
Acta Informatica (2020) 57:329–351
https://doi.org/10.1007/s00236-019-00355-5

ORIG INAL ART ICLE

Congruence from the operator’s point of view

Syntactic requirements onmodal characterizations

Maciej Gazda1 ·Wan Fokkink2 · Vittorio Massaro3

Received: 4 February 2019 / Accepted: 20 November 2019 / Published online: 2 December 2019
© The Author(s) 2019

Abstract
A basic sanity property of a process semantics is that it constitutes a congruence with respect
to standard process operators. This issue has been traditionally addressed by developing,
for a specific process semantics, a syntactic format for operational semantics specifications.
We suggest a novel, orthogonal approach, which focuses on a specific process operator
and determines a class of congruence relations for this operator. To this end, we impose
syntactic restrictions on Hennessy–Milner logic, so that a process semantics whose modal
characterization satisfies those criteria is guaranteed to be a congruence with respect to
the operator in question. We investigate alternative composition, action prefix, projection,
encapsulation, renaming, and parallel composition with communication, in the context of
both concrete and weak process semantics.

1 Introduction

Congruence of process operators with respect to a process semantics is a fundamental issue
in process algebra. In particular, it is an essential property for the existence of a sound
and complete axiomatization. There is a large body of research on proving the congruence
property. A widely used approach in the realm of structural operational semantics is to
define syntactic restrictions on transition rules of process operators. If a process operator is
defined by transition rules that comply with such a rule format, then the process semantics in
question is guaranteed to be a congruence with respect to this operator. Examples include the
panth format for bisimulation semantics [18] and formats designed specifically for several

B Wan Fokkink
w.j.fokkink@vu.nl

Maciej Gazda
mg410@leicester.ac.uk

Vittorio Massaro
vittorio.massaro11@gmail.com

1 University of Leicester, Leicester, UK

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

3 Google Zürich, Zürich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-019-00355-5&domain=pdf
http://orcid.org/0000-0001-7443-8978


330 M. Gazda et al.

decorated trace semantics [7]. Such rule formats are usually defined with one particular
process semantics in mind.

Interestingly, in [7] the modal characterization of a process semantics is taken as starting
point to derive the syntactic constraints of the congruence format for this semantics. A modal
characterization of a (concrete) process semantics is a sublanguage ofHennessy–Milner logic
[14] such that two processes are semantically equivalent if and only if they satisfy exactly the
same formulas in this modal characterization. For most process semantics in van Glabbeek’s
concrete [17] aswell asweak [16] spectrum, a correspondingmodal characterization has been
defined. Weak semantics, which take into account a special internal action τ , may require an
extension of Hennessy–Milner logic.

We consider the congruence issue from an operator’s point of view. For a number of
standard process operators, we determine sufficient requirements on process semantics to
guarantee that the semantics are a congruence with respect to these operators. To be more
precise, given a process operator,wedevelop syntactic constraints onmodal characterizations,
including some semantic parts concerning logical equivalence to relax these constraints. If the
modal characterization of a process semantics satisfies these constraints, then the semantics is
guaranteed to be compositional with respect to this process operator. So instead of going from
a process semantics to a class of transition system specifications for which that semantics
is a congruence, we go from the transition rules of a process operator to a class of process
semantics for which this operator is compositional. This approach offers an orthogonal view
on compositionality. It yields a convenient way to prove the congruence property for a given
process algebra and (multiple) process semantics. It moreover provides further insight into
connections between process algebra and modal logic.

In an earlier version of this paper [12] the method was applied to derive congruence for-
mats for a range of basic operators: action prefix, alternative composition, and two restriction
operators, and parallel composition (without communication), for concrete semantics. Here
the work is extended to deal with weak semantics, and covers some additional operators:
parallel composition with communication, renaming, and abstraction. For each of the opera-
tors we formulate specific requirements on an extension of Hennessy–Milner logic for weak
semantics, and show that modal characterizations of existing semantics satisfy these require-
ments. They apply to concrete semantics as well, by ignoring requirements that concern the
internal action τ .

It is with great pleasure that we make this contribution to the Festschrift for Rob van
Glabbeek to celebrate his 60th birthday.His groundbreaking research in concurrency theory is
pivotal for our paper. He developed the linear time—branching time spectrum and discovered
the strong connection between modal characterizations of process semantics and congruence
properties of operators. In general, his writings (not only confined to computer science)
broaden the reader’s perspective. Moreover, he is a wonderful colleague and friend, owing
to his sharp mind, colorful character, always cheerful mood, and taste for adventure.

2 Preliminaries

A labelled transition system (LTS) consists of a set S of states p (also called processes), a set
Act of actions a, a special action τ , and a set of transitions p

α−→ p′, where α ranges over
Act ∪{τ }. A process semantics is an equivalence relation on states in LTSs. Such a semantics
is called concrete if it disregards the action τ , and weak otherwise.

123



Congruence from the operator’s point of view 331

Hennessy–Milner logic [14] is a modal logic for specifying properties of states in an
LTS. There exist different equally expressive versions [6,14,17]. Here we choose the ver-
sion, denoted by HMLτ , that consists of the conjunction, negation, and diamond operators,
extended with the so-called weak diamond operator that concerns a sequence of transitions
carrying the internal action τ :

ϕ :: =
∧

i∈I

ϕi | ¬ϕ | 〈α〉ϕ | 〈ε〉ϕ

where I is any index set and α ranges over Act ∪ {τ }. If I consists of two elements i1 and i2,
ϕi1∧ ϕi2 denotes

∧
i∈I ϕi and ϕi1∨ϕi2 denotes ¬(

∧
i∈I ¬ϕi ). Let T and F abbreviate

∧
i∈∅ ϕi

and ¬T, respectively. We use ϕ〈α〉ϕ′ to denote ϕ ∧ 〈α〉ϕ′. Formulas are considered modulo
associativity, commutativity and idempotence of conjunction.

p |� ϕ denotes that process p satisfies formula ϕ. Conjunction and negation have the usual
meaning. We have p |� 〈α〉ϕ if there is a transition p

α−→ p′ where p′ |� ϕ. Moreover,
p |� 〈ε〉ϕ if there is a sequence of (zero or more) transitions p

τ−→ · · · τ−→ p′ where
p′ |� ϕ. We write ϕ ≡ ϕ′ if p |� ϕ ⇔ p |� ϕ′ for all processes p (in all LTSs).

A context C[] is an HMLτ formula with one occurrence of []. More generally, a multicon-
text C[]i∈I is an HMLτ formula containing one or more [] symbols, indexed by the elements
from set I . The formula C[ϕi ]i∈I is obtained by replacing the []i symbols with formulas ϕi .

Each sublanguage O of HMLτ gives rise to an equivalence over processes ∼O by identi-
fying those processes that satisfy exactly the same formulas in O:

p ∼O q
def⇐⇒ ∀ϕ ∈ O : (p |� ϕ ⇐⇒ q |� ϕ).

O is called a modal characterization of ∼O . Let O denote the largest subset of HMLτ for
which ∼O coincides with ∼O . Clearly, O ⊆ O. We note that O may contain formulas that
have no logically equivalent counterpart in O.

Below,modal characterizations of standard process semantics from the literature are given.
Formulas ϕ′ and ϕi at the right-hand side of a BNF grammar range over the modal characteri-
zation under consideration, while formulasψ andψi range over some other class of formulas.
We start with concrete semantics from the spectrum in [17].

– trace observations OT : ϕ:: = 〈a〉ϕ′ | T
– completed trace observations OCT : ϕ:: = 〈a〉ϕ′ | T | ∧

a∈Act ¬〈a〉T
– failure observations OF : ϕ:: = 〈a〉ϕ′ | ∧

i∈I ¬〈ai 〉T
– readiness observations OR : ϕ:: = 〈a〉ϕ′ | ∧

i∈I ¬〈ai 〉T ∧ ∧
j∈J 〈b j 〉T

– failure trace observations OFT : ϕ:: = 〈a〉ϕ′ | ∧
i∈I ¬〈ai 〉T ∧ ϕ′ | T

– ready trace observations ORT : ϕ:: = 〈a〉ϕ′ | ∧
i∈I ¬〈ai 〉T ∧ ∧

j∈J 〈b j 〉T ∧ ϕ | T
– impossible futures OIF : ϕ:: = 〈a〉ϕ′ | ∧

i∈I ¬ψi (ψi ∈ OT )

– possible futures OPF : ϕ:: = 〈a〉ϕ′ | ∧
i∈I ¬ψi ∧ ∧

j∈J ψ j (ψi , ψ j ∈ OT )

– simulation observations O1S : ϕ:: = 〈a〉ϕ′ | ∧
i∈I ϕi

– n-nested simulation observations OnS (n ≥ 2): ϕ:: = 〈a〉ϕ′ | ∧
i∈I ϕi | ¬ψ (ψ ∈

O(n−1)S)

– ready simulation observations ORS : ϕ:: = 〈a〉ϕ′ | ¬〈a〉T | ∧
i∈I ϕi

– bisimulation observations OB : ϕ:: = 〈a〉ϕ′ | ∧
i∈I ϕi | ¬ϕ′

We continue with modal characterizations for some weak semantics from the spectrum in
[16].

123



332 M. Gazda et al.

– weak trace observations OW T : ϕ:: = 〈ε〉〈a〉ϕ′ | T
– weak completed trace observations OWCT : ϕ:: = 〈ε〉〈a〉〈ε〉ϕ′ | T | 〈ε〉∧

a∈Act ¬〈ε〉〈a〉T
– weak failure observations OW F : ϕ:: = 〈ε〉〈a〉ϕ′ | 〈ε〉∧

i∈I ¬〈ε〉〈ai 〉T
– weak bisimulation observations OW B : ϕ:: = 〈ε〉ϕ′ | 〈ε〉〈a〉〈ε〉ϕ′ | ∧

i∈I ϕi | ¬ϕ′
– rooted weak bisimulation observations ORW B : ϕ:: = 〈ε〉〈α〉〈ε〉ψ (ψ ∈ OW B) | ψ (ψ ∈

OW B) | ∧
i∈I ϕi | ¬ϕ′

– delay bisimulation observations ODB : ϕ:: = 〈ε〉ϕ′ | 〈ε〉〈a〉ϕ′ | ∧
i∈I ϕi | ¬ϕ′

– rooted delay bisimulation observations ORDB : ϕ:: = 〈ε〉〈α〉ψ (ψ ∈ ODB) | ψ (ψ ∈
ODB) | ∧

i∈I ϕi | ¬ϕ′
– η-bisimulation observations OηB : ϕ:: = 〈ε〉ϕ′ | 〈ε〉ϕ′〈a〉〈ε〉ϕ′′ | ∧

i∈I ϕi | ¬ϕ′
– rooted η -bisimulation observations ORηB : ϕ:: = 〈α〉〈ε〉ψ (ψ ∈ OηB) | ψ (ψ ∈

OηB) | ∧
i∈I ϕi | ¬ϕ′

– branching bisimulation observationsOB B :ϕ:: = 〈ε〉ϕ′〈a〉ϕ′′ | 〈ε〉ϕ′∧(ϕ′′∨〈τ 〉ϕ′′) | ∧
i∈I

ϕi | ¬ϕ′
– rooted branching bisimulation observations ORB B : ϕ:: = 〈α〉ψ (ψ ∈ OB B) | ψ (ψ ∈

OB B) | ∧
i∈I ϕi | ¬ϕ′

A process algebra [8] is built from process operators with a certain arity and a set of
variables. Each variable is considered an (open) process term.Moreover, if a process operator
� has arity n and t1, . . . , tn are process terms, then also �(t1, . . . , tn) is a process term. A
process term is called closed if it does not contain variables.A structural operational semantics
[1] associates an LTS to a given process algebra, in which the states are the closed process
terms and the transitions are generated by what are called transition rules. A transition rule
is of the form

{ti αi−→ t ′i | i ∈ I }
u

β−→ v

where the ti , u, and v are (open) process terms and I is some index set. Intuitively it states
that if, for some substitution σ mapping variables to closed process terms, the transitions

σ(ti )
αi−→ σ(t ′i ) are present in the LTS for all i ∈ I , then the transition σ(u)

β−→ σ(v) is
also present in the LTS.

Given a process semantics ∼, we say that ∼ is a congruence with respect to process
operator � if, for all processes p1, . . . , pn, q1, . . . , qn ,

p1 ∼ q1 ∧ · · · ∧ pn ∼ qn �⇒ �(p1, . . . , pn) ∼ �(q1, . . . , qn)

3 Congruence requirements

In this section, we investigate several common process operators. For each of these operators
we provide syntactic requirements on modal characterizations of process semantics that
guarantee the congruence property for this operator with regard to such process semantics.

3.1 Alternative composition

We begin with alternative composition x + y, which expresses a nondeterministic choice
between two processes. It is defined by the following transition rules:

123



Congruence from the operator’s point of view 333

x
a−→ x ′

x + y
a−→ x ′ (R- alt- l)

y
a−→ y′

x + y
a−→ y′ (R- alt- r)

In order to state congruence requirements for this operator, we need to work with a
restricted variant of a context. A root-level context is a multicontext without occurrences of
modalities 〈α〉, for all α ∈ Act ∪ {τ }. Intuitively, a root-level context describes a property
that only concerns the root state of a process (before any transition occurs). In what follows,
we distinguish root-level contexts by adding a “0” subscript to a context’s name, e.g. C0[].
Given an HMLτ formula ϕ, its root-level subformulas are all subformulas ψ of ϕ that are not
in the scope of a diamond operator 〈α〉.

In the case of alternative composition, the residual behaviour of the process p + q after
performing a transition is completely determined by the behaviour of one of the components
p or q . This is expressed formally in the following lemmas:

Lemma 1 p + q |� 〈α〉ϕ ⇐⇒ (p |� 〈α〉ϕ ∨ q |� 〈α〉ϕ).

Lemma 2 p + q |� 〈ε〉〈α〉ϕ ⇐⇒ (p |� 〈ε〉〈α〉ϕ ∨ q |� 〈ε〉〈α〉ϕ).

We shall moreover use the following straightforward fact.

Lemma 3 p |� 〈ε〉ϕ ⇐⇒ (p |� ϕ ∨ p |� 〈τ 〉〈ε〉ϕ).

For concrete semantics, Lemma 1 allows one to show a straightforward requirement
guaranteeing the congruence property: the language in question needs to be closed on sub-
conjunctions occurring at the root level, that is:

C0

[
∧

i∈I

ϕi

]
∈ O �⇒ ∀i ∈ I : ϕi ∈ O.

Semantics that fail to satisfy the above property may not be a congruence with respect
to alternative composition. For example, O = {〈a〉T ∧ 〈b〉T} violates this property because
the conjuncts 〈a〉T and 〈b〉T are not in O. We have (using CCS notation): a.0 ∼O 0, but
a.0 + b.0 �∼O 0 + b.0, because a.0 + b.0 |� 〈a〉T ∧ 〈b〉T while 0 + b.0 does not satisfy
this formula. Here a._ and b._ denote action prefix (see Sect. 3.2) and 0 is a constant that
displays no behaviour.

The above requirement is insufficient for weak semantics. To see this, consider O =
{〈ε〉¬〈b〉T}, which clearly satisfies this property. We have τ.a.0 ∼O a.0, but τ.a.0+b.0 �∼O
a.0 + b.0, because τ.a.0 + b.0 |� 〈ε〉¬〈b〉T while a.0 + b.0 does not satisfy this formula.
Therefore an extra requirement is needed for the weak diamond operator 〈ε〉.

The following theoremgives sufficient requirements for amodal characterization to induce
a congruence with respect to alternative composition. Note that the requirements below
involve root-level contexts only—this stronger restriction of root-level behaviour is also
present in process semantics from the literature, in the form of rooted versions of weak
bisimulation semantics. For concrete semantics only the first requirement is relevant, as
their modal characterizations do not contain the 〈ε〉ϕ construct. Note moreover that (alt- 1)
is entirely syntactic (i.e., ϕi ∈ O), while (alt- 2) is partly syntactic (ϕ ∈ O) and partly
semantic (ϕ ∈ O and ϕ ≡ 〈α〉ϕ′). The advantage of using these semantics parts instead of
their syntactic counterparts is that it yields a more relaxed requirement. The syntactic parts
are used for the structural induction hypothesis (IH) in the proof of Theorem 1.

123



334 M. Gazda et al.

Theorem 1 Let O ⊆ HMLτ satisfy the following two requirements, for all root-level contexts
C0[] and formulas ϕi , ϕ:

(alt- 1) C0[∧i∈I ϕi ] ∈ O �⇒ ∀i ∈ I : ϕi ∈ O
(alt- 2) C0[〈ε〉ϕ] ∈ O �⇒ (ϕ ∈ O ∧ 〈τ 〉〈ε〉ϕ ∈ O) ∨ ∃α. ∃ϕ′ : ϕ ≡ 〈α〉ϕ′

Then ∼O is a congruence with respect to the alternative composition operator.

Proof Suppose that the languageO ⊆ HMLτ satisfies (alt- 1) and (alt- 2). Suppose further
that p ∼O p′ and q ∼O q ′. We need to show that p +q ∼O p′ +q ′, that is, for all ϕ ∈ O we
have p + q |� ϕ ⇐⇒ p′ + q ′ |� ϕ. The proof proceeds with structural induction on ϕ. The
base case, ϕ = T, is covered by the first inductive case, taking I = ∅. Where appropriate,
facts that are used in a derivation step are denoted at the right-hand side of the ⇐⇒ sign.

– ϕ = ∧
i∈I ϕi :

p + q |� ∧
i∈I ϕi ⇐⇒

∀i ∈ I : p + q |� ϕi ⇐⇒ ((alt- 1) + IH)
∀i ∈ I : p′ + q ′ |� ϕi ⇐⇒
p′ + q ′ |� ∧

i∈I ϕi

– ϕ = 〈α〉ψ :
p + q |� 〈α〉ψ ⇐⇒ (Lemma 1)
p |� 〈α〉ψ ∨ q |� 〈α〉ψ ⇐⇒ (p ∼O p′ ∧ q ∼O q ′)
p′ |� 〈α〉ψ ∨ q ′ |� 〈α〉ψ ⇐⇒ (Lemma 1)
p′ + q ′ |� 〈α〉ψ

– ϕ = 〈ε〉ψ : We consider two subcases:

– ψ ≡ 〈α〉ψ ′ for some α and ψ ′: p + q |� 〈ε〉〈α〉ψ ′ ⇐⇒ (Lemma 2)
p |� 〈ε〉〈α〉ψ ′ ∨ q |� 〈ε〉〈α〉ψ ′ ⇐⇒ (p ∼O p′ ∧ q ∼O q ′)
p′ |� 〈ε〉〈α〉ψ ′ ∨ q ′ |� 〈ε〉〈α〉ψ ′ ⇐⇒ (Lemma 2)
p′ + q ′ |� 〈ε〉〈α〉ψ ′

– ψ �≡ 〈α〉ψ ′ for all α and ψ ′, so by (alt- 2), ψ ∈ O and 〈τ 〉〈ε〉ψ ∈ O: p + q |�
〈ε〉ψ ⇐⇒ (Lemma 3)

p + q |� ψ ∨ p + q |� 〈τ 〉〈ε〉ψ ⇐⇒ (ψ ∈ O + IH, Lemma 1)
p′ + q ′ |� ψ ∨ p |� 〈τ 〉〈ε〉ψ ∨ q |� 〈τ 〉〈ε〉ψ ⇐⇒ (〈τ 〉〈ε〉ψ ∈ O + p ∼O
p′ ∧ q ∼O q ′)
p′ + q ′ |� ψ ∨ p′ |� 〈τ 〉〈ε〉ψ ∨ q ′ |� 〈τ 〉〈ε〉ψ ⇐⇒ (Lemma 1)
p′ + q ′ |� ψ ∨ p′ + q ′ |� 〈τ 〉〈ε〉ψ ⇐⇒ (Lemma 3)
p′ + q ′ |� 〈ε〉ψ
In the first application of (alt- 2), we use that ψ �≡ 〈α〉ψ ′ implies ψ ∈ O. In the
second application of (alt- 2), we use that ψ �≡ 〈α〉ψ ′ implies 〈τ 〉〈ε〉ψ ∈ O.

– ϕ = ¬ψ :
Let ψ ′ be the outermost subformula of ψ that does not have ¬ at its root, that is, ψ =
(¬)nψ ′. Clearly, ϕ is logically equivalent to either ψ ′ or ¬ψ ′. The case ϕ ≡ ψ ′ was
covered by the three inductive cases above, with regard to ψ ′ instead of ϕ. Here it is
important to observe that (¬)n[] is a root-level context, which implies that requirements
(alt- 1) and (alt- 2) apply to ψ ′ as well. Finally, if ϕ ≡ ¬ψ ′, then it suffices to observe
that p + q |� ψ ′ ⇐⇒ p′ + q ′ |� ψ ′ yields p + q |� ¬ψ ′ ⇐⇒ p′ + q ′ |� ¬ψ ′. So
this case basically coincides with the case ϕ ≡ ψ ′. ��

123



Congruence from the operator’s point of view 335

To satisfy (alt- 1), OCT needs to be syntactically enriched (outside the BNF grammar)
with formulas ¬〈a〉T. This enrichment clearly does not change the distinguishing power of
the modal characterization.With this enrichment, the modal characterizations of the concrete
semantics in Sect. 2 all satisfy (alt- 1). Therefore Theorem 1 yields:

Corollary 1 ∼T , ∼CT , ∼F , ∼R, ∼FT , ∼RT , ∼IF , ∼PF , ∼nS (for n ≥ 1), ∼RS, and ∼B are
congruences for the alternative composition operator.

Likewise, to satisfy (alt- 1), the modal characterizationOWCT needs to be enriched with
formulas ¬〈ε〉〈a〉T. Again, this enrichment does not change the distinguishing power of
the modal characterization. With this enrichment, the modal characterizations of the weak
semantics mentioned in the following theorem satisfy (alt- 1) and (alt- 2).

Corollary 2 ∼W T , ∼WCT , ∼W F , ∼RW B, ∼RDB, ∼RηB, and ∼RB B are congruences for the
alternative composition operator.

The unrooted versions of weak, delay, η-, and branching bisimulation semantics do not
constitute congruences for the alternative composition operator. Their modal characteriza-
tions indeed violate (alt- 2). For example, let ϕ = ¬(〈ε〉〈a〉〈ε〉T). Then 〈ε〉ϕ is inOW B , but
〈τ 〉〈ε〉ϕ /∈ OW B and there do not exist an α and ϕ′ such that ϕ ≡ 〈α〉ϕ′.

3.2 Action prefix

Action prefix is a unary operator which represents execution of a single action followed by
the process given as the argument. It is defined by a family of transition rules, with one rule
for each α ∈ Act ∪ {τ }:

α.x
α−→ x

(R- act)

We can arrive at a proper congruence requirement using the following simple lemma that
lists all the possible cases when a process of the form α.p satisfies modalities 〈α′〉ϕ and 〈ε〉ϕ.
Lemma 4 For all α, α′ ∈ Act ∪ {τ } and a ∈ Act:

1. α.p |� 〈α′〉ϕ ⇐⇒ p |� ϕ ∧ α = α′
2. τ.p |� 〈ε〉ϕ ⇐⇒ p |� 〈ε〉ϕ ∨ τ.p |� ϕ

3. a.p |� 〈ε〉ϕ ⇐⇒ a.p |� ϕ

The following theoremgives sufficient requirements for amodal characterization to induce
a congruence with respect to action prefix. Note that (act- 1) is syntactic (ϕ ∈ O), while
(act- 2) is semantic (〈ε〉ϕ ∈ O).

Theorem 2 Let O ⊆ HMLτ satisfy, for all contexts C[] and formulas ϕ:

(act- 1) C[〈α〉ϕ] ∈ O �⇒ ϕ ∈ O
(act- 2) C[〈ε〉ϕ] ∈ O �⇒ 〈ε〉ϕ ∈ O

Then ∼O is a congruence with respect to the action prefix operator.

Proof Let p ∼O q . We need to show that for all ψ ∈ O and α ∈ Act ∪ {τ }, α.p |�
ψ ⇐⇒ α.q |� ψ . This can be achieved by proving a stronger statement: for all ψ ∈ O, all
subformulas ϕ of ψ , and all α ∈ Act ∪ {τ }, α.p |� ϕ ⇐⇒ α.q |� ϕ.

123



336 M. Gazda et al.

Let ϕ be a subformula of some ψ ∈ O. Since requirements (act- 1) and (act- 2) are
formulated for general contexts C[], they are guaranteed to hold for ϕ. The proof employs
structural induction on ϕ. Clearly, ϕ is of the formC0[〈ξi 〉ϕi ]i∈I with ξi ∈ Act ∪{τ, ε}, where
C0[]i∈I is a root-level multicontext with the additional property that it does not contain
diamond operators. Since C[]i∈I is built from only conjunction and negation, whether a
process satisfies ϕ is completely determined by the satisfaction of 〈ξi 〉ϕi for i ∈ I by this
process. In other words, if ∀i ∈ I : (r1 |� 〈ξi 〉ϕi ⇐⇒ r2 |� 〈ξi 〉ϕi ), then r1 |� ϕ ⇐⇒ r2 |�
ϕ. Thus, in order to prove the main statement, it suffices to show that

∀i ∈ I : (α.p |� 〈ξi 〉ϕi ⇐⇒ α.q |� 〈ξi 〉ϕi ).

We consider the following two cases:

– ξi = αi , with αi ∈ Act ∪ {τ }:
α.p |� 〈αi 〉ϕi ⇐⇒ (case 1 of Lemma 4)
α = αi ∧ p |� ϕi ⇐⇒ ((act- 1) + p ∼O q)
α = αi ∧ q |� ϕi ⇐⇒ (case 1 of Lemma 4)
α.q |� 〈αi 〉ϕi

– ξi = ε: There are two subcases to consider.

– α = τ :
τ.p |� 〈ε〉ϕi ⇐⇒ (case 2 of Lemma 4)
p |� 〈ε〉ϕi ∨ τ.p |� ϕi ⇐⇒ ((act- 2) + p ∼O q)
q |� 〈ε〉ϕi ∨ τ.p |� ϕi ⇐⇒ (IH)
q |� 〈ε〉ϕi ∨ τ.q |� ϕi ⇐⇒ (case 2 of Lemma 4)
τ.q |� 〈ε〉ϕi

– α = a ∈ Act :
a.p |� 〈ε〉ϕi ⇐⇒ (case 3 of Lemma 4)
a.p |� ϕi ⇐⇒ (IH)
a.q |� ϕi ⇐⇒ (case 3 of Lemma 4)
a.q |� 〈ε〉ϕi ��

That requirement (act- 1) is essential to guarantee the congruence property for the action
prefix operator is shown by the following counterexample. O = {〈a〉〈b〉T} violates (act- 1)
because 〈b〉T /∈ O. We have b.0 ∼O 0, but a.b.0 �∼O a.0, because a.b.0 |� 〈a〉〈b〉T while
a.0 does not satisfy this formula. That requirement (act- 2) is essential is shown by the
following counterexample. O = {〈ε〉〈a〉T ∧ ¬〈b〉T, T} satisfies (act- 1), but violates (act-
2) because 〈a〉T /∈ O. We have a.0 + b.0 ∼O b.0, but τ.(a.0 + b.0) �∼O τ.b.0, because
τ.(a.0 + b.0) |� 〈ε〉〈a〉T ∧ ¬〈b〉T while τ.b.0 does not satisfy this formula.

The modal characterizations of the concrete semantics in Sect. 2 all satisfy (act- 1).

Corollary 3 ∼T , ∼CT , ∼F , ∼R, ∼FT , ∼RT , ∼IF , ∼PF , ∼nS (for n ≥ 1), ∼RS, and ∼B are
congruences for the action prefix operator.

The modal characterizations of the weak semantics in Sect. 2 all satisfy (act- 1) and
(act- 2).

Corollary 4 ∼W T , ∼WCT , ∼W F , ∼W B, ∼RW B, ∼DB, ∼RDB, ∼ηB, ∼RηB, ∼B B and ∼RB B

are congruences for the action prefix operator.

123



Congruence from the operator’s point of view 337

3.3 Restriction operators: projection and encapsulation

In this section, we consider operators that can restrict the behaviour of a process. We focus
on two such operators: projection and encapsulation.

The nth projection πn , for each n ≥ 0, mimics the behaviour of a process up to level n
[4]. The family of projection operators is defined by the following transition rules (where a
ranges over Act):

x
a−→ x ′

πn+1(x)
a−→ πn(x ′)

R- pro- act
x

τ−→ x ′

πn(x)
τ−→ πn(x ′)

R- pro- tau

Note that π0(x) cannot perform any a-transitions.
The second restriction operator, encapsulation ∂B , with B ⊆ Act , disables all transitions

whose labels are in B. Its defining transition rules are (one for each α ∈ Act ∪ {τ }):
x

α−→ x ′ (α /∈ B)

∂B(x)
α−→ ∂B(x ′)

R- enc

Given any HMLτ formula, we can deduce which of its subformulas of the form 〈a〉ϕ
always yield F after applying a projection or encapsulation operator. Indeed, for a process
πn(p), any subformula 〈a〉ϕ at level n (i.e., any subformula within the scope of n diamond
operators labelled with visible actions) can be replaced by F. In the case of a process ∂B(p),
any subformula 〈b〉ϕ with b ∈ B can be replaced by F.

We shall now define the special property of the class of unary restriction operators such as
πn or ∂B that allows us to immediately deduce the satisfaction status of certain subformulas
after applying such an operator. That is, we consider unary restriction operators f such
that for each formula ϕ ∈ HMLτ there is a corresponding formula cut f (ϕ) in which each
subformula 〈α〉ϕ′ of ϕ that is known in advance not to be satisfied when evaluating ϕ for
any process f (p), is replaced by F. Actually this means that either we can replace a larger
subformula by T, or the entire formula becomes F. We can replace the first innermost negation
symbol (closest to the introduced F) and the following subformula by T; if the F symbol does
not appear within the scope of a negation symbol, then the whole formula yields F. Note
that this reasoning is valid due to the chosen syntax of HMLτ , which in particular lacks
disjunctions and box modalities. If a language O ⊆ HMLτ is closed under cut f , then it
induces a congruence with respect to f . The whole idea is formalized below.

Lemma 5 Let f be a unary process operator. Suppose there exists a function cut f : HMLτ →
HMLτ such that for each process p and formula ϕ,

(cut- 1) f (p) |� ϕ ⇐⇒ p |� cut f (ϕ)

If O ⊆ HMLτ satisfies ϕ ∈ O �⇒ cut f (ϕ) ∈ O, then ∼O is a congruence with respect to
f .

Proof LetO ⊆ HMLτ and p ∼O q .Wehave: f (p) |� ϕ ⇐⇒ (cut- 1) p |� cut f (ϕ) ⇐⇒
(p ∼O q and cut f (ϕ) ∈ O) q |� cut f (ϕ) ⇐⇒ (cut- 1) f (q) |� ϕ. ��

The next proposition gives an explicit requirement for a modal language to induce a
congruence in case the cut f formulas are obtained from the original ones by turning certain
subformulas into F.

123



338 M. Gazda et al.

Proposition 1 Let f be a unary process operator. Let cut f : HMLτ → HMLτ satisfy (cut- 1)
as well as

(cut- 2) for each formula ϕ, cut f (ϕ) is obtained by replacing
(zero or more) subformulas of ϕ by F

If O ⊆ HMLτ satisfies, for each context C[] and formula ϕ,

(res) C[¬ϕ] ∈ O �⇒ C[T] ∈ O

then ∼O is a congruence with respect to f .

Proof By Lemma 5 it suffices to prove that cut f (ϕ) ∈ O for all ϕ ∈ O. If cut f (ϕ) ≡ F, then
trivially it is inO. Consider the case cut f (ϕ) �≡ F. By (cut- 2), cut f (ϕ) ≡ C ′[F]i∈I for some
multicontext C ′[]i∈I . Since cut f (ϕ) �≡ F, and given that formulas contain only conjunctions,
existential diamond operators, and negations, clearly each occurrence of F in this formula
must be within the scope of a negation symbol. Hence cut f (ϕ) ≡ C ′[¬Di [F]]i∈I , where
for each i ∈ I we can choose the context Di [] such that [] is not within the scope of a
negation. (That is, we choose the negation symbols for all i ∈ I as low as possible in the
parse tree of the formula.) Then C ′[¬Di [F]]i∈I ≡ C ′[¬F]i∈I ≡ C ′[T]i∈I . Since O satisfies
(res), C ′[T]i∈I ∈ O. Hence cut f (ϕ) ∈ O. ��

We provided a general congruence framework for restriction operators. We now proceed
to define specific cut f functions for projection and encapsulation.

Proposition 2 The functions cutn and cutB defined below satisfy (cut- 1) and (cut- 2).

1. For the projection operators πn, with n ≥ 0:
cutn(

∧
i∈I ϕi ) = ∧

i∈I cutn(ϕi )

cutn(¬ϕ) = ¬cutn(ϕ)

cutn(〈ε〉ϕ) = 〈ε〉cutn(ϕ)

cut0(〈a〉ϕ) = F
cutn+1(〈a〉ϕ) = 〈a〉cutn(ϕ)

cutn(〈τ 〉ϕ) = 〈τ 〉cutn(ϕ)

2. For the encapsulation operators ∂B, with B ⊆ Act:
cutB(

∧
i∈I ϕi ) = ∧

i∈I cutB(ϕi )

cutB(¬ϕ) = ¬cutB(ϕ)

cutB(〈α〉ϕ) = 〈α〉cutB(ϕ) if α /∈ B
cutB(〈α〉ϕ) = F if α ∈ B
cutB(〈ε〉ϕ) = 〈ε〉cutB(ϕ)

Proof 1. That cutn and cutB satisfy (cut- 2) follows immediately from their inductive
definitions. We need to show that πn(p) |� ϕ ⇐⇒ p |� cutn(ϕ). The proof proceeds by
induction on the structure of ϕ. We consider the following cases:

– ϕ = ∧
i∈I ψi :

πn(p) |� ∧
i∈I ψi ⇐⇒

∀i∈I : πn(p) |� ψi ⇐⇒ (IH)
∀i∈I : p |� cutn(ψi ) ⇐⇒
p |� ∧

i∈I cutn(ψi ) ⇐⇒ (definition of cutn)
p |� cutn(

∧
i∈I ψi )

123



Congruence from the operator’s point of view 339

– ϕ = 〈a〉ψ :
We clearly have π0(p) �|� 〈a〉ψ and p �|� cut0(〈a〉ψ) = F. Hence the statement holds
for n = 0.
πn+1(p) |� 〈a〉ψ ⇐⇒ (rule R- pro- act + semantics diamond)
∃p′ : (p

a−→ p′ ∧ πn(p′) |� ψ) ⇐⇒ (IH)
∃p′ : (p

a−→ p′ ∧ p′ |� cutn(ψ)) ⇐⇒ (semantics diamond)
p |� 〈a〉cutn(ψ) ⇐⇒ (definition of cutn)
p |� cutn+1(〈a〉ψ)

– ϕ = 〈ε〉ψ :
πn(p) |� 〈ε〉ψ ⇐⇒ (semantics weak diamond)
∃k ≥ 0.∃pp0, . . . , ppk : πn(p) = pp0

τ−→ . . .
τ−→ ppk ∧ ppk |� ψ

⇐⇒ (τ -steps can be derived only from rule R- pro- tau)
∃k ≥ 0.∃p0, . . . , pk : p = p0 ∧ p0

τ−→ . . .
τ−→ pk ∧ πn(pk) |� ψ ⇐⇒ (IH)

∃k ≥ 0.∃p0, . . . , pk : p = p0 ∧ p0
τ−→ . . .

τ−→ pk ∧ pk |� cutn(ψ)

⇐⇒ (semantics weak diamond)
p |� 〈ε〉cutn(ψ) ⇐⇒ (definition of cutn)
p |� cutn(〈ε〉ψ)

– ϕ = ¬ψ :
πn(p) |� ¬ψ ⇐⇒
πn(p) �|� ψ ⇐⇒ (IH)
p �|� cutn(ψ) ⇐⇒
p |� ¬cutn(ψ) ⇐⇒ (definition of cutn)
p |� cutn(¬ψ)

2. We need to show that for all B ⊆ Act , ∂B(p) |� ϕ ⇐⇒ p |� cutB(ϕ). This proof follows
the same line of reasoning as the one for the πn operators. The three cases, conjunction,
weak diamond, and negation, are almost the same as the corresponding ones above. (In
the weak diamond case, we use the fact that τ /∈ B.) Therefore, we only give an explicit
proof for the case of the diamond operator.

– ϕ = 〈α〉ψ . We consider two cases:

– α ∈ B:
Then ∂B(p) �|� 〈α〉ψ (rule R- enc) and p �|� cutB(〈α〉ψ) = F (by the definition of
cutB).

– α /∈ B:
∂B(p) |� 〈α〉ψ ⇐⇒ (rule R- enc + semantics diamond)
∃p′ : p

α−→ p′ ∧ ∂B(p′) |� ψ ⇐⇒ (IH)
∃p′ : p

α−→ p′ ∧ p′ |� cutB(ψ) ⇐⇒
p |� 〈α〉cutB(ψ) ⇐⇒ (definition of cutB + α /∈ B)
p |� cutB(〈α〉ψ) ��

Theorem 3 For each O ⊆ HMLτ that satisfies (res), ∼O is a congruence with respect to
the projection operators πn (for n ≥ 0) and the encapsulation operators ∂B (for B ⊆ Act).

Proof By Proposition 2, cutn and cutB satisfy (cut- 1)with respect to the πn and the ∂B , and
satisfy (cut- 2) as well. Since moreover O satisfies (res), the congruence property follows
by Proposition 1. ��

123



340 M. Gazda et al.

That requirement (res) in Proposition 1 is essential is shown by the following counterex-
amples.

– For the projection operator, take O = {〈a〉¬〈a〉T}, which violates (res) because 〈a〉T /∈
O. We have a.a.0 ∼O 0, but π1(a.a.0) �∼O π1(0), because π1(a.a.0) |� 〈a〉¬〈a〉T
while π1(0) does not satisfy this formula.

– For encapsulation, take O = {〈a〉¬〈b〉T}. We have a.b.0 ∼O 0, but ∂{b}(a.b.0) �∼O
∂{b}(0), because ∂{b}(a.b.0) |� 〈a〉¬〈b〉T while ∂{b}(0) does not satisfy this formula.

(res) is satisfied by every modal characterization from Sect. 2, except for (concrete and
weak) completed trace observations. Completed trace equivalence is a congruence with
respect to the projection operators πn , but not with respect to the encapsulation opera-
tors ∂B (if B �= ∅). For instance, we clearly have a.b.0 + a.c.0 ∼CT a.(b.0 + c.0), but
∂{b}(a.b.0 + a.c.0) � ∼CT ∂{b}(a.(b.0 + c.0)), because the first process has completed trace
a, while the second process does not.

Corollary 5 ∼T , ∼F , ∼R, ∼FT , ∼RT , ∼IF , ∼PF , ∼nS (for n ≥ 1), ∼RS, and ∼B are
congruences for the projection operators πn as well as the encapsulation operators ∂B.

Corollary 6 ∼W T , ∼W F , ∼W B, ∼RW B, ∼DB, ∼RDB, ∼ηB, ∼RηB, ∼B B and ∼RB B are
congruences for the projection operators πn as well as the encapsulation operators ∂B.

3.4 Modal decomposition technique

Sufficient congruence requirements for process operators may be obtained via the modal
decompositionmethod from [9,15]. This techniquewas introduced in the context of structural
operational semantics for developing congruence formats with respect to specific preorders
and equivalences [7,10].

We employ a simplified definition of a modal decomposition. Given an n-ary process
operator �, a (valid) modal decomposition with respect to � is a mapping of the form:

�−1 : HMLτ → P({1, . . . , n} → HMLτ )

with the property that for all process terms p1, . . . , pn ,

�(p1, . . . , pn) |� ϕ ⇐⇒ ∃Ψ ∈ �−1(ϕ). ∀i ∈ {1, . . . , n} : pi |� Ψ (i)

In other words, a modal decomposition provides a sound and complete method to infer
satisfaction of a given formula by a composite process �(p1, . . . , pn) from the satisfaction
of certain formulas by its components p1, . . . , pn . The utility of modal decomposition in the
context of congruence requirements is established by the following proposition.

Proposition 3 Let � be a process operator of arity n and �−1 a modal decomposition with
respect to �. Suppose further that O ⊆ HMLτ satisfies, for each formula ϕ:

for all Ψ ∈ �−1(ϕ) and all i ∈ {1, . . . , n}, Ψ (i) ∈ O.

Then � is a congruence with respect to ∼O .

Proof Let pi ∼O qi for i = 1, . . . , n. Consider any ϕ ∈ O. Then �(p1, . . . , pn) |� ϕ ⇐⇒
∃Ψ ∈ �−1(ϕ).∀i ∈ {1, . . . , n} : pi |� Ψ (i) ⇐⇒ (since Ψ (i) ∈ O and pi ∼O qi for
i = 1, . . . , n) ∃Ψ ∈ �−1(ϕ).∀i ∈ {1, . . . , n} : qi |� Ψ (i) ⇐⇒ �(q1, . . . , qn) |� ϕ. So
�(p1, . . . , pn) ∼O �(q1, . . . , qn). ��

123



Congruence from the operator’s point of view 341

The reasoning in the previous section that allows us to provide congruence requirements
for certain restriction operators can be seen as a particular, though rather trivial, instance of
the modal decomposition method from [9]. For instance, for the projection operator we can
define π−1

n (ϕ) as {1 �→ cutn(ϕ)}.
The modal decomposition method will prove useful in the following sections, where we

shall consider renaming and abstraction operators.

3.5 Renaming

The renaming operator ρ f from [3] changes labels of concrete actions performed by a given
process, according to a relabeling function f : Act → Act . For convenience, we shall always
consider an extended relabeling function f : Act ∪ {τ } → Act ∪ {τ } such that f (τ ) = τ .
The operator is defined by the following transition rule:

x
α−→ x ′

ρ f (x)
f (α)−→ ρ f (x ′)

(R- ren)

The modal decomposition approach is particularly suitable for renaming. We first need to
provide a proper modal decomposition function ρ−1

f . Since renaming is unary, the decom-

position can be defined as a function ρ−1
f : HMLτ → P(HMLτ ).

– ρ−1
f (

∧
i∈I ϕi ) = {∧i∈I ϕ′

i | ϕ′
i ∈ ρ−1

f (ϕi )}
– ρ−1

f (〈α〉ϕ) = {〈β〉ϕ′ | f (β) = α ∧ ϕ′ ∈ ρ−1
f (ϕ)}

– ρ−1
f (〈ε〉ϕ) = {〈ε〉ϕ′ | ϕ′ ∈ ρ−1

f (ϕ)}
– ρ−1

f (¬ϕ) = {∧
ϕ′∈ρ−1

f (ϕ)
¬ϕ′}

We show that ρ−1
f is a valid modal decomposition.

Proposition 4 For each renaming function f , process p, and formula ϕ,

ρ f (p) |� ϕ ⇐⇒ ∃ϕ′ ∈ ρ−1
f (ϕ) : p |� ϕ′

Proof We apply structural induction on ϕ. We consider the following inductive cases:

– ϕ = ∧
i∈I ψi :

ρ f (p) |� ∧
i∈I ψi ⇐⇒

∀i ∈ I : ρ f (p) |� ψi ⇐⇒ (IH)
∀i ∈ I : ∃ψ ′

i ∈ ρ−1
f (ψi ) : p |� ψ ′

i ⇐⇒
p |� ∧

i∈I ψ ′
i where for all i ∈ I , ψ ′

i ∈ ρ−1
f (ψi ) ⇐⇒ (definition of ρ−1

f )

∃ψ ′ ∈ ρ−1
f (

∧
i∈I ψi ) : p |� ψ ′

– ϕ = 〈a〉ψ where a /∈ f (Act):
The statement holds, since a /∈ f (Act) implies ρ f (p) �|� 〈a〉ψ , and on the other hand
f −1(a) = ∅ implies ρ−1

f (〈a〉ψ) = ∅.
– ϕ = 〈α〉ψ where α ∈ f (Act ∪ {τ }):

ρ f (p) |� 〈α〉ψ ⇐⇒ (semantics diamond + R- ren)

∃p′. ∃β : f (β) = α ∧ p
β−→ p′ ∧ ρ f (p′) |� ψ ⇐⇒ (IH)

∃p′. ∃β : f (β) = α∧ p
β−→ p′ ∧∃ψ ′ ∈ ρ−1

f (ψ) : p′ |� ψ ′ ⇐⇒ (semantics diamond)

123



342 M. Gazda et al.

∃β : f (β) = α ∧ ∃ψ ′ ∈ ρ−1
f (ψ) : p |� 〈β〉ψ ′ ⇐⇒ (definition of ρ−1

f )

∃ψ ′ ∈ ρ−1
f (〈α〉ψ) : p |� ψ ′

– ϕ = 〈ε〉ψ :
ρ f (p) |� 〈ε〉ψ ⇐⇒ (semantics weak diamond+ R- ren)

∃p′ : p
ε�⇒ p′ ∧ ρ f (p′) |� ψ ⇐⇒ (IH)

∃p′ : p
ε�⇒ p′ ∧ ∃ψ ′ ∈ ρ−1

f (ψ) : p′ |� ψ ′ ⇐⇒ (semantics weak diamond)

∃ψ ′ ∈ ρ−1
f (ψ) : p |� 〈ε〉ψ ′ ⇐⇒ (definition of ρ−1

f (ψ))

∃ψ ′ ∈ ρ−1
f (〈ε〉ψ) : p |� ψ ′

– ϕ = ¬ψ :
ρ f (p) |� ¬ψ ⇐⇒
ρ f (p) �|� ψ ⇐⇒ (IH)
∀ψ ′ ∈ ρ−1

f (ψ) : p �|� ψ ′ ⇐⇒
∀ψ ′ ∈ ρ−1

f (ψ) : p |� ¬ψ ′ ⇐⇒
p |� ∧

ψ ′∈ρ−1
f (ψ)

¬ψ ′ ⇐⇒ (definition of ρ−1
f )

∃ψ ′′ ∈ ρ−1
f (¬ψ) : p |� ψ ′′ ��

The proposition above, combined with Proposition 3, yields the following result.

Theorem 4 Let O ⊆ HMLτ and f : Act → Act. If for all formulas ϕ

(ren) ϕ ∈ O �⇒ ρ−1
f (ϕ) ⊆ O

then ∼O is a congruence with respect to the relabeling operator ρ f .

The requirement (ren) is satisfied by every modal characterization from Sect. 2.

Corollary 7 ∼T , ∼CT , ∼F , ∼R, ∼FT , ∼RT , ∼IF , ∼PF , ∼nS (for n ≥ 1), ∼RS, and ∼B are
congruences for the relabeling operator ρ f .

Corollary 8 ∼W T , ∼WCT , ∼W F , ∼W B, ∼RW B, ∼DB, ∼RDB, ∼ηB, ∼RηB, ∼B B, and ∼RB B

are congruences for the relabeling operator ρ f .

3.6 Abstraction

The abstraction operator TH from [5], also known as the hiding operator, converts concrete
actions from a set H ⊆ Act into internal ones.

x
α−→ x ′ (α /∈ H)

TH (x)
α−→ TH (x ′)

(R- abs- 1)
x

a−→ x ′ (a ∈ H)

TH (x)
τ−→ TH (x ′)

(R- abs- 2)

We proceed to define a modal decomposition function T −1
H .

– T −1
H (

∧
i∈I ϕi ) = {∧i∈I ϕ′

i | ϕ′
i ∈ T −1

H (ϕi )}
– T −1

H (〈τ 〉ϕ) = {〈α〉ϕ′ | α ∈ H ∪ {τ } ∧ ϕ′ ∈ T −1
H (ϕ)}

– T −1
H (〈a〉ϕ)) =

{
{〈a〉ϕ′ | ϕ′ ∈ T −1

H (ϕ)} if a /∈ H

∅ if a ∈ H

123



Congruence from the operator’s point of view 343

– T −1
H (〈ε〉ϕ) = {〈ε〉〈a1〉 · · · 〈ε〉〈an〉〈ε〉ϕ′ | n ≥ 0 ∧ a1, . . . , an ∈ H ∧ ϕ′ ∈ T −1

H (ϕ)}
– T −1

H (¬ϕ) = {∧
ϕ′∈T −1

H (ϕ)
¬ϕ′}

We show that T −1
H is a valid modal decomposition.

Proposition 5 Let H ⊆ Act. For each process p and formula ϕ,

TH (p) |� ϕ ⇐⇒ ∃ϕ′ ∈ T −1
H (ϕ) : p |� ϕ′

Proof We apply induction on the structure of ϕ.

– ψ = ∧
i∈I ψi :

TH (p) |� ∧
i∈I ψi ⇐⇒

∀i ∈ I : TH (p) |� ψi ⇐⇒ (IH)
∀i ∈ I .∃ψ ′

i ∈ T −1
H (ψi ) : p |� ψ ′

i ⇐⇒
p |� ∧

i∈I ψ ′
i where for all i ∈ I ψ ′

i ∈ T −1
H (ψi ) ⇐⇒ (definition of T −1

H )
∃ψ ′ ∈ T −1

H (
∧

i∈I ψi ) : p |� ψ ′

– ϕ = 〈a〉ψ . We distinguish two cases.

– a ∈ H :
The statement holds, since for all p, ψ , and a ∈ H we have TH (p) �|� 〈a〉ψ , and on
the other hand T −1

H (〈a〉ψ) = ∅ by the definition of T −1
H .

– a /∈ H :
TH (p) |� 〈a〉ψ ⇐⇒ (semantics diamond + R- abs- 1)
∃p′ : p

a−→ p′ ∧ TH (p′) |� ψ ⇐⇒ (IH)
∃p′ : p

a−→ p′ ∧ ∃ψ ′ ∈ T −1
H (ψ) : p′ |� ψ ′ ⇐⇒ (semantics diamond)

∃ψ ′ ∈ T −1
H (ψ) : p |� 〈a〉ψ ′ ⇐⇒ (definition of T −1

H )
∃ψ ′ ∈ T −1

H (〈a〉ψ) : p |� ψ ′

– ϕ = 〈τ 〉ψ :
TH (p) |� 〈τ 〉ψ ⇐⇒ (semantics diamond + rules of TH )
∃p′. ∃α ∈ H ∪ {τ } : p

α−→ p′ ∧ TH (p′) |� ψ ⇐⇒ (IH)
∃p′. ∃α ∈ H ∪ {τ } : p

α−→ p′ ∧ ∃ψ ′ ∈ T −1
H (ψ) : p′ |� ψ ′ ⇐⇒ (semantics diamond)

∃α ∈ H ∪ {τ }. ∃ψ ′ ∈ T −1
H (ψ) : p |� 〈α〉ψ ′ ⇐⇒ (definition of T −1

H )
∃ψ ′ ∈ T −1

H (〈τ 〉ψ) : p |� ψ ′

– ϕ = 〈ε〉ψ :
TH (p) |� 〈ε〉ψ ⇐⇒ (semantics weak diamond)
∃p′ : TH (p)

ε�⇒ TH (p′) ∧ TH (p′) |� ψ ⇐⇒ (IH)
∃p′ : TH (p)

ε�⇒ TH (p′) ∧ ∃ψ ′ ∈ T −1
H (ψ) : p′ |� ψ ′ ⇐⇒ (rules of TH )

∃n ≥ 0. ∃p0, . . . , pn : (p
ε�⇒ p0 ∧ ∃a1, . . . , an ∈ H . ∀0 ≤ i < n : (pi

ai+1−→ ε�⇒
pi+1 ∧ ∃ψ ′ ∈ T −1

H (ψ) : TH (pn) |� ψ ′))
⇐⇒ (semantics diamond and weak diamond operators)
∃n ≥ 0. ∃a1, . . . , an∈H . ∃ψ ′ ∈ T −1

H (ψ) : p |� 〈ε〉〈a1〉 · · · 〈ε〉〈an〉〈ε〉ψ ′
⇐⇒ (definition of T −1

H )
∃ψ ′′ ∈ T −1

H (〈ε〉ψ) : p |� ψ ′′

– ϕ = ¬ψ :
TH (p) |� ¬ψ ⇐⇒

123



344 M. Gazda et al.

TH (p) �|� ψ ⇐⇒ (IH)
∀ψ ′ ∈ T −1

H (ψ) : p �|� ψ ′ ⇐⇒
∀ψ ′ ∈ T −1

H (ψ) : p |� ¬ψ ′ ⇐⇒
p |� ∧

ψ ′∈T −1
H (ψ)

¬ψ ′ ⇐⇒ (definition of T −1
H )

∃ψ ′′ ∈ T −1
H (¬ψ) : p |� ψ ′′ ��

The proposition above, combined with Proposition 3, yields the following result.

Theorem 5 Let O ⊆ HMLτ and H ⊆ Act. If for all formulas ϕ

(abs) ϕ ∈ O �⇒ T −1
H (ϕ) ⊆ O

then ∼O is a congruence with respect to the abstraction operator TH .

The requirement (abs) is satisfied by every weak modal characterization from Sect. 2.

Corollary 9 ∼W T , ∼WCT , ∼W F , ∼W B, ∼RW B, ∼DB, ∼RDB, ∼ηB, ∼RηB, ∼B B, and ∼RB B

are congruences for the abstraction operator TH .

3.7 Parallel composition

The parallel composition operator interleaves the behavior of its two arguments, and also
allows synchronous communication between two concurrent actions of its two arguments.
Let γ : Act × Act → Act define a partially defined, symmetric function, representing
the result of the communication between two actions. The parallel composition operator is
defined by the following transition rules.

x
α−→ x ′

x || y
α−→ x ′ || y

(R- par- 1)
y

α−→ y′

x || y
α−→ x || y′ (R- par- 2)

x
a−→ x ′ y

b−→ y′ (a, b) ∈ dom(γ )

x || y
γ (a,b)−→ x ′ || y′

(R- par- 3)

Wenote that allowing τ in the range of γ would lead to amore strict version of the syntactic
congruence requirement (par) in Theorem 6.ACCS-like parallel operator can be obtained by
combining the parallel composition operator from this section with the abstraction operator
from Sect. 3.6.

To build some intuition for the upcoming syntactic congruence requirement for the
parallel composition operator, let us restrict for a moment to only trace formulas (mean-
ing that conjunctions are disregarded) and ignore τ . The following example shows that
requirement (act- 1) from Theorem 2 and even being closed under substrings does not
guarantee congruence for the parallel composition operator. (By a substring of a string
w we mean a subsequence of elements appearing consecutively in w.) Take O =
{T, 〈a〉T, 〈b〉T, 〈a〉〈b〉T, 〈a〉〈b〉〈a〉T, 〈b〉〈a〉T}. This language satisfies (act- 1) and is also
closed under prefixes and substrings (but not arbitrary subsequences). However, we have
a.a.0 ∼O a.0, but (a.a.0) || (b.0) |� 〈a〉〈b〉〈a〉T while (a.0) || (b.0) does not satisfy this
formula. This example suggests that if a trace σ belongs to O, then all subsequences of σ

must belong to the language as well. This is not unexpected; the behaviour of parallel com-
position consists of all possible interleavings of the component processes, and all of these
interleavings should be described in the modal characterization.

123



Congruence from the operator’s point of view 345

It is also necessary to close the language on subconjunctions. Indeed, take O =
{〈a〉T ∧ 〈b〉T}, a language which does not meet this condition. We have a.0 ∼O b.0, but
(a.0) || (b.0) |� 〈a〉T∧〈b〉Twhile (b.0) || (b.0) does not satisfy this formula. This concludes
the intermezzo to strengthen the intuition for the (admittedly syntactically rather complex)
technical developments in the remainder of this section.

For all the operators and semantics considered so far, we have worked with standard
modal characterisations that use the baseHMLτ syntax.However, for the parallel composition
operator it is beneficial to include certain additional constructs. Namely, we introduce three
operators ∅, ∅̃, 〈τ̂ 〉 which, while redundant from the expressiveness point of view, facilitate
providing congruence requirements. Their semantics are:

– p |� ∅ def⇐⇒ p |� ∧
a∈Act ¬〈a〉T

– p |� ∅̃ def⇐⇒ p |� ∧
a∈Act ¬〈ε〉〈a〉T

– p |� 〈τ̂ 〉ϕ def⇐⇒ p |� ϕ ∨ 〈τ 〉ϕ
The three operators are not shorthands, but separate syntactic entities. We shall use the
notation HMLτ ∪ {∅, ∅̃, 〈τ̂ 〉} to denote the language obtained by endowing HMLτ with these
additional constructs.

Below are the alternative modal characterisations of completed trace, weak completed
trace, and (rooted) branching bisimulation semantics:

– alternative completed trace observations ÔCT : ϕ:: = 〈a〉ϕ′ | T | ∅
– alternative weak completed trace observations ÔWCT : ϕ:: = 〈ε〉〈a〉〈ε〉ϕ′ | T | ∅̃
– alternative branching bisimulation observations ÔB B : ϕ:: = 〈ε〉ϕ′〈a〉ϕ′′ | 〈ε〉ϕ′〈τ̂ 〉ϕ′′ |∧

i∈I ϕi | ¬ϕ′
– alternative rooted branching bisimulation observations ÔRB B : ϕ:: = 〈α〉ψ (ψ ∈

ÔB B) | ψ (ψ ∈ ÔB B) | ∧
i∈I ϕi | ¬ϕ′

Let ϕ⇒ denote the set of formulas logically entailed by ϕ, i.e., ϕ⇒ = {ψ ∈ HMLτ | ¬ϕ ∨
ψ ≡ T}. The function Par, defined below, can be seen as an inverse modal decomposition:
for a pair of simpler formulas, it yields a set of more complex formulas that are supposed to
be satisfied by a composite process.

Definition 1 Par : HMLτ × HMLτ → P(HMLτ ) is defined inductively by:

–
∧

i∈I ϕi ∈ Par(ϕA, ϕB)
def⇐⇒ ∀i ∈ I .∃ϕi

A ∈ ϕ⇒
A , ϕi

B ∈ ϕ⇒
B : ϕi ∈ Par(ϕi

A, ϕi
B)

– 〈α〉ϕ ∈ Par(ϕA, ϕB)
def⇐⇒ ∃ψC : 〈α〉ψC ∈ ϕ⇒

A ∧ ϕ ∈ Par(ψC , ϕB)

∨ ∃ψD : 〈α〉ψD ∈ ϕ⇒
B ∧ ϕ ∈ Par(ϕA, ψD) ∨ ∃c, d ∈ Act .∃ψC , ψD :

γ (c, d) = α ∧ 〈c〉ψC ∈ ϕ⇒
A ∧ 〈d〉ψD ∈ ϕ⇒

B ∧ ϕ ∈ Par(ψC , ψD)

– 〈τ̂ 〉ϕ ∈ Par(ϕA, ϕB)
def⇐⇒ ∃ψC : 〈τ̂ 〉ψC ∈ ϕ⇒

A ∧ ϕ ∈ Par(ψC , ϕB)

∨ ∃ψD : 〈τ̂ 〉ψD ∈ ϕ⇒
B ∧ ϕ ∈ Par(ϕA, ψD)

– 〈ε〉ϕ ∈ Par(ϕA, ϕB)
def⇐⇒

∃ψC , ψD : 〈ε〉ψC ∈ ϕ⇒
A ∧ 〈ε〉ψD ∈ ϕ⇒

B ∧ ϕ ∈ Par(ψC , ψD)

– ¬ϕ ∈ Par(ϕA, ϕB)
def⇐⇒

∀ϕC , ϕD : ϕ ∈ Par(ϕC , ϕD) �⇒ (¬ϕC ∈ ϕ⇒
A ∨ ¬ϕD ∈ ϕ⇒

B )

– ∅ ∈ Par(ϕA, ϕB)
def⇐⇒ ∅ ∈ ϕ⇒

A ∧ ∅ ∈ ϕ⇒
B

– ∅̃ ∈ Par(ϕA, ϕB)
def⇐⇒ ∅̃ ∈ ϕ⇒

A ∧ ∅̃ ∈ ϕ⇒
B

The significance of the function Par is explained by the proposition below.

123



346 M. Gazda et al.

Proposition 6 For all processes p, q and formulas ϕ,

p || q |� ϕ ⇐⇒ ∃ϕA, ϕB : p |� ϕA ∧ q |� ϕB ∧ ϕ ∈ Par(ϕA, ϕB)

Proof In both directions we apply structural induction on ϕ.
“ �⇒ ”: Let p || q |� ϕ. We need to consider the following cases:

– ϕ = ∧
i∈I ψi :

p || q |� ∧
i∈I ψi ⇐⇒ ∀i ∈ I : p || q |� ψi ⇐⇒ (IH)

∀i ∈ I . ∃ψ i
A, ψ i

B : p |� ψ i
A ∧ q |� ψ i

B ∧ ψi ∈ Par(ψ i
A, ψ i

B) �⇒ (definition of Par)
p |� ∧

i∈I ψ i
A ∧ q |� ∧

i∈I ψ i
B ∧ ∧

i∈I ψi ∈ Par(
∧

i∈I ψ i
A,

∧
i∈I ψ i

B)

– ϕ = 〈α〉ψ :
p || q |� 〈α〉ψ gives rise to three possible cases:

– p
α−→ p1 and p1 || q |� ψ : By the IH, there are formulasψ1, ψq such that p1 |� ψ1,

q |� ψq , and ψ ∈ Par(ψ1, ψq). Then p |� 〈α〉ψ1. Moreover, by the definition of
Par, 〈α〉ψ ∈ Par(〈α〉ψ1, ψq).

– q
α−→ q1 and p || q1 |� ψ : The proof mirrors the previous case.

– p
b−→ r , q

c−→ s, γ (b, c) = α, and r || s |� ψ :
By the IH, there are formulas ψr , ψs such that r |� ψr , s |� ψs , and ψ ∈
Par(ψr , ψs). Then p |� 〈b〉ψr and q |� 〈c〉ψs . And by the definition of Par,
〈α〉ψ ∈ Par(〈b〉ψr , 〈c〉ψs).

– ϕ = 〈τ̂ 〉ψ :
p || q |� 〈τ̂ 〉ψ gives rise to the following cases:

– p || q |� ψ :
By the IH, there are formulas ψp, ψq such that p |� ψp , q |� ψq , and ψ ∈
Par(ψp, ψq). Since obviously 〈τ̂ 〉ψp ∈ ψ⇒

p , from the first case of the definition
of Par for 〈τ̂ 〉 we obtain 〈τ̂ 〉ψ ∈ Par(〈τ̂ 〉ψp, ψq)

– p || q |� 〈τ 〉ψ : This case can be split further into two subcases:
• p

τ−→ p1 and p1 || q |� ψ : By the IH, there are formulas ψ1, ψq such that
p1 |� ψ1, q |� ψq , and ψ ∈ Par(ψ1, ψq). Then p |� 〈τ 〉ψ1, and hence
p |� 〈τ̂ 〉ψ1. Thus, by the definition of Par, 〈τ̂ 〉ψ ∈ Par(〈τ̂ 〉ψ1, ψq).

• q
τ−→ q1 and p || q1 |� ψ : The proof mirrors one from the previous case

– ϕ = 〈ε〉ψ :
Since p || q |� 〈ε〉ψ , there is a process r such that p || q

ε�⇒ r , and r |� ψ . By the
transition rules for the parallel operator, r is of the form r1 || r2 for some processes r1, r2
such that p

ε�⇒ r1 and q
ε�⇒ r2. By the IH there are formulasψ1, ψ2 such that r1 |� ψ1,

r2 |� ψ2, and ψ ∈ Par(ψ1, ψ2). Clearly, p |� 〈ε〉ψ1 and q |� 〈ε〉ψ2. Moreover, by the
definition of Par, 〈ε〉ψ ∈ Par(〈ε〉ψ1, 〈ε〉ψ2).

– ϕ = ¬ψ :
p || q |� ¬ψ ⇐⇒ p || q �|� ψ ⇐⇒ (IH)
¬(∃ψA, ψB : p |� ψA ∧ q |� ψB ∧ ψ ∈ Par(ψA, ψB)) ⇐⇒
∀ψA, ψB : ψ ∈ Par(ψA, ψB) �⇒ (p �|� ψA ∨ q �|� ψB) (*)

Let us define

A = {ψA ∈ HMLτ | ∃ψB : ψ ∈ Par(ψA, ψB) ∧ p �|� ψA}

123



Congruence from the operator’s point of view 347

B = {ψB ∈ HMLτ | ∃ψA : ψ ∈ Par(ψA, ψB) ∧ q �|� ψB}
ΨA = ∧

ψA∈A ¬ψA

ΨB = ∧
ψB∈B ¬ψB

By the definition of ΨA and ΨB, p |� ΨA and q |� ΨB. Moreover, from (*) and the
definition of Par we obtain ¬ψ ∈ Par(ΨA, ΨB).

– ϕ = ∅:
Observe that p || q |� ∅ if and only if p |� ∅ and q |� ∅. Moreover, by the definition of
Par, we have ∅ ∈ Par(∅,∅).

– ϕ = ∅̃: The proof is similar to the one above.

“⇐�”:We first show that the statement holds in the two base cases, i.e., ϕ = ∅ and ϕ = ∅̃.
For ϕ = ∅, suppose that ∃ϕA, ϕB : p |� ϕA ∧ q |� ϕB ∧ ∅ ∈ Par(ϕA, ϕB). By the definition
of Par, ∅ ∈ ϕ⇒

A and ∅ ∈ ϕ⇒
B , from which in turn we obtain that p |� ∅ and q |� ∅. From

these it follows that p || q |� ∅. The proof for ϕ = ∅̃ is analogous.
In each of the following cases, we assume that ∃ϕA, ϕB : p |� ϕA ∧ q |� ϕB ∧ ϕ ∈

Par(ϕA, ϕB), and show that p || q |� ϕ.

– ϕ = ∧
i∈I ψi : Since

∧
i∈I ψi ∈ Par(ϕA, ϕB), by the definition of Par, for each i ∈ I

there are formulas ψ i
A ∈ ϕ⇒

A , ψ i
B ∈ ϕ⇒

B such that ψi ∈ Par(ψ i
A, ψ i

B). Since p |� ψA

and q |� ψB , we have p |� ψ i
A and q |� ψ i

B for all i ∈ I . By the IH, p || q |� ψi for all
i ∈ I . So p || q |� ∧

i∈I ψi .
– ϕ = 〈α〉ψ : There are three possible cases, depending onwhich alternative in the definition

of Par is used to derive that 〈α〉ψ ∈ Par(ϕA, ϕB).

– ∃ψC : 〈α〉ψC ∈ ϕ⇒
A ∧ ψ ∈ Par(ψC , ϕB). Since 〈α〉ψC ∈ ϕ⇒

A and p |� ϕA, we

have p |� 〈α〉ψC . So there is a process p′ such that p
α−→ p′ and p′ |� ψC . Then

p || q
α−→ p′ || q . Moreover, by the IH, p′ || q |� ψ . Hence, p || q |� 〈α〉ψ .

– ∃ψD : 〈α〉ψD ∈ ϕ⇒
B ∧ ψ ∈ Par(ϕA, ψD). The proof mirrors the previous case.

– ∃c, d ∈ Act . ∃ψC , ψD : γ (c, d) = α ∧ 〈c〉ψC ∈ ϕ⇒
A ∧ 〈d〉ψD ∈ ϕ⇒

B ∧ ψ ∈
Par(ψC , ψD). Since 〈c〉ψC ∈ ϕ⇒

A and 〈d〉ψD ∈ ϕ⇒
B , we have p |� 〈c〉ψC and

q |� 〈d〉ψD . Hence there are processes p′, q ′ such that p
c−→ p′, p′ |� ψC ,

q
d−→ q ′, and q ′ |� ψD . Since γ (c, d) = α, we have p || q

α−→ p′ || q ′. Moreover,
since ψ ∈ Par(ψC , ψD), by the IH, p′ || q ′ |� ψ . Hence, p || q |� 〈α〉ψ .

– ϕ = 〈τ̂ 〉ψ : There are two possible cases:

– ∃ψC : 〈τ̂ 〉ψC ∈ ϕ⇒
A ∧ ψ ∈ Par(ψC , ϕB): Since 〈τ̂ 〉ψC ∈ ϕ⇒

A , we have p |� 〈τ̂ 〉ψC .

This means that either p |� ψC , or p
τ−→ p′ ∧ p′ |� ψC . In the first case, since p |�

ψC , q |� ϕB , and ψ ∈ Par(ψC , ϕB), we have p || q |� ψ , and hence p || q |� 〈τ̂ 〉ψ .
In the second case, by a similar line of reasoning we obtain p′ || q |� ψ , and since
p

τ−→ p′, it follows that p || q |� 〈τ 〉ψ . This obviously yields p || q |� 〈τ̂ 〉ψ .
– ∃ψD : 〈τ̂ 〉ψD ∈ ϕ⇒

B ∧ ψ ∈ Par(ϕA, ψD): proof mirrors one in the case above

– ϕ = 〈ε〉ψ : By the definition of Par, there are formulas ψC , ψD such that 〈ε〉ψC ∈ ϕ⇒
A ,

〈ε〉ψD ∈ ϕ⇒
B , and ψ ∈ Par(ψC , ψD). Since 〈ε〉ψC ∈ ϕ⇒

A , 〈ε〉ψD ∈ ϕ⇒
B , and on the

other hand p |� ϕA and q |� ϕB , we also have p |� 〈ε〉ψC and q |� 〈ε〉ψD . Then
there are processes p′, q ′ such that p

ε�⇒ p′, p′ |� ψC , q
ε�⇒ q ′, and q ′ |� ψD . So

123



348 M. Gazda et al.

p || q
ε�⇒ p′ || q ′. Moreover, since ψ ∈ Par(ψC , ψD), by the IH, p′ || q ′ |� ψ . Hence,

p || q |� 〈ε〉ψ .
– ϕ = ¬ψ : By the definition of Par, for all formulas ϕC , ϕD such that ψ ∈ Par(ϕC , ϕD)

we have ¬ϕC ∈ ϕ⇒
A or ¬ϕD ∈ ϕ⇒

B . Since p |� ϕA and q |� ϕB , this implies p �|�
ϕC ∨ p �|� ϕD for all ϕC , ϕD as above. Hence,

¬∃ϕC , ϕD : p |� ϕC ∧ q |� ϕD ∧ ψ ∈ Par(ϕC , ϕD)

By the IH this entails p || q �|� ψ , and thus p || q |� ¬ψ . ��
The semantic nature of Par hinders the formulation of congruence requirements. We

therefore restrict (syntactically) the set from which the witness formulas ϕA and ϕB from
Proposition 6 can be taken. To this end, we define a set Comp+(ϕ) of formulas into which
formula ϕ may be syntactically decomposed.

Definition 2 Given a formula ϕ, the set Comp+(ϕ) of formulas is defined by:

– Comp+(
∧

i∈I ϕi ) = {∧i∈I ϕ′
i | ϕ′

i ∈ Comp+(ϕi )}
– Comp+(〈α〉ϕ) = Comp+(ϕ) ∪ {〈a〉ϕ′ | ϕ′ ∈ Comp+(ϕ)}

∪ {〈a〉ϕ′ | (∃b ∈ Act .γ (a, b) = α) ∧ ϕ′ ∈ Comp+(ϕ)}
– Comp+(〈τ̂ 〉ϕ) = Comp+(ϕ) ∪ {〈τ̂ 〉ϕ′ | ϕ′ ∈ Comp+(ϕ)}
– Comp+(〈ε〉ϕ) = {〈ε〉ϕ′ | ϕ′ ∈ Comp+(ϕ)}
– Comp+(¬ϕ) = {∧i∈I ¬ϕi | ϕi ∈ Comp+(ϕ)}
– Comp+(∅) = {∅}
– Comp+(̃∅) = {̃∅}
The proposition below states that the witness formulas from Proposition 6 can be always

found within the set Comp+ of the formula in question.

Proposition 7 For all processes p, q and formulas ϕ,

p || q |� ϕ ⇐⇒ ∃ϕA, ϕB ∈ Comp+(ϕ) : p |� ϕA ∧ q |� ϕB ∧ ϕ ∈ Par(ϕA, ϕB)

Proof The implication from right to left is a specific instance of Proposition 6. To show that
the converse implication holds, one needs to observe that all the witness formulas constructed
in the proof of the weaker statement from Proposition 6 meet the syntactic requirements for
being included in Comp+(ϕ), provided that the simpler witness formulas in the IH belong
to sets Comp+ of certain subformulas of ϕ. Below, we analyse the specific cases in the proof
of Proposition 6.

– ϕ = ∧
i∈I ψi : By the IH, ψ i

A, ψ i
B ∈ Comp+(ψi ) for all i ∈ I , so by the definition of

Comp+ we obtain
∧

i∈I ψ i
A,

∧
i∈I ψ i

B ∈ Comp+(
∧

i∈I ψi )

– ϕ = 〈α〉ψ : there are three possible cases:

– p
α−→ p1 and p1 || q |� ψ : By the IH, ψ1, ψq ∈ Comp+(ψ), so by the definition of

Comp+, 〈α〉ψ1, ψq ∈ Comp+(〈α〉ψ).

– q
α−→ q1 and p || q1 |� ψ : The proof is very similar to the previous case.

– p
b−→ r , q

c−→ s, γ (b, c) = α, and r || s |� ψ : By the IH, ψr , ψs ∈ Comp+(ψ).
Since γ (b, c) = α, by the definition of Comp+ (third component of the sum),
〈b〉ψr , 〈c〉ψs ∈ Comp+(〈α〉ψ).

– ϕ = 〈τ̂ 〉ψ : There are two possible cases:

123



Congruence from the operator’s point of view 349

– p || q |� ψ : By the IH, ψp, ψq ∈ Comp+(ψ); hence, by the definition of Comp+,
〈τ̂ 〉ψp, ψq ∈ Comp+(〈τ̂ 〉ψ).

– p || q |� 〈τ̂ 〉ψ :
• p

τ−→ p1 and p1 || q |� ψ : By the IH, ψ1, ψq ∈ Comp+(ψ); hence, by the
definition of Comp+, 〈τ̂ 〉ψ1, ψq ∈ Comp+(〈τ̂ 〉ψ).

• q
τ−→ q1 and p || q1 |� ψ : The proof is similar to the previous case.

– ϕ = 〈ε〉ψ : By the IH, ψ1, ψ2 ∈ Comp+(ψ); hence, by the definition of Comp+ we
obtain 〈ε〉ψ1, 〈ε〉ψ2 ∈ Comp+(〈ε〉ψ).

– ϕ = ¬ψ : Following the corresponding case in the proof of Proposition 6 with the IH
now strengthened, we obtain that p||q |� ¬ψ is equivalent to:

∀ψA, ψB ∈ Comp+(ψ) : ψ ∈ Par(ψA, ψB) �⇒ (p �|� ψA ∨ q �|� ψB) (**)

We can thus modify the definitions of A, B, ΨA, and ΨB as follows:
A+ = {ψA ∈ Comp+(ψ) | ∃ψB ∈ Comp+(ψ) : ψ ∈ Par(ψA, ψB) ∧ p �|� ψA}
B+ = {ψB ∈ Comp+(ψ) | ∃ψA ∈ Comp+(ψ) : ψ ∈ Par(ψA, ψB) ∧ q �|� ψB}
Ψ +
A = ∧

ψA∈A+ ¬ψA

Ψ +
B = ∧

ψB∈B+ ¬ψB

Since all formulas in A+ and B+ belong to Comp+(ψ), from the definition of Comp+
we obtain Ψ +

A , Ψ +
B ∈ Comp+(¬ψ).

– ϕ = ∅ and ϕ = ∅̃: Immediate. ��
Theorem 6 If O ⊆ HMLτ ∪ {∅, ∅̃, 〈τ̂ 〉} satisfies

(par) ϕ ∈ O �⇒ Comp+(ϕ) ⊆ O

then ∼O is a congruence with respect to the parallel composition operator.

Proof LetO ⊆ HMLτ ∪{∅, ∅̃, 〈τ̂ 〉} satisfy (par), and p ∼O p′ and q ∼O q ′. For all ϕ ∈ O:
p || q |� ϕ ⇐⇒ (Proposition 7) ∃ϕA, ϕB ∈ Comp+(ϕ) : p |� ϕA ∧ q |� ϕB ∧ ϕ ∈
Par(ϕA, ϕB) ⇐⇒ ((par), p ∼O p′, q ∼O q ′) ∃ϕA, ϕB ∈ Comp+(ϕ) : p′ |� ϕA ∧ q ′ |�
ϕB ∧ ϕ ∈ Par(ϕA, ϕB) ⇐⇒ (Proposition 7) p′ || q ′ |� ϕ ��

The only modal characterizations from Sect. 2 that violate (par) are OCT , OWCT , OB B ,
and ORB B . However, the alternative characterizations ÔCT , ÔWCT , ÔB B , and ÔRB B all
meet (par).

Corollary 10 ∼T , ∼CT , ∼F , ∼R, ∼FT , ∼RT , ∼IF , ∼PF , ∼nS (for n ≥ 1), ∼RS, and ∼B are
congruences for the parallel composition operator.

Corollary 11 ∼W T , ∼WCT , ∼W F , ∼W B, ∼RW B, ∼DB, ∼RDB, ∼ηB, ∼RηB, ∼B B, and ∼RB B

are congruences for the parallel composition operator.

4 Conclusions

So far, in the literature, congruence formats have been approached from the angle of the
process semantics. Carving out such a congruence format for a particular semantics is very
hard work, and there is an overwhelming number of weak semantics (see [16]). This paper
offers an entirely different perspective by presenting, for a number of process operators

123



350 M. Gazda et al.

from the literature, general syntactic requirements that guarantee congruence of process
equivalences defined by means of a modal characterization. To the best of our knowledge
it is the first such attempt. Our requirements are sufficient, but by no means necessary;
we aimed at clear and comprehensible rather than slightly relaxed but more complicated
requirements. We covered the concrete semantics in [17]; an exhaustive investigation in how
far modal characterizations of the 155 weak semantics in [16] satisfy the requirements we
formulated remains as future research. In particular, we have focused on what are called
unstable weak semantics in the spectrum from [16]. Weak semantics that are sensitive to
stability, meaning the absence of a τ -transition, or to divergence, meaning the presence of an
infinite sequence of τ -transitions, tend to have better congruence properties, with regard to
the aforementioned priority operator as well as recursive operators. Checking our syntactic
congruence requirementswith respect to stability-preserving and divergence-respectingweak
semantics would be interesting future work.

A key question that requires further research is whether reasonable requirements onmodal
characterizations can be formulated for other widely used operators such as recursive oper-
ators and the priority operator. In particular, the unary priority operator θ assumes a partial
order < on actions. It allows execution of an action by its argument only if no action with a
higher priority is enabled:

x
α−→ x ′ ∀β ∈ Act ∪ {τ } : (α < β ⇒ x �−→ β)

θ(x)
α−→ θ(x ′)

There is no operator cutθ for which condition (cut- 2) from Proposition 1 holds. Namely,
let α < β. Whether a subformula 〈α〉ϕ′ of a formula ϕ can be replaced by F depends on
whether this subformula is checked at a point where a β-transition is possible. In contrast
to branching bisimulation semantics, stability-respecting branching bisimulation semantics
is a congruence for θ . Hence the modal characterization for the latter semantics (see e.g.
[11]) may provide inspiration on the formulation of requirements with regard to θ . Another
interesting candidate is the action refinement operator, which allows to refine a single action
into process behavior. It is a congruence for rooted branching bisimulation semantics but not
for rooted η-bisimulation semantics (see e.g. [10]).

By extending the results in this paper to Hennessy–Milner logic with recursion or the
μ-calculus, it could be attempted to combine our work with existing results on characteris-
tic formulas [2]. In that setting, instead of modal language properties, one could focus on
compositionality of a single characteristic formula.

More generally, the current paper could serve as a starting point for developing a theory
that allows one to obtain conditions on modal characterisations from the transition rules for
an operator in a systematic way.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Bergstra, J.A., Ponse, A.,
Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier, Amsterdam (2001)

123

http://creativecommons.org/licenses/by/4.0/


Congruence from the operator’s point of view 351

2. Aceto, L., Ingolfsdottir, A., Sack, J.: Characteristic formulae for fixed-point semantics: a general frame-
work. In Proc. EXPRESS’09. EPTCS 8, 1–15 (2009)

3. Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Inf. Comput. 78(3),
205–245 (1988)

4. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoret.
Comput. Sci. 51(1/2), 129–176 (1987)

5. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoret. Comput. Sci.
37, 77–121 (1985)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)
7. Bloom, B., Fokkink, W.J., van Glabbeek, R.J.: Precongruence formats for decorated trace semantics.

ACM Trans. Comput. Logic 5, 26–78 (2004)
8. Fokkink, W.J.: Introduction to Process Algebra. Springer, New York (2000)
9. Fokkink, W.J., van Glabbeek, R.J., deWind, P.: Compositionality of Hennessy–Milner logic by structural

operational semantics. Theoret. Comput. Sci. 354(3), 421–440 (2006)
10. Fokkink, W.J., van Glabbeek, R.J., de Wind, P.: Divide and congruence: from decomposition of modal

formulas to preservation of branching and η-bisimilarity. Inf. Comput. 214, 59–85 (2012)
11. Fokkink, W.J., van Glabbeek, R.J., Luttik, B.: Divide and congruence III: stability & divergence. In Proc.

CONCUR’17, LIPIcs 85, pp. 15:1–15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)
12. Gazda, M., Fokkink, W.J.: Congruence from the operator’s point of view: compositionality requirements

on process semantics. In Proc. SOS’10. EPTCS 32, 15–25 (2010)
13. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation as a congruence. Inf.

Comput. 100, 202–260 (1992)
14. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. J. ACM 32, 137–161

(1985)
15. Larsen, K.G., Liu, X.: Compositionality through an operational semantics of contexts. J. Logic Comput.

1(6), 761–795 (1991)
16. van Glabbeek, R.J.: The linear time—branching time spectrum II: the semantics of sequential systems

with silent moves. In Proc. CONCUR’93, LNCS 715, pp. 66–81. Springer (1993)
17. van Glabbeek, R.J.: The linear time—branching time spectrum I: the semantics of concrete, sequential

processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99.
Elsevier (2001)

18. Verhoef, C.: A congruence theorem for structured operational semantics with predicates and negative
premises. Nordic J Comput. 2, 274–302 (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Congruence from the operator's point of view
	Syntactic requirements on modal characterizations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Congruence requirements
	3.1 Alternative composition
	3.2 Action prefix
	3.3 Restriction operators: projection and encapsulation
	3.4 Modal decomposition technique
	3.5 Renaming
	3.6 Abstraction
	3.7 Parallel composition

	4 Conclusions
	References





