do not have to
consider many different situations anymore, but can limit our examination to representatives
of whole classes of symmetric situations. This makes it easier to determine whether the
system can win the game.

3 Petri games

In this sectionwe give an informal definition of low-level Petri games and their properties [24]
and recall the definitions of high-level Petri games and their reduction technique to low-level
Petri games from [30]. We assume some familiarity with Petri nets (e.g., [43,47]).

3.1 Low-level Petri games

A Petri game G = (PS,PE ,T ,F , In,B) models a multi-player game, where the tokens
of the underlying Petri netN = (P,T ,F , In), with a finite set of placesP , a finite set of
transitions T , a flow relation F , and an initial marking In, represent the players. Although
the solving algorithm in [25] is presented for k-bounded Petri games, in this paper we assume
that G is 1-bounded, i.e., in any state of the game each place hosts at most one token. We do
so to keep the paper less technical. We distinguish two teams of players: the (uncontrollable)
environment players are the tokens residing on environment places PE (depicted as white
circles) and the (controllable) system players are the tokens residing on the system placesPS

(depicted as gray circles). The disjoint union of these sets yields the places of the underlying
net: P = PE ∪̇PS . Additionally, the Petri game identifies a set B ⊆ P of bad places
from the point of view of the system (depicted as double circled places). For each transition
t ∈ T the pre- and postset of t are defined by pre(t) = {p ∈ P | (p, t) ∈ F } and
post(t) = {p ∈ P | (t, p) ∈ F }. Since we assume G to be 1-bounded, a marking of G
is a set M ⊆ P . A transition t is enabled at M if pre(t) ⊆ M . Firing an enabled transition
at M yields a new marking M ′ = (M\pre(t)) ∪ post(t). This firing relation is denoted by
M [t〉 M ′.We call transitions with a preset only consisting of system places system transitions
and all other transitions environment transitions. Transitions with a preset only consisting of
environment places are called pure environment transitions. Note that only pure environment
transitions are under control of the environment player, whereas transitions which contain at
least one system place in its preset are under control of the system players.

Each player knows its own causal past, i.e., the places and transitions which have been
used to reach the current place. This information is exchanged with all players participating
at a joint transition. The aim of the system players is to cooperate to avoid reaching any bad
place p ∈ B. To satisfy this safety objective, the players can solely use their locally available
information.
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Fig. 2 A low-level Petri game in which the environment player (initially residing on place E1) orders the
system player (initially residing on place S) to let its processes work jointly or solely. The system can only
win, i.e., avoid that any token ever resides on place ⊥, by informing itself over the environment’s decision via
transition info and let its created processes work together or alone according to the environment’s decision

Example 1 (Low-level Petri game) Figure 2 shows a simple Petri game with one environment
player (initially residing on place E1) andmaximally three system players. At the outset there
is only one system player (initially residing on place S). Later on, this player can create two
independent processes. The environment however can decide whether these processes should
work together (via transition order j ) or on their own (via transition ordera). In the beginning,
the system player can decide whether it waits for the environment’s decision and creates the
two processes with this information attached (via transition info) or whether it just creates
two processes without any further attached information (transition uninf). In both cases the
processes can choose whether they want to work together (transition j) or alone (transition ai
for i ∈ {1, 2}). The system can only win, i.e., avoid reaching the bad place ⊥, when it meets
the order of the environment. Therefore, the processes must be created with the information
about the environment’s order. This knowledge is available in the causal past of the token
residing on place E2 and therewith is transmitted via transition info to the system.

The causal dependencies (and independencies) inG are formally represented by the unfolding
of the underlying net N [17,19]. There, every loop in N is unrolled and every backward
branching place is expanded bymultiplying the place, so that every transition in the unfolding
stands for the unique occurrence (instance) of a transition of N during an execution. The
unfolding exhibits concurrency, causal dependency, and nondeterminism (forward branching
of places) of the unique occurrences of the transitions in N during all possible executions.
The unfolding is lifted to Petri games by keeping the distinction of environment, system,
and bad places. The unfolding of the Petri game presented in Fig. 2 is shown in Fig. 3. The
solid elements together with the lighter shaded ones form the complete unfolding of the Petri
game.

A strategy for the system players in G describes a local controller for each system player
whichoperates basedon its currently available information about thewhole system.Astrategy
is obtained from the unfolding by deleting some of the branches that are under control of
the system players. Thus, it is technically a subprocess of the unfolding and describes for
each place which transitions the player in that place can take. A strategy has to meet four
conditions: (i) The strategy should not disallow any pure environment transition. This means
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Fig. 3 The unfolding and a winning strategy for the system players in the Petri game presented in Fig. 2. The
winning strategy is depicted by the solid elements

the system players cannot prevent the environment fromworking on its own. (ii) Each refusal
of a transition must be justified, i.e., when a system player refuses an instance of a transition
in a place of the strategy, no other instance of this transition is allowed to occur in the postset
of this place. This means that in a specific state, the system can only allow or disallow a
transition of the original net. It cannot choose between two instances of this transition in the
unfolding, when these instances are indistinguishable due to the available knowledge for the
system player. (iii) The strategies must be deterministic, i.e., in no state of the strategy two
transitions are enabled involving the same system player. (iv) The strategy must be deadlock-
avoiding, i.e., whenever the system can proceed in G there must also be a continuation in
the corresponding situation in the strategy, to avoid trivial solutions. Since we consider a
safety objective, the system players would win a non deadlock-avoiding strategy by just
doing nothing.

In a play conforming to a given strategy for the system players all remaining nondeter-
minism has been resolved. The system players win this play when it avoids any bad place
in B. A strategy σ for the system players in G is winning iff all plays conforming to σ are
winning. The formal definitions for unfolding, strategy, and plays are given in “Appendix A”.
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Example 2 (Strategy in a low-level Petri game) The solid elements of Fig. 3 show a winning
strategy for the Petri game presented in Fig. 2. Every strategy has to contain transitions ordera
and orderj because all pure environment transitions have to occur.When the system in place S
decides to get informed about the environment’s decision (as in this winning strategy), it has
to do so uniformly in every indistinguishable situation. Thus either no instance of an info
transition is present in the strategy or both info and info′. After getting informed of the
environment’s decision (which, due to the different causal pasts, results in two branches) the
system can enable the appropriate transitions to avoid a bad place.

The game can only be won because every player memorizes its causal past and transmits
this knowledge to all players participating in a joint transition. Suppose in place S the system
decides to have uninf in its strategy. By the deterministic constraint, it includes neither
transition info nor info′ and thus it is not informed of the environment’s decision. Then the
system cannot avoid a bad place while fulfilling the constraints of a winning strategy. Indeed,
allowing all three transitions a′

1,a
′
2, and j

′ in the postsets of P ′
1, P

′
2 exhibits nondeterminism.

Thus, since the systemmust not deadlock, either A′
1 and A′

2, or J
′ must be part of the strategy.

Disallowing the subsequent transitions (⊥a1 and ⊥a2 , or ⊥′
j , respectively) leading to a bad

place, however, would yield a deadlock in one of the environment’s decision.

A decision taken by the strategy in a place p depends on the causal past of p, which may
be arbitrarily large. Similar to model checking approaches based on net unfoldings [18],
we use cuts (maximal subsets of pairwise concurrent places in the unfolding) as unique
representatives of the causal past. The standard notion of cuts, however, collects places with
possibly different knowledge of the individual players about the causal past. Consider for
example the cut κ = {E2,Ca, S} in the unfolding presented in Fig. 3. The environment player
residing on E2 and the system player residing on Ca know the same about the causal past
because their last move was the joint transition ordera . However, the system player residing
on S does not know anything about the environment’s decision. Therefore, the paper [25]
introduced a new kind of cut, called maximal cuts, abbreviated mcut. For an environment
place p an mcut is a cut including p such that for all places q in that cut either (1) the system
players havemaximally progressed at q , in the sense that any further system transition would
require an additional environment transition starting from place p, or (2) the future starting
at q does not depend on the environment. Mcuts are especially interesting for strategies in
Petri games with a single environment player. Consider for example the loosing strategy
where the system decides to take transition uninf. There the cut κ is not an mcut because
the system player residing on S can still progress without moving the token residing on E2.
In the presented winning strategy however, κ is an mcut because only transition info with
E2 ∈ pre(info) is enabled. Hence, for the winning strategy also the system player residing
in S can be considered to be equally informed about the environment’s decision because
the only possible next move for this player will provide this information. In general for
Petri games with one environment player every maximally progressed system player of an
mcut [case (1)] can be considered to be equally informed about the environment because the
next transition either directly involves the environment player or at least contains the current
environment place in its causal past. This is exploited in [25] to create a two-player game
with complete information which is used to solve Petri games. Also the construction of the
later introduced symbolic two-player game for high-level Petri games rests on these cuts such
that the complete informedness of the players does not cause any harm.

For simplicity, we restrict ourselves in this paper to Petri games G where alternative (2)
does not arise. In the terminology of [25], we do not consider type-2 places here. In other
words, we require that in every infinite sequence of transitions there are infinitely many
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environment transitions. Formally, G has a recurrently interfering environment if in every
infinite firing sequence

In = M0 [t0〉 M1 [t1〉 M2[t2〉 . . .

of G there are infinitely many i ∈ N with pre(ti ) ∩ PE �= ∅. This restriction allows us
to keep the formal definitions of elements used in the solving algorithm for Petri games,
namely decision sets and the two-player game, as simple as possible and saves to introduce
an additional pre-processing algorithm similar to the one presented in [25].

3.2 High-level Petri games

Parameterized set-based high-level Petri games were introduced in [30]. The term set-based
means that at no point in time two tokens of the same color reside on any place of the game.
This corresponds to 1-bounded Petri games in the low-level case. In this paper we restrict
ourselves to set-based high-level Petri gameswithout parameters.We recall a slightly adapted
version of the definition and its properties.

We consider data values that are called colors, following [36]. We refer to a finite set of
colors as a color domain, with typical letter C. Let C denote the set of all considered color
domains. We use typed variables that range over a specific color domain. Let Var denote the
set of all variables. We use the function t y : Var → C to declare the type t y(x) of a given
variable x ∈ Var, i.e., its color domain. In high-level Petri nets individual tokens will be
represented by colors.

A high-level Petri game H = (PH
S ,PH

E ,T H ,F H , t y, g, e, InH ,BH ) is a structure
with

– a finite set of system places PH
S ,

– a finite set of environment places PH
E (the disjoint union PH = PH

S ∪̇PH
E yields the

set of all places),
– a finite set of transitions T H satisfying PH ∩ T H = ∅ �= PH ∪ T H ,
– a flow relation F H ⊆ (PH × T H ) ∪ (T H × PH ),
– a type function ty : PH → C , which maps each place p ∈ PH to its color domain, i.e.,

the colors which can reside on p,
– a guarding function g, which assigns to each transition t ∈ T H a guard, i.e., a Boolean

expression g(t) which restricts the firing of t ,
– an arc expression function e, which assigns to each arc (p, t) ∈ F H and (t, p) ∈ F H

an arc expression e(p, t) or e(t, p), respectively, describing which tokens are withdrawn
or placed by t from or on the corresponding place p during the firing,

– an initial marking InH ⊆ {(p, c) | p ∈ PH ∧ c ∈ t y(p)}, and
– a set of bad places BH ⊆ PH .

We require that two different color domains are disjunct, i.e., t y(p1) �= t y(p2) ⇒ t y(p1) ∩
t y(p1) = ∅ for all places p1, p2 ∈ PH . For a place p ∈ PH and a color c ∈ t y(p) we
often use p.c as abbreviation for (p, c) to state that the token c resides on the place p. For
any set X ⊆ PH of places, we denote by X .t y = {p.c | p ∈ X ∧ c ∈ t y(p)} the set of all
possible combinations of places in X with colors according to their types.

For a transition t ∈ T H let var(t) denote the set of free variables occurring in g(t) or
any arc expression e(p, t) or e(t, p) for a flow (p, t) ∈ F H or (t, p) ∈ F H , respectively. A
valuation ormode v of a transition t assigns to each variable x ∈ var(t) a value v(x) ∈ t y(x).
We denote all valuations of a transition t by Val(t). For a set Y ⊆ T H of transitions, we
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Fig. 4 A high-level Petri game with color domains {•}, P = {p1, . . . , pn}, and {÷, �} and the types of the
variables t y(p) = P and t y(o) = {÷, �}. The environment player (initially residing on place E1) decides
whether a set of sytem processes P should work together (place J ) or alone (place A). With a proper renaming
and n = 2 the Petri game of Fig. 2 is an instance of this high-level version

denote by Y .Val = {t .v | t ∈ Y∧v ∈ Val(t)} the set of all possible combinations of transitions
in Y with their valuations. Each valuation v of t is inductively lifted from the variables in
var(t) to the expressions around t . We denote by v(t) the Boolean value assigned by v to g(t),
and by v(p, t) or v(t, p) the set of colors assigned by v to e(p, t) or e(t, p), respectively.
For any combination of a transition t ∈ T H and a valuation v ∈ Val(t) with v(t) = true we
define the pre- and postset, by pre(t .v) = {p.c ∈ PH.t y | (p, t) ∈ F H ∧ c ∈ v(p, t)}
and post(t .v) = {p.c ∈ PH.t y | (t, p) ∈ F H ∧ c ∈ v(t, p)}, respectively. Analogously,
we define for any combination of a place p ∈ PH and a color c ∈ t y(p) the corresponding
sets pre(p.c) = {t .v ∈ T H.Val | (t, p) ∈ F H ∧ c ∈ v(t, p) ∧ v(t) = true} and
post(p.c) = {t .v ∈ T H.Val | (p, t) ∈ F H ∧ c ∈ v(p, t) ∧ v(t) = true}.
Example 3 (High-level Petri game) Figure 4 shows a high-level version of the scenario pre-
sented as low-level Petri game in Fig. 2. Here we use the set {•} as color domain for the
environment and for the initial system player, the set P = {p1, . . . , pn} for the created pro-
cesses, and the set {÷, �} for the orders of the environment. The type of the places can easily
be inferred by the surrounding arc expressions, for instance, t y(A) = P . The type of the
variables is given by t y(p) = P and t y(o) = {÷, �}. The guarding function maps every
transition to true. Arcs without a depicted expression are by convention implicitly labeled
with •. The idea is the same as in the low-level case: The environment decides via transition
orderwhether the processes shouldwork together (token �) or alone (token÷) and the system
can decide to create them with or without this knowledge. The processes again choose to do
the work jointly (transition j) or solely (transition a). In the end, the system can only win by
getting informed and following the environment’s order.

Since we consider set-based high-level Petri games, amarking M ofH is a set M ⊆ PH.t y.
We denote by M (H ) = P

(
PH.t y

)
the set of all markings. An element p.c ∈ M states

that in marking M a player of color c resides on place p. A transition t is enabled in mode
v ∈ Val(t) in marking M , denoted by M[t .v〉, iff v(t) = true and pre(t .v) ⊆ M holds. The
restriction to set-based Petri games yields that M[t .v〉 ⇒ post(t .v) ⊆ (PH.t y\M)∪pre(t .v)

holds for every M ∈ M (H ). The marking M ′ obtained after the firing of t .v is computed
as M ′ = (M\pre(t .v)) ∪ post(t .v) and this firing relation is denoted by M [t .v〉 M ′. The
game H has a recurrently interfering environment if in every infinite firing sequence

InH = M0 [t0.v0〉 M1 [t1.v1〉 M2[t2.v2〉 . . .

of H there are infinitely many i ∈ N with pre(ti .vi ) ∩ PH
E .t y �= ∅.
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A given set-based high-level Petri game H can be transformed into a 1-bounded
P/T Petri game L(H ) = (PS,PE ,T ,F , In,B) with the set of system places PS =
PH

S .t y, the set of environment placesPE = PH
E .t y, the set of all placesP = PS ∪PE =

PH.t y, the set of transitionsT = T H.Val, the flow relationF ⊆ (P ×T )∪ (T ×P), such
that (p.c, t .v) ∈ F ⇔ p.c ∈ pre(t .v) and (t .v, p.c) ∈ F ⇔ p.c ∈ post(t .v) holds for all
t .v ∈ T and p.c ∈ P , the initial marking In = InH , and the set of bad places B = BH.t y.

With this notation, the markings of L(H ) are exactly the markings M (H ) of H . Here
p.c ∈ M for a marking M of L(H ) means that a player resides on place p.c ∈ P . The
enabledness and firing of a transition also directly coincide. Also, H has a recurrently
interfering environment player iff L(H ) has a recurrently interfering environment player.

The unfolding of the high-level Petri game H is defined as the unfolding of L(H ).
Consequently, a strategy for the system players in H is defined as a strategy in L(H ). By
this, we know that the strategy is winning iff all plays conforming to the strategy avoid any
bad place in B = BH.t y.

Note that appropriately renaming the nodes of the low-level Petri game presented in
Fig. 2 yields an instance of the high-level Petri game presented in Fig. 4 with P = {p1, p2}.
Thus, Fig. 3 also shows (modulo renaming) a winning strategy for the system players in the
high-level Petri game in Fig. 4. The concrete mapping is given by the following assignment:
(i) ∀x ∈ {S, E1, E2, J ,⊥} : x �→ x .•, (ii) ∀i ∈ {1, 2} : Ai �→ A.pi , Pi �→ Pool.pi ,
ai �→ a.{p �→ pi }, ⊥ai �→ ⊥a .{p �→ pi }, (iii) Ca �→ C .÷, C j �→ C .�,

ordera �→ order.{o �→ ÷}, order j �→ order.{o �→ �}.
Summarizing, a high-level Petri gameH is a succinct represention of a detailed low-level

Petri game L(H ), but the semantic notions of markings, firing of transitions, unfoldings,
strategies, and plays are all borrowed from L(H ).

4 Solving high-level Petri games

In this section we show how to solve set-based high-level Petri games with a single recur-
rently interfering environment player and a bounded number of system players with a safety
objective while exploiting the symmetries of the system. The key idea of the approach is the
combination of two established concepts. Firstly, we use the techniques for the construction
of a symbolic reachability graph (SRG) for Coloured Petri Nets with a significantly smaller
size (for example presented in [8]). Secondly, we apply these techniques to the two-player
game over a finite graph introduced in [24] which serves for solving a low-level Petri game
with one environment player and a bounded number of system players with a safety objective.
This results in a bisimilar game with a significantly smaller state space. Note that players can
terminate and new players can be spawned during the game. The restriction to a bounded
number of system players only limits the maximal number of system players in any state of
the game, and not the total number of spawned and terminated players. The same applies to
the restriction to a single environment player. Proofs that are omitted in this section can be
found in “Appendix C”.

Given a set-based high-level Petri game H with a single recurrently interfering envi-
ronment player, a bounded number of system players and a safety objective, the solving
algorithm proceeds in four steps:
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Fig. 5 The correlation of the games and strategies in the process of solving high-level and low-level Petri
games. In the top of the figure the steps involving high-level elements are depicted, whereas the bottom shows
the solving of low-level Petri games. The individual steps of the algorithm aremarked bold. The edges between
the top and the bottom layer show the relation of the high- and the low-level elements

1. The corresponding symbolic two-player game GH is created with similar techniques as
for the two-player game GL described in [25] for a low-level Petri game. Moreover, in
the case that GL is created from L(H ), the states of GH are equivalence classes of the
states of GL with respect to the system’s symmetries.

2. SinceGH is a two-player game with complete information, standard game solving algo-
rithms are applied to gain a positional winning strategy σ H in G

H .
3. Resolving the symmetries of σ H yields a winning strategy σ L in G

L .
4. The techniques in [25] yield a winning strategy σ in L(H ) from σ L .

Since the strategy in a high-level Petri game is defined as the strategy in the corresponding low-
level Petri game, these four steps yield the strategyσ for the systemplayers inH .Anoverview
of this algorithm and the interplay of the individual components is presented in Fig. 5. Note
that step 3 and step 4 could be combined to obtain the Petri game strategy σ directly from
the high-level two-player strategy σ H . However, only introducing step 3 and showing its
correctness yields together with [25] the same result and simplifies the presentation.

Step 1 is the crucial part of the algorithm and this section serves for its elaboration. We
start by recalling the definition ofGL from [25] (with minor simplifications and adaptations).
The definition of GH is split into three parts. Firstly, we define how to apply symmetries on
the states ofGL to obtain equivalence classes serving as states ofGH . Secondly, we examine
the interrelation of the classes to reduce the number of edges induced byGL . The result serves
as edges ofGH . Finally, we define the two-player gameGH and show the correctness of our
approach by defining a bisimulation between G

L and G
H , and generally proving that two

bisimilar two-player Büchi games coincide regarding the existence of a winning strategy for
Player 0. We start by introducing some general results and definitions for two-player games
over a finite graph.

Preliminaries for two-player games: A two-player Büchi game is a structure G =
(V , V0, V1, v0, E, F) with the set of all states V , the set of Player 0’s states V0, the set
of Player 1’s states V1, the initial state v0, the edge relation E , and the set of accepting
states F . The game is played between two players, namely Player 0 and Player 1. A strategy
for Player i , for i ∈ {0, 1}, in G is a function σ : V ∗Vi → V which maps each sequence of
states ending in a state of Player i to some successor state, satisfying (v, σ (wv)) ∈ E for all
w ∈ V ∗ and v ∈ Vi . A strategy σ for Player i in G is called positional, if σ(wv) = σ(v)

for all w ∈ V ∗ and v ∈ Vi . A play on G is a possibly infinite sequence π = v0v1v2 . . . of
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states with (v j , v j+1) ∈ E for all j ∈ N. Player 0 wins a play if it infinitely often contains
an accepting state. Otherwise, Player 1 wins. A play π conforms to a strategy σ for Player i
if for all prefixes wvv′ ∈ V ∗Vi V of π the strategy satisfies σ(wv) = v′. A strategy σ for
Player i is winning if each play which conforms to σ is won by Player i .

From game theory we know that in a Büchi gameG, Player 0 has a winning strategy inG
iff she has a positional winning strategy in G. Deciding the question whether Player 0 has a
winning strategy in a given Büchi game G, and, if possible, generating a winning positional
strategy, can be done in polynomial time in the number of edges in the game.

4.1 Solving low-level Petri games

In [25] Finkbeiner and Olderog reduce the problem of solving a low-level Petri game G with
a single environment player and a bounded number of system players with a safety objective
to the solving of a two-player game over a finite graph G

L . They show that Player 0 has a
winning strategy in GL iff the system players have a winning strategy in G .

In this sectionwe simplify the definition ofGL for the subclass of Petri gameswith a single
recurrently interfering environment. We define G

L specifically for a given low-level Petri
game L(H ) = (PH

S .t y,PH
E .t y,T H.Val,F , In,BH.t y) which is obtained from a set-based

high-level Petri game H by the transformation presented in Sect. 3.2.
The general idea is that GL simulates L(H ) through a sequence of decision sets, i.e.,

enriched markings of L(H ). In a decision set each system player is equipped with a com-
mitment set, i.e., a set of transitions which are currently selected by the system player to be
allowed to fire (or the special symbol �). If the commitment set is �, the system player has
to select a new set of transitions. The key idea of the reduction is to delay the environment’s
moves until all future moves of each system player are dependent on the environment’s deci-
sion. By this, we ensure that all system players get informed of the environment’s decision
during their next move and all system player’s commitments, which should be made inde-
pendently of the environment’s decision, are made before the environment’s choice. This
allows for applying solving algorithms for games with complete information to G

L .
Formally, a decision set is a set D ⊆ PH.t y × (P(T H.Val) ∪ �) such that in a com-

mitment set only transitions of the place’s postset occur, i.e., (p.c,C) ∈ D ∧ C ⊆
T H.Val ⇒ ∀t .v ∈ C : t .v ∈ post(p.c) holds. We denote the set of all decision sets by
D(L(H )), and defineM to map a decision set D ∈ D(L(H )) to its corresponding marking
M (D) = {p.c | ∃C : (p.c,C) ∈ D}.

A transition t .v ∈ T H.Val is enabled in a decision set D iff pre(t .v) ⊆ M (D). The
transition t .v is chosen in D, denoted by D(t .v〉, iff ∀(p.c,C) ∈ D : p.c ∈ pre(t .v) ⇒
t .v ∈ C holds. We call the transition t .v fireable in D, denoted by D[t .v〉, iff t .v is
enabled and chosen in D. This condition is equivalent to pre(t .v) ⊆ M (Dt .v), where
Dt .v = {(p.c,C) ∈ D | t .v ∈ C}. This means that the transition t .v not only needs to
be enabled in the corresponding marking, but also that all players in the transition’s pre-
set must allow t .v. The decision set D′ obtained after firing t .v, denoted by D[t .v〉D′,
is given by D′ = {(p.c,C) | (p.c,C) ∈ D ∧ p.c /∈ pre(t .v)} ∪ {(p.c,�) | p.c ∈
post(t .v) ∩ PH

S .t y} ∪ {(e.d, post(e.d)) | e.d ∈ post(t .v) ∩ PH
E .t y}. This means that the

corresponding markings preserve the firing relation, i.e., D[t .v〉D′ ⇒ M (D)[t .v〉M (D′)
holds, and only the moved system players are allowed and have to decide on a new commit-
ment set.

If a decision set D contains a � symbol, denoted by D[�〉, the corresponding system
players have to decide on a new commitment set before any other move is allowed. This
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is denoted by D[�〉D′ where D′ is a decision set such that for a function f : PH.t y →
P

(
T H.Val

)
, D′ = {(p.c,C) | (p.c,C) ∈ D ∧ C �= �} ∪ {(p.c, f (p.c)) | (p.c,�) ∈ D}.

We call this relation � resolution. The definition means that the � resolution of a decision
set D yields one successor decision set for every possible combination of replacing each �
in D with a possibly different commitment set C ⊆ T H.Val. The multiple successors are due
to the several decisions the system players can make.

A decision set D ∈ D(L(H )) can have the following properties: D is environment-depen-
dent iff there is no � symbol in any tuple in D, there is a pair (e.d, post(e.d)) ∈ D for some
e.d ∈ PH

E .t y, and for all t .v ∈ T H.Val holds that ¬D[t .v〉 or e.d ∈ pre(t .v), D contains a
bad place iffM (D)∩BH.t y �= ∅, D is a deadlock iff there is a transition t ′.v′ ∈ T H.Val such
that M (D)[t ′.v′〉 and ∀t .v ∈ T H.Val : ¬D[t .v〉 holds, D is terminating iff ¬M (D)[t .v〉
holds for all transitions t .v ∈ T H.Val, and D is nondeterministic iff there are two separate
transitions t1.v1, t2.v2 ∈ T H.Val, with t1.v1 �= t2.v2, that share a system place in their presets
(PH

S .t y ∩ pre(t1.v1) ∩ pre(t2.v2) �= ∅) and are both fireable in D, i.e., D[t1.v1〉 ∧ D[t2.v2〉.
Note that anmcut in a Petri game strategy corresponds to an environment-dependent decision
set, i.e., all next moves of the system players are fixed (there is no � symbol in D) and each
of these moves is only possible after a progress of the environment of which each player gets
informed by this move.

The game graph for a 1-bounded Petri game L(H ) with a single recurrently interfering
environment player is a vertex labeled graph A L = (V L ,L L , D0, E

L) with

– the vertices V L = D(L(H )),
– the vertex labeling L L , defined by L L(D) = 1, if D is environment-dependent,

and L L(D) = 0 otherwise. The corresponding decision sets are collected in V L
1 =

(L L)−1(1) and V L
0 = (L L)−1(0) = V L\V L

1 ,
– the initial state D0 = {(p.c,�) | p.c ∈ In ∩ PH

S .t y} ∪ {(e.d, post(e.d)) | e.d ∈ In ∩
PH

E .t y}, i.e., the decision set containing all places of the initial marking and the system
players still have to decide for a commitment set, and

– the labeled edge relation E L ⊆ V L × (T H.Val ∪ {�}) × V L defined as follows: If D
contains a bad place, is a deadlock, is terminating, or is nondeterministic, there is only a
�-labeled self-loop originating from D. Otherwise, we consider three disjunct cases for
edges originating in D:
Case D ∈ V L

1 , i.e., all players have decided for a commitment set, but cannot proceed
without the environment. Then for all t .v ∈ T H.Val, (D, t .v, D′) ∈ E L iff D[t .v〉D′.
Case D ∈ V L

0 and D[�〉, i.e., at least one system player has yet to decide for a commit-
ment set. Then (D,�, D′) ∈ E L iff D[�〉D′.
Case D ∈ V L

0 and ¬D[�〉, i.e., all system players made their decisions and can pro-
ceed without the environment. Then for all t .v ∈ T H.Val with pre(t .v) ∩ PH

E .t y = ∅,
(D, t .v, D′) ∈ E L iff D[t .v〉D′. The condition for pre(t .v) ensures that only edges for
system transitions are considered.

We define with R(A L) the elements in V L that are reachable from D0 under the edge
relation E L . We finally define the two-player Büchi game over a finite graph G

L =
(V L , V L

0 , V L
1 , I L , EL , FL) with the set of all states V L = R(A L), the set of Player 1’s

states V L
1 = V L

1 ∩ R(A L), i.e., the environment-dependent decision sets, the set of Player
0’s states V L

0 = V L
0 ∩ R(A L), the initial state I L = D0, as in the graph A L , the edge

relation EL with (D, D′) ∈ EL iff (D, δ, D′) ∈ E L for a δ ∈ T H.Val ∪ {�}, and the set of
accepting states FL containing all D ∈ V L that are terminating or environment-dependent,
but are not a deadlock, nondeterministic, or contain a bad place.
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A strategy for Player i , for i ∈ {0, 1}, in G
L is a function σ L : (V L)∗V L

i → V L

which maps each sequence of states ending in a state of Player i to some successor state.
A play π on G

L is a possibly infinite sequence π = v0v1v2 . . . of states with v0 = I L and
(v j , v j+1) ∈ EL for all j ∈ N. Player 0 wins if π infinitely often contains a state f ∈ FL .
Otherwise, Player 1 wins. A play π conforms to a strategy σ L for Player i if for all prefixes
wvv′ ∈ (V L)∗V L

i V L of π the strategy satisfies σ L(wv) = v′. A strategy σ L for Player i is
winning if each play π which conforms to σ L is won by Player i .

In [25], it is shown that there is a winning strategy for the system players in a P/T Petri
game G with one environment player and a bounded number of system players if and only
if there is a winning strategy for Player 0 in a two-player Büchi game over a finite graph.
This proof caters for the more general case with type-2 places, i.e., where the environment
player does not need to recurrently interfere. The proof rests on a link between mcuts in the
strategy of the Petri game and the corresponding environment-dependent decision sets in the
two-player game. For more details and insights we refer to [25]. Since the low-level Petri
game L(H ) considered here is a specific instance of the Petri games G studied in [25], the
result still holds for L(H ) and GL . In this paper, we do not reconsider this proof.

4.2 Symbolic decision sets

In [8], Chiola et al. construct a Symbolic Reachability Graph (SRG) for high-level Petri nets.
In this graph the nodes are equivalence classes of markings with respect to symmetries,
and instead of the ordinary firing relation between the markings, the symbolic firing relation
is used. The following section introduces equivalence classes of decision sets with respect
to symmetries and lifts results of [8] about markings (see “Appendix B”) to decision sets.
The representatives of the equivalence classes form the vertices of the high-level game graph
A H . This is, analogously to the low-level case, the graph over which the symbolic two player
game GH is defined.

A symmetry sC on a color domain C ∈ C is a permutation on C. A symmetry s on a high-
level Petri gameH is a family (sC)C∈C (short (sC)C) of symmetries on all color domains C.
LetS be the set of all symmetries onH . Together with the function composition ◦, defined
by (sC)C ◦ (rC)C = (sC ◦ rC)C, the symmetries form a group (S , ◦) with 1S = (idC)C and
(sC)

−1
C = (s−1

C )C. Let s = (sC)C be a symmetry. For any color c ∈ C, s(c) abbreviates sC(c).
The application of s to a set A ⊆ PH.t y is defined by s(A) = {p.s(c) | p.c ∈ A} and to a
valuation v by s(v) = s ◦ v, i.e., if v assigns color c to a variable x then the valuation s(v)

assigns color sty(x)(c) to x .
For a given high-level Petri game H we call a subset S ⊆ S of symmetries admissible

iff

– (S, ◦) is a subgroup of (S , ◦) such that
– ∀s ∈ S ∀t ∈ T H ∀v ∈ Val(t) : v(t) = s(v)(t) and in the case v(t) = true,

(i) s(pre(t .v)) = pre(t .s(v)) and
(ii) s(post(t .v)) = post(t .s(v))

holds. This condition ensures that the symmetries are “compatible” with the firing of transi-
tions: if a transition t , fireable inmode v, takes the color c from a place p (i.e., p.c ∈ pre(t .v)),
then it should be fireable in mode s(v) and, when fired, take color s(c) from place p (i.e.,
p.s(c) ∈ pre(t .s(v))). The same applies to the postset of t . Hence, admissible symmetries on
a high-level Petri game are those symmetries which are compatible with the game’s semantics
structure.

123



606 M. Gieseking et al.

As for places, we can apply symmetries to sets of transitions A ⊆ T H.Val by s(A) =
{t .s(v) | t .v ∈ A}. For a high-level Petri game H we fix one set S satisfying the conditions
above, and call it the set of admissible symmetries.

Example 4 Consider the package delivery benchmark family of Fig. 1 with three packages
P = {p1, p2, p3}, three drones D = {d1, d2, d3}, and the color domains of the places
C0 = {•}, C1 = P , C2 = D, and C3 = D × P . Thus, every symmetry s ∈ S is of the
form s = (s0, s1, s2, s3), where si is a permutation on Ci . This means that there is only one
possibility for s0 (namely, id{•}), |P|! = 3! = 6 possibilities for s1, |D|! = 3! = 6 possibilities
for s2, and consequently there are 6 ·6 = 36 possibilities for permutations s3 on the Cartesian
product D× P . Ultimately the setS of all symmetries contains 1 ·6 ·6 ·36 = 1296 elements.

We are now interested in the largest set S of admissible symmetries. Therefore, we have
to consider the conditions the admissibility property imposes on symmetries. There is only
one predicate not equal to true, namely d �= d ′ at transition deliver. For all drones d, d ′ ∈ D
holds that d �= d ′ ⇔ s(d) �= s(d ′) because all symmetries s ∈ S are bijective. Thus, the
predicates do not impose any restricting condition on the symmetries because v(t) = s(v)(t)
holds for all t ∈ T H , v ∈ Val(t), and s ∈ S .

Consider now the transition deliver. A valuation v ∈ Val(deliver) assigns to all variables in
var(deliver), namely d, d ′, and p, a value of the corresponding type. We denote d = v(d) ∈
D,d’ = v(d ′) ∈ D, and p = v(p) ∈ P . For d �= d’ the transition deliver in mode v takes a
token (d’,p) ∈ D × P from the place Fly when firing. Condition (i) for the admissibility of
symmetries imposes, regarding the arc expression (d ′, p), that s3(d’,p) = (s2(d’), s1(p)) has
to hold for every s ∈ S and all values d’ and p that a valuation can assign to d ′ and p. Thus, s3
is determined by the choice of s1 and s2. The condition (i) for the admissibility of symmetries
regarding the arc expression d and condition (ii) for all corresponding arc expressions do not
impose any restrictions on the symmetries because of the structure of the arc expressions. The
conditions regarding all other transitions of the example do not introduce any other restrictions
on the set of admissible symmetries. This means the admissible symmetries S consists of the
36 symmetries of the form s = (id{•}, s1, s2, s3) such that s3(d, p) = (s2(d), s1(p)) for all
(d, p) ∈ D × P . ��

We now apply symmetries to decision sets and show that their properties are invariant
under the application. This means all decision sets in an equivalence class with respect to the
admissible symmetries have the same properties. The representatives of these equivalence
classes are called symbolic decision sets.

Due to the special syntax of L(H ) for a high-level Petri game H , and since both games
have the same semantics, we define the decision sets ofH as the decision sets of L(H ), i.e.,
D(H ) = D(L(H )). For a decision set D ∈ D(H ) and any symmetry s ∈ S we define the
application of a symmetry to a decision set by

s(D) = {(p.s(c), s(C)) | (p.c,C) ∈ D},
with s(C) = {t .s(v) | t .v ∈ C} if C ⊆ T H.Val and s(�) = � otherwise. This means
if a player of color c on place p allows transition t in mode v in the decision set D (i.e.,
(p.c,C) ∈ D and t .v ∈ C), then after the application of the symmetry s, the player of
color s(c) on place p allows transition t in mode s(v) (i.e., (p.s(c), s(C)) ∈ s(D) and
t .s(v) ∈ s(C)). Since symmetries operate on the first coordinate of a decision set exactly as
on markings, we obtain s(M (D)) = M (s(D)).

Two decision sets D and D′ are equivalent iff there is an admissible symmetry s ∈ S such
that s(D) = D′ holds. This leads to the set of equivalence classes D(H )/S of the decision
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sets. For a decision set D ∈ D(H ), we denote an equivalence class in D(H )/S by [D]. We
define D ∈ [D] as an arbitrarily chosen, but fixed representative of [D]. The representatives
D are called symbolic decision sets. We fix with sD a symmetry that maps a decision set D
to its corresponding representative, i.e., sD(D) = D. Thus, the admissible symmetries on a
high-level Petri game are a tool to transform equivalent situations into each other.

As a first property we consider the interplay of symmetries and the relations between
decision sets.

Lemma 1 The admissible symmetries are compatible with the firing of a transition t ∈ T H

in mode v ∈ Val(t) in a decision set. The same is true for the resolution of a � symbol in a
decision set.

– ∀t ∈ T H ∀v ∈ Val(t) ∀s ∈ S : D[t .v〉D′ ⇔ s(D)[t .s(v)〉s(D′).
– ∀s ∈ S : D[�〉D′ ⇔ s(D)[�〉s(D′).

Both results follow from the admissibility of a symmetry s and from the equations
s(M (D)) = M (s(D)) and s(Dt .v) = s(D)t .v (see “Appendix C”).

From now onwe assumew.l.o.g. that the initial marking InH of a high-level Petri gameH
is symmetric, i.e., s(InH ) = InH for all s ∈ S. If this is not the case,we add an new transition t0
with a single new environment place p0 in its preset such that the firing of t0 generates InH

or an equivalent marking. This way, the admissible symmetries remain unchanged. The new
initial marking only consists of a fresh colored token c0 residing on p0 with a fresh singleton
color domain and is thus trivially symmetric. For the explicit construction, see “Appendix B”.
Most examples, like the ones in Sects. 2 and 3.2, directly have a symmetric initial marking.

This assumption allows us to show that the following properties of a decision set are
preserved by the application of admissible symmetries.

Lemma 2 Let D ∈ D(H ) and s ∈ S. Then D is environment-dependent, contains a bad
place, is a deadlock, is terminating or is nondeterministic if and only if s(D) has the same
property.

These properties can be proven by using Lemma 1 and the following facts about symmetries
(see “Appendix C”). An admissible symmetry s ∈ S applied to a set A.t y with A ⊆ PH

leaves the set unchanged, i.e., s(A.t y) = A.t y. This also holds for a set A.Valwith A ⊆ T H .
The application of s is compatible with intersections of sets A, B ⊆ PH.t y or sets A, B ∈
T H.Val, i.e., s(A ∩ B) = s(A) ∩ s(B).

Lemma 2 yields the uniform satisfaction of these properties throughout the complete
equivalence class.

Corollary 1 Let D be a decision set. Then D has one of the properties listed above if and
only if all D′ ∈ [D] (and in particular D) have the same property.

The representatives D of the decision sets D ∈ V L of the low-level game graph A L form
the vertices of the high-level game graph A H . Here you can already feel the spirit of the
symbolic reachability graph SRG, where the nodes are symbolic markings M instead of
ordinary markings M as in the reachability graph RG.

Usually, the relation on equivalence classes is given by all connections between the indi-
vidual elements of the corresponding classes. Lemma 1 shows that for equivalence classes
of decision sets, we only have to consider connections where the source is a representative of
the class. The next section reduces this relation even further, by only considering equivalence
classes of firings, local to the source decision set.
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4.3 Symbolic firing and symbolic� resolution

In this section we define equivalence classes of transition firings to define the edge relation of
the high-level game graph A H . In general, this relation is smaller than the relation contain-
ing an edge for every possible transition firing or � resolution between the corresponding
equivalence classes of decision sets. Again, results of [8] are lifted frommarkings to decision
sets.

Example 5 Consider the scenario of the package delivery of Fig. 1 with three packages P =
{p1, p2, p3} and three drones D = {d1, d2, d3}. Assume the packages assigned themselves
to the drones according to their index, and the drones, loaded with their corresponding cargo,
took off, i.e., the three tokens (d1, p1), (d2, p2), and (d3, p3) reside on the place Fly. Further
assume that the environment decided that drone d1 is defective via transition destroy in
mode v = {d �→ d1}, i.e., a token d1 resides on Malfunction. The corresponding marking is
{Fly.(d1, p1),Fly.(d2, p2),Fly.(d3, p3),Malfunction.d1}.

Since the system players do not know which drone got destroyed and must not deadlock,
they should allow both transitions crash and deliver in all possible modes to win the game.
The environment player d1 onMalfunction as usual also allows both transitions in all modes.
We denote the modes u ∈ Val(crash) by u(i, j) = {d �→ di , p �→ p j }, and the modes
v ∈ Val(deliver) by v(i, j,k) = {d ′ �→ di , p �→ p j , d �→ dk}.

We abbreviate crash.u(i, j) by cr(i, j) and deliver.v(i, j,k) by del(i, j,k). The decision set
described above is

D1 = {
(Fly.(d1, p1), {cr(1,1), del(1,1,2), del(1,1,3)}),
(Fly.(d2, p2), {cr(2,2), del(2,2,1), del(2,2,3)}),
(Fly.(d3, p3), {cr(3,3), del(3,3,1), del(3,3,2)}),
(Malfunction.d1, {cr(1, j), del(i, j,1) | i = 2, 3 ∧ j = 1, 2, 3})}.

The fireable transitions from this decision set are cr(1,1), del(2,2,1), and del(3,3,1). This means,
when the relation on decision sets is lifted to equivalence classes by collecting all connections
between individual elements of the corresponding classes, these three transitions all induce
an outgoing edge from [D1]. This is illustrated in Fig. 6 where [D1] is depicted in the middle
of the figure. The decision sets obtained after the respective firing are D2, D3, and D4. Since
D2 and D3 are in the same equivalence class, this results in a connection between [D1] and
[D2] for del(2,2,1) and del(3,3,1) each.

Consider now the symmetry s ∈ S that swaps p2 and p3 in P , swaps d2 and d3 in D, and
accordingly operates on the Cartesian product P × D. This symmetry leaves D1 invariant.
When applied to del(2,2,1) or del(3,3,1), the respective other transition is obtained. We call
these two transitions therefore equivalent with respect to D1 (since the symmetry s leaves D1

invariant). Instead of considering both firings, we chose one of these transitions to represent
both firings. ��

From Lemma 1 we see that, if an admissible symmetry s ∈ S leaves a decision set D
invariant, then a transition t is fireable in mode v ∈ Val(t) at D if and only if t is fireable
in mode s(v). These symmetries form a group (later called the isotropy group of D) and
their application leads to equivalence classes of valuations which are locally belonging to
the decision set. Instead of considering all valuations in which a transition is fireable from a
decision set, it suffices to consider representatives of these equivalence classes. As a result,
the size of the firing relation between equivalence classes of decision sets decreases. This
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Fly .(d1, p1), {cr (1,1), del(1,1,2), del(1,1,3)}
Fly .(d2, p2), {cr (2,2), del(2,2,1), del(2,2,3)}
Fly .(d3, p3), {cr (3,3), del(3,3,1), del(3,3,2)}
(Malfunction.d1, post(Malfunction.d1))

Fly .(d1, p1), {cr (1,1), del(1,1,2), del(1,1,3)}
Fly .(d3, p3), {cr (3,3), del(3,3,1), del(3,3,2)}

(Del.p2, )
(Wait .d2, )

(Malfunction.d1, post(Malfunction.d1))

Fly .(d1, p1), {cr (1,1), del(1,1,2), del(1,1,3)}
Fly .(d2, p2), {cr (2,2), del(2,2,1), del(2,2,3)}

(Del.p3, )
(Wait .d3, )

(Malfunction.d1, post(Malfunction.d1))

Fly .(d2, p2), {cr (2,2), del(2,2,1), del(2,2,3)}
Fly .(d3, p3), {cr (3,3), del(3,3,1), del(3,3,2)}

(Lost .p1, )
(Malfunction.d1, post(Malfunction.d1))

D1

D2 D3

D4

[D1]

[D2] = [D3]

[D4]

del(2,2,1) del(3,3,1)

cr(1,1)

Fig. 6 An illustration of equivalences of transition firings. The decision set D1 (depicted in the middle) has
three successor decision sets according to the standard firing relation: D2, D3, which belong to the same
symbolic decision set (depicted at the bottom), and D4 (depicted at the top). Since the transitions del(2,2,1)
and del(3,3,1) can be mapped to one another via a symmetry not affecting D1, the relation between [D1] and
[D2] can be represented by only one of them. The equivalence of the transitions is depicted by the dashed
connection in the middle

reduced firing relation, called the symbolic firing relation, is the first part of the edge relation
of the high-level game graph A H .

However, considering a symbolic decision set, after firing a transition in a representative
of an equivalence class of valuations, the decision set obtained after the firing does not have
to be a symbolic decision set itself. Since the symbolic firing relation will be defined between
symbolic decision sets, this fact must be taken into account when defining the relation.

Additionally to the firing relation there is the relation of � resolution between decision
sets. Thus, we also define the symbolic � resolution between symbolic decision sets. This
relation forms the rest of the edge relation of A H .

Let D ∈ D(H ) be a decision set. The isotropy group SD = {s ∈ S | s(D) = D} of D is
the group of all admissible symmetries that preserve D. For a transition t ∈ T H , we denote
by Val(t)D = Val(t)/SD the set containing the equivalence classes of all modes of t , with
respect to the isotropy group SD . The individual modes in one class affect D in symmetric
ways. For each class in Val(t)D we arbitrarily chose a representative mode v and define αD

as the function mapping each v ∈ Val(t) to its representative αD(v).
Note that for every representative v of a class in Val(t)D , for every mode v belonging to

[v], there is a symmetry s ∈ SD such that s(v) = αD(v) = v. This means that, in a decision
set D, a transition can fire in mode v if and only if it can fire in its representative αD(v).

We now define the symbolic firing relation between symbolic decision sets. For that,
instead of firing a transition in all modes, we only consider the representatives of equivalence
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classes of modes, local to the symbolic decision set. The symbolic decision set obtained after
the symbolic firing is corresponding to the decision set obtained after the ordinary firing of
the transition in the representative mode.

We say a transition t can fire symbolically from the symbolic decision set D in mode
αD(v) representing v in Val(t)D , denoted by D[[t .αD(v)〉〉, iff D[t .αD(v)〉. The symbolic
decision set D′ obtained after the symbolic firing is determined as follows:

D[[t .αD(v)〉〉D′ ⇔ ∃D′′ ∈ [ D′ ] : D[t .αD(v)〉D′′.

To define the symbolic � resolution between symbolic decision sets, we can not use
representatives of the symbol �. Instead, when symbolically resolving a � symbol in a
symbolic decision set, we declare the possible targets as the representatives of possible
targets of an ordinary � resolution.

We say a� can be symbolically resolved in a symbolic decision set D, denoted by D[[�〉〉,
iff D[�〉. The possible symbolic decision sets obtained after the symbolic � resolution are
the representatives of the decision sets D′′ satisfying D[�〉D′′:

D[[�〉〉D′ ⇔ ∃D′′ ∈ [ D′ ] : D[�〉D′′.

In the following properties we compare the ordinary firing relation and the ordinary �
resolution with their symbolic counterparts.

Property 1 Each ordinary transition firing is represented by a symbolic transition firing, and
each ordinary � resolution is represented by a symbolic one.

– D[t .v〉D′ ⇒ D[[t .v〉〉D′, where v = αD(sD(v)).
– D[�〉D′ ⇒ D[[�〉〉D′.

The first property can be shown with the help of Lemma 1, analogously to [8]. The proof of
the second property has the same structure.

Property 2 Each symbolic firing represents a set of ordinary firings, in which all source
decision sets belong to the equivalence class of the symbolic source decision set of the
symbolic firing. The same holds for the resolution of �.

– D[[t .v〉〉D′ ⇒
(∀D1 ∈ [ D ] ∀v′ ∈ Val(t) : αD(sD1(v

′)) = v ⇒ ∃D2 ∈ [ D′ ] : D1[t .v′〉D2.)
– D[[�〉〉D′ ⇒ ∀D1 ∈ [ D ] ∃D2 ∈ [ D′ ] : D1[�〉D2.

Again, the first property can be shown analogously to [8] using Lemma 1, and the proof of
the second property uses the same ideas.

4.4 Symbolic two-player game

In this section we define the high-level game graph A H and, based on its structure, the
symbolic two-player gameGH .We show that Player 0 has awinning strategy inGH if andonly
if there is awinning strategy for Player 0 in the low-level two-player gameGL that corresponds
to L(H ). This is proven by introducing a bisimulation on the two-player games. We fix a
set-based high-level Petri game with a single recurrently interfering environment player
and a bounded number of system players H = (PH

S ,PH
E ,T H ,F H , t y, g, e, InH ,BH )

throughout the section.
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Remember that the vertices ofA L are decision sets and an edge between two decision sets
D and D′ only exists if D[t .v〉D′ or D[�〉D′ holds. We analogously define the high-level
game graph A H by considering the symbolic counterparts. This means, the vertices of A H

are the symbolic decision sets and there is an edge between two symbolic decision sets D
and D′ iff D[[t .v〉〉D′ or D[[�〉〉D′ holds. Note that we represent an equivalence class [D]
with respect to S by the symbolic decision set D when no confusion arises.

For the high-level Petri game H , we define the vertex labeled high-level game graph
A H = (V H ,L H , D0, E

H ) with

– the vertices V H = D(H )/S, the set of all equivalence classes [D] with respect to S,
– the vertex labeling L H , defined by L H (D) = 1, if D is environment-dependent, and

L H (D) = 0 otherwise. The corresponding symbolic decision sets are collected inV H
1 =

(L H )−1(1) and V H
0 = V H\V H

1
– the initial state D0 with

D0 = {(p.c,�) | p.c ∈ InH ∩ PH
S .t y} ∪ {(e.d, post(e.d)) | e.d ∈ InH ∩ PH

E .t y},
– the labeled edge relation E H ⊆ V H × (T H.Val∪ {�}) ×V H is defined as follows: If D

contains a bad place, is a deadlock, is terminating, or is nondeterministic, there is only
a �-labeled self-loop originating from D. Otherwise, consider three disjunct cases for
edges originating in D:
Case D ∈ V H

1 , i.e., all players have decided for a commitment set, but cannot proceed
without the environment. Then for all t ∈ T H and v ∈ Val(t)D , (D, t .v, D′) ∈ E H iff
D[[t .v〉〉D′.
Case D ∈ V H

0 and D[[�〉〉, i.e., at least one system player has yet to decide for a
commitment set. Then (D,�, D′) ∈ E H iff D[[�〉〉D′.
Case D ∈ V H

0 and ¬D[[�〉〉, i.e., all system playersmade their decisions and can proceed
without the environment. Then for all t ∈ T H and v ∈ Val(t)D with pre(t .v)∩PH

E .t y =
∅, (D, t .v, D′) ∈ E L iff D[[t .v〉〉D′.

Note that the labeling of the representatives is identical to the labeling in the low-level case
and since the initial marking InH is symmetric, D0 = D0 holds.

The symbolic two-player Büchi game G
H is defined on the structure of A H , as the

definition ofGL is based onA L . This means that the states inGH are the reachable symbolic
decision sets, and there is an edge between two states, if these states are symbolically related.

Let SR(A H ) be the set of vertices in V H that are reachable from D0 under E H . The
high-level two player Büchi game over a finite graph (or symbolic Büchi game) GH =
(V H , V H

0 , V H
1 , D0, EH , FH ) is defined with

– the set of all states V H = SR(A H ),
– the set of Player 1’s states V H

1 = V H
1 ∩ SR(A H ), i.e., the symbolic decision sets that

are environment-dependent,
– the set of Player 0’s states V H

0 = V H
0 ∩ SR(A H ),

– the initial state D0, as in the high-level graph A H ,
– the edge-relation EH such that (D, D′) ∈ EH iff (D, δ, D′) ∈ E H for any δ ∈ T H.Val∪

{�}, and
– the set of accepting states FH , containing all D ∈ V H that are terminating or

environment-dependent, but are not a deadlock, nondeterministic, or contain a bad place.

To show that the two-player gamesGL andGH are bisimilar (which yields the correctness of
our approach), we compare the structures ofA H andA L . First, the edge relations of the two
graphs correspond to each other (Lemma 3). Second, the set of reachable symbolic decision
sets inA H is exactly the set of representatives of decision sets reachable inA L (Lemma 4).
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Lemma 3 For every edge in A L , there is a corresponding edge in A H , and vice versa:

1. (D, δ, D′) ∈ E L ⇒ (D, δ, D′) ∈ E H , where
δ = t .v if δ = t .v and v = αD(sD(v)), and δ = � if δ = �.

2. (D, δ, D′) ∈ E H ⇒ ∀D1 ∈ [ D ] ∃D2 ∈ [ D′ ] ∃δ : (D1, δ, D2) ∈ E L , where δ = t .v′ if
δ = t .v and v′ satisfies αD(sD1(v

′)) = v, and δ = � if δ = �.

Since the self-loops of the edge relations, as well as the assignment of the vertices, depend on
the properties of the (symbolic) decision sets and the other edges of the relations are induced
by the (symbolic) firing relation and the (symbolic) � resolution, the proof mainly depends
on Corollary 1 and on Properties 1 and 2 (see “Appendix C”).

Lemma 4 The representatives of decision sets in R(A L) are exactly the symbolic decision
sets in SR(A H ): {D | D ∈ R(A L)} = {D | [ D ] ∈ SR(A H )}.
This lemma can be proven by an induction over the length of the shortest path from D0 to
a decision set D in A L , or from D0 to a symbolic decision set D in A H , respectively. The
induction step follows from Lemma 3 (see “Appendix C”).

We generally define a bisimulation relation on Büchi games and show that two bisimilar
Büchi games coincide on the existence of a winning strategy. The instantiation of this result
for the low-level two-player game G

L and the symbolic high-level game G
H yields the

correctness of the main step of the solving algorithm for high-level Petri games.
We can view any Büchi game G = (V , V0, V1, v0, E, F) as a state-labeled transition

system (V , E, λ, v0) with the set of states V , the transition relation E , and the initial state
v0 as defined in G, and a labeling function λ : V → P({g, f }) with propositions {g, f },
defined by ∀v ∈ V : (g ∈ λ(v) ⇔ v ∈ V0) ∧ ( f ∈ λ(v) ⇔ v ∈ F). A bisimulation between
two state-labeled transition systems TS1 = (S1,→1, λ1, s0) and TS2 = (S2,→2, λ2, t0) is
a relation B ⊆ S1 × S2 such that for all (s, t) ∈ B

– λ1(s) = λ2(t),
– ∃s′ ∈ S1 : s →1 s′ ⇒ ∃t ′ ∈ S2 : t →2 t ′ ∧ (s′, t ′) ∈ B, and
– ∃t ′ ∈ S2 : t →2 t ′ ⇒ ∃s′ ∈ S1 : s →1 s′ ∧ (s′, t ′) ∈ B

holds. Two states s ∈ S1 and t ∈ S2 are called bisimilar, denoted by s ∼ t , if there is a
bisimulation B between TS1 and TS2 satisfying (s, t) ∈ B. The transition systems TS1 and
TS2 are called bisimilar, denoted by TS1 ∼ TS2, if s0 ∼ t0.

Two Büchi games G = (V , V0, V1, v0, E, F) and G
′ = (V ′, V ′

0, V
′
1, v

′
0, E

′, F ′) are
bisimilar, denoted by G ∼ G

′, if the corresponding transition systems are bisimilar, i.e.,
(V , E, λ, v0) ∼ (V ′, E ′, λ′, v′

0). Particularly, this means that for any such bisimulation B
and every two states v ∈ V and v′ ∈ V ′ with (v, v′) ∈ B the assignment of the states
coincide, i.e., v ∈ V0 ⇔ v′ ∈ V ′

0 and v ∈ F ⇔ v′ ∈ F ′ holds.

Lemma 5 There is a bisimulation between GL and G
H .

The bisimulation B ⊆ V L × V H is given by B = {(D, D) | D ∈ V L }. Lemma 4 shows
that this relation is defined, Lemma 3 and Corollary 1 are used to show that B is in fact a
bisimulation (see “Appendix C”).

Lemma 6 LetG = (V , V0, V1, v0, E, F) andG′ = (V ′, V ′
0, V

′
1, v

′
0, E

′, F ′) be two bisimilar
Büchi games. Then Player 0 has a winning strategy inG if and only if Player 0 has a winning
strategy in G

′.
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Proof For inductively defining a strategy on sequences of length n in a Büchi game, it suffices
to only define it on paths that are consistentwith the so far defined strategy.All other sequences
are mapped to an arbitrary successor.

Let B ⊆ V × V ′ be the bisimulation between G and G
′ and σ a winning strategy for

Player 0 in G. We construct a winning strategy σ ′ for Player 0 in G
′ from σ . We define

σ ′ inductively on paths of length n through the arena. For that we, also inductively, define
a helper mapping τ , that maps paths of length n + 1 in G

′ that are consistent with σ ′ to
corresponding paths in G.

The construction will ensure that, for all n,

– τ is defined for all paths of length n+1 consistent with σ ′ such that the image is consistent
with σ ,

– the states are pairwise bisimilar, i.e., if τ(v′
0 . . . v′

n) = v0 . . . vn then (v j , v
′
j ) ∈ B for all

0 ≤ j ≤ n,
– σ ′ is defined for all consistent paths of length n that end in a state of V ′

0.

(IB) Consider the case n = 0. Define τ(v′
0) = v0, and σ ′ is undefined since there are no

paths of length 0.
(IH) Assume now, for an arbitrary n, that σ ′ is defined for all consistent paths of length n
and τ is defined for all paths of length n + 1 consistent with σ ′.
(IS) Consider a path v′

0 . . . v′
n of length n + 1 in G that is consistent with σ ′. Let v0 . . . vn =

τ(v′
0 . . . v′

n).
Case v′

n ∈ V ′
0. We define σ ′(v′

0 . . . v′
n) as follows: since (vn, v

′
n) ∈ B, we have that vn ∈ V0.

Let now vn+1 = σ(v0 . . . vn). This implies (vn, vn+1) ∈ E and therefore, since B is a
bisimulation, there is a v′

n+1 ∈ V ′ such that (v′
n, v

′
n+1) ∈ E ′ and (vn+1, v

′
n+1) ∈ B. We

define σ ′(v′
0 . . . v′

n) = v′
n+1 and τ(v′

0 . . . v′
nv

′
n+1) = v0 . . . vnvn+1.

Case v′
n ∈ V ′

1. We define, for every v′ ∈ V ′ with (v′
n, v

′) ∈ E ′, τ(v′
0 . . . v′

nv
′) = v0 . . . vnv

for an arbitrary v such that (vn, v) ∈ E and (v, v′) ∈ B.
Let π ′ = v′

0v
′
1v

′
2 . . . be a play in G

′ that is consistent with σ ′. By defining v j as the
last element in τ(v′

0 . . . v′
j ) for every j ≥ 0, we obtain a play π = v0v1v2 . . . in G that is

consistent with σ . Therefore, Player 0 wins π in G, and since for all j , v j ∈ F iff v′
j ∈ F ′,

Player 0 wins π ′ in G
′.

Since Bᵀ = {(v′, v) | (v, v′) ∈ B} is a bisimulation between G
′ and G, the converse

direction follows analogously. ��
Lemma 6 together with Lemma 5 yields the conformity of the symbolic high-level gameGH

and the corresponding low-level game GL regarding the existence of a winning strategy.

Lemma 7 Player 0 of GH has a winning strategy in G
H if and only if Player 0 of GL has a

winning strategy in GL .

The construction of a winning strategy in the proof of Lemma 6 yields a nonpositional
strategy σ L : (V L)∗V L

0 → V L in G
L for a strategy σ H in G

H . For the introduced solving
algorithm of high-level Petri games we are interested in positional winning strategies. The
following construction serves for the creation of a positional strategy σ L : V L

0 → V L in the
low-level game GL from a positional strategy σ H : V H

0 → V H in the symbolic high-level
game GH .

Let B = {(D, D) | D ∈ V L } be the bisimulation on G
L and G

H , σ H : V H
0 → V H a

positional winning strategy for Player 0 in G
H and D ∈ V L

0 . Then D ∈ V H
0 and σ H (D) is

defined. Let D′ = σ H (D). This implies (D, D′) ∈ EH , and since (D, D) ∈ B, we have

∃D1 ∈ V L : (D, D1) ∈ EL ∧ (D1, D′) ∈ B (i.e., D1 = D′).
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We define σ L(D) = D1. Hence, σ L is positional. The strategy σ L is also winning: Let
ρ = D0D1 · · · ∈ (V L)ω be a play of GL that is consistent with σ L . Then ρ := D0 D1 · · · ∈
(V H )ω is a play of GH , that by definition is consistent with σ H . Therefore, ρ is winning
in G

H . This, as in the proof of Lemma 6, implies that ρ is winning in GL .
Since the definition of a winning strategy in a high-level Petri game H is defined as a

winning strategy in the corresponding low-level Petri game L(H ) (cp. Sect. 3.2), Lemma 7
yields the final result.

Theorem 1 LetH be a set-based high-level Petri game with a single recurrently interfering
environment player and a bounded number of system players and G

H the corresponding
symbolic two-player game. Then the system players have a strategy in H if and only if
Player 0 has a winning strategy in GH .

We construct a winning strategy for the system players inH , i.e., a winning strategy for the
system players in the corresponding low-level Petri game L(H ), from the positional winning
strategy σ H for Player 0 inGH in two steps. First, we create a positional winning strategy σ L

for Player 0 in G
L from σ H as described above. Second, we apply the algorithm presented

in [25] to σ L , i.e., traversing σ L in breadth-first order while adding the corresponding places
and transition of the decision sets, to create a winning strategy for the system players in
L(H ). Note that the last step would take infinitely long for infinite Petri game strategies
such that a practical algorithm has to provide a finite representation of the strategy.

5 Experimental results

In this section we report on our prototype implementation for generating the symbolic two-
player game G

H . We implemented three algorithms for the creation of the reduced state
space and compare their runtime to the complete state space creation of Adam [22]. These
results are depicted in Table 1. All algorithms are integrated into the Adam framework to
exploit its data structures and functionality for Petri nets and Petri games.

Adam uses Binary Decision Diagrams (BDDs) to answer the question of the existence
of a strategy and to calculate a strategy in the positive case. In the original algorithm the
explicit state space is never generated and thus, the concrete size of GL could not directly
be obtained. To have a proper comparison of the different sizes of the generated state spaces
(GH versus GL ) we extended Adam with a fixed point algorithm which calculates a BDD
for the reachable states of the two-player game GL and ask for the number of solutions to
obtain the number of states ofGL as reference value. As input, the Reference-Approach takes
the low-level version L(H ) of a high-level Petri game H . The results and used resources
for the calculation of the reduced state space are given in column three and four of Table 1.

For the reduced state space generationwe use Symmetric Nets (SNs)1 [9,10] as underlying
structure for the high-level Petri game. SNs are a subclass of high-level Petri netswith the same
expressive power but allow for an easy and automatic creation of the system’s symmetries
from the modeled structure. In SNs the colors are grouped into basic color classes and
static subclasses. The arc expressions, as well as the predicates, are restricted to some basic
functions. This makes the modeling of practical examples only slightly more cumbersome.

The following three algorithm are all based on the algorithm originally presented in [35]:

HL-Approach This approach explicitly calculates the reduced state space from the high-level
Petri game H .

1 Symmetric Nets have been formerly known as Well-Formed Nets (WNs). The renaming was part of the ISO
standardization [33].
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LL-Approach This approach first transforms the high-level Petri game H into the cor-
responding low-level Petri game L(H ) and then uses this to explicitly calculate the
reduced state space of GH . During this calculation H is still exploited to obtain the
symmetries of the system.

BDD-Approach This approach uses, as in the Reference-Approach of Adam, BDDs to
symbolically calculate the number of states of the reduced two-player game. For this
purpose, the high-level Petri game is also first transformed into the corresponding low-
level one and then the high-level structure is used for the automatic generation of the
system’s symmetries.

Note that we neither calculate a winning strategy nor clarify its existence. We take a high-
level Petri game and use three different approaches to calculate the reduced state space, i.e.,
to calculate the number of states of the high-level two-player game GH while exploiting the
symmetries of the high-level Petri game as described in Sect. 4.4. Furthermore, we use the
adapted algorithm of Adam to compare these sizes to the size of the previously existing
low-level two-player game GL . Since the running time of any synthesis algorithm crucially
depends on the size of the state space it has to explore, this gives a first impression of the
potential of our new method.

We applied the algorithms on a set of five scalable benchmark families from applications in
robotic control, workflow management, and other distributed domains. For each benchmark
the elapsed CPU time (time in s) for calculating the size of the state space |V L | and the
size of the reduced state space |V H | are listed in Table 1 for each approach. A timeout for a
calculation time of more than two hours is indicated by TO. For each benchmark the time of
the fastest of the new approaches is marked bold. The experiments are calculated on an Intel
i7-2700K CPU with 3.50 GHz and 32 GB RAM and refer to the following scenarios:

Package delivery (PD) There are n drones which should deliver m packages. The packages
get assigned to the drones. The hostile environment lets an arbitrary drone crash. Drones
get informed of the crash and can decide on recovering the package. The system’s goal
is to deliver all packages (see Sect. 2). Parameters: n drones / m packages.

Alarm system (AS) There are n geographically distributed locations. Every location is
secured by an alarm system. A burglar, modeled by the environment, can intrude an
arbitrary location. The alarm systems can inform each other about burglaries. The goal
is that no alarm system is triggered without an intrusion and all alarm systems indicate
the correct intrusion point in case of an intrusion. Parameters: n alarm systems.

Concurrent machines (CM) There are n machines which should process m orders. The
orders can be processed concurrently, but no machine is allowed to process more than
one order. The hostile environment chooses one machine to be defective. The goal is
that finally all orders are processed. Parameters: n machines / m orders.

Document workflow (DW) and (DWs) There are n clerks endorsing or rejecting a document.
The document is circularly passed on by the clerks. The environment decides on which
clerk receives the document first. The goal is that all clerks take an unanimous decision.
In the simple variant DWs the goal is that all clerks endorse the document. Parameters:
n clerks.

The package delivery benchmark family is newly presented in this paper. The alarm system
benchmark familywas introduced in [21] and its high-level versionwas presented in [30]. The
benchmark families CM, DW, and DWs were introduced in [22], the high-level version for
CM was already presented in [30], the high-level version for DW and DWs were developed
for this paper.
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Table 1 Experimental results of the benchmark families regarding the sizes ofGL andGH and their calculation
time (in s) for the three different approaches for GH and the reference approach for GL

Ben. Par. Two-player game GL Symbolic two-player game GH

HL-Appr. LL-Appr. BDD-Appr.

time |V L | |V H | time time time

PD 1/1 0.23 30 30 0.4 0.21 0.22

1/2 0.3 262 138 1.02 0.46 0.33

1/3 0.42 1988 420 3.99 1.7 1.18

1/4 0.72 14010 1017 10.28 5.32 457.84

1/5 1.09 94824 2122 46.08 11.25 TO

1/6 3.82 6.266e5 4004 280 50.54 –

1/7 29.24 4.079e6 6907 2629.75 530.01 –

1/8 202.99 2.629e7 11115 TO 7367.82 –

1/9 1815.35 1.683e8 – – TO –

. . . . . . . . . . . . . . . . . . . . .

4/1 0.7 11473 695 6.86 4.64 13.04

4/2 453.42 1.848e7 3.733e5 6224.85 2165.59 TO

4/3 TO – – TO TO –

5/1 1.45 65713 1177 13.4 12.02 TO

5/2 TO – – TO TO –

AS 2 0.45 7445 3780 9.89 4.82 1.22

3 1.36 5.802e7 - TO TO TO

CM 2/1 0.28 157 80 0.39 0.27 0.23

2/2 0.36 2617 685 2.16 1.06 0.51

2/3 0.67 42657 4048 11.72 6.95 4.64

2/4 1.41 6.794e5 18067 61.06 21.37 606.3

2/5 3.6 1.061e7 67675 722.66 306.49 TO

2/6 36.25 1.634e8 2.081e5 TO 6722.21 –

2/7 1061.76 2.488e9 – – TO –

. . . . . . . . . . . . . . . . . . . . .

4/1 0.39 2965 240 1.52 1.42 0.7

4/2 0.81 4.553e5 11215 69.4 23.61 30.38

4/3 2.51 6.973e7 3.824e5 TO 2716.89 TO

4/4 28.91 1.175e10 – – TO –

DW 1 0.27 58 58 0.45 0.3 0.26

. . . . . . . . . . . . . . . . . . . . .

6 1.05 7.557e5 1.201e5 582.44 128.22 TO

7 1.41 4.055e6 5.199e5 3832.36 1097.74 –

8 2.38 2.097e7 – TO TO –

DWs 1 0.24 52 52 0.38 0.22 0.22

. . . . . . . . . . . . . . . . . . . . .

4 0.69 3.703e5 92647 131.01 46.17 TO

5 1.42 5.638e6 1.125e6 3063.2 1793.82 –

6 1.87 8.293e7 – TO TO –

The results are calculated on an Intel i7-2700K CPU with 3.50 GHz, 32 GB RAM, and a timeout of 2 hours
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The figures show a significant decrease on the size of the state space of the system. The
new benchmark PD with parameters 1/8 shows the maximal reduction: 26,299,378 states for
the standard state space versus 11,115 states for the reduced one. This is a factor of about
2366. The reason for a comparably small reduction for the DWandDWs benchmark family is
the circularly passing of the document which restricts the admissible symmetries to rotations.

The decrease of the state space does not come without a cost. The calculation time of
the new algorithms for the reduced state space (the last three columns) is in general notably
higher than the ones of the reference algorithm for the standard state space (column three).
On the one hand, this is due to the equivalence check which is done every time prior to the
adding of a new state. On the other hand, this figures are not directly comparable. Adam
uses optimized symbolic algorithms for its calculations which generally outperform explicit
algorithms like the ones of the HL- and the LL-Approach on large state spaces. Furthermore,
all new algorithms are currently in an early development state.

The main reason of the low performance of the BDD-Approach on larger models is that
the current algorithm checks for each newly created state whether there already exists an
equivalent one. It is not possible to directly encode this check into a Boolean function for
the representation of the two-player game’s transition relation. Thus, in this prototype imple-
mentation of a symbolic algorithm exploiting the symmetries of the system, the equivalence
check is done explicitly. This means, in every round of the fixed point calculation, each
explicit state of the BDD representing the successors of this round is calculated. These costly
solving steps of the BDDs thwart the use of a symbolic algorithm.

Generally, the LL-Approach outperforms the HL-Approach. This is explicable by the
structure of the decision sets. A decision set of the high-level two-player game consists of the
concrete instances of the places and transitions of the high-level net. Hence, theHL-Approach
calculates these instances over and over each time a high-level transition is requested. An
improvement is to buffer these data, but this nearly results in the LL-Approach.

Overall, these figures already show a big step towards a faster practical solving of Petri
games because a smaller state space significantly reduces the running time of the synthesis
algorithms. Standard algorithms for solving two-player Büchi games with complete informa-
tion are polynomial in the number of edges of the game and can be applied to the symbolic
two-player gameGH . The remaining steps for solving high-level Petri games, i.e., resolving
the symmetries of the two-player strategy and creating the Petri game strategy, are linear in
the number of edges of the strategy and quadratic in the number of admissible symmetries.
Given that the presented algorithms are still in a prototype stadium, these results are very
encouraging for further work.

6 Related work

An active research area is Petri net synthesis [2]. Two-player games are studied under the
name Petri net supervisory control [2], inspired by the work of Ramadge and Wonham on
discrete event systems [45]. A significant body of work on synthesis and control based on
Petri nets is in this area (cf. [6,31,46,55]), also for structured Petri nets like modules of signal
nets [15]. However, these approaches solve the single-process synthesis problem, as opposed
to the multi-process synthesis problem for concurrent systems considered in this paper.

The synthesis of distributed systems (short: distributed synthesis) is much more difficult
because onemust constructmultiple processes that, individually, do not have access to the full
system state. Most prominent is the model of Pnueli and Rosner [44], where processes com-
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municating via single-writer single-reader shared variables with synchronous concurrency
are considered. After a series of isolated decidability results [37,44], information forks [26]
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were identified as the necessary and sufficient criterion for undecidability. For architectures
without information forks, the synthesis problem can be solved, however, with nonelementary
complexity in the number of processes.

Zielonka’s asynchronous automata [56] have been proposed as an alternative setting
for distributed synthesis [27,28,39,42]. The decidability of the control problem of asyn-
chronous automata is open in general. There are various decidability results for restricted
cases, e.g., concerning the dependencies of actions [27] or the synchronization behavior [39].
Decidability, albeit again with nonelementary complexity, has also been obtained for acyclic
communication structures [28,42].

Petri games based on P/T Petri nets were introduced in [24,25]. They exploit concurrency
and causality in defining a notion of informedness for the players. In [25] it is shown that
the problem whether the system players have a winning strategy for a safety objective, is
undecidable for unbounded Petri games. However, for Petri games with one environment
player and a bounded number of system players the problem is EXPTIME-complete. The
winning strategy can be obtained in single-exponential time by a reduction to a two-player
graph game. In [23] it was shown that also for one system player and a bounded number of
environment players the synthesis problem can be solved with the same complexity. In [20]
a bounded synthesis approach was introduced. It sets a bound for the size of the strategy and
constitutes a semi-decision procedure, optimized in finding small implementations. A formal
connection between games on asynchronous automata and Petri games is established in [5].

For practical applications, higher-level Petri nets in the form of Coloured Petri Nets (CPN)
have been introduced [29,36,47]. In CPNs, individual data values are represented by coloured
tokens to describe concurrent systems succinctly. Boolean conditions on these tokens appear
as guards of transitions, and expressions define which of these tokens are moved when a
transition fires. In general, multisets of coloured tokens may appear as markings. In [36], a
translation from CPNs back into normal P/T Petri nets is defined.

There is a significant body of work regarding symmetries. For high-level Petri nets the
notion of equivalentmarkings and the idea of exploiting symmetrieswas originally introduced
in [34,35]. For obtaining the symmetries of the system efficiently, several approaches on
different subclasses of high-level Petri nets hadbeen introduced, e.g., in [9,10,16,38,48]. In [8]
the idea of using equivalent transitions in addition to the equivalent marking for the creation
of the SRG is lifted to CPNs. For low-level Petri nets the reduction ideas are introduced
in [51]. From then on lots of work has been done following that direction, e.g., [49,50,54].
Using symmetries for the alleviation of state-explosion problems are also common in model
checking [12–14]. The complications that arise when using BDDs for the symmetric state
space evaluation in this context is elaborated in [14].

7 Conclusion

We introduced a new, symmetry-exploiting solving algorithm for the subclass of set-based
high-level Petri games with a single recurrently interfering source of external information.
The main part of the algorithm is a reduction of the high-level Petri game to a two-player
game which states consist of enriched equivalence classes of the Petri game’s behavior. The
key idea of the reduction is borrowed from the reduction of a low-level Petri games with a
single external source of information to a two-player game presented in [24]. We proved the
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correctness of the new reduction by defining a bisimulation between the new game and the
game obtained by converting the high-level Petri game to a low-level one and applying the
reduction of [24].
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Our experimental results show that the new two-player game is significantly smaller than
the old one. Utilizing the symmetries of the system enabled us to reduce the state space
needed for resolving the synthesis problem in the presented benchmark families by up to
three orders of magnitude.

For future work we want to enhance the presented reduction technique to allow for an
improved implementation of the solving algorithm. Adam testifies the well-suited applica-
bility of a symbolic game solving algorithm using BDDs for the synthesis of Petri games.
As stated in Sect. 5, a drawback of the current approach is that BDDs cannot directly be
used profitably for the calculation of the reduced two-player game. In [10] an algorithm for
calculating canonical representatives of the equivalences classes of the reachability graph of
a Petri net is presented. A corresponding algorithm for calculating canonical representatives
of the equivalence classes of the decision sets could allow for a profitable use of BDDs.

Another step is to investigate several improvements regarding symmetries in high-level
Petri nets existing in the literature. For example, the papers [1,3,4,7,32] introduce efficiency
improvements for systems with a mixture of symmetric and asymmetric behaviors, or, in [53]
the symmetries of entirely symmetric models are deduced from the system itself, i.e., the
color classes of a SN can be partitioned automatically. It could be interesting to investigate
to what extent the synthesis of high-level Petri games could profit from these results.

Acknowledgements We thank the anonymous reviewers for their insightful comments and detailed sugges-
tions for improvement.

Appendix

In this appendix we recall the formal definitions for unfolding, plays, and strategies for low-
level Petri games, definitions and properties of the construction of an SRG from [8], and
provide technical details and proofs regarding Sect. 4.

A Further formal definitions for Petri games
In this section of the appendix we formally introduce unfoldings, strategies, and plays. Again,
we focus only on 1-bounded Petri nets where the preset and the postset of any transition as
well as the markings are sets rather than multisets.

LetN = (P,T ,F , In) be a Petri net. For two nodes x, y ∈ P ∪T we call x a causal
predecessor of y, written x < y, iff x F+ y holds. We write x ≤ y iff x < y or x = y.
We call x, y causally related iff x ≤ y or y ≤ x holds. Two nodes x, y ∈ P ∪ T are in
conflict, written x � y, iff there is a place p ∈ P\{x, y} and two transitions t1, t2 ∈ post(p)
with t1 �= t2, such that t1 ≤ x and t2 ≤ y holds. Two nodes x, y ∈ P ∪T are concurrent iff
they are neither in conflict nor causally related. A set of places X ⊆ P is called concurrent
iff all places are pairwise concurrent.

We introduce occurence nets to represent the occurrences of transitions with their conflicts
and causal dependencies. An occurrence net is a Petri net N = (P,T ,F , In) with the
following constraints: (i) ∀p ∈ P : |pre(p)| ≤ 1, (ii) ∀t ∈ T : ¬(t � t), (iii) ∀x ∈
P ∪ T : ¬(x < x), (iv) ∀x ∈ P ∪ T : |{y ∈ P ∪ T | y < x}| < ∞, and
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(v) In = {p ∈ P | pre(p) = ∅}. This means that each place only has one ingoing
transition, no transition is in self-conflict, the flow relation is acyclic, the relation < is well-
founded, i.e., does not contain any infinitely decreasing sequence, and the initial marking
contains exactly the places which do not have a predecessor. We call an occurrence net a
causal net, when further (vi) ∀p ∈ P : |post(p)| ≤ 1 holds. In general we equip the function
pre and postwith a superscript, e.g., preN , if we want to stress the dependency on a Petri net
N . LetN1 = (P1,T1,F1, In1) andN2 = (P2,T2,F2, In2) be two Petri nets. We callN1

a subnet of N2 iff P1 ⊆ P2, T1 ⊆ T2, F1 ⊆ F2, and In1 = In2 holds. A homomorphism
fromN1 toN2 is a mapping h : P1 ∪T1 → P2 ∪T2 which preserve the types of the nodes
and the pre- and postconditions of the transitions, i.e., (i) h(P1) ⊆ P2 and h(T1) ⊆ T2

and (ii) ∀t ∈ T1 : h(preN1(t)) = preN2(h(t)) ∧ h(postN1(t)) = postN2(h(t)), where
the application of the homomorphism to a set X ⊆ P1 ∪ T1 is defined component-wise:
h(X) = {h(x) | x ∈ X}.

A homomorphism h is called initial iff also (iii) h(In1) = In2. If not differently stated,
the elements of a superscripted Petri net N X are also implicitly superscripted, i.e., N X =
(PX ,T X ,F X , InX ), and we abbreviate the pre- and postset functions by preX and postX ,
respectively. A branching process β = (N U , λU ) of a Petri netN consists of on occurrence
netN U and ahomomorphismλU : PU∪T U → P∪T such that∀t1, t2 ∈ T U : (pre(t1) =
pre(t2) ∧ λU (t1) = λU (t2)) ⇒ t1 = t2 holds. This means λU is injective on transitions with
the same preset. If λU is initial, the branching process β is called initial. A branching process
βR = (N R, ρ) ofN with a causal netN R is called (concurrent) run ofN . If furthermore ρ

is an initial homomorphism, βR is called an initial (concurrent) run. A run formalizes a single
concurrent execution of the net. A branching process β1 = (N1, λ1) is called a subprocess
of a branching process β2 = (N2, λ2) iff N1 is a subnet of N2 and λ1 = λ2 |P 1∪T1 , where
h |X restricts the domain of the function h to the set X .

An unfolding of a net N is an initial branching process β = (N U , λU ) of N satisfying
∀t ∈ T ,C ⊆ PU : C concurrent ∧ λU (C) = preN (t) ⇒ ∃tU ∈ T U : preN U

(tU ) =
C ∧ λU (tU ) = t . This means that whenever a transition of the net can occur in the unfolding
there is indeed a transition with the same label occurring in the unfolding. Note that an
unfolding is unique up to isomorphism.

A strategy for the system players of a Petri game G = (PS,PE ,T ,F , In,B) with an
underlying Petri net N is a subprocess σ = (N σ , λσ ) of the unfolding β = (N U , λU )

of N satisfying the properties: justified refusal, deterministic, and deadlock-avoiding as
defined below. We lift the distinction of environment, system, and bad places of G to the
strategy by Pσ

S = {p ∈ Pσ | λσ (p) ∈ PS}, Pσ
E = {p ∈ Pσ | λσ (p) ∈ PE }, and

Bσ = {p ∈ Pσ | λσ (p) ∈ B} and analogously define those sets for unfoldings and runs.
The conditions of a strategy are defined by

Justified refusal ∀ t ∈ T U : (t /∈ T σ ∧ preU (t) ⊆ Pσ ) ⇒ (∃ p ∈ preU (t) ∩ Pσ
S ∀ t ′ ∈

postU (p) : λU (t ′) = λU (t) ⇒ t ′ /∈ T σ ), i.e., if an instance t of a transition is forbidden
by σ , then the reason is that from a place p in the precondition of t , σ uniformly forbids
all instances t ′ of this transition. This condition also ensures that a strategy does not
restrict any pure environment transition.

Deterministic ∀ p ∈ Pσ
S , M ∈ R(N σ ) : p ∈ M ⇒ ∃≤1 t ∈ postσ (p) : preσ (t) ⊆ M , i.e.,

there is no situation in the strategy, where a system player allows two separate, enabled
transitions.

Deadlock avoiding ∀ M ∈ R(N σ ) : (∃ t ∈ T U : preU (t) ⊆ M) ⇒ ∃ t ∈ T σ : preσ (t) ⊆
M , i.e., whenever the system can proceed in G there must also be a continuation in the
corresponding situation in the strategy.
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A play π of the Petri game G is an initial concurrent run π = (N R, ρ) of the underlying
Petri netN . Up to isomorphism π is a subprocess of the unfolding. The system players win a
play π = (N R, ρ) iffBR = ∅. Otherwise, the environment players win. A play π conforms
to a strategy σ iff π is a subprocess of σ . A strategy σ is winning for the system players iff
all plays conforming to σ are won by the system.

B Equivalence via symmetries

In this section of the appendix, the most important results from [8] are recalled to be available
for some of the proofs of this paper. Two markings M and M ′ are equivalent, iff ∃s ∈ S :
M = s(M ′). This leads to equivalence classes M (H )/S. For a marking M let M be the
arbitrarily chosen, but fixed representative of [M] (the equivalence class of M with respect
to S), and let sM be a fixed symmetry such that sM (M) = M .

Lemma 8 ∀t ∈ T H ∀v ∈ Val(t) ∀s ∈ S : M[t .v〉M ′ ⇔ s(M)[t .s(v)〉s(M ′).

Let M be a marking and t a transition. Let SM = {s ∈ S | s(M) = M} be the isotropy
group of M , The set of valuation equivalence classes obtained when quotienting Val(t) by
the group SM is denoted by Val(t)M = Val(t)/SM . For each class in Val(t)M we arbitrarily
chose a representative v and define αM as the function mapping each v ∈ Val(t) to its
representative.

We say a transition t can be fired symbolically in the representative M for the valuation
instance αM (v) representing v in Val(t)M , denoted by M[[t .αM (v)〉〉, iff M[t .αM (v)〉. We
obtain another symbolic marking M ′ after the symbolic firing:

M[[t .αM (v)〉〉M ′ ⇔ ∃M ′′ ∈ [ M ′ ] : M[t .αM (v)〉M ′′.

The following properties hold for the symbolic firing of a transition t ∈ T H :

Property 3 M[t .v〉M ′ ⇒ M[[t .v〉〉M ′, where v = αM (sM (v)).

Property 4 M[[t .v〉〉M ′ ⇒ ∀M1 ∈ [ M ] ∀v′ ∈ Val(t) ∃M2 ∈ [ M ′ ] : M1[t .v′〉M2

with v = αM (sM1(v
′)).

Property 5 M[[t .αM (v)〉〉M ′ ⇒ ∀M2 ∈ [ M ′ ] ∃M1 ∈ [ M ] ∃v′ ∈ Val(t) : M1[t .v′〉M2

Property 6 {M | M ∈ R(H )} = {M | M ∈ SR(H )}, in the case that the initial marking
M0 is symmetric, i.e., ∀s ∈ S : s(M0) = M0. Here R(H ) and SR(H ) are the (symbolic)
markings that are (symbolically) reachable from M0 or M0, respectively.

Finally, we elaborate on the assumption that w.l.o.g. high-level Petri nets have a symmetric
initial marking. If the initial marking in a high-level Petri net is not symmetric, we can add
an initialization transition and a new initial place as follows.

Construction 1 Let PH
0 = {p ∈ PH | ∃c ∈ t y(p) : p.c ∈ InH }. For all p ∈ PH

0 we
define n p = |{c ∈ t y(p) | p.c ∈ InH }| as the number of color tokens initially residing
on p. We name the colors in the initial marking by InH = {p.cp1 , . . . , p.cpnp | p ∈ PH

0 }.
We add a new place p0 with t y(p0) = {c0}, a fresh singleton color set with a fresh color c0,
and a new transition t0 such that (p0, t) ∈ F H ⇔ t = t0, and (t0, p) ∈ F H ⇔ p ∈ PH

0 ,
and ∀t �= t0, p �= p0 : (p, t0), (p0, t) /∈ F H . Let further e(p0, t0) = c0 and ∀p ∈ PH

0 :
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e(t0, p) = {x p
1 , . . . , x p

np } with variables x p
i . The guard of t0 now ensures that, by firing t0,

we generate a marking that is equivalent to InH (with respect to S):

g(t0) =
∨

s∈S

∧

p∈P H
0

∧

1≤i≤n p

x p
i = s(cpi ).

By construction, we get

∀s ∈ S ∀v ∈ Val(t0) : v(t0) = s(v)(t0) ∧ [v(t0) = true ⇒ s(post(t0.v)) = post(t0.s(v))].
Thus, the admissible symmetries S remain unchanged (except for the addition of id{c0} to
every symmetry). The new initial marking is {p0.c0} and therefore trivially symmetric.

C Proofs for the construction of the reduced two-player game

In this section of the appendix, we provide proofs for lemmas of Sect. 4.

Proof (Lemma 1) Let D[t .v〉 and s ∈ S. We first check that t .s(v) is fireable at s(D): D[t .v〉
implies pre(t .v) ⊆ M (Dt .v). Since s is admissible, we have

pre(t .s(v)) = s(pre(t .v)) ⊆ s(M (Dt .v)) = M (s(Dt .v)) = M
(
s(D)t .s(v)

)
,

therefore s(D)[t .s(v)〉. Since
s(D′) ={(p.c,C) | (p.c,C) ∈ s(D) ∧ p.c /∈ pre(t .s(v))}

∪ {(p.c,�) | p.c ∈ post(t .s(v)) ∩ PH
S .t y}

∪ {(e.d, post(e.d)) | e.d ∈ post(t .s(v)) ∩ PH
E .t y},

which is exactly the decision set computed after firing t .s(v) in s(D) according to Sect. 4.1,
the proof is complete. ��
Proof (Lemma 2) We collect the results used to prove that the individual properties are invari-
ant under the application of admissible symmetries. Since all symmetries s ∈ S are bijective
on PH.t y (and especially injective) for all A, B ⊆ PH.t y

s(A ∩ B) = s(A) ∩ s(B) (1)

holds. The same is true for A, B ⊆ T H.Val. That for two a set A ⊆ PH or A ⊆ T H

s(A.t y) = A.t y or s(A.Val) = A.Val, respectively (2)

is also true because all s ∈ S are bijective.
We list, for each individual property, the needed results:
D is environment-dependent: Lemma 1.
D contains a bad place: (1) and (2).
D is a deadlock: Lemmas 1, 8 and (2).
D is terminating: Lemma 8 and (2).
D is nondeterministic: (2), (1), Lemmas 1, and 8. ��
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Proof (Lemma 3)

1. If D contains a bad place, is a deadlock, is terminating, or nondeterministic, so is D by
Corollary 1, and there is also only a �-labeled self-loop originating from D as well as
from D. Now consider the cases in which D has none of these properties.
Case D ∈ V L

1 : Then D ∈ V H
1 by Corollary 1. Since D ∈ V L

1 , ∃t .v ∈ T H.Val : δ =
t .v ∧ D[t .v〉D′. Property 1 implies D[[t .v〉〉D′ for v = αD(sD(v)), and then by definition
(D, t .v, D′) ∈ E H .
Case D ∈ V L

0 and D[�〉: Then D ∈ V H
0 by Corollary 1, and by definition D[[�〉〉. Since

D[�〉, we have δ = � and D[�〉D′. Property 1 implies D[[�〉〉D′, and then by definition
(D,�, D′) ∈ E H .
Case D ∈ V L

0 and ¬D[�〉: Works the same as the case D ∈ V L
1 , only that we also use

the simple fact that pre(t .v) ∩ PH
E .t y = ∅ ⇒ pre(t .v) ∩ PH

E .t y = ∅.
2. Works analogously to the proof of 1., but with the use of Property 2 instead of Property 1.

��
Proof (Lemma 4) We start with {D | D ∈ R(A L)} ⊆ {D | D ∈ SR(A H )}:
∀D ∈ R(A L) ∃D1, . . . , Dk ∈ V L

1 ∃δ0, . . . , δk ∈ T H.Val ∪ {�} such that
(Di , δi , Di+1) ∈ E L for all i = 0, . . . , k, with Dk+1 := D.

We prove this by induction over the length of shortest path from D0 to a decision set D ∈
R(A L): If the shortest path is empty we have D = D0, and D0 ∈ SR(A H ). The induction
step follows by Lemma 3 1.

To show {D | D ∈ SR(A H )} ⊆ {D | D ∈ R(A L)}, we proceed analogously, with the
induction step following by Lemma 3 2. ��
Proof (Lemma 5) Note that in this lemma and proof, we explicitly use the notation of equiva-
lence classes instead of their representatives for elements in V H , so that no confusion arises.
Let B = {(D, [D]) | D ∈ V L }. This relation is defined on V L × V H by Lemma 4, since
V L = R(A L) and V H = SR(A H ), and we have (D0, [D0]) ∈ B.

Let now (D, [D]) ∈ B and (D, D′) ∈ EL for a D ∈ V L . We have to prove that there is a
[D2] such that ([D], [D2]) ∈ EH and (D′, [D2]) ∈ B. The obvious candidate is [D2] = [D′],
since (D′, [D′]) ∈ B by definition. From (D, D′) ∈ EL follows ∃δ ∈ T H.Val ∪ {�} :
(D, δ, D′) ∈ E L . Then, by Lemma 3 1, we have (D, δ, D′) ∈ E H . This, again by definition,
gives ([D], [D′]) ∈ EH .

We can prove (D, [D]) ∈ B ∧ ([D], [D′]) ∈ EH ⇒ ∃D2 ∈ V L : (D2, [D′]) ∈ B ∧
(D, D2) ∈ EL similarly, by using Lemma 3 2.

Since, by Lemma 4 and Corollary 1, D ∈ V L
0 ⇔ [D] ∈ V H

0 and D ∈ FL ⇔ [D] ∈ FH ,
we finally have that B is a bisimulation between GL and G

H . ��
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