
Acta Informatica (2021) 58:177–194
https://doi.org/10.1007/s00236-019-00363-5

ORIG INAL ART ICLE

Aggregation-based minimization of finite state automata

Johanna Björklund1 · Loek Cleophas2

Received: 18 December 2018 / Accepted: 11 December 2019 / Published online: 6 January 2020
© The Author(s) 2020

Abstract
We present a minimization algorithm for non-deterministic finite state automata that finds
and merges bisimulation-equivalent states. The bisimulation relation is computed through
partition aggregation, in contrast to existing algorithms that use partition refinement. The
algorithm simultaneously generalises and simplifies an earlier one by Watson and Daciuk
for deterministic devices. We show the algorithm to be correct and run in time O

(
n2r2 |Σ |),

where n is the number of states of the input automaton M , r is the maximal out-degree in
the transition graph for any combination of state and input symbol, and |Σ | is the size of the
input alphabet. The algorithm has a higher time complexity than derivatives of Hopcroft’s
partition-refinement algorithm, but represents a promising new solution approach that pre-
serves language equivalence throughout the computation process. Furthermore, since the
algorithm essentially computes the maximal model of a logical formula derived from M ,
optimisation techniques from the field of model checking become applicable.

1 Introduction

Finite-state automata (nfa) is a fundamental concept in theoretical computer science, and
their computational and representational complexity is the subject of extensive investigations.
In this work, we revisit theminimization problem for nfa, which inputs an automatonM with
n states and outputs aminimal language equivalent automatonM ′. In the case of deterministic
finite state automata (dfa), it is well-known that M ′ is always unique and canonical with
respect to the recognized language. In themore general, non-deterministic case, no analogous
result exists and M ′ is typically only one of several equally compact automata. Moreover,
finding any one of these is PSPACE complete [17], and the problem cannot even be efficiently
approximated within a factor o(n) unless P = PSPACE [12].

Since nfa minimization is inherently difficult, attention has turned to efficient heuristic
minimization algorithms, that often, if not always, perform well. In this category we find
bisimulation minimization. Intuitively, two states are bisimulation equivalent if every tran-

B Johanna Björklund
johanna@cs.umu.se

Loek Cleophas
loek@fastar.org

1 Department of Computing Science, Umeå University, 901 87 Umeå, Sweden

2 Department of Information Science, Stellenbosch University, Stellenbosch, South Africa

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-019-00363-5&domain=pdf
http://orcid.org/0000-0003-0596-627X

178 J. Björklund, L. Cleophas

sition that can be made from one of them, can be mirrored starting from the other. More
formally, an equivalence relation E on the states Q of an nfa M is a bisimulation relation
if the following holds: (i) the relations respects the separation in M of final and non-final
states, and (ii) for every p, q ∈ Q such that (p, q) ∈ E , if p′ ∈ Q can be reached from p on
the symbol a, then there must be a q ′ ∈ Q that can be reached from q on a, and (p′, q ′) ∈ E .

The transitive closure of the union of two bisimulation relations is again a bisimu-
lation relation, so there is a unique coarsest bisimulation relation E of every nfa M .
When each equivalence class of E is merged into a single state, the result is a smaller but
language-equivalent nfa. IfM is deterministic, then this approach coincideswith regular dfa
minimization. The currently predominantmethod of finding E is through partition refinement:
The states are initially divided into final and non-final states, and the minimization algorithm
resolves contradictions to the bisimulation condition by refining the partition until a fixed
point is reached. This method is fast, and requires O(m log n) computation steps (see [20]),
where m is the size of M’s transition function. The drawback is that up until termination,
merging equivalence classes into states will not preserve the recognized language.

In this paper, which extends and revises [5], we present an nfaminimization algorithm that
produces intermediate solutions language-equivalent toM . Similarly to previous approaches,
the algorithm computes the coarsest bisimulation relation E on M . However, the initial
partition is entirely made up of singleton classes, and these are repeatedly merged until a
fixed point is reached. The algorithm runs in time O

(
n2 · (log n2 + r2 |Σ |)), where r is the

maximal outdegree in the transition graph for any combination of state and input symbol, and
Σ is the input alphabet. This is slower than the derivatives of Hopcroft’s partition-refinement
algorithm, out of which Paige and Tarjan’s algorithm is one, but we believe that it is a useful
first step, and it is still an open question whether partition aggregation can be computed as
efficiently as partition refinement.

The use of aggregation was inspired by a family of minimization algorithms for dfas (see
Sect. 1.1), and we lift the technique to non-deterministic devices. In the deterministic case,
our algorithm runs in O

(
n2 |Σ |), which is the same as for the fastest aggregation-based dfa

minimisation algorithms.
Another contribution is the computational approach: we derive a characteristic

propositional-logic formula wM for the input automaton M , in which the variables are pairs
of states. The algorithm’s main task is to compute a maximal model v̂ of wM , in the sense
that v̂ assigns ‘true’ to as many variables as possible. We show that if wM is satisfiable, then
v̂ is unique and efficiently computable by a greedy algorithm, and v̂ encodes the coarsest
bisimulation relation on M .

1.1 Related work

dfaminimization has been studied extensively since the 1950s (see [13,15,18]). ten Eikelder
[22] observed that the equivalence problem for recursive types can be formulated as a dfa
reachability problem, and gave a recursive procedure for deciding equivalence for a pair of
dfa states. This procedure was later used by Watson [23] to formulate a dfa minimization
algorithm that works through partition aggregation. The algorithm runs in exponential time,
and twomutually exclusive optimizationmethodswere proposed byWatson andDaciuk [24].
One usesmemoization to limit the number of recursive invocations; the other bases the imple-
mentation on the union-find data structure (see [2,14,21]). The union-find method reduces
the complexity from O

(|Σ |n−2n2
)
down to O

(
α(n2)n2

)
, where α(n), roughly speaking, is

123

Aggregation-based minimization of finite state automata 179

the inverse of Ackermann’s function. The value of this function is less than 5 for n ≤ 22
16
,

so it can be treated as a constant.
The original formulation of the algorithm was later rectified by Daciuk [10], who discov-

ered and removed an incorrect combination of memoization and restricted recursion depth.
The fact that this combination was problematic had been pointed out by Almeida et al. [3],
who had found situations inwhich theWatson–Daciuk algorithm returned non-minimaldfas.
Almeida et al. [3] also presented a simpler version, doing awaywith presumably costly depen-
dency list management. Assuming a constant alphabet size, they state that their algorithm
has a worst-case running time of O

(
α(n2)n2

)
for all practical cases, yet also claim it to be

faster than the Watson–Daciuk one. Based on Almeida’s reporting, Daciuk [10, Section 7.4]
provided a new version, presented as a compromise between the corrected Watson-Daciuk
and the Almeida-Moreira-Reis algorithm, but did not discuss its efficiency. The original ver-
sion of the algorithm has been lifted to deterministic tree automata (a generalisation of finite
state automata) both as an imperative sequential algorithm and in terms of communicating
sequential processes (see [9]).

nfa minimisation has also received much attention, and we restrict our discussion to
heuristics that compute weaker relations than the actual Nerode congruence (recalled in
Sect. 2). Paige and Tarjan [20] presented three partition refinement algorithms, one of which
is essentially bisimulationminimization for nfas. The techniquewas revived byAbdulla et al.
[1] for finite-state tree automata. The paper was soon followed by bisimulation-minimization
algorithms for weighted and unranked tree automata by Björklund et al. [6] and Björklund et
al. [7], and also algorithms based on more general simulation relations by Abdulla et al. [1]
and Maletti [16]. Our work is to the best of our knowledge the first in which the bisimulation
relation is computed through partition aggregation.

2 Preliminaries

2.1 Sets, numbers, and relations

WewriteN for the set of natural numbers, including 0. For n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}.
Thus, [0] = ∅. The cardinality of a set S is written |S| and the powerset of S by pow(S). A
binary relation ⊗: S × S → S is idempotent if s ⊗ s = s, for every s ∈ S.

A binary relation is an equivalence relation if it is reflexive, symmetric and transitive. Let
E and F be equivalence relations on S. We say that F is coarser than E (or equivalently: that
E is a refinement of F), if E ⊆ F . The equivalence class or block of an element s in S with
respect to E is the set [s]E = {s′ | (s, s′) ∈ E}. Whenever E is obvious from the context, we
simply write [s] instead of [s]E . It should be clear that [s] and [s′] are equal if s and s′ are in
relation E , and disjoint otherwise, so E induces a partition (S/E) = {[s] | s ∈ S} of S. The
identity relation on S is IS = {(s, s) | s ∈ S}.

An alphabet is a finite nonempty set. Given an alphabet Σ we write Σ∗ for the set of all
strings over Σ , and ε for the empty string. A string language is a subset of Σ∗.

2.2 Finite state automata

A nondeterministic finite state automaton is a tuple M = (Q,Σ, δ, QI , QF), where Q is
a finite set of states; Σ is an alphabet of input symbols; the transition function δ = (δ f) f ∈Σ

123

180 J. Björklund, L. Cleophas

is a family of functions δ f : Q → pow(Q); QI ⊆ Q is a set of initial states; and QF ⊆ Q
is a set of final states.

We immediately extend δ to (δ̂w)w∈Σ∗ where δ̂w : pow(Q) → pow(Q) as follows: For
every string w ∈ Σ∗ and set of states P ⊆ Q,

δ̂w(P) =
{
P if w = ε, and⋃

p∈P δ̂w′(δ f (p)) if w = f w′ for some f ∈ Σ, and w′ ∈ Σ∗.

The language recognised by M isL(M) = {w ∈ Σ∗ | δ̂w(QI) ∩ QF �= ∅}. A state q ∈ Q is
useless if there do not exist strings u, w ∈ Σ∗ such that q ∈ δ̂u(QI) and QF ∩ δ̂w({q}) �= ∅.
From here on, we identify δ with δ̂. If |QI | ≤ 1, and if

∣
∣δ f ({q})∣∣ ≤ 1 for every f ∈ Σ and

q ∈ Q, then M is said to be deterministic.
Let E be an equivalence relation on Q. The aggregated nfa with respect to E is the nfa

(M/E) = ((Q/E),Σ, δ′, Q′
I , Q

′
F) given by δ′

f ([q]) = {[p]|p ∈ δ f (q)} for every q ∈ Q
and f ∈ Σ ; Q′

I = {[q] | q ∈ QI }; and Q′
F = {[q]|q ∈ QF }.

The right language of q ∈ Q is
→
L (q) = {w ∈ Σ∗ | δw({q}) ∩ QF �= ∅}. The Nerode

congruence (see [19]) is the coarsest congruence relation E on Q with respect to the right-

languages of the states in Q. This means that (p, q) ∈ E if and only if
→
L (p) =→

L (q) for all
p, q ∈ Q.

2.3 Propositional logic

We assume that the reader is familiar with propositional logic, but recall some basic facts to
fix terminology. It is important to note, that in the definitions that follow, interpretations are
in general partial functions.

The Boolean values true and false are written as � and ⊥, respectively, and we use B for
{�,⊥}. Let L be a propositional logic over the logical variables X , and let WF(L) be the
set of well-formed formulas over L . An interpretation of L is a partial function X → B.
Given interpretations v and v′, we say that v′ is an extension of v if v′(x) = v(x) for all
x ∈ dom(v). The set of all such extensions is written Ext(v).

As usual, the semantics of a well-formed formula w ∈ WF(L) is a function from the set
of all total interpretations (i.e., from all total mappings X → B), to B. A total interpretation
v is a total model for w if w(v) = � (by convention, hereafter this application as v(w)). The
set of all total models for w is written Modt(w). Given a pair of formulas w,w′ ∈ B, we
write w ≡ w′ to denote that Modt(w) = Modt(w′).

A substitution of formulas for a finite set of variables X is a set {x1 ← w1, . . . , xn ← wn},
where each xi ∈ X is a distinct variable and each wi ∈ WF(L) \ X is a formula. The
empty substitution is defined by the empty set. Let θ = {x1 ← w1, . . . , xn ← wn} and
σ = {y1 ← w′

1, . . . , yk ← w′
k} be two substitutions. Let X and Y be the sets of variables

substituted for in θ and σ , respectively. The composition θσ of θ and σ is the substitution
{xi ← wiσ | xi ∈ X} ∪ {y j ← w j | y j ∈ Y \ X}. The application of θ to a formula w is
denotedwθ and defined by (simultaneously) replacing every occurrence of each xi inw by the
correspondingwi . Finally, given a set of formulasW ⊆ WF(L), we letWθ = {wθ | w ∈ W }.

Every partial interpretation v of L can be seen as a substitution, in which x ∈ dom(v) is
replaced by v(x), resulting in a new formula wv in WF(L) with variables in X \ dom(v).
This allows us to extend v to a functionWF(L) → ((X → B) → B) defined by v(w) = wv.

123

Aggregation-based minimization of finite state automata 181

Example 1 Consider the formulasw = x1 → x2 andw′ = x1∧ x2, and the partial interpreta-
tion v = {x1 ← ⊥}. Then w �≡ w′, and w �≡ �, but v(w) = ⊥ → x2 ≡ � and v(w′) ≡ x2.

�
Let v be a partial interpretation. The formulaw is resolved by v if v(w) ≡ � or v(w) ≡ ⊥.

The interpretation of v is amodel forw if v(w) ≡ �, and the set of all models ofw is denoted
by Mod(w) (so Modt(w) is a subset of Mod(w)).

Conversely, given a substitution σ we can define a partial interpretation σ : X → B, by
σ(x) = xσ .

The join of a pair of partial interpretations v and v′ is the total interpretation v∨v′ : X → B

given by (v ∨ v′)(x) = � if v(x) ≡ � or v′(x) ≡ �, and by (v ∨ v′)(x) = ⊥ otherwise.
A formula in WF(L) is in conjunctive normal form (CNF) if it is a conjunction of clauses,

where each clause is a disjunction of possibly negated variables. A formula is negation-free
if no variable occurs negated.

3 Logical framework

In this section, we express the problem of finding the coarsest simulation relation on a finite
automaton, as a problem of computing the maximal model of a propositional-logic formula.

From here on, M = (Q,Σ, δ, QI , QF) is a fixed but arbitrary nfa, free from useless
states.

Definition 1 (Bisimulation, cf. [8], Definition 3.1) Let E be a relation on Q. It is a bisimulation
relation on M if for every (p, q) ∈ E ,
1. p ∈ QF if and only if q ∈ QF ; and
2. for every symbol f ∈ Σ ,

for every p′ ∈ δ f (p) there is a q ′ ∈ δ f (q) such that (p′, q ′) ∈ E, and
for every q ′ ∈ δ f (q) there is a p′ ∈ δ f (p) such that (p′, q ′) ∈ E .

We shall express the second of these conditions in a propositional logic, in which the
variables are pairs of states. The resulting formula is such that if the variable 〈p, q〉 is
assigned the value �, then p and q must satisfy Condition 2 of Definition 1 for the whole
formula to be true.

In the following, we take the conjunction of an empty set of Boolean values to be true (or
�), and the disjuction of an empty set of Boolean values to be false (or ⊥).

Definition 2 (Characteristic formula) Let XM = {〈p, q〉 | p, q ∈ Q} be a set of proposi-
tional variables. For x = 〈p, q〉 ∈ XM and f ∈ Σ , we denote by w

f
x the CNF formula

∧

p′∈δ f (p)

∨

q ′∈δ f (q)

〈p′, q ′〉 ∧
∧

q ′∈δ f (q)

∨

p′∈δ f (p)

〈p′, q ′〉,

and by wx the formula
∧

f ∈Σ w
f
x . It should be clear that, for every f ∈ Σ and x ∈ XM , the

formulas w
f
x and wx are negation-free. Finally, wM denotes the conjunction

∧
x∈XM

(x →
wx), and wx is said to be the right-hand side of the implication x → wx .

We could also model Condition 1 of Definition 1 in the formula wM , but that would intro-
duce negations and make the presentation more involved. To find the coarsest bisimulation

123

182 J. Björklund, L. Cleophas

relation for M , we start instead with a partial interpretation of XM satisfying Condition 1 of
Definition 1 and search for a ‘maximal’ total extension that also satisfies Condition 2. By
‘maximal’ we mean that it assigns as many variables as possible the value �.

Definition 3 (Maximal model) Let v and v′ be interpretations of XM . We say that the total
model v ∈ Modt(wM) is maximal if v ∨ v′ = v for every v′ ∈ Ext(v) ∩ Mod(wM).

Due to the structure of wM , its models are closed under the join operator.

Lemma 1 If v, v′ ∈ Mod(wM), then v ∨ v′ ∈ Mod(wM).

Proof The interpretation v ∨ v′ fails to satisfy wM if there is some x ∈ XM such that
(v ∨ v′)(x → wx) is false. This can only happen if (v ∨ v′)(x) = � but (v ∨ v′)(wx) ≡ ⊥.
However, if (v ∨ v′)(x) = � then v(x) = � or v′(x) = �. Assume the former, without loss
of generality. Then v(wx) ≡ � since v ∈ Mod(wM). Now, the fact that more variables are
assigned the value� in v∨v′ cannot causewx to become false, since it is negation-free. Hence
(v ∨ v′)(wx) ≡ � too, which gives us a contradiction. It follows that v ∨ v′ ∈ Modt(wM),
and since Modt(wM) ⊆ Mod(wM), that v ∨ v′ ∈ Mod(wM). ��

From Lemma 1, we conclude that when a solution exists, it is unique.

Lemma 2 Let v be a partial interpretation of XM. If Ext(v) ∩ Mod(wM) �= ∅, then there is
a total interpretation v̂ ∈ Ext(v) that is a maximal model of wM, and v̂ is unique.

Proof If v cannot be extended to a model of wM then the statement is trivially true. If it can
be extended to a model, then by Lemma 1 the join of all such extensions is a model of wM ,
and it is unique since join is idempotent. ��

Given v ∈ Mod(wM), Lemma 2 allows us to unambiguously write Max(M, v) for the
unique maximal model of wM in Modt(wM) ∩ Ext(v).

To translate our logicalmodels back into the domainof bisimulation relations,we introduce
the notion of their associated relations.

Definition 4 (Associated relation) We associate with every (partial) interpretation v of XM a
relation ∼v on XM , given by p ∼v q ⇐⇒ v(〈p, q〉) = �. We say that the interpretation
v is reflexive, symmetric, and transitive, respectively, whenever ∼v is.

Note that Definition 4 does not distinguish between a state pair x for which v(x) = ⊥,
and a state pair for which v is undefined. If v is an arbitrary model of wM , then its associated
relation need not be an equivalence relation, but for the maximal model, it is.

Lemma 3 Let v be a partial interpretation of XM such that ∼v is an equivalence relation,
then also ∼v̂ , where v̂ = Max(M, v), is an equivalence relation.

Proof Since ∼v is reflexive, v(〈p, p〉) = � for every p ∈ X , so the associated relation of
every extention of v is also reflexive.

Since the logical operators∨ and∧ commute, every extension v′ of v inwhich v′(〈p, q〉) =
� can be turned into a model v′′ in which v′′(〈q, p〉) = � by swapping the order of every
pair in XM . By taking the join of v′ and v′′, we arrive at a greater model v′ ∨ v′′ in which
(v′∨v′′)(〈q, p〉) = (v′∨v′′)(〈p, q〉) = �. Since v̂ is themaximalmodel of v, it is necessarily
already symmetric.

123

Aggregation-based minimization of finite state automata 183

A similar argument holds for transitivity. Let v′ be the transitive closure of v̂, in other
words, let v′ be the complete interpretation that assigns the fewest number of variables in
XM the value�, while still guaranteeing that for all p, q, r ∈ XM , (i) v̂(〈p, q〉) = � implies
v′(〈p, q〉) = �, and (ii) v′(〈p, q〉) = v′(〈q, r〉) = � implies that v′(〈p, r〉) = �.

We verify that v′ is also a model for wM , by checking that v′(x → wx) ≡ � for
every x ∈ XM . Assume that 〈p, q〉 ∈ XM and v′(〈p, q〉) = �. Then, there is a sequence
P = 〈p1, p2〉, 〈p2, p3〉, . . . , 〈pn−1, pn〉, for some n ∈ N, such that p = p1, q = pn ,
v̂(〈pi , pi+1〉) = � for every i ∈ [n]. Since v̂ is a model for wM , it must hold that
v̂(w〈pi ,pi+1〉) ≡ � for every i ∈ [n], so v′(w〈pi ,pi+1〉) ≡ �, for every i ∈ [n] since v′
assigns more variables the value � than v̂ does, and since w〈pi ,pi+1〉 is negation-free. Sup-
pose for the sake of contradiction that P ′ = 〈p1, p2〉, . . . , 〈pk−1, pk〉 is a prefix of P such
that v′(w〈p1,pk 〉) ≡ � but v′(w〈p1,pk+1〉) �≡ �, and that P is the shortest such prefix. We
know that

v′
⎛

⎝
∧

p′
1∈δ f (p1)

∨

p′
k∈δ f (pk)

〈p′
1, p

′
k〉 ∧

∧

p′
k∈δ f (pk)

∨

p′
1∈δ f (p1)

〈p′
1, p

′
k〉

⎞

⎠ ≡ �.

and

v′

⎛

⎜
⎝

∧

p′
k∈δ f (pk)

∨

p′
k+1∈δ f (pk+1)

〈p′
k, p

′
k+1〉 ∧

∧

p′
k+1∈δ f (pk+1)

∨

p′
k∈δ f (pk)

〈p′
k, p

′
k+1〉

⎞

⎟
⎠ ≡ �.

Thismeans that for every p′
1 ∈ δ f (p1) there is some p′

k ∈ δ f (pk) such that v′(〈p′
1, p

′
k〉) = �,

and that for this p′
k there is some p′

k+1 ∈ δ(pk+1) such that v′(〈p′
k, p

′
k+1〉) = �. Since v′ is

transitive, also v′(〈p′
1, p

′
k+1〉) = �. It follows that

v′

⎛

⎜
⎝

∧

p′
1∈δ f (p1)

∨

p′
k+1∈δ f (pk+1)

〈p′
1, p

′
k+1〉 ∧

∧

p′
k+1∈δ f (pk+1)

∨

p′
1∈δ f (p1)

〈p′
1, p

′
k+1〉

⎞

⎟
⎠ ≡ �,

so v′(w〈p1,pk+1〉) ≡ �, that is, a contradiction. Since v̂ is already maximal, it has to be
transitive. ��

We introduce a partial interpretation v0 to reflect Condition 1 of Definition 1 and use this
as the starting point for our search.

Definition 5 Let v0 be the partial interpretation of XM such that

v0(〈p, p〉) = � for every p ∈ Q,

v0(〈p, q〉) = ⊥ for every p, q ∈ Q with p ∈ QF �= q ∈ QF,

and v0 is undefined on all other state pairs.

Lemma 4 The interpretation v0 is in Mod(wM) and ∼v0 is an equivalence relation.

Proof To verify that v0 is a model for wM , we must ensure that v0(〈p, p〉 → w〈p,p〉) ≡ �
for every p ∈ Q. By definition, w〈p,p〉 =

∧

p′∈δ f (p)

∨

p′′∈δ f (p)

〈p′, p′′〉 ∧
∧

p′∈δ f (p)

∨

p′′∈δ f (p)

〈p′, p′′〉.

123

184 J. Björklund, L. Cleophas

This means that for every p′ ∈ δ f (p) we know that there is some p′′ ∈ δ f (p) (namely p′
itself), such that v0(〈p′, p′′〉) = �, so v0(w〈p,p〉) ≡ �.

For the second part of the statement, we note that∼v0= IXM . Furthermore, IXM is clearly
an equivalence relation, namely the finest one in which each state is an equivalence class of
its own. ��

We summarize this section’s main findings in Theorem 1.

Theorem 1 There is a unique maximal extension v̂ = Max(M, v0) of v0 in Mod(wM), and
the relation ∼v̂ is the coarsest bisimulation relation on M.

Proof From Lemma 4 it follows that v0 is a model of wM , and that it encodes an equivalence
relation. From Lemma 2 that v0 can be extended to a unique maximal model v̂ for wM .
From Definitions 1 and 2 that v̂ encodes a bisimulation relation, from Lemma 3 that v̂ is an
equivalence relation. ��

4 Algorithm

An aggregation-based minimisation algorithm starts with a singleton partition, in which
each state is viewed as a separate block, and iteratively merges blocks found to be equivalent.
When all blocks have becomemutually distinguishable, the algorithm terminates.We take the
same approach for themore general problem ofminimizing nfas with respect to bisimulation
equivalence. The procedure is outlined in Algorithm 1 and the auxiliary Algorithm 2.

The input to Algorithm 1 is an nfa M = (Q,Σ, δ, QI , QF). The algorithm computes the
interpretation v̂ of the set of variables XM = {〈p, q〉 | p, q ∈ Q}, where v̂(x) = � means
that x is a pair of equivalent states, and v̂(x) = ⊥ that x is a pair of distinguishable states.
The interpretation v̂ is an extension of v0, in the meaning of Definition 5, and a maximal
model for the characteristic formula wM . Due to the structure of wM this maximal model
can, as we shall see, be computed greedily.

The maximal model Max(M, v0) is derived by incrementally assembling a substitution
σ , which replaces state pairs by logical formulas. When outlining the algorithm, we add an
index to σ to address distinct assignments to σ . The method is such that (i) the substitution is
eventually a total function, and (ii) no right-hand side of the substitution contains a variable
that is also in the domain of the substitution. In combination, this means that when the
algorithm terminates, the logical value of every variable is resolved to�or⊥. The substitution
thus comes to represent a total interpretation of XM . In the computations, σi is a global
variable. It is initialised such that it substitutes � for each pair of identical states, and ⊥ for
each pair of states that differ in their finality (see Line 2 of Algorithm 1). Following this
initialisation, the function equiv (see Algorithm 2) is called for each pair of states not yet
resolved by the substitution.

Function equiv has two parameters: the pair of states x for which equivalence should be
determined, and a set S of pairs of states that are under investigation in previous, though not
yet completed, invocations of the function. In other words, S contains pairs that are higher
up in the call hierarchy. The function recursively invokes itself with those pairs of states that
occur as a variable in formula wxσi , but which have not yet been resolved, nor form part of
the call stack S.

After these calls have been completed and thewhile loop exited, the following two steps are
taken: First, the formulawxσi {x ← �} is derived fromwxσi by replacing every occurrence of
x by�, and second, the substitution σi+1 is derived from σi by adding a rule that substitutes x

123

Aggregation-based minimization of finite state automata 185

Algorithm 1 Aggregation-based bisimulation minimization algorithm.
1: function minimize(M)
2: σ0 ::= {〈q, q〉 ← � | q ∈ Q} ∪ {〈p, q〉 ← ⊥ | (p ∈ QF) �= (q ∈ QF)}
3: for x ∈ XM \ dom(σi) do
4: equiv(x, {x})
5: end for
6: return (M/ ∼σi)

7: end function

Algorithm 2 Point-wise computation of x ∈ XM

1: function equiv(x, S)
2: while ∃x ′ ∈ var(wxσi) \ S and wxσi is not resolved do
3: equiv(x ′, S ∪ {x ′})
4: end while
5: σi+1 ::= σi {x ← wxσi {x ← �}}
6: end function

q0 q1 q2

a

a a
a a

(a) A non-minimal NFA

q0

a

(b) A minimal NFA

Fig. 1 Two NFA of different sizes for L = {a∗}

bywxσi {x ← �}.When combined, these steps clear cyclic dependencies,while guaranteeing
that the maximal model for the updated formula remains the same.

Example 2 To illustrate the algorithm and sketch the intuition behind it, we consider the
automaton in Fig. 1a. The automaton represents a non-minimal NFA for the language L =
{a∗}; for comparison, Fig. 1b represents the minimal NFA for the same language.

The non-minimal NFA gives rise to nine pairs of states as variables. For the pair 〈q0, q1〉,
for example, the corresponding formula w〈q0,q1〉 is

(〈q0, q0〉 ∨ 〈q0, q2〉) ∧ (〈q1, q0〉 ∨ 〈q1, q2〉) ∧ (〈q0, q0〉 ∨ 〈q1, q0〉) ∧ (〈q0, q2〉 ∨ 〈q1, q2〉).
Line 1 of Algorithm 1 ensures that the three pairs of identical states all resolve to �. In

other words,

σ0 =
⋃

i∈{0,...,2}
{〈qi , qi 〉 ← �}

This means that w〈q0,q1〉σ0 = (〈q1, q0〉∨ 〈q1, q2〉)∧ (〈q0, q2〉∨ 〈q1, q2〉). As observed in the
proof of Lemma 3, the solution will be symmetric, so we need only consider, without loss of
generality, the three pairs 〈q0, q1〉, 〈q0, q2〉 and 〈q1, q2〉 and the corresponding formula for
each of these.

Assuming that the ‘for’ loop in Algorithm 1 initially selects the pair 〈q0, q1〉, a call to
equiv(〈q0, q1〉, {〈q0, q1〉}) occurs. In the called function equiv, the existential quantification
on Line 2 will be true, namely for each of the other two of the three pairs indicated above,
i.e., for 〈q0, q2〉 and 〈q1, q2〉.

Assuming 〈q0, q2〉 is selected, equiv(〈q0, q2〉, {〈q0, q1〉, 〈q0, q2〉}) is called. We have that
w〈q0,q2〉 = 〈q0, q1〉∧ 〈q1, q1〉∧ (〈q0, q1〉∨ 〈q1, q1〉), so w〈q0,q2〉σ0 = 〈q0, q1〉. Since 〈q0, q1〉

123

186 J. Björklund, L. Cleophas

is on the stack, the function returns, and we have

σ1 =
⋃

i∈{0,...,2}
{〈qi , qi 〉 ← �} ∪ {〈q0, q2〉 ← 〈q0, q1〉} .

The function now calls equiv with equiv(〈q1, q2〉, {〈q0, q1〉, 〈q1, q2〉}). Since w〈q1,q2〉 =
(〈q0, q1〉 ∧ 〈q1, q2〉) we have w〈q1,q2〉σ1 = (〈q0, q1〉 ∧ 〈q1, q2〉). Now, also 〈q1, q2〉 is on the
stack so the function returns and because (〈q0, q1〉 ∧ 〈q2, q1〉){〈q2, q1〉 ← �} = 〈q0, q1〉,
we have

σ2 =
⋃

i∈{0,...,2}
{〈qi , qi 〉 ← �} ∪ {〈q0, q2〉 ← 〈q0, q1〉, 〈q1, q2〉 ← 〈q0, q1〉)}.

The options on Line 2 of Algorithm 2 have now been exhausted, so the call to equiv returns
with

σ3 = ∪i∈{0,...,2}{〈qi , qi 〉 ← �} ∪ {〈q0, q2〉 ← �, 〈q1, q2〉 ← �, 〈q0, q1〉 ← �)}.
Thus, all three states have been identified as equivalent and can be merged into a single one,
yielding the automaton shown in Fig. 1b. �

4.1 Correctness

The correctness proof is based on the fact that throughout the computation, var(wxσi) ∩
dom(σi) = ∅, for every x ∈ XM . In other words, at every point of the computation, the set
of variables that occur in the domain of σi is disjoint from the set of variables that occur in
wxσi , x ∈ XM . This invariant means that there are no circular dependencies, and helps us
prove that eventually, every variable will be resolved. Intuitively, the invariant holds because
every time σi is updated by adding a variable x to its domain, the assignment on Line 5 of
Algorithm 2 clears x from wxσi while keeping Max(M, v0) = Max(M, σ i). The formal
argument is:

Lemma 5 At every point of the computation, var(wxσi) ∩ dom(σi) = ∅, for every x ∈ XM.

Proof The proof is by induction. Lemma 5 is trivially true after the initialisation of σ0 in
Algorithm 1.

Consider the assignment to σi+1 on Line 5 of Algorithm 2. By the induction hypoth-
esis, var(wxσi) ∩ dom(σi) = ∅. Since x /∈ var(wxσi {x ← �}), it follows that x /∈
var(wx ′σi {x ← wxσi {x ← �}}) for every x ′ ∈ XM , so σi can safely be updated to
σi {x ← wxσi {x ← �}} without invalidating Lemma 5. ��

Let us now ensure that the recursive calls always come to an end.

Lemma 6 Algorithm 1 terminates.

Proof We need only consider calls to function equiv. Since S grows with each recursive call
to equiv on Line 3 of Algorithm 2, the recursion is finite. Due to Line 5, each call to equiv
terminates with dom(σi) greater than before, hence the number of calls of the while-loop is
also finite. ��

It remains to verify every intermediate solution is a partial solution.

Lemma 7 Throughout the execution of Algorithm 1, and for every x ∈ dom(σi), the formula
(x → wx)σi is a tautology.

123

Aggregation-based minimization of finite state automata 187

Proof The proof is by induction on the index of σi . There are two cases. First, if σ0(x) = �,
then x = 〈p, p〉 for some p ∈ Q, which means that by Definition 2 of the characteristic
formula,wxσ0 is a tautology, and so is (x → wx)σ0. Second, Ifσ0(x) = ⊥, then (⊥ → wx)σ0
is clearly a tautology.

We continue to consider the inductive step, which extends the substitution by letting
σi+1 = σi {y ← wyσi {y ← �}}. For every x ∈ dom(σi+1), there are two cases:

– The variable x ∈ dom(σi). By the induction hypothesis, (x → wx)σi is a tautology, and
replacing every occurrence of a variable in a tautology with one and the same formula
yields a new tautology.

– The variable x = y, in which case (y → wy)σi+1 expands to the tautology

((wyσi){y ← �}) → ((wyσi){y ← (wyσi){y ← �}}),
which completes the proof. ��

Lemma 8 Throughout the execution of Algorithm 1, Max(M, v0) ∈ Mod(wMσi).

Proof The proof is by induction on the index of σi . By construction, σ 0 = v0, which estab-
lishes the base case.

We continue to consider the inductive step, which extends the substitution by letting
σi+1 = σi {x ← wxσi {x ← �}}.

We prove that for every x ′ ∈ XM , Max(M, v0) ∈ Mod((x ′ → wx ′)σi+1). Due to the
conjunctive structure of wM , we can take advantage of the fact that

Mod(wMσi+1) =
⋂

x ′∈XM

Mod((x ′ → wx ′)σi+1).

The argument has three cases:

– The variable x ′ ∈ dom(σi). By Lemma 7, (x ′ → wx ′)σi+1 is a tautology. This ensures
that Max(M, v0) ∈ Mod((x ′ → wx ′)σi+1).

– The variable x ′ = x , in which case (x → wx)σi+1 is again a tautology by Lemma 7, so
Max(M, v0) ∈ Mod((x ′ → wx ′)σi+1).

– Thevariable x ′ ∈ XM\dom(σi+1). By the inductionhypothesis, themodelMax(M, v0) ∈
Mod((x ′ → wx ′)σi), and if x ′ /∈ dom(σi+1), then x ′ /∈ dom(σi), so the model
Max(M, v0) ∈ Mod(x ′ → wx ′σi). If Max(M, v0)(x) = �, then Max(M, v0)(wxσi) =
�, and since wx is negation free, it must be the case that Max(M, v0)(wxσi {x ← �}) =
�, so Max(M, v0) is in

Mod(x ′ → wx ′(σi {x ← wxσi {x ← �}}) = Mod((x ′ → wx ′)σi+1).

This completes the case analysis and the proof. ��
Lemma 9 Throughout the execution of Algorithm 1, Max(M, v0) = Max(M, σ i).

Proof The proof is by induction on the index of σi . By construction, σ 0 = v0, so the base
case is trivially true.

We continue to consider the inductive step, which extends the substitution by letting
σi+1 = σi {x ← wxσi {x ← �}}.

We first observe that if σi is updated to σ ′
i = σi {x ← wx }, then by Lemma 8, we have

Max(M, v0) ∈ Ext(σ i) ∩ Mod(wMσi), from which it follows that Max(M, v0) ∈ Ext(σ ′
i).

Next, we note that x → wx ≡ (x → wx {x ← �}), so since Max(M, v0) ∈ Ext(σ ′
i), we

also have Max(M, v0) ∈ Ext(σ i+1). ��

123

188 J. Björklund, L. Cleophas

Let σt be the value of σi at the point of termination, in other words, when control reaches
Line 6 of Algorithm 1.

Observation 2 Since var(wxσt) = ∅, for every x ∈ XM, the interpretation σ t is total.

Lemmas 6, 9, and Observation 2 are combined in Theorem 3.

Theorem 3 Algorithm 1 terminates, and when it does, the relation∼σ t is the unique coarsest
bisimulation equivalence on M.

4.2 Complexity

Let us now discuss the efficient implementation of Algorithm 1. The key idea is to keep the
representation of the characteristic formula and the computed substitutions small by linking
recurring structures, rather than copying them. We use the parameter r to capture the amount
of nondeterminism in M . It is defined as r = maxq∈Q, f ∈Σ

∣
∣δ f (q)

∣
∣. In particular, r ≤ 1

whenever the automaton M is deterministic.
Let us denote the union of all wx , x ∈ XM , in other words, the formulas that appear as

right-hand sides in wM , by rhsM . In the update of σi on Line 5, some of these formulas may
be copied into others, so the growth of rhsMσi is potentially exponential. For the sake of
compactnesswe therefore represent rhsMσi as a directed acyclic graph (DAG) and allow node
sharing between formulas. In the following, we represent a DAG as a tuple (V , E, l), where
V is a set of nodes, E ⊆ V ×V is a set of (directed) edges, and l : V → XM ∪{∨,∧,⊥,�} is
a labelling function that labels each node with a variable name or logical symbol. In the initial
DAG, only nodes representing variables and the logical constants � and ⊥ are shared, but as
the algorithm proceeds, more substantial parts of the graph come to overlap. The construction
is straight-forward but has many steps, so readers that are satisfied with a high-level view
may want to continue to Theorem 4.

Definition 6 (DAG representation of formulas) Let L be the propositional logic (XM , {∨,∧,

�,⊥}) and let w ∈ WF(L). The (rooted, labelled) DAG representation D(w) of w is recur-
sively defined. For every x ∈ VM ∪ {�,⊥},

D(x) = ({u},∅, {(u, x)}) with root(D(x)) = u.

The DAG D(x) thus consists of a single node u labelled x , and u is the root of D(x).
For ⊗ ∈ {∨,∧} and w,w′ ∈ WF(L), we derive D(w ⊗ w′) from D(w) = (V , E, l) and
D(w′) = (V ′, E ′, l ′) by letting

D(w ⊗ w′) = (V ∪ V ′ ∪ {u},
E ∪ E ′ ∪ {(u, root(D(w))), (u, root(D(w′)))},
l ∪ l ′ ∪ {(u,⊗)}),

where root(D(w ⊗ w′)) = u, and then merging leaf nodes with identical labels.

Given the above definition, we obtain the many-rooted DAG representation D(rhsM) of
rhsM by taking the disjoint union of D(wx), wx ∈ rhsM , and merging all leaf nodes that
have identical labels. Thus, for each state pair x and for each of � and ⊥, there is a single
leaf node in D(rhsM).

Throughout the computation, we maintain a DAG representing D(rhsMσi). This is ini-
tialised to D(rhsM∅) and then immediately updated to D(rhsMσ0). On top of this DAG,
we assume that for each pair x , we have a reference refrhs(x) to wx , in other words, to the

123

Aggregation-based minimization of finite state automata 189

⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x3 x2 x1 x4

x2 ⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x1

Fig. 2 An example initial DAG D(rhsMσ0) with state-pair variables x1, . . . , x4. References refrhs are drawn
with double-lined arrows. The symbol ⊗ denotes a node labeled by ∧ or ∨

corresponding right-hand side representation in the DAG. Figure 2 illustrates the structure
of the initial DAG.

During the computation, the graph D(rhsMσi) is reorganised by changing the targets of
certain edges, but D(rhsMσi) does not grow. The exceptions are a potential once-off addition
of � and ⊥ labelled nodes during initialisation in Algorithm 1, and the addition of a single
outgoing edge to each of the initial leave nodes. Moreover, every time a variable is resolved,
D(rhsMσi) is updated to reflect this; while the refrhs(x)’s will continue to point at wxσi , the
expression wxσi changes to reflect the latest σi , and will be simplified as much as possible.

There are two cases to consider at Line 5 ofAlgorithm2.Thefirst of these is thatwxσi {x ←
�} resolves to� or⊥. In this case a number of adjustments are made to D(rhsMσi) to reflect
the updated wxσi+1 (illustrated in Fig. 3):

1. The formula wxσi in D(rhsMσi) is replaced by � or ⊥ as the case may be. Thus, the
graph D(rhsMσi) is modified to remove the nodes and edges of such wxσi .

2. The unique shared leaf node representing x in the DAG is re-labeled to either � or ⊥.
3. The re-labeling is propagated upwards along each DAG branch leading to this node, now

labeled � respectively ⊥, as this resolution of x may lead subtrees rooted further up this
branch to resolve to either ⊥ or � as well. In the case of ⊥, if the immediate parent is
labeled by∧, then it can be resolved to (i.e., replaced by a reference to)⊥. If the parent is
instead labelled ∨, then we can simplify the graph by deleting the edge and if it was the
last edge, also resolving the parent to ⊥. In the case of � and parent ∨, the parent can be
resolved to �. In the case of � with parent ∧, a simplification is possible by deleting the
edge between them, and if it was the last edge, resolving the parent to �. This processes
continues until no more simplifications or resolutions are possible.

In the second case, wxσi {x ← �} does not resolve to ⊥ or �. Here, as illustrated in
Fig. 4, two updates are made to D(rhsMσi):

1. The references in wxσi to the unique shared leaf node for x itself are replaced by refer-
ences to �.

2. The change is propagated upwards along each DAG branch leading to this reference to
�, as this local resolution of x may either simplify (in case of∧) or resolve (in case of∨)
subtrees rooted further up in rhsMσi . The resulting modified right-hand sidewxσi+1 may
either resolve to �, or still be a proper tree. In the first case, the unique shared leaf node
representing x in the DAG is re-labeled to�. This change is then propagated upwards, as

123

190 J. Björklund, L. Cleophas

⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x3 x2 x1 x4

x2 ⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x1

⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x3 x2 x4

x2 x1

Fig. 3 The update of the DAG D(rhsMσi) in the case where x gets resolved to either � or ⊥. The symbol
⊗ denotes a node labeled by either ∧ or ∨. The upper part of the images shows the nodes and edges that are
about to be deleted (outlined in gray), and the lower part shows how the information is propagated through
the graph (dashed lines)

described in the previous paragraph. In the second case, the node x may still be used in
right-hand sides other than wxσi+1, and is replaced there by a reference to the modified
wxσi+1.

The above graph manipulations permit an efficient implementation of Algorithm 1. In our
complexity analysis, we assume that the sets of state pairs involved provide constant time
insertion and deletion. This is an idealized view of the matter. In practice, one can represent
such a set as a hash table indexed by pairs of states. With this implementation, both set
operators will essentially take constant time, as long as the hash table is sufficiently large to
make hash collisions rare (see [10, p. 207]).

Theorem 4 (Complexity) Algorithm 1 is in O
(
n2r2 |Σ |)).

Proof The initialisation of σ0 in Algorithm 1 can be done it O(n2), whereupon the algorithm
proceeds to call Algorithm 2, which is in total called O(n2) times, over the entire execution
of Algorithm 1.

Let us look closer at the body of Algorithm 2 on input x and S. To satisfy the existence
clause in the ‘while’ loop of Algorithm 2, the algorithm needs to decide what variable to
resolve next. To do this, the algorithm finds the left-most leaf (i.e., node with no outgoing
edges) in the DAG representation ofwxσi . In other words, the algorithm follows the left-most
path from the root downwards inwxσi (the top-most subfigure of Fig. 2 gives an idea of what
path looks like).

123

Aggregation-based minimization of finite state automata 191

⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x3 x2 x1 x4

x2 ⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x1

⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x3 x2 x4

x2 ⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

x1

Fig. 4 The update of the DAG D(rhsMσi) in the case where x is not resolved to � or ⊥. The symbol ⊗
denotes a node labeled by either ∧ or ∨. The upper image shows the nodes and edges that are about to be
deleted (outlined in gray), and the lower image shows the new edges added in

In total, over the entire run of Algorithm 1, the algorithm must in the worst case traverse
each path from the root of D(wx) to a leaf in D(wx), for every x ∈ XM . The algorithm
must however only go down each path once, even when the representations of the formula
wx , x ∈ XM start to link up (like in the lower subfigure Fig. 4). The reason is that after a
call to equiv with argument x and S, the only variables left in wxσi are those in S, and these
will all be resolved to � or ⊥ at a later stages of the algorithm, at which points the DAG
representing wxσ will be simplified, until it has at last a decided Boolean value. The cost
for these simplifications is discussed in the next paragraph, and the cost for deciding what
variable to resolve next is a total |D(rhsM)| = O(n2r2 |Σ |) when summed over every call
to Algorithm 2.

The update to σi on Line 5 is where the majority of the work is done. First, the local
substitution wxσi {x ← �} on Line 5 requires O(r2 |Σ |) steps. As argued above, there are
two cases:

– If wxσi {x ← �} resolves to � or ⊥, we start at the node labelled x and follow all edges
in D(rhsMσi) backwards, updating the graph structure to reflect the truth value of x .
Every time we follow an edge, we are able to simplify D(rhsMσi) by removing at least
one edge and one node. This means that the total amount of work done at Line 5 is in
O(|D(rhsMσi)|) = O(n2r2 |Σ |) when summed over every call to Algorithm 2.

– If, instead,wxσi {x ← �} is not resolved, then the update of σi to σi+1 only takes constant
time, as it only involves the redirection of one pointer.

123

192 J. Björklund, L. Cleophas

In summary, the time complexity of Algorithm 2 is

O
(
n2 + n2r2 |Σ | + n2 · (r2 |Σ |) + n2r2 |Σ |) ,

which simplifies to the expression in the statement of Theorem 4. ��
Recall that bisimulation minimization coincides with classical minimization in the case

of dfa. Since we always have r ≤ 1 for such devices, we arrive at Corollary 1. This means
that the runtime of our algorithm, when applied to deterministic automata, is comparable to
that of the algorithm by Watson and Daciuk [24].

Corollary 1 Algorithm 1 minimizes any dfa in O
(
n2 |Σ |).

4.3 Lazy evaluation and heuristic improvements

We argued from the outset that one advantage of the aggregation approach is that also inter-
mediate solutions are language-equivalent with the original automaton. Let us now show
that every time that the call hierarchy returns to the level of Algorithm 1 (i.e., the function
minimize), every variable x ∈ XM on which equiv has been called, either from Algorithm 1
or through a recursive call from equiv itself, has also been resolved to � or ⊥.

We use var(σi) as shorthand for
⋃

x∈dom(σi)
var(σi (x)).

Lemma 10 Throughout the computation, var(σi) ⊆ S.

Proof The proof is by induction on the index of σi . When Algorithm 2 is invoked for the first
time, var(σ0) = ∅, so the statement is true.

In the construction of σi+1 we know from the induction hypothesis that var(σi) ⊆ S. The
modification of σi consists of substituting wxσi {x ← �} for x . The right-hand side wx only
contains variables that are in S, or in dom(σi), so by the induction hypothesis var(wxσi) ⊆ S.
Finally, all occurrences of x ∈ var(wxσi) are replaced by �, so x can safely be removed
from S when the function exits, without violating the statement of Lemma 10. ��
Theorem 5 Every time the process control returns tominimize, every pair x on which equiv
has been called is resolved.

Proof Every time the call hierarchy returns to minimize, the stack S empties. Let σi be the
state of the substitution when this happens. By Lemma 10, var(wxσi) = ∅, so wxσi is
resolved. ��

Finally, we note that Algorithm 1 can be extended to add (p, q) → ⊥ to σ0 for each pair
of states p and q such that the sets of unique symbols that label the transitions from p and q
differ. This technique does not affect the asymptotic running time of the algorithm, but may
be of practical value.

5 Conclusion

Wehave presented aminimization algorithm for nfas that identifies andmerges bisimulation-
equivalent states. In terms of running time, it is as efficient as any existing aggregation-
based minimisation algorithm for dfas, but less efficient than the fastest refinement-based
minimisation algorithms derived from Hopcroft’s algorithm for nfas. However, compared

123

Aggregation-based minimization of finite state automata 193

to the latter group, it has the advantage that intermediate solutions are usable for language-
preserving reduction of the input automaton M .

The algorithm is the first to compute the coarsest bisimulation relation on M through
partition aggregation. Also the logical framework used for representation and computation
appears to be new for this application. For this reason, the investigation of optimization
techniques similar to those used inSATsolvers is an interesting future endeavour. Furthermore
the generalization of the algorithm to, for example, nondeterministic tree automata could be
considered.

A disadvantage of the proposed algorithm is that it builds the entire characteristic formula
for the input machine, before the actual evaluation starts. For some cases, where state sim-
ilarity can be disregarded after considering a fraction of the formula, this is not well-spent
work.We are therefore interested in approaches that assemble the clauses of the characteristic
formula as they are needed. The updated algorithm would likely have the same worst-case
complexity as the original one, but may perform better in the average case. Average time
complexity is in itself a relevant item of study. Recently, Bassino et al. [4] and David [11]
published on the average-case complexities of the well-known Hopcroft’s and Moore’s algo-
rithms, and a similar analysis could shed further light on Algorithm 1.

Acknowledgements Open access funding provided by Umea University.

Funding Funding was provided by the Swedish Research Council (Grant No. 621-2012-455).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abdulla, P.A., Holík, L., Kaati, L., Vojnar, T.: A uniform (bi-)simulation-based framework for reducing
tree automata. Electron. Notes Theor. Comput. Sci. 251, 27–48 (2009)

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading (1974)

3. Almeida, M., Moreira, N., Reis, R.: Incremental DFA minimisation. RAIRO Theor. Inform. Appl. 48(2),
173–186 (2014). https://doi.org/10.1051/ita/2013045

4. Bassino, F., David, J., Nicaud, C.: On the average complexity ofMoore’s state minimization algorithm. In:
Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS
2009), Freiburg, Germany, Leibniz International Proceedings in Informatics (LIPIcs), vol. 3, pp. 123–134
(2009)

5. Björklund, J., Cleophas, L.: Minimization of finite state automata through partition aggregation. In:
Drewes, F., Martín-Vide, C., Truthe, B. (eds.) Proceedings of the 11th International Conference on Lan-
guage and Automata Theory and Applications (LATA 2017), Umeå, Sweden, Lecture Notes in Computer
Science, vol. 10168, pp. 223–235 (2017)

6. Björklund, J., Maletti, A., May, J.: Backward and forward bisimulation minimization of tree automata.
Theor. Comput. Sci. 410(37), 3539–3552 (2009)

7. Björklund, J., Maletti, A., Vogler, H.: Bisimulation minimisation of weighted automata on unranked trees.
Fundamenta Informatica 92(1–2), 103–130 (2009)

8. Buchholz, P.: Bisimulation relations for weighted automata. Theor. Comput. Sci. 393(1–3), 109–123
(2008)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1051/ita/2013045

194 J. Björklund, L. Cleophas

9. Cleophas, L., Kourie, D.G., Strauss, T.: Watson BW (2009) On minimizing deterministic tree automata.
In: Holub, J., Žďárek, J. (eds.) Prague Stringology Conference, Prague, Czech Republic, pp. 173–182
(2009)

10. Daciuk, J.: Optimization of Automata. Gdańsk University of Technology Publishing House, Gdańsk
(2014)

11. David, J.: Average complexity of Moore’s and Hopcroft’s algorithms. Theor. Comput. Sci. 417, 50–65
(2012)

12. Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. J. Comput. Syst. Sci. 73(6),
908–923 (2007)

13. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automaton. In: Kohavi, Z. (ed.)
The Theory of Machines and Computations, pp. 189–196. Academic Press, Cambridge (1971)

14. Hopcroft, J.E., Ullman, J.D.: Set merging algorithms. SIAM J. Comput. 2(4), 294–303 (1973). https://
doi.org/10.1137/0202024

15. Huffman, D.A.: The synthesis of sequential switching circuits. J. Frankl. Inst. 257, 161–190 and 275–303
(1954)

16. Maletti, A.: Minimizing weighted tree grammars using simulation. In: Finite-State Methods and Natural
Language Processing, Pretoria, South Africa, 2009, pp. 56–68. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14684-8_7

17. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires
exponential space. In: 13th Annual IEEE Symposium on Switching and Automata Theory, pp. 125–129
(1972)

18. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C., McCarthy, J. (eds.)
Automata Studies, pp. 129–153. Princeton University Press, Princeton (1956)

19. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)
20. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
21. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975).

https://doi.org/10.1145/321879.321884
22. ten Eikelder H (1991) Some algorithms to decide the equivalence of recursive types. Technical Report

93/32, Department of Mathematics and Computer Science, Technische Universiteit Eindhoven
23. Watson, B.W.: Taxonomies and toolkits of regular language algorithms. Ph.D. thesis, Department of

Mathematics and Computer Science, TU Eindhoven (1995)
24. Watson, B.W., Daciuk, J.: An efficient incremental DFA minimization algorithm. Nat. Lang. Eng. 9(1),

49–64 (2003). https://doi.org/10.1017/s1351324903003127

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1137/0202024
https://doi.org/10.1137/0202024
https://doi.org/10.1007/978-3-642-14684-8_7
https://doi.org/10.1145/321879.321884
https://doi.org/10.1017/s1351324903003127

	Aggregation-based minimization of finite state automata
	Abstract
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Sets, numbers, and relations
	2.2 Finite state automata
	2.3 Propositional logic

	3 Logical framework
	4 Algorithm
	4.1 Correctness
	4.2 Complexity
	4.3 Lazy evaluation and heuristic improvements

	5 Conclusion
	Acknowledgements
	References

