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Abstract
We consider several novel congruences on the signature of meadows with the aim to survey
different notions of fractions. In particular we suggest a notion of “true fraction”.
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386 J. A. Bergstra, A. Ponse

1 Introduction

This paper is written in honour of Rob van Glabbeek on the occasion of his 60th birthday.
We congratulate Rob with this milestone and with his outstanding performance in the area
of process theory.

The idea of meadows is to introduce, on top of the signature of rings and fields, a function
symbol for inverse, thus obtaining inversive notation x−1, or for division, thereby obtaining
divisive notation (x/y, usually with the understanding that x−1 = 1/x), and to insist, or at
least to prefer, that operations are total.

An arithmetical datatype, admittedly an informal notion, is an abstract datatype which
provides sorts and functions closely related to arithmetic.1

Assuming that operations are total and that division is a named operation, the equational
logic of known and sometimes novel structures is investigated.Mdd , the equational axioma-
tisation of (commutative, regular and involutive) meadows with divisive notation, consists
of the equations for a commutative ring CR (Table 1) plus three more axioms concerning
division as displayed in Table 2.

Regularity ensures that a meadow which meets these three requirements is the expansion
of a (von Neumann) regular ring with a division operation. Table 3 displays different levels
of regularity.

For equational axioms for meadows see [5,11,21,23] and for further theoretical informa-
tion we refer to [3,4].2

1.1 Fractions: a conceptual issue

The question “what is a fraction?” is just as difficult as the question “what is a process?”.

Process. In process algebra it is not uncommon to refer to p ≡ a ‖ b as a concurrent
process, with a and b atomic actions, and with ≡ syntactic equality. Let q ≡ a · b + b · a.
This equation gives rise to two issues. To begin with, considering q a parallel process is
unconvincing at first sight. Assuming arbitrary interleaving, however, one finds p = q . At
this point the terminology becomes somewhat problematic: is it the case that p is not a
concurrent process after all, or conversely that q is not a sequential process after all? The
situation is clarified by referring to p and q as process expressions rather than as processes.
Then under the assumption of arbitrary interleaving p and q denote the same process while
in another semantic model (process algebra) they may not. A process algebra admits true
concurrency if some process expressions involving parallel composition are not equivalent
to any process expression made up of sequential features only.

A second issue arises because one may not be satisfied with the use of the terminology:
one may prefer to refer to p and q as processes instead of as process expressions, and then
to use phrases like, “the interpretation of process p in model M” in order to refer to specific
elements of a process algebra.

1 Comparable to the terminology of process algebra, an arithmetical datatype might be called a number
algebra, but we prefer not to do so because it seems to come as a default that algebras are about numbers.
2 Besides meadows as defined in [5] at least three other kinds of meadows can be distinguished: common
meadows [9], wheels [15,16,26], and transrationals [17]. The characteristic feature of meadows at large is
the presence of either inverse or division as a function symbol in the signature, in addition to the signature
of a ring. This difference with conventional approaches has significant impact on equational reasoning which
it supports quite well, and it fits the ubiquitous use of division. When working with meadows, issues about
division by zero and partiality can be studied with adequate precision.
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Arithmetical datatypes with true fractions 387

Table 1 CR, axioms for a
commutative ring (x + y) + z = x + (y + z) (1)

x + y = y + x (2)

x + 0 = x (3)

x + (− x) = 0 (4)

(x · y) · z = x · (y · z) (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = x · y + x · z (8)

Table 2 Mdd , axioms for a
divisive meadow import : CR

1/(1/x)) = x Involution

(x · x)/x = x Regularity

x/y = x · (1/y) Factorisation of division

Table 3 Levels of regularity in
divisive notation (x/x) · (x/x) = x/x Weak regularity

(x · x)/x = x Regularity

x/(x · x) = 1/x Coregularity

x �= 0 → x/x = 1 Strong regularity

Investigating the formidable richness of semantic models for even a very simple process
notation has been a remarkable achievement of Rob van Glabbeek [27]. In that spirit, but
by no means as comprehensive, we will look into the rich world of models of the syntax of
meadows.

Fraction. Now for fractions: let p ≡ 2/3 and q ≡ 4/6. It is customary to consider p to be
a simplified fraction while q is not a simplified fraction. Now in the meadow Qd

0 (rational
numbers with divisive notation, and with zero-totalised division), one finds p = q . What
can be concluded? Is p to be considered not simplified after all, or has q turned out to be
simplified in hindsight, or something else?

The situation can be clarified by speaking of fraction expressions. Then p and q are differ-
ent fraction expressions which denote the same value in Qd

0 . Two such fraction expressions
are called equivalent, taking characteristic zero for granted. A structure for the same signature
that distinguishes p and q or any other pair of equivalent but non-identical fractions may be
said to admit true fractions. Little is known about such structures, and below we will obtain
some preliminary results.

The second issue mentioned above regarding processes has a counterpart in the case of
fractions. One may prefer to understand fractions as expressions rather then primarily as
elements of a datatype, and to refer to the interpretations of fractions in an arithmetical
datatype as numbers.

It seems to be the case that in ordinary mathematics a fraction is considered an element
of an algebra (for instance the field of fractions over an integral domain). Such elements,
which may be called numbers or numbers of some specific kind, are not equipped with
a numerator and a denominator. Merely representatives of these numbers (with numbers
viewed as equivalence classes of representatives) are decomposable as expressions. This
understanding of fractions explains why mathematical textbooks usually don’t provide a
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388 J. A. Bergstra, A. Ponse

definition of fractions. We refer to Fandiño Pinilla [18] for the viewpoint that fraction is not
a mathematical concept in need of a precise definition.

Alternatively one may insist that a fraction comes with a nominator, a denominator, and a
function symbol. This perspective, taking fractions for structured abstract entities, seems to
be leading in the context of school arithmetic. The idea that fractions have structure creates a
ramification of options, four of which will be mentioned. The least abstract perspective will
be referred to as “fractions as terms”.

1.2 Four perspectives on fractions

Fractions as values (FaV) and fractions as terms (FaT) represent two opposite perspectives on
fractions which are both perfectly consistent, but which can hardly be reconciled, however.
We prefer viewing fractions as terms. Two intermediate positions merit mention: to consider
fractions as pairs of values (FaPV, taking the pair of the respective values of the terms meant
in perspective FaT), for instance rational numbers, and alternatively (FaPW) is to consider
fractions as pairs of non-fractions, that is pairs of whole numbers or expressions for whole
numbers, with the second element required to be non-zero or positive.

Fractions as values is the more abstract perspective of these, fractions as pairs of (possibly
fractional) values is more abstract than fractions as terms. The relation between perspectives
FaT, FaPV, and FaPW is not easily explained by way of levels of abstraction. One might say
that both FaPV and FaPW correspond to instances of FaT.

We favour the fractions as terms perspective because it optimally supports theoretical
work on fractions. The FaT perspective can be summarised as follows:

1. Each fraction comes with a unique nominator and a unique denominator as well as a
unique leading function symbol. Nominator and denominator may be but need not be
wholes.

2. An arithmetical datatype admits true fractions if it distinguishes some fractions which
are equivalent (have the same value in a certain preferred arithmetical datatype such as
the meadow of rational numbers).

3. The standard interpretation of fractions does not admit true fractions.
4. Fractions are not numbers in the conventional sense, that is, not elements of well-known

rings and fields. Fractions rather exist in free term algebras.
5. For fractions p and q , p = q denotes fraction equivalence rather than fraction equality.
6. It is also common to say that fractions p and q are equal if p = q; this ‘imprecision’ is

acceptable as long as problematic confusion is prevented.
7. If reasoning about the ontology of fractions happens to be important, this potential source

of confusion should be proactively removed (an unusual matter both in school arithmetic
and in academic arithmetic).

Of the intermediate perspectives mentioned above the FaPV perspective seems not to merit
further attention, while FaPW has a significant audience in the educational world and if only
for that reason it is of independent importance. When viewing fractions as pairs of values of
wholes the incentive to view fractions as numbers or as a kind of numbers becomes stronger.
We summarise the perspective of fractions as pairs of wholes as follows:

1. When viewing fractions as pairs of values of wholes, it is less plausible to view fractions
as numbers.

2. Fractions are “number-like” in the following sense: fractions may be interpreted in an
arithmetical datatype (̂Qd

0,gcd as introduced below) which is sufficiently similar to well-
known arithmetical datatypes to justify speaking of its elements as “a kind of number”.
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Arithmetical datatypes with true fractions 389

3. Fractions may, if one so wishes, be considered “a kind of numbers” (though not “num-
bers”, and also not “elements of a subsort of a sort of numbers”). This is an intermediate
position between FaT and FaV, with a bias to FaPW.

Fracterms. A disadvantage of taking fractions for expressions is the connotation of for-
mality and formal syntax which comes with such terminology. Instead of formal grammars,
informative examples may be used as an inductive means for defining the concept of term,
inductive in the sense of inductive logic rather than in the sense of a mathematical inductive
definition. Different persons need not completely agree on what is a term or expression and
on when two terms are considered the same.

In the sequel of the paper we will use the word fracterm to denote a term which has
division as its leading function symbol. By using fracterm instead of fraction we avoid a
commitment to a specific perspective on fractions.

Terms and notations; characteristic zero. For closed terms t and r , syntactic equality
takes all detail into account. A higher level of abstraction is useful for work on fractions.
Equivalence of terms, while taking various practical notational conventions into account,
written t ≡ r , provides some level of abstraction. By taking into account operator precedence,
associativity of addition and multiplication, and removal of redundant bracket pairs, further
abstraction is obtained. Although in this paper we will always write t/r when considering
fracterms, it is common to separate t and r with a horizontal bar, in which case versions of
the division operator with lower precedence can be used.

It is understood that negation takes priority over addition and that both multiplication and
division take priority over summation. Moreover addition and multiplication are supposed to
associate to the left. Thus e.g. 1+1+1 ≡ (1+1)+1, 1+(1+1)·(1+1) ≡ 1+((1+1)·(1+1))
and 1 + − 1 ≡ 1 + (− 1). We will freely use integers in decimal notation as shorthands for
the corresponding closed expressions, so that 2 ≡ 1 + 1,− 2 = − (1 + 1), 3 ≡ 1 + 1 + 1
etc. If we have to be more specific, numerals n are used: 0 = 0, 1 = 1, and n + 1 = n + 1.
Expressions n + m and n · m stand for the associated numeral.

Many models ofMdd exist. We will consider Qd
0 , the meadow of rational numbers, which

results from the field of rational numbers by expanding it with division made total by having
1/0 = 0. As other useful structures, which however are not used in this paper, we mention
(i) Qd

a , which results from the same field by making division total with 1/0 = a for a new
arithmetical entity a which serves as an error element, (i i) Qd

� for the expansion of Q to
a structure with a partial division function, (i i i) for a prime number p, the finite meadows
Fd
p,0 that result from expanding the finite field of characteristic p with a division operator

that is made total by setting 1/0 = 0, and (iv) the corresponding structures Fd
p,a , and Fd

p,�.

These structures give rise to the following equivalences on fracterms: =0 for Qd
0 , =a for

Qd
a and =� for Qd

� as well as to =p,0, =p,a , and =p,�, in the case of finite characteristic
p.

In mathematical and educational practice it is common to write t = r for =�, although
without the underlying idea that expressions over �Mdd are involved, and without any com-
mitment to a specific logic of partial functions.

In the present paper 1/0 = 0 is made as a simplifying assumption, not as a matter of
principle, nor as an expression of an insight in the nature of numbers and or division; it
just helps to obtain equational specifications and axiom systems. The idea that division, or
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inverse, deserves its own function symbol is a matter of principle, however.3 An algebra for
the signature�Mdd or for some larger signature is also referred to as an arithmetical data type.

In order to simplify the discussion it is assumed that all arithmetical datatypes consid-
ered below have characteristic 0. Adapting the terminology as developed below to a finite
characteristic k is easy and most questions can be discussed for finite characteristic k as
well. Moreover, it is assumed that the integers have an ordering, which is not included in the
signature of meadows, however. We make no use of the sign function which is introduced
in [3] for that purpose.

1.3 Related work on arithmetical datatypes

Arithmetical datatypes may have different applications. The work in this paper contributes to
the discussion concerning the question “what is a fraction?”. This seemingly trivial question
has led to many different answers and viewpoints in the educational literature, ranging from
the proposal to forget about fractions in [28] to the influential classification of aspects of
fractions in [20]. As stated before (Sect. 1.2), at least four paradigms on fractions can be
distinguished: fractions as values, fractions as pairs of whole numbers [22],4, and fractions
as terms. Viewing fractions as values is advocated in [25]. In [1] an excursion is made where
a logic of fractions is worked out as a paraconsistent logic. In [8] it is investigated in which
meadows the collection of fractional elements is closed under addition. In [2] it is shown that
fractions involving a single variable can be brought in so-called mixed fraction format. The
paper [10] is devoted to one particular option for the fractions-as-pairs paradigm. Our work
on arithmetical datatypes started with an initial algebra specification of the abstract datatype
of rational numbers as presented in [11].

2 Fracterm terminology

In this section we survey terminology on fracterms.

2.1 Fracterms and fracpairs

In [1,2,8] a fraction is understood as a fracterm (a term with division as a leading function
symbol).

3 The relevance of having division or inverse in the signature can be seen as follows for instance: the class of
models of Mdd is an elementary class, while the class of its reducts to the signature of rings, that is, the class
of regular rings is not an elementary class.
4 In Lortie-Forgues et al. [22] it is noticed that:
A fraction has three parts, a numerator, a denominator, and a line separating the twonumbers. This configuration
makes fraction notation somewhat difficult to understand. For instance, students, especially in the early stages
of learning, often misread fractions as two distinct whole numbers (e.g., 1/2 as 1 and 2), as a familiar arithmetic
operation (e.g., 1 + 2) or as a single number (e.g., 12)......
According to these authors not only is a fraction not a single number, it is not (like the result of) a familiar
operation on numbers either, and it is not a pair. These remarks provide ample evidence of the difficulty of
defining a fraction in unambiguously positive terms.
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Arithmetical datatypes with true fractions 391

Fracterms exist in a context of other related notions and terminology, which are introduced
stepwise below.5

Definition 2.1.1 A term over the signature of meadows is a wholeterm if it contains no
occurrence of the division function.

A wholeterm t is simple if it is 0 or either has the form r or the form −(r) with r made
up from the constant 1 and addition only. In the first case t is a positive wholeterm, in the
second case t is a negative wholeterm.

Definition 2.1.2 A term over the signature of meadows is a fracterm if its leading function
symbol is division. The arguments of the leading function symbol are termed numerator
and denominator, respectively.

Definition 2.1.3 (Flat fracterm) A fracterm is flat if its numerator and denominator are
wholeterms.

Definition 2.1.4 (Simple fracterm) A fracterm is simple if it is a flat fracterm of which the
numerator is a simple wholeterm and the denominator is a positive simple wholeterm.

Definition 2.1.5 A fracpair is a simple fracterm.

Remark: the notion of a fracpair depends on the context. In [10] a more liberal definition of
fracpairs is used, allowing the denominator to be 0 or negative.

2.2 Congruence-dependent properties of fracterms

Some properties of fracterms (or of relevance to fracterms) are dependent on a given con-
gruence. We write ∼= for an arbitrary congruence on closed meadow terms. Among these
properties are the following:

Definition 2.2.1 The characteristic of ∼= is the smallest positive integer n such that n/1 ∼=
0/1 if it exists and 0 otherwise.

As was stated in Sect. 1.2 above, the discussion below will be limited to the case of
characteristic 0.

Definition 2.2.2 (Division safety) A closed expression t is division unsafe for a congruence
∼= if it has a subterm r/s such that s ∼= 0. A closed term is division safe w.r.t. ∼= if it is not
division unsafe.

Definition 2.2.3 (Simplified fracpair)A fracpairn/m or (− n)/m is simplified if gcd(n,m) =
1.

2.3 Fracterm-related congruence properties

Several useful properties of congruences relate to fracterms. We will write Qd∼= for T�Mdd
/∼=,

the set of closed terms over �Mdd modulo ∼=.

5 Moving from the language of fracterms and fracpairs to fractions (thereby adopting a fractions as terms
perspective) is easy: the idea is that by substituting fraction for fracterm, and also substituting fraction for
fracpair a workable terminology of fractions is obtained.
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Flattening (to fracpair form) A congruence ∼= admits flattening to fracpair form if for
each closed term t there is a fracpair s with t ∼= s.
Completeness for wholeterms A congruence ∼= is complete for wholeterms if for all
division-free closed expressions t and r , t ∼= r ⇐⇒ Z |	 t = r .
Value protection A congruence ∼= is value protecting if for all closed terms t and r , if
t ∼= r , then Qd

0 |	 t = r .
(In other words: Qd

0 is a homomorphic image of Qd∼=).
Componentwise multiplication for fractermsA congruence ∼= allows componentwise
multiplication for fracterms if

Qd∼= |	 (x/y) · (u/v) = (x · u)/(y · v).

Conventional negation A congruence ∼= conforms to conventional negation if Qd∼= |	
− (x/y) = (− x)/y.
Uniformdivisionby zeroA∼= enjoys uniformdivision by zero if for all t , t/0 ∼= t ·(1/0).6
Fracpair separation A congruence ∼= separates fracpairs p and q if Qd

0 |	 p = q and
p � q . A typical example is the separation of 0/1 and 0/2.
Fracpair transparency A congruence ∼= is transparent for fracpairs if for all fracpairs
t/r and s/u, t/r ∼= s/u implies t ∼= s and r ∼= u.
Full fracterm transparencyA congruence∼= is transparent for fracterms if for all closed
and division safe fracterms t/r and s/u it is the case that t/r ∼= s/u implies t ∼= s and
r ∼= u.

Qd
0 is not transparent for fracpairs, rather the opposite: no pair of simple fractions with the

same value in Qd
0 is distinguished in Qd

0 . The initial algebra of Mdd , however, distinguishes
2/2 and 1/1, and therefore features some limited form of transparency for fracpairs (limited
because 4/2 = 2/1). We refer to [13] for relevant information in said initial algebra.

Full fracterm transparency, beyond fracpair transparency, excludes flattening. Otherwise
e.g. flattening yields that (1/2)/(1/2) ∼= n/n for some n ∈ N+. Full fracterm transparency
yields 1/2 ∼= n which cannot be true in Qd

0 .

True division A division operation is a true division operation if it separates some
fracterms p and q while Qd

0 |	 p = q . In this case, p and q are true fractions.
Zero-totalised division Division is zero-totalised if t/0 ∼= 0 for all t .
Quasi cardinality rule (QCR). The congruence satisfies the quasi cardinality rule (QCR)
if Qd∼= |	 x/y + z/y = (x + z)/y.7

A restricted version QCR0 of QCR reads: 0/y + 0/y = 0/y, while a stronger version of
QCR, QCR+ reads: v �= 0 → x/y + z/(v · y) = ((v · x) + z)/(v · y).
Conditional fracterm addition rule (CFAR) The conditional fracterm addition rule
(CFAR) expresses the most well-known rule for addition:

Qd∼= |	 y �= 0 & u �= 0 → x/y + z/u = (x · u + y · z)/(y · u)

CFAR is not compatiblewithQCRor its variants in a settingwith full fracterm separation.

6 Division by zero is uniform in the involutive meadows of [5], as well as the non-involutive regular meadows
of [7] and in the common meadows (which are noninvolutive and coregular) of [9]. In these cases, however,
also the stronger requirement that t/r ∼= t · (1/r) is satisfied. The latter requirement, however, will be relaxed
below in order to deal with true fractions.
7 QCR is a phrase ascribed to Griesel [19] in Padberg [24]. QCR is considered a most illuminating feature
of the concept of fractions. QCR formalises the popular explanation of fractions by means of pies and cakes.
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Flattening to fracpair form is not implied by any combinations of equations which are
true in all meadows that are expansions of a field with a 0-totalised division operator. If
such equations E existed, then these would be derivable from Mdd given the completeness
theorem for Md (see [5,6] for an adaptation to divisive notation), which then implies that
Mdd � E . It then follows that all minimal models, including the initial algebra ofMdd admit
flattening. The latter is not the case according to [13].

Proposition 2.3.1 Relative to Mdd , CFAR is equivalent with strong regularity.

Proof Strong regularity implies CFAR: if y �= 0, u �= 0 then x/y + z/u = x/y · u/u + z/u ·
y/y = (x ·u+ y · z)/(y ·u). Conversely let x �= 0. We may assume 1 �= 0, then, with y = x ,
u = z = 1 we find x/x + 1/1 = (x · 1 + x · 1)/(x · 1) = (x + x)/x and subtracting x/x
from both sides yields 1 = 1/1 = x/x . �

2.4 A transversal for FFT-arithmetical datatypes

We will focus on arithmetical datatypes with signature �Mdd , in which the integers (with 0
and addition) constitute a commutative ring.

Under the assumptions of minimality (no proper substructures), flattening and fracpair
transparency, the following representation theorem is useful. We refer to the class of such
datatypes as FFT-arithmetical datatypes. In the terminology of abstract datatypes a transversal
is a family of expressions which provides a unique notation for each element of a datatype.
The fracpairs constitute a transversal for an FFT-arithmetical datatype. As stated in Sect. 1.2
(in paragraph Terms and notations; characteristic zero), we assume a fixed choice of unique
notations for integers (e.g. − 3 ≡ − ((1 + 1) + 1) and so on). The following works for
arbitrary characteristic.

Proposition 2.4.1 In an FFT-arithmetical datatype A: (i) different fracpairs have a different
interpretation, and (i i) each element is the interpretation of some fracpair.

Proof If p/q and r/s are fracpairs then with fracpair transparencyA |	 p = q implies p ≡ r
and q ≡ s. Thus no pair of different fracpairs is identified in A.

Moreover flattening implies that each closed term is equal in A to some fracpair. Mini-
mality implies that all elements of the domain for A are equal to a closed term. �

Clearly all datatypes with a commutative ring of integers and meeting the two criteria of
Proposition 2.4.1 are FFT-arithmetical datatypes.

Belowwewill focus on FFT-arithmetical datatypes with characteristic 0 (without mention
of the prefix FFT). When designing an FFT-arithmetical datatype the various ring operations
are known on all integers and the division operation is known (predetermined) on all pairs
of arguments n (the interpretation of n) and m with n ∈ Z,m ∈ N+, so that a fracpair n/m
(with n ∈ Z,m ∈ N+) denotes the rational number n/m. In principle all other values of the
operations are free, that is, only constrained by axioms one wishes to adopt.

3 Fracpair transparency: some limitations

Wefirst consider the impossibility of obtaining fracpair transparency in an involutivemeadow,
and then the weaker case of fracterms over a commutative ring.
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3.1 The case of involutive meadows

We will insist that the admissibility of flattening is an essential property for a calculus of
fracterms. Now the initial meadow does not admit flattening to fracpair form (see e.g. [13]).
Moreover, no homomorphic image of the initial meadow except Qd

0 provides flattening.

Proposition 3.1.1 Let M0 be a minimal involutive meadow (i.e. a model of Mdd ). If the
congruence of M0 admits flattening, then M0 satisfies strong regularity (and conversely).

Proof Let p be a prime number differing from the characteristic c of M0. As M0 admits
flattening there must be non-zero natural numbers n and m such that 1 − p/p = n/m.

Due to value protection it must be the case that in characteristic c, Fd
c,0 |	 n/m = 0 and

also (by multiplying both sides with m2), Fd
c,0 |	 n · m = 0, i.e. n · m = 0 mod c so that

in M0, n/m = ((n · n)/n)/m = (n · n)/(n · m) = (n · n)/(n · m) = 0. It follows that
M0 |	 1 − p/p = 0 and thus (using the equations of Mdd ) M0 |	 p/p = 1. From this it
follows that all fracterms can be simplified in the congruence of M0, which in turn implies
that M0 is strongly regular (is a cancellation meadow in the terminology of [3]). �

It follows from the above proposition that in an arithmetical datatype which satisfiesMdd

and admits flattening, no instance of fracpair separation can be expected. In the remainder of
the paper we will consider fracpair transparency in a larger class of arithmetical datatypes.

3.2 Fracterm transparency over a commutative ring

Several slightly stronger negative results can be formulated, upon relaxing the requirement
that one works in a meadow.

Proposition 3.2.1 Let M be an arithmetical algebra and a proper homomorphic preimage of
Qd

0 . Suppose that
∼=M is flattening. Then:

(i) M �|	 0/x = 0,
(i i) M �|	 x/y = x · (1/y),

(i i i) M �|	 x/1 = x ∧ x/y · u/v = (x · u)/(y · v),

(iv) M �|	 x/y · u/v = (x · u)/(y · v),

(v) M �|	 QCR0,

(vi) M �|	 CFAR.

Proof (i) Assume that M |	 k/l = n/m with k, l,m, n ∈ Z and l,m > 0. One finds
k/l − n/m = a/b with b > 0. Value protection yields that a = 0. With 0/x = 0 this yields
k/l − n/m = 0. This implies that M ∼= Qd

0 , and thus contradicts the assumption that M is a
proper homomorphic preimage of Qd

0 .
(i i) From x · (1/y) = x/y one obtains 0 · (1/y) = 0/y, and with CR that yields 0 = 0/y

thereby reducing this case to case (i).
(i i i) Reduction to case (i i): x · (1/y) = (x/1) · (1/y) = (x · 1)/(1 · y) = x/y.
(iv) An improvement of case (i i i): with flattening and fracpair transparency find k ∈ N+

such that (0/2) + (1/3) = k/3 · k. Then
0/2 = (k/3 · k) − (1/3) = (k/k) · (1/3) − (1/1) · (1/3) = ((k/k) − (1/1)) · (1/3).

Nowfind l ∈ N+ such that (k/k)−(1/1) = 0/l. Then ((k/k)−(1/1))·(1/3) = (0/l)·(1/3) =
0/(l · 3). Fracpair transparency implies 2 = l · 3 which is impossible for a natural number l.
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(v)With QCR0 and CR, 0/x +0/x = (0+0)/x = 0/x , so that with CR 0/x = 0 whereby
the case is reduced to case (i).

(vi) With flattening find z ∈ N+ such that 0 = 0/z. Now 0/z = 0 = 0 + 0 = (0/z) +
(0/z) = 0/z2. Fracpair transparency gives z = 1 (as z > 0), whence 0 = 0/1.

Flattening with value protection implies the existence of a k > 0 such that−(0/2) = 0/k.
Now 0/1 = 0 = (0/2) + (− (0/2)) = (0/2) + (0/k) = 0/2 · k, thus contradicting fracpair
transparency. �

The following questions remain unanswered, however.

Problem 3.2.2 Is there a homomorphic preimage of Qd
0 which (i) satisfies CR, (ii) admits

flattening, and (iii) contains at least one true fraction?

Problem 3.2.3 Is there a homomorphic preimage of Qd
0 which (i) satisfies CR, (i i) admits

flattening, and (i i i) is transparent for fracpairs?

4 Arithmetical datatypes with simple fracterms

We are able to obtain positive results concerning the existence of arithmetical datatypes of
characteristic 0 with flattening and fracpair transparency by compromising the axioms of CR.
We will provide three examples.

4.1 GCD-based addition

The arithmetical datatype ̂Qd
0,gcd is given as follows:

– The domain V is the same as for rational numbers but without imposing an equivalence
relation on it: V = Z × N+.

– Constants and operations are as follows:

�0� = (0, 1) and �1� = (1, 1),

and with �p� = (a, b), �q� = (e, f ):

�−(p)� = (− a, b) (= −̂(�p�)),

�p · q� = (a · e, b · f ) (= �p�·̂�q�),

�p + q� = ((a · f + b · e)\gcd(b, f ), (b · f )\gcd(b, f )) (= �p�+̂�q�),

�p/q� =

⎧

⎪

⎨

⎪

⎩

(a · f , b · e) if e > 0

(− (a · f ),−(b · e)) if e < 0

(0, b · f ) if e = 0

(= �p�/̂�q�),

where gcd(0, n) = n and \ is integer division, thus 0\3 = 0, 6\3 = 8\4 = 2,−5\5 =
− 1, etc, and because integer division should be a total operation in meadows, −9\2 =
−5, 7\3 = 2 and so on. For division the following alternative is plausible as well:

(1, 1)/̂(0, b) = (0, 1) for all b > 0.

We prefer (1, 1)/̂(0, b) = (0, b) because that particular choice respects 1/(1/x) = x
(i.e., the involution axiom in Table 2).
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Table 4 CR̂: axioms for a
compromised commutative ring (x + y) + z = x + (y + z) (9)

x + y = y + x (10)

x + 0 = x (11)

− x = (− 1) · x (12)

1 + (− 1) = 0 (13)

(x · y) · z = x · (y · z) (14)

x · y = y · x (15)

1 · x = x (16)

x · (y + z) = x · y + x · z (17)

The following properties are easy to demonstrate, where ∼=gcd is the congruence induced
by ̂Qd

0,gcd :

1. For n ∈ Z: �n� = (n, 1), and with m ∈ N+: �n/m� = (n,m), thus ∼=gcd is separating for
simple fracterms (i.e. fracpairs).
Indeed for m, n ∈ Z, and k, l ∈ N: if ̂Qd

0,gcd |	 m/k = n/l, then m = n and k = l.
2. The congruence∼=gcd is not fully fracterm transparent. Indeed consider p ≡ (1/2)/(1/2)

and q ≡ 2/2. Then p ∼=gcd q , but not 1/2 ∼=gcd 2.
3. The congruence ∼=gcd admits flattening to fracpair form.
4. Qd

0 is a homomorphic image of ̂Qd
0,gcd .

5. ̂Qd
0,gcd satisfies the equations of Table 4 (below, we show distributivity). From these

equations the following equations can be derived: 0 · 0 = 0, 0 · 1 = 0, and −0 = 0.
6. ̂Qd

0,gcd satisfies the equations and open formulae of Table 5.

7. In̂Qd
0,gcd ,multiplication is not componentwise for fracterms, division is not zero-totalised

((1/2)/0 = (1/2) · 0 = 0/2 �= 0), and CFAR is not satisfied. Furthermore, x = 1/2
refutes x + (− x) = 0 and 0 · x = 0.

8. ̂Qd
0,gcd satisfies characteristic 0, completeness for wholeterms, value protection, conven-

tional negation, uniform division by zero, fracpair transparency, QCR, and QCR+.
9. ̂Qd

0,gcd is not regular, for example (2 · 2)/2 �= 2.

Except distributivity, all equations in Table 4 are easily verified. For distributivity assume
�p� = (a, b), �q� = (e, f ), �r� = (u, v). Then

p · (q + r)

= (a, b)·̂((e · v + f · u)\gcd( f , v), ( f · v)\gcd( f , v))

= ((a · e · v + a · f · u)\gcd( f , v), (b · f · v)\gcd( f , v))

= ((a · e · b · v + b · f · a · u)\b · gcd( f , v), (b · f · b · v)\b · gcd( f , v))

= ((a · e · b · v + b · f · a · u)\gcd(b · f , b · v), (b · f · b · v)\gcd(b · f , b · v))

= (a · e, b · f )+̂(a · u, b · v)

= (a, b)·̂(e, f )+̂(a, b)·̂(u, v)

= p · q + p · r .
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Table 5 Some equations and formulae valid in ̂Qd
0,gcd

x/y = x · (1/y) (18)

1/(1/x) = x (19)

1/1 = 1 (20)

x + (− x) = 0 · x (21)

x2 = x · x (22)

0 · (1 + x2 + y2 + z2 + u2) �= 1 + x2 + y2 + z2 + u2 (23)

0 · x �= x → 0 · (1/x) �= 1/x (24)

1/(0/x) = 0 · (1/x) (25)

0 · x �= x ∧ 0 · y �= y → 0 · x · y �= x · y (26)

x �= 0 ∧ y �= 0 → x · y �= 0 (27)

0 · x · y �= x · y → 1/(x · y) = (1/x) · (1/y) (28)

0 · x · y �= x · y → 1/(x/y) = y/x (29)

0 · y · z �= x · y → (x/y)/z = x/(y · z) (30)

4.2 Amodel with CFAR

The arithmetical datatype ̂Qd
0,cfar− is given as follows:

– The domain V is the same as for rational numbers but without imposing an equivalence
relation on it: V = Z × N+.

– Constants and operations are as follows:

�0� = (0, 1) and �1� = (1, 1),

and with �p� = (a, b), �q� = (e, f ):

�−(p)� = (− a, b) (= ˜−(�p�)),

�p · q� = (a · e, b · f ) (= �p�̃·�q�),

�p + q� = (a · f + b · e, b · f ) (= �p�˜+�q�),

�p/q� =

⎧

⎪

⎨

⎪

⎩

(a · f , b · e) if e > 0

(− (a · f ),−(b · e)) if e < 0

(0, b · f ) if e = 0

(= �p�˜/�q�).

For division, the following alternative is plausible as well:

(1, 1)˜/(0, b) = (0, 1) for all b > 0.

As before, we prefer (1, 1)˜/(0, b) = (0, b) because that particular choice respects
1/(1/x) = x .

A weak variant of CFAR is CFAR−:

0.y = 0 ∧ 0.u = 0 → x/y + z/u = (x · y + y · z)/(y · u)

Write ∼=cfar− for the congruence induced by ̂Qd
0,cfar− . The congruence ∼=cfar− satisfies

properties 1 − 4 mentioned in the previous section. Further properties of ∼=cfar− are the
following:
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1. ̂Qd
0,cfar− satisfies the equations of Table 4, except distributivity.

2. ̂Qd
0,cfar− satisfies the equations and open formulae of Table 5.

3. In ̂Qd
0,cfar− , division is not zero-totalised ((1/2)/0 = (1/2) · 0 = 0/2 �= 0), and QCR,

QCR+ are not satisfied.
4. ̂Qd

0,cfar− does not satisfy CFAR.

5. ̂Qd
0,cfar− satisfies characteristic 0, completeness for wholeterms, value protection, compo-

nentwisemultiplication, conventional negation, uniformdivision by zero, simple fracterm
transparency, and CFAR−.

4.3 An arithmetical datatype with a simplifying operator

We briefly discuss another model with the same domain V as in the previous two sections,
but which uses a simplification operator. The operator sim simplifies pairs as follows (with
n ∈ N,m ∈ N+):

sim(n,m) = ((n\gcd(n,m))/(m\gcd(n,m))),

sim(− n,m) = (− (n\gcd(n,m))/(m\gcd(n,m))).

For example, gcd(0, 3) = 3 and thus sim(0, 3) = (0, 1).
Constants and operations can be defined as before, simplifying all results of operators

except for division, which for that reason cannot be defined via inverse and multiplication.
This yields a model in which many common laws are not valid (1 · x = x , factorisation
of division, x + 0 = x), although this model does satisfy x + (− x) = 0. We refrain from
discussing this model in detail.

5 Fracpair transparency with fracpairs as numbers

In this section we will outline another path towards modelling true fractions. Instead of
considering weaker congruences for arithmetical expressions we consider a more liberal
notion of number, effectively allowing to tag the elements ofQd

0 with additional information,
which is informative about the choice of simple fraction one has in mind.

Thus assuming that the value of the fracpair 2/3 is a rational number, the fact that it
has numerator 2 and denominator 3 (rather than e.g. 4 and 6 respectively) may be added
to it in some form of extension or expansion of the rational numbers which allows for the
incorporation of additional information.

For an integer n and a positive natural m we will consider n/fp m as a “kind of number”,
which is understood as a constant for an element of an extension of the meadow of rationals.
The interpretation of n/fp m must at the same time represent the value of n/m and the values
of n and m.

Instead of a “fractions as terms” perspective this section focuses on the fractions as values
perspective where values allow to encode additional information.

As it turns out there is much freedom in the choice of an extension for the meadow of
rationals. We will discuss two cases: the first case (Sect. 5.1) allows separation of most
fracpairs, and the second case (Sect. 5.2) allows separation of all fracpairs.
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Table 6 Complete basis of
orthogonal idempotents v · v = v (31)

v + d = 1 (32)

5.1 Two-dimensional vector meadows

We introduce two new constants, v (value) and d (decoration) for orthogonal idempotents in
a (not strongly regular) meadow, both of which are assumed to be nonzero. Axioms for these
constants are in Table 6. Note that with CR these axioms imply v · d = 0 and d · d = d.

The direct sum v · Qd
0 ⊕ d · Rd

0 is an instance of what we call a vector meadow, and has
elements v · p + d · q with p ∈ Qd

0 and q ∈ Rd
0 , and in which sum, product and division are

defined componentwise, so

(v · x + d · x ′)/(v · y + d · y′) = v · (x/y) + d · (x ′/y′).

The structure v · Qd
0 ⊕ d · Rd

0 comes with two unary mappings: val(− ) to Qd
0 , named value

part, and data(−) to Rd
0 , named data part: val(v · p+d ·q) = p and data(v · p+d ·q) = q .

This structure is not strongly regular, as d is non-zero and d/d �= 1 (it easily follows that
d/d = d). However, this structure has useful strongly regular submeadows.

Proposition 5.1.1 Let α1, . . . , αn be a set of (positive) transcendent real number which are
algebraically independent, and q1, . . . , qn a sequence of rational numbers.

The minimal submeadow H of v · Qd
0 ⊕ d · Rd

0 generated by βi (i ∈ {1, . . . , n}) with
βi = v · qi + d · αi is strongly regular.

Proof The idea is that there are no constant names for v and for d in the signature of H. As
a consequence H is not a minimal datatype, i.e. it has proper substructures.

Let a ∈ |H|, then for some meadow term t(x1, . . . , xn), not involving the constants v and
d, H |	 a = t(β1, . . . , βn). Suppose that v · a �= 0. Now v · a = t(v · β1, . . . , v · βn) =
v · t(q1, . . . , qn).

It follows that t(q1, . . . , qn) �= 0 so that, because the βi are algebraically independent
t(β1, . . . , βn) �= 0. Thus a/a = v·t(q1, . . . , qn)/t(q1, . . . , qn)+d·t(β1, . . . , βn)/t(β1, . . . ,

βn) = v + d = 1. �
One may define the structure M1 = (v ·Qd

0 ⊕d ·Rd
0 , /fp ) to define an alternative division

/fp as follows:

(v · x + d · x ′)/fp (v · y + d · y′) = v · (x/y) + d · x .
The congruence induced by the structure M1 satisfies fracpair transparency (with /fp instead
of /) for x �= 0.

5.2 True division with fracpair transparency

We now consider the structure M2 = (v · Qd
0 ⊕ d · Qd

0 , /fp ) with the division operation

/fp : (v · Qd
0 ⊕ d · Qd

0)
2 → v · Qd

0 ⊕ d · Qd
0

defined by

(v · x + d · x ′)/fp (v · y + d · y′) = v · (x/y) + d · ((1 − x/x) · y + x · (y/y)).

The structure M2 induces a congruence ∼=M2 on the set of terms over its signature.
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Table 7 Facts about true division
(−/fp −) in the structure M2

2/fp 3 �= 4/fp 6 (33)

0/fp 3 �= 0/fp 6 (34)

x/fp 0 = 0 (35)

0/fp 1 �= 0 (36)

x �= 0 → x/fp 1 = x (37)

val(x/fp y + u/fp v) = val(x/fp y) + val(u/fp v) (38)

data(x/fp y + u/fp v) = data(x/fp y) + data(u/fp v) (39)

x �= 0 ∨ u �= 0 → x/fp y + u/fp y = (x + u)/fp y (40)

0/fp 1 + 0/fp 1 �= 0/fp 1 (41)

x/fp y = u/fp v → x/y = u/v (42)

Proposition 5.2.1 The congruence ∼=M2 is transparent for fracpairs.

Proof First notice that x/fp y = 0 if and only if y = 0.
Consider the fracpairs p ≡ k/fp l and q ≡ m/fp n and assume M2 |	 p = q , then

p �= 0 �= q and val(p) = val(q) and data(p) = data(q). Thus Qd
0 |	 k/l = m/n and

Qd
0 |	 (1 − (k/k)) · l + k · (l/l) = (1 − (m/m)) · n + m · (n/n), and because l, n > 0:

Qd
0 |	 (1− (k/k)) · l+ k = (1− (m/m)) ·n+m. Now if k = 0 then, with Qd

0 |	 k/l = m/n,
also m = 0 so that Qd

0 |	 l = n. In case k �= 0 also m �= 0 and again Qd
0 |	 l = n. Now,

with Qd
0 |	 k/l = m/n also Qd

0 |	 k = m. �
In order to assess flattening and value protection only expressions without occurrences of

−/− are to be taken into account.

Proposition 5.2.2 The mapping −/fp − guarantees value protection.

Proof Suppose M2 |	 p = q then Qd
0 |	 val(p) = val(q). Here val(p) and val(q) are

obtained by replacing −/fp − by −/− throughout these expressions. So the fracterms p and
q have the same interpretation in Qd

0 under the assumption that −/fp − stands for −/− in
that case. �

Instead of flattening only a weaker assertion can be found:

Proposition 5.2.3 For closed t there are k, l ∈ Z, with l > 0 and expressions r and s
both possibly involving −/− but not −/fp − (i.e. ordinary meadow expressions) such that
M2 |	 t = (v · k + d · r)/fp (v · l + d · s).
Proof Write t = v · val(t) + d · data(t). Flattening works within Qd

0 so given t one finds
integers k and l > 0 so that Qd

0 |	 val(t) = k/l. Now consider p(r , s) ≡ (v · k +d · r)/fp (v ·
l + d · s). Straightforward calculation yields p = v · k/l + d · ((1− (r/r)) · s + r · (s/s)). If
data(t) = 0 choose r = 1, s = 0, otherwise choose r = data(t), s = 1, and in both cases
p(r , s) = v · val(t) + d · data(t). �

Some facts concerning M2 are collected in Table 7.
What we conclude from the results of this section is that there is a meadow in which “frac-

tions as values” can be understood in such a manner that fracpair transparency is guaranteed
provided a new (different) definition of division is given, which makes use of division on the
rationals (and original division in the meadow).
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Whether or not one considers the arithmetical datatype thus constructed to be sufficiently
similar to ordinary arithmetic to call its elements numbers or “a kind of numbers” is a matter
of taste. If so then one may hold that fractions may be considered a kind of numbers and may
satisfy fracpair transparency at the same time.

6 Concluding remarks

Some terminology which is conventional in the area of fractions has not been introduced
in Sect. 2. A more inclusive survey of such terminology is obtained with the following
definitions:

– a fracpair t/r with positive numerator t is proper if t <∼= r ,
– a fracpair with positive numerator that is not proper is said to be improper,
– a fracterm is composite if it is not flat.
– a unit fracterm (also unit fracpair) is a fracpair with 1 as its numerator,
– a term t is a mixed fracterm if it has the form r + s or −r − s with r a whole term and s

a simple fracterm; for a mixed fracterm r + s, r is called the integer part and s is called
the fractional part.

The latter terminology is somewhat unfortunate as a mixed fracterm is not a fracterm.
In [2] it is shown that fractions involving a single variable can be brought in so-called mixed
fraction format.

For the arithmetical datatypes ̂Qd
0,gcd and ̂Qd

0,cfar− , the existence of a finite equational
initial algebra specification remains an open question.
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