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Abstract
Reactive synthesis for the GR(1) fragment of LTL has been implemented and studied in
many works. In this work we present and evaluate a list of heuristics to potentially reduce
running times for GR(1) synthesis and related algorithms. The list includes several heuris-
tics for controlled predecessor computation and BDDs, early detection of fixed-points and
unrealizability, fixed-point recycling, and several heuristics for unrealizable core computa-
tions. We have implemented the heuristics and integrated them in our synthesis environment
Spectra Tools, a set of tools for writing specifications and running synthesis and related anal-
yses. We evaluate the presented heuristics on SYNTECH15, a total of 78 specifications of
6 autonomous Lego robots, on SYNTECH17, a total of 149 specifications of 5 autonomous
Lego robots, all written by 3rd year undergraduate computer science students in two project
classes we have taught, as well as on benchmarks from the literature. The evaluation inves-
tigates not only the potential of the suggested heuristics to improve computation times, but
also the difference between existing benchmarks and the robot’s specifications in terms of
the effectiveness of the heuristics. Our evaluation shows positive results for the application of
all the heuristics together, which get more significant for specifications with slower original
running times. It also shows differences in effectiveness when applied to different sets of
specifications. Furthermore, a comparison between Spectra, with all the presented heuristics,
and two existing tools, RATSY and Slugs, over two well-known benchmarks, shows that
Spectra outperforms both on most of the specifications; the larger the specification, the faster
Spectra becomes relative to the two other tools.

1 Introduction

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive
system from its temporal logic specification [43]. Rather thanmanually constructing a system
and using model checking to verify its compliance with its specification, synthesis offers an
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approach where a correct implementation of the system is automatically obtained, if such an
implementation exists.

GR(1) is a fragment of LTL, which has an efficient symbolic synthesis algorithm [5,42]
and whose expressive power covers most of the well-known LTL specification patterns of
Dwyer et al. [15,32]. GR(1) synthesis has been implemented in several tools in recent years,
e.g., RATSY [2] and Slugs [17]. It has been further used and extended in different contexts and
for different application domains, including robotics [29], hardware synthesis [3], scenario-
based specifications [38], aspect languages [37], event-based behavior models [14], and
device drivers [47], to name a few.

In this work we present and investigate performance heuristics for algorithms for GR(1)
synthesis in case a specification is realizable and Rabin(1) synthesis [27,39] in case the
specification is unrealizable. For the case of unrealizability we also investigate heuristics for
speeding up the computation of unrealizable cores [13,27], i.e., minimal unrealizable subsets
of guarantees that localize a cause of unrealizability. For each heuristics we present (1) its
rationale including the source of the heuristics, if one exists, (2) how we implement it on top
of the basic algorithms, and (3) a brief intuition about its potential effect.

All heuristics we have developed and studied, satisfy two main criteria. First, they are
generic, i.e., they are not optimized for a specific specification or family of specifications.
Second, they are conservative, i.e., none of the heuristics changes the results obtained from
the algorithms.

We have integrated the heuristics in our synthesis environment Spectra Tools, available
together with a set of Eclipse plugins for writing specifications and running synthesis and
related analyses, see [53].

We evaluate the presented heuristics on three sets of specifications. The first set, SYN-
TECH15, consists of 78 specifications of 6 autonomous Lego robots, and the second set,
SYNTECH17, a total of 149 specifications of 5 autonomous Lego robots, both written by
3rd year undergraduate computer science students in two project classes we have taught.
The third set consists of specifications for the ARM AMBA AHB Arbiter (AMBA) [3]
and a Generalized Buffer from an IBM tutorial (GenBuf) [4], which are the most popular
GR(1) examples in literature, used, e.g., in [5,10,13,27,30,48]. Our evaluation addresses the
effectiveness of each of the heuristics individually and together, and whether there exists a
difference in effectiveness with regard to different sets of specifications and with regard to
the original running time. It further compares our implementation, employing all heuristics,
against previously published GR(1) synthesis tools, RATSY [2] and Slugs [17]. To the best
of our knowledge, a comprehensive list of heuristics for GR(1) and its systematic evaluation
have not yet been published.

A preliminary version of the present work has appeared in [19]. The present work extends
this preliminary version by (1) presenting additional heuristics, at the level of predecessor
computations and binary decision diagrams, and by (2) adding another set of specifications
for evaluation, SYNTECH17, which includes larger and more extensive specifications than
SYNTECH15. Further, (3) it provides additional evaluation of all heuristics based on a
dissection according to original running times, and finally, (4) reports on a direct comparison
of our implementation, with all heuristics employed, against two previously published GR(1)
synthesis tools.

The remainder of this work is structured as follows. Section 2 presents required prelim-
inary background on GR(1) synthesis and related algorithms, μ-calculus and fixed-points,
unrealizability, and delta debugging. Section 3 presents the three sets of performance heuris-
tics followed by Sect. 4, which presents the evaluation and a discussion of the results. Finally,
Sect. 5 presents related work and Sect. 6 concludes.
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2 Preliminaries

We breifly provide necessary background on LTL and synthesis,μ-calculus and fixed-points,
GR(1) synthesis, unrealizability and Rabin(1) game, binary decision diagrams and the com-
putation of controlled predecessors, and delta debugging.

2.1 LTL and synthesis

We repeat some of the standard definitions of linear temporal logic (LTL), e.g., as found in [5],
a modal temporal logic with modalities referring to time. LTL allows engineers to express
properties of computations of reactive systems. The syntax of LTL formulas is typically
defined over a set of atomic propositions AP with the future temporal operators X (next) and
U (until).

The syntax of LTL formulas over AP is ϕ :: = p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ for p ∈ AP.
The semantics of LTL formulas is defined over computations. For � = 2AP, a computation
u = u0u1.. ∈ �ω is a sequence where ui is the set of atomic propositions that hold at the
i th position. For position i we use u, i |� ϕ to denote that ϕ holds at position i , inductively
defined as:

– u, i |� p iff p ∈ ui ;
– u, i |� ¬φ iff u, i �|� φ;
– u, i |� ϕ1 ∨ ϕ2 iff u, i |� ϕ1 or u, i |� ϕ2;
– u, i |� Xϕ iff u, i+1 |� ϕ;
– u, i |� ϕ1Uϕ2 iff ∃k ≥ i : u, k |� ϕ2 and ∀ j, i ≤ j < k: u, j |� ϕ1.

We denote u, 0 |� ϕ by u |� ϕ. We use additional LTL operators F (finally), G (globally),
and H (historically, i.e., always in the past) defined as:

– Fϕ := true U ϕ;
– Gϕ := ¬F¬ϕ;
– u, i |� Hϕ iff ∀0 ≤ k ≤ i : u, k |� ϕ.

LTL formulas can be used as specifications of reactive systems, where atomic propositions
are partitioned and interpreted as either environment (input) or system (output) variables. An
assignment to all variables is called a state.

A winning strategy for an LTL specification ϕ and a set of initial states I , prescribes the
outputs of a system for all environment choices, such that all computations from I will satisfy
ϕ. The system wins on I if there is a winning strategy on I . The winning states are all states
W such that the system wins on W .

A specification ϕ is called realizable if a strategy exists such that for all initial environment
choices the initial states are winning states. The goal of LTL synthesis is, given an LTL
specification, to find a strategy that realizes it, if one exists.

2.2 �-Calculus and fixed-points

The modal μ-calculus is a fixed-point logic [28]. It extends modal logic with least (μ) and
greatest (ν) fixed points. We use the μ-calculus over the power set lattice of a finite set of
states S, i.e., the values of fixed-points are subsets of S. For monotonic functions ψ over
this lattice and by the Knaster–Tarski theorem the fixed-points μX .ψ(X) and νY .ψ(Y ) are
uniquely defined and guaranteed to exist. The fixed-points can be computed iteratively [21]
in at most |S| iterations due to monotonicity of ψ :
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– μX .ψ(X): From X0 := ⊥ and Xi+1 := ψ(Xi ) obtain μX .ψ(X) := X f for X f =
ψ(X f ) (note f ≤ |S|)

– νY .ψ(Y ): From Y0 := � and Yi+1 := ψ(Yi ) obtain νY .ψ(Y ) := Y f for Y f = ψ(Y f )

(note f ≤ |S|)
The number of iterations of the fixed-point computation is linear in |S|. When states are

represented by a set of atomic propositions (or Boolean variables) AP then |S| = 2|AP|,
i.e., the number of iterations is exponential in AP . Because the least (greatest) fixed-point
is unique and ψ is monotonic we can safely start the iteration from under-approximations
(over-approximations). Good approximations can reduce the number of iterations to reach
the fixed-point.

2.3 GR(1) synthesis

GR(1) synthesis [5] handles a fragment of LTL where specifications contain initial assump-
tions and guarantees over initial states, safety assumptions and guarantees relating the current
and next state, and justice assumptions and guarantees requiring that an assertion holds
infinitely many times during a computation. The GR(1) realizability problem asks to check
whether a winning strategy for the system exists. The GR(1) synthesis problem is to construct
a winning strategy, if one exists.

A GR(1) synthesis problem consists of the following elements [5]:

– X input variables controlled by the environment;
– Y output variables controlled by the system;
– θe assertion over X characterizing initial environment states;
– θ s assertion over X ∪ Y characterizing initial system states;
– ρe(X ∪ Y,X ) transition relation of the environment;
– ρs(X ∪ Y,X ∪ Y) transition relation of the system;
– J ei∈1..n assertions overX ∪Y for the environment to satisfy infinitely often (called justice

assumptions);
– J sj∈1..m assertions over X ∪ Y for the system to satisfy infinitely often (called justice

guarantees).

Note that realizing (satisfying) a justice assumption (guarantee) J ei (J sj ) means realizing
(satisfying) the LTL formula GF J ei (GF J sj ).

GR(1) synthesis has the following notion of (strict) realizability [5] defined by the LTL
formula1:

ϕsr = (θe → θ s) ∧ (θe → G((Hρe) → ρs))

∧
⎛
⎝θe ∧ Gρe →

⎛
⎝ ∧

i∈1..n
GFJ ei →

∧
j∈1..m

GFJ sj

⎞
⎠

⎞
⎠ .

Specifications for GR(1) synthesis have to be expressible in the above structure and thus
do not cover the complete LTL. Efficient symbolic algorithms for GR(1) realizability check-
ing and strategy synthesis for ϕsr have been presented in [5,42]. The algorithm of Piterman
et al. [42] computes winning states for the system, i.e., states from which the system can
ensure satisfaction of ϕsr . We denote the states from which the system can force the envi-

1 Following [5], we use the transition relations ρe and ρs inside the LTL formula. Technically, this means
prefixing the target states’ variables by the operator X.
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ronment to visit a state in R by R , also called the controlled predecessors, defined
as:

(R) = {q ∈ 2X∪Y | ∀x ∈ 2X : ¬ρe(q, x) ∨ ∃y ∈ 2Y : (ρs(q, 〈x, y〉) ∧ 〈x, y〉 ∈ R)}.
(1)

The system winning states are given by the following formula using μ-calculus nota-
tion:

Wsys = νZ.

m⋂

j=1

μY.

n⋃

i=1

νX.(Js
j ∩ (Z)) ∪ (Y ) ∪ (¬Je

i ∩ (X))
(2)

The algorithm from [5] for computing the set Wsys is shown in Algorithm 1. Note that this
algorithm already contains some performance improvements over the naive evaluation of
Eq. (2), e.g., the nested fixed-points Y are not computed independently for each J sj and Z ;
instead the value of Z is updated before computing J sj+1. Algorithm 1 stores intermediate
computation results in arrays Z[] (line 19), Y[][] (line 16), and X[][][] (line 14). This
memory is used for strategy construction [5].

Algorithm 1 GR(1) game algorithm
from [5] to compute system winning
states Z
1: Z = true
2: while not reached fixed-point of Z do
3: for j = 1 to |Js| do
4: Y = false; cy = 0
5: while not reached fixed-point of Y do
6: start = Js

j ∧ Z ∨ Y
7: Y = false
8: for i = 1 to |Je| do
9: X = Z // better approx. than true, see [5]

10: while not reached fixed-point of X do
11: X = start ∨ (¬Je

i ∧ X)
12: end while
13: Y = Y ∨ X
14: X[j][i][cy]← X
15: end for
16: Y[j][cy++]← Y
17: end while
18: Z = Y
19: Z[j] = Y
20: end for
21: end while
22: return Z
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2.4 Unrealizability and Rabin(1) game

A specification ϕ is unrealizable if there is a counter-strategy in which the environment can
force the system to violate at least one of its guarantees while satisfying all the environment
assumptions. Maoz and Sa’ar [39] show an algorithm for solving a generalized Rabin game
with one acceptance pair (Rabin(1) game2). The algorithm computes the set of the winning
states for the environment by computing cycles violating at least one justice guarantee J si
while satisfying all justice assumptions J ej . Cycles can be left by the system iff the environ-
ment can force it to a future cycle (ensures termination) or to a safety guarantee violation.

We denote the states from which the environment can force the system to visit a state in
R by R defined as:

(R) = {q ∈ 2X∪Y | ∃x ∈ 2X : ρe(q, x) ∧ ∀y ∈ 2Y : (¬ρs(q, 〈x, y〉) ∨ 〈x, y〉 ∈ R)}.

(3)

The set of environment wining states is given by the following formula using μ-calculus
notation:

Wenv = μZ.

m⋃

j=1

νY.

n⋂

i=1

μX.(¬Js
j ∪ (Z)) ∩ (Y ) ∩ (Je

i ∪ (X))
(4)

Algorithm 2 Rabin(1) game algorithm
from [39,44] to compute environment
winning states Z

1: Z = false; cz = 0
2: while not reached fixed-point of Z do
3: for j = 1 to |Js| do
4: Y = true
5: while not reached fixed-point of Y do
6: start = ¬Js

j ∧ Y
7: Y = true
8: for i = 1 to |Je| do
9: pre = Z ∨ Je

i ∧ start
10: X = false; cx = 0
11: while not reached fixed-point of X do
12: X = pre ∨ (¬Js

j ∧ X)
13: X[cz][i][cx++] ← X
14: end while
15: Y = Y ∧ X
16: end for
17: end while
18: Z = Z ∨ Y
19: Z[cz++] ← Y
20: end for
21: end while
22: return Z

The algorithm from [39] (extended to handle justice assumptions J ei as implemented in
JTLV [44]) for computing the setWenv is shown in Algorithm 2. Again, the algorithm already
implements some performance heuristics over the naive implementation of Eq. (4), e.g., the

2 We use Rabin(1) to refer to the dual of GR(1) to avoid confusion with “Generalized Rabin(1) synthesis” as
defined by Ehlers [16], where assumptions and guarantees are expressed by generalized Rabin(1) conditions.
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early update of Z in line 18. Algorithm 2 stores intermediate computation results in arrays
Z[] (line 19) and X[][][] (line 13) for strategy construction.

2.5 BDDs and the computation of controlled predecessors

All the computations and algorithms described above are done symbolically using Boolean
functions. The most common way to represent Boolean functions is using Binary Decision
Diagrams (BDDs), introduced in [8]. The concept is that for functions representing real life
systems, a decision tree, which is exponential in the number of variables, can be reduced to
a much smaller directed acyclic graph (DAG), given several rules. The reduction is done by
removing duplicate terminals, removing redundant if-then-else tests, and removing
duplicate nodes. This sharing of information often results in a compact representation, and
when no further optimizations can be applied, the BDD is said to be reduced. Since in
a reduced BDD all the nodes are unique, we can define the BDD size as the number of
occurring nodes.

Another important rule to adhere to for efficiency is variable ordering, meaning imposing
a single occurrence of a Boolean variable along any path in the DAG. Such BDD is called
ordered BDD. A reduced ordered BDD that represents a given function is unique, hence we
can say that an ordered BDD has a canonical form. All the BDD operations are done on the
canonical forms, and binary operations are done on BDDs with compatible variable order.
Since the operations may result not in the canonical form of an ordered BDD, the last step
is always applying the reduction rules. The reduction on an ordered BDD is essentially a
bottom-up DAG traversal, and it takes O(nlog(n)) where n is the number of variables. From
now on we will refer to the canonical form of an ordered BDD simply as BDD.

We define the following BDD operations:

– not(B f ): Swaps the T RUE and FALSE nodes in B f .
– support(B f ): The support set of the BDD B f , meaning the variables that are used in

the BDD representation of function f .
– restrict({0, 1}, x , B f ): Computes the BDD representing a Boolean function f [a/x]

for a ∈ {0, 1}. The computation of restrict(0, x , B f ) and restrict(1, x , B f )
is done by redirecting all incoming edges of nodes labeled with x to else(x) and
then(x) respectively.

– apply(op, B f , Bg): A binary operation on Boolean functions f and g. The resulting
BDD represents f op g. This algorithm is based on the Shannon expansion: f ≡ x̄ ·
f [0/x] + x · f [1/x], which is for f op g:

f op g ≡ x̄ · ( f [0/x] op g[0/x]) + x · ( f [1/x] op g[1/x])
The algorithm is shown in Algorithm 3, and with added caching of intermediate compu-
tation the worst time complexity is O(|B f ||Bg|)).

– exists(x, B f ): Existential abstraction of a Boolean function f . Can be implemented
as apply(+, restrict(0, x , B f ), restrict(1, x , B f )), but since the two BDDs
in the apply are identical down to the level of the x-nodes, each x-node can be replaced
by apply(+, sub-tree of else(x)), sub-tree of then(x)). This can
be generalized to nested quantifiers in a straightforward way, though the nested problem
is NP-complete. We denote this by exists(X, B f ) for a set of variables X .

– univ(x, B f ): Universal abstraction of a Boolean function f . Can be implemented as
apply(·, restrict(0, x , B f ), restrict(1, x , B f )), and the same applies as in
exists.
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Algorithm 3 The algorithm apply(op, B f , Bg) to compute the BDD of f op g for a binary
operation op
1: r f ← root node of B f
2: rg ← root node of Bg
3: if r f and rg are terminal nodes then
4: return value of r f op rg
5: end if
6: if r f and rg are xi -nodes (represent variable xi )

then
7: n ← new xi -node
8: else(n) ← apply(op, else(r f ),

else(rg))
9: then(n) ← apply(op, then(r f ),

then(rg))
10: return n
11: end if

9: if r f is xi -node and rg is terminal or x j -node ( j >

i) then
10: n ← new xi -node
11: else(n) ← apply(op, else(r f ),

rg)
12: then(n) ← apply(op, then(r f ),

rg)
13: return n
14: end if
15: if rg is xi -node and fg is terminal or x j -node

( j > i) then
16: n ← new xi -node
17: else(n) ← apply(op, r f ,

else(rg))
18: then(n) ← apply(op, r f ,

then(rg))
19: return n
20: end if

In the GR(1) algorithm, we need to compute R , given in Eq. (1), which is the set of
states the system can force the environment to visit. Similarly, in the Rabin(1) algorithm,
we need to compute R , given in Eq. (3), which is the set of states the environment can
force the system to visit. The computation of this set of states using BDDs and the symbolic
representation of states is shown in Algorithms 4 and 5. For the computation we denote the
following:

Algorithm 4 The computation of
Eqn. (1) using BDD operations
1: Band ← apply(·, BR′, Bρs)
2: Bexists ← exists(Y ′, Band)
3: Bnot ← not(Bρe)
4: Bor ← apply(+, Bnot, Bexists)
5: Bres ← univ(X ′, Bor)
6: return Bres // BDD representing (R)

Algorithm 5 The computation of
Eqn. (3) using BDD operations
1: Bnot ← not(Bρs)
2: Bor ← apply(+, Bnot, BR′)
3: Buniv ← univ(Y ′, Bor)
4: Band ← apply(·, Buniv, Bρe)
5: Bres ← exists(X ′, Band)
6: return Bres // BDD representing (R)
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– BR is the BDD of the Boolean function that represents set of states R;
– BR′ the same BDD as BR , but using primed copies of the variables in R;
– Bρs is the BDD of the Boolean function that represents the set of the transition relation

of the system;
– Bρe as stated above but for the environment;
– X ′ the set of the primed copies of the variables in X ;
– Y ′ as stated above for Y .

2.6 Unrealizable core and delta debugging (DDMin)

Given an unrealizable GR(1) specification, an unrealizable core is a locally minimal subset of
system guarantees for which the specification is unrealizable [27]. Such a subset of guaran-
tees is helpful for debugging unrealizable specifications. One way to compute an unrealizable
core is using DDMin, described next.

The delta debugging algorithm [52] (DDMin) finds a locally minimal subset of a set
E for a given monotonic criterion check. We show the DDMin algorithm in Algo-
rithm 6. The input of the algorithm consists of a set E and the number n of parts of
E to check. The algorithm starts with n = 2 and refines E and n in recursive calls
according to different cases (line 3, line 8, and line 14). The computation starts by par-
titioning E into n subsets and evaluating check on each subset part (line 1) and its
complement (line 7). If check holds (line 2 or line 7), the search is continued recur-
sively on the subset part (or its complement), until part (or its complement) has no
subsets that satisfy check. If check neither holds on any subset part nor on the com-
plements, the algorithm increases the granularity of the partitioning to 2n (line 14) and
restarts.

To compute an unrealizable core using DDMin, the method check performs a realizabil-
ity check for the given subset part of system guarantees.

Algorithm 6 Delta debugging algorithm DDMin from [52] as a recursive method that mini-
mizes a set of elements E by partitioning it into n parts (initial value n = 2)
1: for part ∈ parti tion(E, n) do
2: if check(part) then
3: return ddmin(part , 2)
4: end if
5: end for
6: for part ∈ parti tion(E, n) do
7: if check(E\part) then
8: return ddmin(E\part , max(n − 1, 2))
9: end if
10: end for
11: if n ≥ |E | then
12: return E
13: end if
14: return ddmin(E , min(|E |, 2n))

123



46 E. Firman et al.

3 Suggested performance heuristics

We are now ready to present the main contribution of our work, a list of heuristics for
improving running times of GR(1) and related algorithms. We divide the presented heuristics
into three lists. The first list is inspired by classic heuristics for the controlled predecessor
computation, i.e., the evaluation of the operators and (Sect. 3.1). The second list of
heuristics applies to the GR(1) and Rabin(1) fixed-point algorithms (Sect. 3.2). Finally, the
third list applies to computing unrealizable cores (Sect. 3.3). For each heuristics we present
a rationale including a source of the heuristics, the heuristics and how we implemented it
in Algorithms 1–6, and a brief intution about its potential effect.

3.1 Controlled predecessor computation and BDDs

3.1.1 Grouping of variables and their primed copies

Rationale The size of the BDDs depends greatly on the variable order. During the computa-
tions the BDDs may grow to the extent that they cannot be computed in a reasonable time if
at all, even for small examples. To reduce the BDDs sizes we use dynamic reordering that
is supplied by the CUDD package. The CUDD package uses the SIFT algorithm (presented
in [46]) for reorder. Roughly, the algorithm iterates over the variables, and moves each of
them upwards and downwards the variable order, until eventually choosing the location that
results in the smallest BDDs. Note that if the BDDs sizes grow too much while moving a
variable in some direction, it stops exploring this course.

In [40], it was first suggested that instead of moving only individual variables, sifting
should move groups of neighboring variables that have strong affinity to each other. Since
the main BDD computations are of the controlled predecessors, which relies on the tran-
sition relation, the primed and unprimed variables (which are always neighbors) might be
strongly related, and as first suggested in [51], it can be beneficial to group them for the
dynamic reordering. Since it was first suggested, this heuristics was widely used but was
never evaluated on a large set of specifications.

HeuristicsTheCUDDpackage supplies anAPI to define groups of neighboring variables. The
groups can be defined only during the construction phase and cannot be redefined afterwards.
Then, whenever reorder is triggered, it performs the SIFT algorithm, but moves only groups
of variables. Note that when variables are moved as a group, they are still moved one by one,
and the BDDs sizes change as a result of each swap. The SIFT doesn’t stop if the BDDs grow
too much in the intermediate computation, hence it might do more expansive swaps until the
whole group is moved. On the other hand, after the whole group is moved the BDDs might
get smaller, and an order is found which wouldn’t be found otherwise.

This heuristics is implemented in code executed before Algorithms 1 and 2.

IntuitionThe heuristics is effectivewhen the values of primed and unprimed variables directly
influence each other and bothwould appear inmanyBDDs together. Then the SIFT algorithm
can find better ordersmore quickly (splitting the variables would increase the number of paths
in the BDDs). However, grouping can have negative effects for the SIFT algorithm when no
relation between the primed and unprimed copies of a variable exists (these variables still
have to be moved around without any benefit).
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3.1.2 Combined conjunction and existential abstraction

Rationale In the computationof both operators, and , there is an existential quantification
over a disjunction. Since the existential quantification eliminates variables from aBDD, it can
save a costly apply on a specific node. The relational product introduced in [9] constructs
the existential quantification over a disjunction without ever constructing the disjunction
itself, which can be quite large. This algorithm is implemented in the CUDD package, and
reported in [23].

Heuristics The CUDD package provides an API for using simultaneous conjunction and
abstraction (the functionCudd_bddAndAbstract).We use this functionwhen computing
the operators in Algorithm 1 line 11 and Algorithm 2 line 12. The computation is described in
Algorithm 4 for GR(1) and in Algorithm 5 for Rabin(1), so instead of lines 1 and 2 and lines
4 and 5 respectively, we use the combined function. Note that in Algorithm 5 for Rabin(1) the
function is used at the end of the algorithm, whereas in Algorithm 4 for GR(1) the function
is used at the beginning, on a potentially much larger BDD. This may affect the effectiveness
of the heuristics for the Rabin(1) algorithm compared to the GR(1) algorithm. The function
itself implements the relational product from [9]. Its main idea is to perform the ordinary
conjunction, but when a node n is built labeled with a variable that should be quantified out,
in Algorithm 3, instead of returning n in line 10, line 13 and line 19 a disjunction is returned,
meaning those lines are replaced with return apply(+, else(n), then(n)). Note that
this is another recursive step, which causes this algorithm to be exponential in the BDD size.

Intuition The heuristics is effective if the conjunction of a BDD with the transition relation
creates a large BDD due to primed BDD variables. By quantifying out these variables in the
same operation large BDDs are avoided. Depending on the BDD variable order and values,
the heuristics might not have any effect. As mentioned above, the worst-case complexity is
the same as with separate conjunction and quantification.

3.1.3 Partitioned transition relation

Rationale Each of the transition relations ρe and ρs , are typically represented by a single
BDD, which is a conjunction of the respective safety constraints of a specification. The sizes
of these BDDs can become very large, and have a negative impact on the computation time of
controlled predecessors. Maintaining one large BDD can be costly in general due to reorder-
ing. Therefore, as suggested in [9,20], keeping several smaller transitions and performing the
computations with them can be effective in reducing the running time altogether.

An alternative variant of a partitioned transition relation with vector composition was
reported in [23]. However, in the context of [23], the input is given as a circuit where it is
straightforward to obtain BDDs representing the values of each output variable. Unfortu-
nately, this is not the case for general GR(1) specifications. We have therefore implemented
the classic version of partitioning presented in [9] and our algorithm decides the order of
quantifications similar to [20].

Heuristics Our implementation of this heuristics is based on the iterative computation
described in [9] and has two parts, a pre-processing on BDDs of the safety constraints,
which is done once, and a revised computation of controlled predecessors, which is repeated
on every controlled predecessors computation.

In the pre-processing, instead of building a single transition relation from the safety guar-
antees, we compute an ordered sequence of transition relations Bρs

i
and sets of variables Y ′

i :
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(Bρs
1
,Y ′

1), . . . , (Bρs
k
,Y ′

k), where Bρs = Bρs
1

∧ · · · ∧ Bρs
k
and Y ′ = Y ′

1 ∪ · · · ∪ Y ′
k is a

partition. The same is done for the environment transition using the safety assumptions.
For GR(1), in the computation of the controlled predecessors, described in Algorithm 4,

in lines 1 and 2, instead of doing the operations on a single BDD Bρs and quantifying out the
whole variable set Y ′, we do an iterative computation: starting from BR′ , each step conjuncts
the previous result with the BDD Bρs

i
, and then quantifies out the set Y ′

i for 0 ≤ i < k. The
same is done for the environment in lines 3–5. The equivalent is done in Algorithm 5 for the
Rabin(1) game.

The challenging part is to find the ordered pairs during pre-processing. The order is
important because the predecessors computation is correct only if the variables Y ′

i do not
appear in the support set of any Bρs

j
for all j > i (it is safe to quantify the variables Y ′

i only
if they do not appear in subsequent transition relations). It is also important for performance,
because in order to reduce the BDD size each iteration of the predecessors computation starts
with, we want to quantify out as many variables as possible in each step.

To find an order we start by computing, for each partial transition relation, the set that can
be quantified out, which consists of the primed variables that are in the support set of the
transition relation. Then we subtract from each set all the other computed sets. The partial
transition relation with the maximal set after subtraction, is the one that will be next in the
order. If, after subtraction, all sets are empty, we choose the transition with the largest support
set, as suggested in [20].

After finding an order, the resulting sets Y ′
i for quantification may be too small to benefit

from (there are too many of them). Therefore we create minimal sets of size 3 by conjunct-
ing the partial transitions (sequential in the resulting order) and unifying the sets for the
quantification.

Intuition This heuristics is effective when safety constraints can be grouped and ordered such
that some BDD variables do not appear higher up in the order. By quantifying these variables
early, in the predecessor computation the sizes of BDDs will be reduced. In addition, the
intermediate quantification operations are on smaller sets of BDD variables and thus faster
(quantification has exponential time complexity in the number of quantified BDD variables).
The heuristics is less effective if many safety constraints share many variables and do not
allow for early quantification.

Examples where the partitioned transition relation might have a negative effect are trivial
cases in which the conjunction of safety constraints with the set of target states evaluates to
false. Here, final quantification would be trivial, but intermediate quantification might take
place before the value false is determined.

3.2 GR(1) and Rabin(1) fixed-point algorithm

3.2.1 Early detection of fixed-point

Rationale The GR(1) game and the Rabin(1) game iterate over the justice guarantees in the
outermost fixed-point. Each iteration refines the set of winning states based on the justice
guarantee and the computed set from the previous iteration (for-loop in Algorithm 1, line 3
and Algorithm 2, line 3). Computing a fixed-point for the same justice guarantee J sj and the
same set Z always yields the same set of winning states. We can exploit the equality to detect
if we will reach a fixed-point without completing the for-loop, i.e., without computing the
fixed-points for all justice guarantees. We found this heuristics implemented in the Rabin(1)
game in JTLV [44]. We have not seen a similar implementation for the GR(1) game.
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Heuristics For each iteration of the justice guarantees J s we save the resulting set of winning
states for justice J sj asZ[ j] (Rabin(1),Z[cz]). Starting in the second iteration of the outermost
fixed-point we compare for each justice J sj the resulting Z of its iteration to the previously
computed Z[ j] (Rabin(1), Z[cz − |J s |]). If the sets are equal the algorithm reached a fixed-
point with winning states Z . The heuristics is correct since the next iteration of justice J sj⊕1
will start from the set Z[ j] (Rabin(1),Z[cz−|J s |]), which is the same set it started fromwhen
it was previously computed. Hence, ∀k > j : Z[k]=Z[ j] (Z[cz − |J s |]=Z[cz − |J s | + k]), so
by definition we reached a fixed-point for k = n (all justice guarantees).

Intuition This heuristics is most effective for GR(1), when in the previous to last iteration of
the outer fixed-point only the first justice guarantee changes the set of winning states. Then,
the final iteration to confirm all winning states can stop after this first justice guarantee.
However, when in the previous to last iteration the last justice guarantee changes the set of
winning states, the final iteration has to complete up to that guarantee and the heuristics has
no effect. The effect is dual for the Rabin(1) algorithm.

3.2.2 Early detection of unrealizability

Rationale The GR(1) game and the Rabin(1) game compute all winning states of the system
and environment. When running GR(1) synthesis or checking realizability we are interested
whether there exists awinning systemoutput for all initial inputs from the environment.When
running Rabin(1) synthesis or checking unrealizability we are interested whether there is one
initial environment input such that the environment wins for all system outputs. Thus, in both
cases it is not necessary to compute all winning states, instead we can stop computation once
we can determine the outcome for the initial states.

Heuristics The outermost fixed-point in the GR(1) game is a greatest fixed-point. The game
starts from the set of all states and refines it to the winning states. Thus, after the computation
of the winning states for a justice guarantee we check whether the system still wins from all
initial inputs. We implemented this check in Algorithm 1 after line 19. If the system loses
for at least one initial environment input we stop the computation of winning states.

The outermost fixed-point in the Rabin(1) game is a least fixed-point. The game starts
from an empty set of states and extends it to the winning states. Thus, after the computation
of the winning states for a justice guarantee we check whether the environment now wins
from some initial input. We implemented this check in Algorithm 2 after line 19. If the
environment wins for at least one initial input we stop the computation of winning states.

Intuition This heuristics is most effective when the algorithms require many iterations of the
outermost fixed-point but initial states are determined to be losing early on. For realizable
specifications, this heuristics has no effect.

3.2.3 Fixed-point recycling

Rationale The GR(1) game and the Rabin(1) game are solved by computing nested fixed-
points of monotonic functions [see Eqs. (2) and (4)].

The time complexity of a straightforward implementation of the fixed-point computation
is cubic in the state space and can be reduced to quadratic time [7], as mentioned in [5]. This
method can also be applied to theRabin(1) game. Interestingly, althoughfixed-point recycling
is used to obtain quadratic instead of cubic time complexity of the GR(1) algorithm [5] (as
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measured in number of symbolic operations), to the best of our knowledge, the application
of the approach of [7] to GR(1) has never been systematically evaluated.

Heuristics Fixed-points are usually computed by fixed-point iteration starting from ⊥ (least
fixed-points) or � (greatest fixed-points) until a fixed-point is reached. The same princi-
ple works for the evaluation of nested fixed-points where for each iteration step of the
outer fixed-point, the inner fixed-point is computed from scratch. The main idea of [7] is
to exploit the monotonicity of fixed-point computations and start nested fixed-point compu-
tations from approximations computed in earlier nested computations. Consider the formula
μZ .νY .μX .ψ(Z , Y , X), iteration k + 1 of Z , and iteration l of Y : due to monotonicity
Zk ⊆ Zk+1 and Yof Zk

l ⊆ Yof Zk+1
l . Thus, the fixed-point X for Zk and Yof Zk

l is an under-

approximation of the fixed-point X for Zk+1 and Yof Zk+1
l (see [7] for more details).

In both, the GR(1) algorithm and the Rabin(1) algorithm, the fixed-point computations
also depend on justice assumptions J ei and justice guarantees J sj . This dependence does not
interfere with monotonicity of the computation. However, the algorithms compute |J e| · |J s |
values of the fixed-point X for each iteration of Y (stored in array X[][][] in Algorithm 1,
line 14).

We implemented this heuristics in the GR(1) gameAlgorithm 1with amodified start value
for the fixed-point computation of X in line 9.Unless the algorithm computes the first iteration
of Z the value of X is set to the previously computed result for the same justice assumption J ei
and justice guarantee J sj and same iteration cy of Y , i.e., X is set to memory cell X[ j][i][cy]
intersected with Z . This value is an over-approximation of the greatest fixed-point X and its
computation likely terminates after fewer iterations.

Similarly, we implemented the fixed-point recycling heuristics in the Rabin(1) gameAlgo-
rithm 2 with a modified start value for the fixed-point computation of X in line 10. Unless the
algorithm computes the first iteration of Z the value of X is set to the previously computed
result for the same justice assumption J ei and justice guarantee J sj for the same iteration of
Y . This value is an under-approximation of the least fixed-point X and its computation likely
terminates after fewer iterations. Note that in Algorithm 2 the fixed-point value of X is only
stored for the last iteration of Y (line 13). We had to change the implementation to store X
for all iterations of Y to use fixed-point recycling as described in [7].

IntuitionThis heuristics is most effective with multiple iterations of the outermost fixed-point
(recycling starts from the second iteration). The heuristics provides little or no benefit when
the numbers of required iterations of the innermost fixed-points are low, i.e., in cases where
these can be computed quickly.

It is important to note that this heuristics changes the worst-case running time of both
algorithms from O(|J e| · |J s | · |N |3) to O(|J e| · |J s | · |N |2) [5,7], as measured in number of
symbolic operations. However, this comes at the price of additional memory. The increase
in number of BDDs kept in memory may make dynamic variable reordering more frequent
and more time consuming.

3.3 Unrealizable core computation

3.3.1 Contained sets

Rationale The delta debugging algorithm DDMin shown in Algorithm 6might check subsets
of guarantees that are contained in previously checked realizable subsets (e.g., after increasing
the number of partitions to 2n when all other checks failed). In these cases we do not have
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to execute the costly realizability check: a subset part of a realizable set E (failure of
check(E)) is also realizable.

This heuristics was mentioned in [52] and also implemented for unrealizable core com-
putation in [27].

HeuristicsWe extend the generic DDMin algorithm shown in Algorithm 6. Before checking
a candidate set E ′, i.e., executing check(E ′), we look up whether E ′ is a subset of any
previously checked set E with negative evaluation of check(E).

Intuition This heuristics becomes most effective when the checks of the partitions and their
complements fail and the granularity of the partitions has to be increased. It would not have
any effect if DDMin is recursively executed only on sets where the checks pass, i.e., when
finding minimal set is trivial.

3.3.2 Incremental GR(1) for similar candidates

RationaleDue to the nature of the DDMin algorithm (Algorithm 6), there are multiple calls to
check realizability of subsets of guarantees. Some of the subsets share elements. We can try
to reuse computation results from previous calls to check for related subsets of guarantees
to speed up the computation of fixed-points, both in Rabin(1) and GR(1) games.

Heuristics The main idea is to reuse results of previous computations of the GR(1) game
(Algorithm 1) or the Rabin(1) game (Algorithm 2). We identified three cases in DDMin
(Algorithm 6). In each casewe use different methods to reuse the computations from previous
rounds.

Case 1: An unrealizable subset parent was found (the set part in Algorithm 6, line 2)
and DDMin descends to perform the search on subsets of parent , starting with n = 2. We
examine the differences between parent and its current subset of guarantees to check. We
have the following scenarios.

1. Only initial guarantees were removed from parent : In both the GR(1) and Rabin(1)
games we can reuse the winning states (Z in Algorithms 1 and 2) that were computed
for parent , and perform only a simple check of containment of initial states. For GR(1)
we check if the system can win from all its initial states. For Rabin(1) we check if the
environment can win for at least one of its initial states.

2. Only safety guarantees were removed from parent : Since there are fewer constraints
the attractors Y are larger, hence the set of winning states Z can be larger. In GR(1) we
compute Z using greatest fixed-point, so we cannot reuse the previously computed Z prev

to initialize Z . However, Z prev is equivalent to the values Y stored asZ[ j] in Algorithm 1,
line 19 in the last fixed-point iteration of Z . Thus, Z prev is a safe under-approximation
of the least fixed-point Y and we change the initialization of Y in line 4 to Y = Z prev .

3. Only justice guarantees were removed from parent : We can reuse all information of the
previous computation up to the first removed justice guarantee. We reuse the memory
Zprev , Yprev , and Xprev from the first iteration of Z on parent up to the first removed
justice guarantee. Then we continue the computation.

Case 2: All subsets part of parent are realizable and DDMin continues with complements
in Algorithm 6, line 7: In this case and for n > 2 the candidates E\part contain previously
checked and realizable candidates. Our main observation is that the systemwinning states for
guarantees E\part cannot be more than for any of its subsets. We can check realizability of
a GR(1) game by initializing its greatest fixed-point Z to the intersection of system winning
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states Z prev of previously computed subsets. Alternatively, we can check realizability with
a Rabin(1) game by initializing its least fixed-point Z to the union of environment winning
states Z prev of previously computed subsets.

Case 3: All subsets and complements are realizable and DDMin increases search granularity
in Algorithm 6, line 14: For the new run Case 1 applies (with the previous parent) and Case
2 applies when checking complements of the sets with higher granularity.

Intuition As an example, this heuristics is effective when different checked subsets have
disjoint winning states and their subsets are checked. Here, Case 2 would immediately detect
unrealizability. From the case distinction, it is possible to see that there are executions of the
DDMin algorithm where the heuristics does not contribute, e.g., in Case 1 when justice and
safety guarantees are removed (this prevents using any of the two initializations).

It is important to note that this heuristics comes at the price of possibly large amounts
of additional memory (from every realizability check performed by the DDMin algorithm).
The increase in number of BDDs kept in memory may make dynamic variable reordering
more frequent and more time consuming.

3.3.3 Incremental partitioned transition relation

Rationale In Sect. 3.1.3, we presented a partitioning of the transition relation for checking
realizability. This heuristics can be applied to every realizability check in the delta debugging
algorithm DDMin shown in Algorithm 6. Importantly, instead of computing a good parition
on every realizability check (each time on a different subset of the transition relation), we
can compute it once and reuse the result.

HeuristicsThe implementation of this heuristics is based on the implementation in Sect. 3.1.3,
which has two parts, a pre-processing on BDDs of the safety constraints, and a revised
computation of controlled predecessors. Here we break the pre-processing into two phases.
In the first phase, which is an actual pre-processing, we try to find the best partitions that can
also be reused later in the DDMin algorithm. In the second phase, during each realizability
check that is performed for a subset of the guarantees, we finalize the found sets in the
pre-processing stage for the given subset of the safety guarantees.

The pre-processing for DDMin has a list of all the support sets of the BDDs of the safety
guarantees. Using this list we look for partitions as described in Sect. 3.1.3. We look at the
intersection of the sets in the list with the primed variables. Then we search for the disjoint
sets by subtracting from each set all the other sets, and choosing the maximal result. If such
a set does not exist we take the maximal support set. Thus, we get an ordered mapping from
support sets to sets of primed variables to quantify out. Note that the mapping contains only
sets of variables and not actual BDDs. In the DDMin algorithm itself, shown in Algorithm 6,
each check gets a set of guarantees and uses them to build the transition relation for the
realizability check (using GR(1) or Rabin(1) game algorithms). We take these guarantees
and build the partitioned transition using the mapping computed during the pre-processing
stage. The order and the sets are already computed, but we need to adjust them according
to the current subset of guarantees. Finally, we conjunct consecutive sets to have minimal
sets of size 3. The revised computation of controlled predecessors is same as described in
Sect. 3.1.3.

Intuition The heuristics is effective when the DDMin algorithm requires many realizability
checks with large numbers of guarantees. Then the partitioning and order of all guarantees
computed at the start is reused many times and prevents repeated individual preprocessing
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for the partitioned transition relation of Sect. 3.1.3. It becomes less effective if the DDMin
algorithm does not require many realizability checks.

3.3.4 GR(1) game versus Rabin(1) game

RationaleGR(1) games and Rabin(1) games are determined: each game is either unrealizable
for the system player or unrealizable for the environment player. To check for unrealizability,
it is thus equally possible to play the Rabin(1) game or the GR(1) game.

The implementations of Könighofer et al. [27] and Cimatti et al. [13] use the GR(1) game
for checking realizability during unrealizable core computation.

HeuristicsWe replace the implementation of check. Instead of playing the GR(1) game we
play the Rabin(1) game and negate the result.

Intuition Although one algorithm computes exactly the complement set of winning states
computed by the other, and the worst-case number of iterations is the same for both, for
specific specifications, the number of iterations and/or the computation time of each step
may differ.

4 Evaluation

We divide the evaluation into three parts following the division of the performance heuristics
into heuristics for controlled predecessor computation and BDDs from Sect. 3.1, heuristics
for the GR(1) and the Rabin(1) algorithms from Sect. 3.2, and heuristics for computing
unrealizable core from Sect. 3.3.

The evaluation aims to address the following three research questions. How effective are
the heuristics

RQ1 …when applied to specifications with different original running times?
RQ2 …individually and together?
RQ3 …when applied to specifications from different sets?

Finally, while the main goal of our work is not to outperform existing GR(1) synthesizers
but to formally define and empirically investigate a list of suggested heuristics, in order to
put our results in context, we present a comparison against two previously presented tools,
RATSY [2] and Slugs [17]. Thus, we aim to address a fourth research question:

RQ4 How does the performance of our implementation in Spectra, with all heuristics
employed, compare against the performance of previously presented tools?

4.1 Setup

We used the GR(1) game and Rabin(1) game implementations shown in Algorithm 1 and
Algorithm 2 as reference (recall that these algorithms already contain performance improve-
ments over naive implementations following the fixed-point formulation, see Sect. 2). We
have implemented these two algorithms in C using CUDD 3.0 [49]. We also implemented
the heuristics for these algorithms in C, for some using their direct API implementations in
CUDD (as mentioned in Sect. 3). We implemented the pre-processing in Java, including the
parsing of the specifications and the construction of BDDs for the assumptions and guaran-
tees. The parts of the heuristics that are performed in the pre-processing are also implemented
in Java.
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Our implementation starts with the BDD variable order as it appears in the specification.
We use the default dynamic variable reordering of CUDD.We immediately deallocate BDDs
that are no longer used, so the reordering mechanism (which also clears the unused BDDs)
would not consider redundant BDDs in the ordering.

4.1.1 Setup for RQ1 to RQ3

For the evaluation of the first three research questions, we implemented a test frame that
executes a realizability check or the DDMin algorithm using GR(1) or Rabin algorithms with
different heuristics, as specified to the test, and measures the running times in nanoseconds.
We executed each test for every specification 50 times (see Sect. 4.6), with an exception for
two very slow specifications for which we executed the tests 10 times. The cutoff time of a
running test is 24 h (the tests are CPU bound and not memory bound). We aggregated all the
runs of each test on a specification as a median. The ratios we report are ratios of medians of
each heuristics compared to a base case (original implementations of algorithms as shown in
Algorithms 1–6) for the same specification. We performed the experiments on an ordinary
desktop computer with Intel Xeon W-2133 processor and 32 GB RAM, running Windows
10.

4.1.2 Setup for RQ4

For the evaluation of the fourth research question, we used two previously presented tools for
performance comparison, RATSY [2] and Slugs [17]. For each, we used the latest available
version: RATSY 2.1.0 64-bit version from its website,3 and the latest version of Slugs from
Github.4 Both tools are for Linux environment only and we set them up and build them as
described on their websites. RATSY uses NuSMV [12], which uses an unspecified CUDD
version. Spectra and Slugs both use the CUDD 3.0 [49] library for BDD computations.

All three tools are set up to use the default dynamic variable reordering of CUDD.We test
realizabilty checking time for each tool. Note that in realizability checking time for Spectra
we include the building of the memory required for strategy construction. We use Spectra
with the presented heuristics from Sects. 3.1 and 3.2. We use RATSYwith its default settings
(we could not find explicit instructions to use other specific settings for faster realizability
check). We use Slugs with the option –fixedPointRecycling, whose description in
the tool’s documentation reads “Realizability checking should typically become faster this
way”. We set the max memory for the cache in CUDD to 4 GB. We performed all tests 10
consecutive times and report the median time. The cutoff time of a running test is 4 h. We
performed the experiments on a VM of a KVM hypervisor, on host OS Windows 10. The
hardware used is Intel Xeon W-2133 processor with 32 GB RAM. The VM runs Ubuntu
18.04.1 LTS, with 10 GB RAM and 6 cores.

4.2 Corpus of specifications

Not many GR(1) specifications are available and these were usually created by authors of
synthesis algorithms or extensions thereof.

For the purpose of evaluation, we have collected specifications created by 3rd year under-
graduate computer science students in two project classes thatwe have taught. Over the course

3 http://rat.fbk.eu/ratsy/index.php/Main/HomePage.
4 https://github.com/VerifiableRobotics/slugs (commit 1ffbf6b from June 14, 2018).
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of a semester, the students have created specifications for real systems, which they actually
built in Lego and run throughout specification development (short videos of the robots built
by the students are available 5). We collected all non-identical specifications from the version
control system used by the students.

In the project class the students have created the following robots: ColorSort—a robot
sorting Lego pieces by color; Elevator—an elevator servicing different floors; Humanoid—a
mobile robot of humanoid shape; PCar—a self parking car;Gyro—a robotwith self-balancing
capabilities; and SelfParkingCar—a second version of a self parking car. We call this set of
specifications SYNTECH15. The set consists of 78 specifications of which 61 are realizable
and 17 are unrealizable.

We have repeated the same class two years later with an improved set of tools that
included many of the analyses described in [13,30,32,34], which enabled the students to
write larger andmore extensive specifications. The students have created the following robots:
AirportShuttle—a shuttle car that picks up passengers and returns to a station for mainte-
nance; ConvoyCars—a robot car driving in a convoy following a line and evading obstacles;
Elevator—an elevator with automatic doors and different modes; RobotArm—a robotic arm
that moves objects; and SIMPLECar—a self parking car. We call this set of specifications
SYNTECH17. The set consists of 149 specifications of which 123 are realizable and 26 are
unrealizable.

The SYNTECH15 and SYNTECH17 specifications were not created specifically for the
evaluation in our work on performance heuristics but as part of the ordinary work of the
students in the project class. In total, we have collected 227 (= 78+ 149) specifications. We
consider these GR(1) specifications to be the most realistic and relevant examples one could
find for the purpose of evaluating our work.

We used the SYNTECH15 and SYNTECH17 specifications for the evaluation of the first
three research questions.

In addition to the specifications created by the students, we considered the ARM AMBA
AHB Arbiter (AMBA) [3] and a Generalized Buffer from an IBM tutorial (GenBuf) [4],
which are the most popular GR(1) examples in literature, used, e.g., in [5,10,13,27,30,
48].

For the evaluation of the first three research questions, we included 5 different
sizes of AMBA (1 to 5 masters) and 5 different sizes of GenBuf (5 to 40 requests),
each in its original version plus the 3 variants of unrealizability described in [13]
(justice assumption removed, justice guarantee added, and safety guarantee added).
We have thus run our experiments also on 20 AMBA and 20 GenBuf specifica-
tions.

For the evaluation of the fourth research question, we included 10 different sizes
of AMBA (1 to 10 masters) and 10 different sizes of GenBuf (5 to 90 requests),
each in its original version (as given in [13]) plus the 3 variants of unrealizability
described in [13]. We have tested all three tools on 40 AMBA and 40 GenBuf specifica-
tions.

For details on the specification sizes see Appendix A. All specifications used in our eval-
uation, the raw data recorded from all runs, and the program to reproduce our experiments
are available from [54].

5 http://smlab.cs.tau.ac.il/syntech/lego/.
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4.3 Validation of heuristics

4.3.1 Intuition

To validate our intuition on the working of the heurisitics and their speedup, for each of the
heuristics we have created one example specification where the heuristics is very effective
and one example specification where it does not yield an improvement of performance. We
run Spectra over these example specifications, with and without the respective heuristics, and
validated that the better or worse performance is indeed observed as expected.

While these examples are synthetic, artificial specifications, they provide concrete
instances that strengthen our confidence and intution about the working of each of the
heuristics. We made all these example specifications available and documented as part of
the supporting materials for the paper in [54].

4.3.2 Correctness

Our implementation of the different heuristics might have bugs, so to ensure correctness of
the code we performed the following validations.

BDDs count The BDDs are referenced and de-referenced with each usage. To make sure
that we do not have inconsistencies in our data structure we used validations of CUDD (like
Cudd_DebugCheck and Cudd_CheckKeys).

Winning states The set of winning states that are computed in Algorithms 1–2 for realizable
specifications should not be affected by the heuristics.We ensure it by computing the complete
set of winning states using the original algorithms and comparing the results to the winning
states computed by the modified algorithms employing each of the heuristics from Sect. 3.2
separately. As expected, only for the unrealizable specifications the heuristics for detecting
unrealizability early computed fewer winning states.

Game memory We need to ensure that the game memory allows for strategy construction
(memory is different for fixed-point recycling). For that, we have synthesized strategies from
the game memory produced when using our heuristics. We then verified the correctness of
the strategies by LTL model checking against the LTL specifications for strict realizability
of the original GR(1) and Rabin(1) specifications.

Controlled predecessors For the partitioned transition relation from Sects. 3.1.3 and 3.3.3,
and for the combined conjunction and existential abstraction from Sect. 3.1.2, we compare
each result of and (which is called multiple times from Algorithms 1–2), against the
result of the original computations with the single transition. Since we get the same set of
states, the partitioning and the revised computation of the controlled predecessors are correct.

Unrealizable core For the DDMin heuristics from Sect. 3.3, we have compared the resulting
core of each heuristics to the original unrealizable core computation. Since the heuristics are
not on the DDMin itself but on the check, we expected to always get the same core, as we
did. Furthermore, we executed DDMin again on the core, to validate the local minimum.

We run the validation implementation once and did not include it in the total running times
reported in the evaluation results. Validation using all the above techniques was successful
on all 267 specifications used in this work. This provides evidence for the correctness of the
heuristics and their implementations.
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Table 1 Controlled predecessor
computation and BDDs heuristics
for GR(1)

Quartile grp sca prt All

219 specs

MIN 0.72 0.67 0.53 0.44

Q1 0.91 0.96 1.02 0.96

Q2 0.98 0.98 1.04 1.01

Q3 1.01 1.00 1.11 1.04

MAX 6.09 2.85 3.66 2.46

Original running time < 5 s

48 specs

MIN 0.18 0.18 0.04 0.004

Q1 0.58 0.59 0.44 0.22

Q2 1.07 0.68 0.64 0.40

Q3 1.49 0.78 2.21 0.79

MAX 218.69 3.14 27.81 10.53

Original running time > 5 s

35 specs

MIN 0.27 0.48 0.25 0.11

Q1 0.68 0.59 0.54 0.30

Q2 1.14 0.67 0.67 0.43

Q3 1.47 0.78 2.25 1.09

MAX 218.69 3.14 9.32 10.53

Original running time 5–30 s

MIN 0.18 0.18 0.04 0.004

Q1 0.28 0.47 0.12 0.02

Q2 0.71 0.68 0.27 0.05

Q3 1.52 0.85 1.34 0.42

MAX 4.21 2.20 27.81 3.72

Original running time > 30 s

4.4 Evaluation results: RQ1 to RQ3

We now present aggregated running time data from all runs on all specifications with the dif-
ferent heuristics and their combination. We decided to present for all experiments minimum,
maximum, and quartiles of ratios. The ratios are of the different heuristics running times to
the original running times of the GR(1) game Algorithm 1, the Rabin(1) game Algorithm 2,
and DDMin Algorithm 6. For example, the value 0.68 in Table 1, quartile Q2 and column
sca means that for 50% of the specifications for which the original GR(1) implementation
takes more than 5 s, the sca heuristics performs at least 1–0.68= 32% faster than the original
implementation. As another example, in the same table, same row, column all, the value 0.40
means that for 50% of the specifications for which the original GR(1) implementation takes
more than 5 s, using all three heuristics together improves performance by at least 1–0.4 =
60%, i.e., is at least 2.5 times faster than the original implementation. The lower the value in
the table, the better the performance of the heuristics relative to the original. All results are
rounded to two decimals (or more if otherwise 0).
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Table 2 Ratios of the heuristics to the original GR(1) running times for realizable and unrealizable specifica-
tions

Quartile Realizable Unrealizable

grp sca prt All grp sca prt All

SYNTECH15

MIN 0.77 0.83 0.83 0.76 0.82 0.97 0.93 0.83

Q1 0.91 0.98 1.05 0.96 0.90 0.97 1.02 1.01

Q2 0.97 0.99 1.11 1.01 0.90 0.98 1.03 1.01

Q3 0.98 1.05 1.13 1.04 0.90 0.98 1.04 1.02

MAX 1.11 1.07 2.46 1.52 0.90 1.00 1.19 1.03

SYNTECH17

MIN 0.20 0.27 0.04 0.02 0.27 0.53 0.29 0.11

Q1 0.95 0.78 0.83 0.76 0.93 0.89 0.87 0.80

Q2 0.98 0.93 1.00 0.96 0.96 0.96 1.01 0.97

Q3 1.07 0.97 1.02 1.01 1.01 0.99 1.05 1.03

MAX 218.69 2.79 4.17 2.07 4.27 1.05 1.54 1.09

AMBA/GenBuf

MIN 0.18 0.18 0.23 0.05 0.28 0.35 0.15 0.004

Q1 0.82 0.71 1.12 0.93 0.84 0.69 1.11 0.58

Q2 0.93 0.84 1.67 1.05 0.95 0.92 1.19 0.97

Q3 0.99 0.96 2.22 1.22 0.98 0.96 2.02 1.02

MAX 1.12 1.85 2.95 2.50 4.21 3.14 27.81 10.53

For each set of the heuristics presented in Sects. 3.1–3.3, we present the following two
types of sets of tables.

Original running times dissection A set of four tables that present a dissection of the ratios
of running times of a given algorithm according to the original running times: two tables for
specifications that a given algorithm runs for less then 5 s and for more than 5 s, then two
tables for specifications that a given algorithm runs in 5 to 30 s, and in more than 30 s. The
tables show the ratios of the different heuristics running times to the original running times as
explained above. Tables 1 and 3 show the ratios of running times over all 267 realizable and
unrealizable specifications. Table 5 shows the ratios of running times over all 73 unrealizable
specifications.

Specification dissectionAset of three tables that present the ratios of running times for heuris-
tics separately for realizable and unrealizable specifications from the sets SYNTECH15,
SYNTECH17, and AMBA and GenBuf. The tables show the ratios of the different heuristics
running times to the original running times, as explained above. Tables 2 and 4 show the
ratios of running times for 61 realizable SYNTECH15 specifications (top left), for 123 real-
izable SYNTECH17 specifications (middle left), and for 10 realizable AMBA and GenBuf
specifications (bottom left), as well as for 17 unrealizable SYNTECH15 specifications (top
right), for 26 unrealizable SYNTECH17 specifications (middle right), and for 30 unrealizable
AMBA and GenBuf specifications (bottom right). Table 6 shows the ratios of running times
for the same unrealizable sets of specifications.

Wehave run all experiments described above separately for theGR(1) algorithmand for the
Rabin(1) algorithm. In almost all experiments, the effect of the heuristics on the performance
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of the two algorithmswas very similar. Thus, tomake the presentation concise, belowwe only
report the results for the GR(1) algorithm and mention the results for the Rabin(1) algorithm
in footnotes, only in a few cases where they are indeed different. The complete results for
the Rabin(1) algorithm are available together with all other results in [54].

In the remainder of this section, Sect. 4.4.1 presents results for controlled predecessor
computation and BDDs (from Sect. 3.1), 4.4.2 presents results for GR(1)/Rabin(1) fixed-
point algorithms (from Sect. 3.2), 4.4.3 presents results for unrealizable core computation
(from Sect. 3.3). For each of these, we discuss the three RQs. Finally, Sect. 4.4.4 presents a
summary of answers to the RQs.

4.4.1 Results for controlled predecessor computation and BDDs

We present the ratios of running times for heuristics from Sect. 3.1, where the different
heuristics are abbreviated as follows: grp is grouping of variables and their primed copies
from Sect. 3.1.1, sca is the combined conjunction and existential abstraction from Sect. 3.1.2,
and prt is the partitioned transition relation from Sect. 3.1.3. By all we refer to the use of all
these heuristics together.

RQ1: Effectiveness of heuristics with regard to different original running times For the GR(1)
algorithm, for 82% of the specifications, realizability checking completes in less than 5 s,
and for these (Table 1) we see little to no effect.

For specifications that takemore than 5 s (Table 1), we see a greater effect. The grouping of
primed and unprimed variables (Sect. 3.1.1) is better for 25% of the specifications by at least
42% (column grp). On the other hand, it has a negative effect on 50% of the specifiacations.
The combined conjunction and existential abstraction (Sect. 3.1.2) improves running times
of 50% of the specification by at least 32% (column sca). The partitioning of the transition
relation (Sect. 3.1.3) improves running times of 50% of the specifictions by at least 36%, and
the use of all the heuristics combined (column all) improves running times by at least 60%.

Moreover, the partitioning of the transition relation is typically more effective as the
original running time increases. For 50% of the specifications that originally run for 5 to 30 s
(Table 1), the improvement is by at least 33%, and for specifications that originally run for
more than 30 s (Table 1) the improvement is by at least 73%. The grouping of primed and
unprimed variables (Sect. 3.1.1) also seems to be more effective for higher original running
times. For 25% of the specifications that originally run for 5 to 30 s, the improvement is by at
least 32%. This increases to an improvement of at least 69% for 50% of the specifications that
originally run for more than 30 s. Finally, we can also see that the negative effect decreases,
i.e., for 50% of the specifications that originally run for 5 to 30 s, the grouping is worse by
at least 1.14 times than the original implementation, while for specifications that originally
run for more than 30 s the ratio is still smaller than 1 for 50% of the specifications. More
generally, almost in all quartiles the ratio of running times between the grouping heuristics
and the original implementation is smaller for the specifications that originally run for more
than 30 s than for ones that originally run for 5 to 30 s.

RQ2: Effectiveness of heuristics individually and together The heuristics of grouping vari-
ables and their primed copies reduces running times by at least 5% on 25% of both realizable
and unrealizable specifications for theGR(1) algorithm (Table 2, grp). Also, for this heuristics
we see the worst maximal running time ratio.

The combined conjunction and existential abstraction (Sect. 3.1.2), when applied to the
GR(1) algorithm, reduces running times of 25% of the realizable and unrealizable specifi-
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cations by at most 29%. We can also see in Table 1 (column sca) that it performs better for
75% of the specifications by at least 22%.6

The heuristics of the partitioned transition relation appears ineffective for most realizable
and unrealizable specifications (column prt). This might be due to the overhead described
in Sect. 3.1.3 and the original low running times, since as described above in RQ1, for
specifications with original running time greater than 5 s, the running times of 50% of the
specifictions improves by at least 36%.7

RQ3: Difference between specification sets The SYNTECH17 specifications are the only
ones for which we see a positive effect with the partitioned transition relation heuristics
(column prt). For 25% of both realizable and unrealizable specifications, we see 13–17%
improvement in running times. This can be attributed to the nature of the specifications as
described in Sect. 4.2, which have larger and more complicated set of guarantees.

For AMBA and GenBuf we get the greatest improvement in running times for 25% of the
unrealizable specifications. For all of the heuristics combined (columns all) the running times
decreases by at least 42%. This might be due to this set of specifications being the largest
unrealizable set, which also contains the largest percentage of large (and slow) specifications.
In comparison, for the set of SYNTECH15 specificationswe observe almost no improvement,
and this is the set of the smallest (and fastest) specifications.

4.4.2 Results for GR(1)/Rabin(1) fixed-point algorithms

We present the ratios of running times for heuristics from Sect. 3.2, where the different
heuristics are abbreviated as follows: efp is the early fixed-point detection from Sect. 3.2.1,
eun is the early unrealizability detection from Sect. 3.2.2, and fpr is the fixed-point recycling
from Sect. 3.2.3. By all we refer to the use of all these heuristics together.

RQ1: Effectiveness of heuristics with regard to different original running times The GR(1)
fixed-point algorithm (Sect. 3.2) have some effect on specifications for which it runs in less
than 5 s (Table 3). For 25% of the specifications, all the heuristics combined (column all)
are faster by at least 9%. However, for 25% of the specifications that take longer than 5 s to
complete, all the heuristics combined improve the running time by at least 30%, and for 75%
of these specifications we see an improvement by at least 8% in running time.

For specifications whose original running time is greater than 5 s, most of the heuristics
have similar effect, regardless of the increasing original running times. For early detection
of unrealizability (column eun), for 25% of the specifications that originally take more than
30 s, the running times improve by at least 58% for, while for 25% of the specifications that
take 5 to 30 s the improvement is only by at least 10%. This result is a bit misleading since
most of the specifications that originally take more than 30 s are unrealizable, so it entails
that early unrealizability detection will perform better for this case.

Finally, these heuristics are much more conservative than the previous ones (Sect. 3.1), as
we can see from the maximal ratios.

RQ2: Effectiveness of heuristics individually and together The heuristics of early fixed-
point detection reduces running times by at least 5% on 25% of the realizable specifications

6 For the Rabin(1) algorithm (not shown here), this heuristics reduces running times of 25% of the realizable
specifications by atmost 4%only, andnot reduces at all for the unrealizable specifications. This can be attributed
to the heuristics details (the difference of GR(1) and Rabin implementations) as described in Sect. 3.1.2.
7 Another observation of Rabin(1) compared to GR(1) is that although the original running times of Rabin(1)
are slightly better, with all the heuristics combined the running times are the same or slightly worse in most
cases.
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Table 3 Fixed-point heuristics
for GR(1)

Quartile efp eun fpr All

219 specs

MIN 0.61 0.01 0.60 0.01

Q1 0.98 0.99 0.95 0.91

Q2 1.00 1.00 1.00 0.98

Q3 1.00 1.00 1.00 1.00

MAX 1.13 1.11 1.15 1.12

Original running time < 5 s

48 specs

MIN 0.41 0.001 0.42 0.001

Q1 0.87 0.87 0.87 0.70

Q2 0.96 1.00 0.94 0.84

Q3 1.00 1.00 1.00 0.92

MAX 1.33 1.21 1.17 1.07

Original running time > 5 s

35 specs

MIN 0.76 0.01 0.73 0.01

Q1 0.87 0.90 0.86 0.72

Q2 0.94 1.00 0.95 0.83

Q3 0.99 1.00 1.00 0.92

MAX 1.08 1.21 1.17 1.05

Original running time 5–30 s

13 specs

MIN 0.41 0.001 0.42 0.001

Q1 0.88 0.42 0.88 0.41

Q2 1.00 1.00 0.94 0.86

Q3 1.00 1.00 1.00 0.94

MAX 1.33 1.07 1.03 1.07

Original running time > 30 s

(Table 4, efp), but seems even less effective on unrealizable specifications. As expected, the
early detection of unrealizability has no notable effect on realizable specifications (Table 4,
eun), but on unrealizable specifications reduces running times of 50% of the specifications
by at least 12%/8%/46%. The heuristics of fixed-point recycling appears ineffective for
unrealizable specifications, but reduces running times of 25% of the realizable specifications
by at least 7%/16%/17% (Table 4, fpr). As good news, the combination of all heuristics
typically improves over each heuristics separately (column all).8

RQ3: Difference between specification sets For realizable specifications, we see that the
suggested heuristics perform better on the AMBA and GenBuf set and SYNTECH17 set
than on SYNTECH15, i.e., forGR(1) algorithm all heuristics (columns all) decreases running
times on 50% of the AMBA and GenBuf and SYNTECH17 specifications by at least 9%,
and for SYNTECH15 specifications by at least 5%. A more significant difference between

8 An interesting observation is that the Rabin(1) algorithm determines realizability faster than the GR(1)
algorithm for almost all specifications.
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Table 4 Ratios of the heuristics to the original GR(1) running times for realizable and unrealizable specifica-
tions

Quartile Realizable Unrealizable

efp eun fpr All efp eun fpr All

SYNTECH15

MIN 0.61 0.94 0.6 0.53 0.94 0.36 0.87 0.36

Q1 0.95 1.00 0.93 0.90 0.98 0.73 0.97 0.74

Q2 0.99 1.00 0.96 0.95 1.00 0.88 0.99 0.88

Q3 1.00 1.02 1.00 0.98 1.02 0.91 1.01 0.91

MAX 1.09 1.11 1.10 1.12 1.13 0.95 1.15 0.96

SYNTECH17

MIN 0.62 0.76 0.66 0.47 0.88 0.33 0.89 0.33

Q1 0.84 1.00 0.84 0.77 0.98 0.88 0.99 0.88

Q2 0.95 1.00 0.95 0.91 0.99 0.92 1.00 0.93

Q3 1.00 1.00 0.99 0.98 1.00 0.97 1.00 0.97

MAX 1.03 1.19 1.05 1.37 1.01 1.00 1.49 1.42

AMBA/GenBuf

MIN 0.83 0.97 0.74 0.66 0.85 0.001 0.93 0.001

Q1 0.93 0.99 0.83 0.82 0.99 0.10 0.99 0.10

Q2 0.99 1.00 0.92 0.90 1.00 0.54 1.00 0.52

Q3 1.00 1.00 0.95 0.94 1.00 0.97 1.02 0.97

MAX 1.00 1.01 0.96 0.96 1.33 1.07 1.06 1.07

the specification sets is observed for unrealizable specifications. Here the speedup for 50%
of the specifications, mainly obtained by eun, is at least around 10% for SYNTECH15 and
around 7% for SYNTECH17 but at least around 50% for AMBA and GenBuf. We believe
that this difference is due to the systematic and synthetic reasons for unrealizability added
by Cimatti et al. [13].

4.4.3 Results for unrealizable core computation

We present the ratios of running times for heuristics from Sect. 3.3 for unrealizable specifica-
tions. The different heuristics are abbreviated as follows: opt1 is all the heuristics from Sects.
3.1 and 3.2 combined, opt2 is the heuristics from opt1 with the heuristics for partitioned
transition for DDMin from Sect. 3.3.3 replacing the heuristics from Sect. 3.1.3, sets is the
contained sets in the core computation from Sect. 3.3.1, and inc is the incremental algorithm
for similar candidates from Sect. 3.3.2. Here, by all we refer to the combination of sets and
opt2, since opt1 is contained in opt2 and inc does not seem to improve running times.

RQ1: Effectiveness of heuristics with regard to different original running times The core
computation heuristics (Sect. 3.3) have some effect on specifications that are faster than 5 s
(Table 5). For 25% of the specifications all the heuristics combined (column all) are faster
by at least 9%. There is a notable effect on specifications that are slower than 30 s. For all the
specifications the DDMin is faster by at least 57%. There are few specifications for which
the DDMin did not complete until the cutoff time (24 h), and for these we count the original
running time as 24 h. For this reason we have ratios that show improvement of 99%.
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Table 5 DDMin heuristics for
GR(1)

Quartile opt1 opt2 sets inc All

52 specs

MIN 0.39 0.38 0.68 0.66 0.38

Q1 0.96 0.95 0.95 0.99 0.91

Q2 1.03 1.02 0.98 1.01 0.98

Q3 1.06 1.04 0.99 1.03 1.02

MAX 1.44 1.74 1.00 1.10 1.69

Original running time < 5 s

21 specs

MIN 0.03 0.02 0.59 0.71 0.01

Q1 0.15 0.14 0.69 0.93 0.06

Q2 0.30 0.29 0.93 1.00 0.23

Q3 0.34 0.42 0.98 1.07 0.33

MAX 1.00 1.26 1.07 1.42 1.18

Original running time > 5 s

12 specs

MIN 0.17 0.11 0.59 0.71 0.10

Q1 0.30 0.28 0.64 0.91 0.22

Q2 0.33 0.35 0.76 0.98 0.28

Q3 0.46 0.50 0.94 1.05 0.37

MAX 1.00 1.26 1.00 1.42 1.18

Original running time 5–30 s

9 specs

MIN 0.03 0.02 0.88 0.78 0.01

Q1 0.08 0.05 0.94 1.00 0.02

Q2 0.14 0.14 0.96 1.00 0.06

Q3 0.20 0.20 1.00 1.10 0.21

MAX 0.32 0.43 1.07 1.41 0.43

Original running time > 30 s

All the heuristics combined from Sects. 3.1–3.2 are more effective as the original running
times increase (column opt1). For specifications that run originally for 5 to 30 s, the running
time is faster by at least 67% for 50% of the specifications, and for all the specifications that
run longer than 30 s the running time is better by at least 68%.

The contained sets heuristics (Sect. 3.3.1) shows less effect as the original running time
grows, for specifications that run more than 5 s (column sets). It is most effective for speci-
fications with original running time from 5 to 30 s. For 50% of the specifications there is an
improvement of 24%. This heuristics is less effective by itself on large specifications since
the first iterations run on very large sets, and without any performance heuristics for these
expensive realizability checks we get running times close to the original ones. However, we
can see an effect in the combination of all the heuristics (column all). For 50% of the speci-
fications with original running time greater than 30, the improvement in running times is at
least 94%, where without contained sets heuristics (column opt2) there is an improvement
of at least 86%.
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Table 6 Ratios of the heuristics
to the original DDMin running
times for unrealizable
specifications

Quartile DDmin with GR(1)

opt1 opt2 sets inc All

SYNTECH15 unrealizable

MIN 0.43 0.45 0.59 0.86 0.33

Q1 1.02 0.99 0.96 1.01 0.95

Q2 1.05 1.04 0.98 1.01 1.02

Q3 1.07 1.04 0.99 1.01 1.02

MAX 1.10 1.07 1.00 1.02 1.04

SYNTECH17 unrealizable

MIN 0.17 0.11 0.59 0.66 0.10

Q1 0.42 0.45 0.93 0.94 0.44

Q2 0.92 0.91 0.98 0.99 0.91

Q3 1.02 1.01 0.99 1.01 0.99

MAX 1.04 1.03 1.00 1.02 1.03

AMBA/GenBuf unrealizable

MIN 0.03 0.02 0.65 0.93 0.01

Q1 0.28 0.28 0.89 1.03 0.22

Q2 0.78 0.81 0.95 1.05 0.62

Q3 1.03 1.07 0.98 1.07 1.03

MAX 1.44 1.74 1.07 1.42 1.69

Finally, for the incremental algorithm for similar candidates (Sect. 3.3.2), for 25% of the
specifications that originally run for more than 5 s there is an improvement of at least 7%.9

RQ2: Effectiveness of heuristics individually and together Using the combined heuristics
(columns all) appears effective on all specifications and reduces running times for 60% of
the specifications (considering the number of unrealizable specifications represented by each
table in Table 6).

The heuristics of contained sets (column sets) has at least 4% improvement for 25% of
the specifications.

The heuristics of opt1 and opt2 seem to be the most effective for most specifications. The
difference between them is that in opt1 the partitioning of the transition relation is performed
in each iteration of Algorithm 6 (in check), but in opt2 the partitioning is done in the pre-
processing (Sect. 3.3.3). We can see that the improvement they both yield is very similar,
and sometimes opt1 is unexpectedly better than opt2. For instance, for 50% of the AMBA
and GenBuf specifications with the GR(1) implementation (Table 6), the running times are
reduced by 22% with opt1 and by 19% with opt2. This means that the partitioning and the
order of quantifications that is found in every iteration of DDMin (for different sets) might
be less expensive in computation time than computing it once in the pre-processing stage
and then searching for the information in every iteration of DDMin.

Contrary to our expectation, the reuse of previous BDDs for incremental game solving
does not improve running times for almost all specifications (columns inc). It does yield a
small improvement for SYNTECH17 of 6% for DDMin.

9 We see a greater effect for the Rabin(1) algorithm, especially for specifications for which the original running
time is greater than 30. For 25% of these specifications the improvement in running times is at least 25%.
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The largest factors are seen in columns opt1 and opt2. This shows that they are riskier
than other heuristics.

RQ3: Difference between specification sets Looking at the specifications from top to bottom
in Table 6, we see increasing improvement in running times for almost all heuristics (columns
opt1, opt2, sets, all). This can be attributed to the increasing original running times. Another
observation is that the reuse of previous BDDs for incremental game solving is beneficial
only for SYNTECH17 specifications. It is interesting since it is the only set of specifications
that has large specifications that were not created systematically.

4.4.4 Results summary

RQ1: Effectiveness of heuristics with regard to different original running times For all the
heuristics presented in this work, it is apparent that for specifications where the original run-
ning time is greater than 5 s, there is a great improvement. For all the heuristics of controlled
predecessor computation and BDDs (Sect. 3.1) combined, we observe an improvement of
at least 60% for 50% of the specifications. For all the heuristics of GR(1)/Rabin(1) fixed-
point algorithms (from Sect. 3.2) combined, we observe an improvement of at least 15%
for 50% of the specifications. For all the heuristics of unrealizable core computation (from
Sect. 3.3) combined, we observe an improvement of at least 67% for 75% of the specifica-
tions.

RQ2: Effectiveness of heuristics individually and together For all the heuristics presented in
this work, the best improvements in running times are for all the heuristics combined. Some
heuristics perform better on some specifications and have negative effect on others. Yet, the
combination of all the heuristics mostly mitigates the negative effects and results in the best
running time. The heuristics of controlled predecessor computation and BDDs (Sect. 3.1) are
the most volatile. For 15% of the specifications some of the heuristics have negative effect
when used individually, but this effect is mostly mitigated by running all of the heuristics
combined. The heuristics of GR(1)/Rabin(1) fixed-point algorithms (from Sect. 3.2) are more
conservative. They result in more moderate improvements, but typically have no negative
effect. Some of the heuristics presented for unrealizable core computation (from Sect. 3.3)
proved to be ineffective, but the combination of the heuristics that improve the running times
provided the best results.

RQ3: Difference between specification sets Two main differences between the specification
sets seem to relate to the performance of the heuristics: the size of the specifications and the
type of construction (by students or systematically). The SYNTECH15 set typically shows
the least improvements for most of the heuristics, and it is the set of the smallest speci-
fications. The SYNTECH17 set has larger specifications and it shows better results than
SYNTECH15 for most of the heuristics. Both SYNTECH15 and SYNTECH17 were cre-
ated by students in a project class for the development of Lego robots (see Sect. 4.2). The
AMBA and GenBuf specifications are larger than the SYNTECH15 specifications but not
necessarily larger than the SYNTECH17 specifications. However, they were created system-
atically by researchers, and typically have the best results for the applied heuristics. Still,
some heuristics (partitioned transition relation in Sects. 3.1.3 and 3.3.3) are more effec-
tive for SYNTECH17 specifications. This may be attributed to their size and unsystematic
construction.

123



66 E. Firman et al.

4.5 Evaluation results: RQ4

We present a comparison of the running times between the Spectra tool and the RATSY and
Slugs tools.We show the results in two sets of tables, one for theAMBAspecifications, and the
other for theGenBuf specifications. Each set includes 4 tables, one for each specification type:
the original realizable version, and the 3 unrealizable versions (see Sect. 4.2). In each table, the
first column represents the size of the specification: the number of masters and the number
of senders for AMBA and GenBuf respectively. For the Spectra tool we present absolute
running times in seconds, while for the RATSY and Slugs tools we present a ratio. The ratio
represents Spectra’s running time to RATSY’s and Slugs’ running times. For example, the
value 28.05 in Table 7, means that for the realizable AMBA specificationwith a singlemaster,
RATSY was 28 times faster than Spectra. In this case the running time of Spectra was 4.42 s.

Since for some specifications RATSY and Slugs were running for a long period of time,
we set a cutoff time of 4 h. If a test was stopped due to reaching the cutoff time, we replace
the ratio by the symbol ‘−−’, to indicate that the realizability check was aborted after 4 h.
For example, in Table 8, for the unrealizable GenBuf specification with 50 senders and up,
where a safety guarantee was added for unrealizability, Slugs was stopped after reaching the
4 h cutoff.

In some cases RATSY did not reach the 4 h cutoff, but an ‘Error’ was displayed in the
results window in theGUI. This occurredwhen theNuSMVprocess fails.We assume it is due
to a highmemory consumption that we observed at this point. Another failure we experienced
is amessage ‘unable to allocateXbytes’,which appeared in the ‘Checking outcomes’window
in the GUI, where the NuSMV output is displayed. In the tables, we denote both errors by
the symbol ‘××’. For example, in Table 8, for the unrealizable GenBuf specification with
60 senders, where a justice guarantee was added for unrealizability, RATSY failed before
reaching the 4 h cutoff.

4.5.1 Results for AMBA specifications

For both the realizable and the unrealizable AMBA specifications, Spectra completes the
realizability check successfully for all sizes (see Table 7). RATSY outperforms Spectra
for specifications with at most 4 masters: for the unrealizable specification with 4 masters,
where a safety guarantee was added, Spectra is 4 times slower than RATSY. Similarly, Slugs
outperformsSpectra for specificationswith atmost 3masters. For the realizable specifications
Spectra outperforms both tools for specifications with 3 masters and up, and RATSY and
Slugs reach the cutoff time for 6 and 5 masters respectively. For unrealizable specifications,
Spectra is much faster than in the realizable version, due to the additional heuristic of early
unrealizability (see Sect. 3.2.2). Spectra outperforms the other tools for specifications with 5
masters and up. For example, where a justice guarantee was added for unrealizability, Spectra
is 500 times faster than both RATSY and Slugs for 6 masters.

For all the specifications, the ratio of the Spectra running time to the other tools decreases
as the specifications grow in size.

4.5.2 Results for GenBuf specifications

For both the realizable and the unrealizable GenBuf specifications, Spectra completes the
realizability check successfully for all sizes (see Table 8). RATSY outperforms Spectra for
specifications with at most 40 senders: for the unrealizable specification where a justice
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Table 7 Tool comparison over AMBA specifications

No. of masters Spectra absolute time Spectra/RATSY Spectra/Slugs

1 4.42 28.05 24.82

2 5.14 1.43 2.36

3 12.51 0.19 0.37

4 55.88 0.04 0.08

5 86.50 0.007 −−
6 150.36 −− −−
7 287.87 −− −−
8 1420.19 −− −−
9 1301.36 −− −−
10 3562.72 −− −−
Realizable specifications

1 4.36 60.60 73.16

2 4.57 20.07 13.60

3 4.84 2.38 1.72

4 5.64 0.16 0.25

5 6.88 0.02 0.01

6 8.28 0.003 0.002

7 9.25 −− −−
8 17.03 −− −−
9 22.34 −− −−
10 21.24 −− −−
Unrealizable: justice assumption removed

1 4.38 110.16 54.69

2 4.51 25.77 8.68

3 4.62 10.06 1.19

4 5.53 0.75 0.10

5 6.79 0.02 0.007

6 7.96 0.002 0.002

7 7.19 0.001 −−
8 13.35 −− 0.001

9 15.48 −− −−
10 25.60 −− −−
Unrealizable: additional justice guarantee

1 4.35 114.76 91.81

2 4.49 48.37 11.46

3 4.55 40.21 4.37

4 5.08 4.55 0.25

5 5.49 0.02 0.006

6 6.59 −− −−
7 7.14 0.01 0.0008
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Table 7 continued

No. of masters Spectra absolute time Spectra/RATSY Spectra/Slugs

8 8.71 ×× −−
9 12.47 ×× −−
10 16.57 ×× −−
Unrealizable: additional safety guarantee

Table 8 Tool comparison over GenBuf specifications

No. of senders Spectra absolute time Spectra/RATSY Spectra/Slugs

5 4.48 38.95 3.46

10 4.87 13.24 7.63

20 6.71 1.12 4.41

30 8.38 0.36 2.06

40 12.73 4.81 0.83

50 20.50 −− 0.66

60 30.95 ×× 0.64

70 46.21 ×× 0.39

80 67.68 ×× 0.12

90 98.44 ×× 0.30

Realizable specifications

5 4.46 37.66 22.73

10 4.60 20.86 12.93

20 5.16 4.20 2.19

30 5.86 2.08 1.34

40 6.69 9.13 0.53

50 8.36 −− 0.32

60 10.46 −− 0.22

70 12.76 ×× 0.13

80 17.23 ×× 0.08

90 20.67 ×× 0.05

Unrealizable: justice assumption removed

5 4.44 28.21 1.00

10 4.57 9.34 2.85

20 4.99 0.59 0.29

30 5.50 0.22 0.06

40 6.27 2.24 0.01

50 7.53 −− 0.002

60 9.10 ×× 0.002

70 10.96 ×× 0.0008

80 13.89 ×× −−
90 16.90 ×× −−
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Table 8 continued

No. of senders Spectra absolute time Spectra/RATSY Spectra/Slugs

Unrealizable: additional justice guarantee

5 4.46 38.89 16.40

10 4.68 1.55 0.41

20 5.30 0.004 0.14

30 6.67 −− 0.03

40 7.82 −− 0.01

50 8.93 −− −−
60 11.65 ×× −−
70 14.11 ×× −−
80 18.78 ×× −−
90 22.44 ×× −−
Unrealizable: additional safety guarantee

assumption was removed, RATSY is 9 times faster than Slugs for 40 senders. However, for
specifications with more than 40 senders, RATSY reaches the cutoff time, or encounters a
memory problem. Note that the number of assumptions in GenBuf has a polynomial growth
in the number of senders (see Appendix A). Since the transition relation is usually the
largest BDD with the most expensive computations, we see that RATSY encounters in most
specifications memory issues for specifications with 60 senders and up. Slugs, on the other
hand, runs successfully and does not reach cutoff time in most cases.

Spectra outperforms Slugs for specifications with 40 senders or more, and the ratio mostly
decreases as the specifications grow. For example, where a justice assumption was removed
for unrealizability, Spectra is almost 2 times faster than Slugs for specifications with 40
senders and up. For 50 senders Spectra is 3 times faster than Slugs, and it increases with each
added number of senders, up to 90 senders, where Spectra is 20 times faster than Slugs.

4.5.3 Results summary

The presented results allow us to provide an answer to RQ4: How does the performance
of our implementation in Spectra Tools, with all heuristics employed, compare against the
performance of previously presented tools?

In realizability checking, the Spectra synthesizer, with all heuristics employed, seems
to mostly outperform the previously published tools. For small specifications, RATSY and
Slugs are faster than Spectra, but while the other tools cannot complete the realizability check
in 4 h, the Spectra tool completes the realizability check in all cases and in many cases, in
under a minute. The larger the specification, the faster Spectra becomes relative to the two
other tools.

4.6 Threats to validity

We discuss threats to the validity of our results.
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4.6.1 Internal validity

The implementation of the different heuristics might have bugs, so to ensure correctness of
the code we performed validations as described in Sect. 4.3.

Another threat is the variation of the running times of the same test. Different runs of the
same algorithm may result in slightly different running times, so the ratios we showed in
Sect. 4.4 might not be accurate if we run each test only once. We mitigated this threat by
performing 50 runs of each algorithm (or 10 for few very slow executions) and reporting
medians as described in Sect. 4.1.

One threat in the comparative tests of the different tools is the different syntax of the
specifications. We make sure all tests are executed on the exact same specifications by using
the AMBA and GenBuf generators supplied in [13], as well as adding unrealizable options
to the generators as described in [13]. The specifications are generated in SMV format, and
then translated to all the other tools’ formats. The correctness of the translation scripts was
tested with existing specifications in all the formats.

Another threat in the comparative tests is the building of the tools. Both Spectra and
Slugs link to the same external library CUDD [49]. The Spectra tool is written in Java
and C (see Sect. 4.1), therefore it links to a single shared object that includes Spectra code
and CUDD code. Since the creation of the shared object can affect performance by using
different compilation flags, we make sure to use the original build configuration of CUDD in
our shared object. As a result, we ensure CUDD’s performance won’t affect the comparative
tests.

Finally, another threat to the validity of the comparative tests is the setup of running
them. As described in Sect. 4.1, we set up the three tools to use the default dynamic variable
reordering of CUDD. We use RATSY with its default settings, and Slugs with the option
–fixedPointRecycling. By default, Slugs sets themaxmemory for the cache inCUDD
to 3 GB. For Spectra, the default is 4 GB. All reported ratios are based on tests that run on the
same machine and in the same environment. It may be the case that with a different setup,
e.g., different dynamic variable reordering choice, different memory settings, etc., results
would have been different.

4.6.2 External validity

The results of the different heuristics might not be generalizable due to the limited num-
ber of specifications used in our evaluation. We divided our evaluation into three sets: (1)
SYNTECH15, which are specifications created by students for different robotic systems, (2)
SYNTECH17, which are also specifications created by students but with an improved set
of tools, and (3) the AMBA and GenBuf specifications, which were created by researchers
and systematically scaled to larger sizes. The total number of the specifications might be
insufficient. The set SYNTECH15 consists of 78 specifications (17 unrealizable). The set
SYNTECH17 consists of 149 specifications (26 unrealizable). The set AMBA and GenBuf
consists of 40 specifications (30 unrealizable).

We share some observations on the sets of specifications that might have an influence on
the generalizability of the results. First, the AMBA and GenBuf specifications used in the
literature were generated systematically for growing parameters (number of AMBA masters
and GenBuf senders). Thus the 40 AMBA and GenBuf specifications essentially describe
only two systems. Furthermore, the reasons for unrealizability of AMBA and GenBuf were
introduced artificially and systematically [13] and consist of a single change each.
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Second, the running times for checking realizability of the SYNTECH15 specifications
are rather low and range from 1.5 to 1300 ms, with median around 30 ms. In this set the
specifications are biased based on the numbers of revisions committed by students during
the work on the project: the Humanoid has 21 specifications (8 unrealizable), the Gyro has
11 specifications (2 unrealizable), and the SelfParkingCar has only 4 specifications in total.

Finally, the SYNTECH17 specifications are larger, but the realizability check on 75%
of them is still quite fast and takes less than 4 s. The maximal running time is about 8.5 s.
There also might be slight bias towards specific sets of specifications: the SIMPLECar has
45 specifications (9 unrealizable), the AirportShuttle has 32 specifications (7 unrealizable),
the Elevator has 26 specifications (6 unrealizable), the RobotArm has 26 specifications (2
unrealizable), and the ConvoyCars has 20 specifications (2 unrealizable).

We showed in Sect. 3 that the heuristics’ effect on different specifications can vary con-
siderably. Thus, specifications that share similar characteristics might skew the results in a
direction that cannot necessarily be generalized to others. Also, small specifications forwhich
the realizability check is fast to begin with, might not reflect the heuristics in the running
times.

We mitigate the above concerns by having on one hand specifications like AMBA and
GenBuf that were written by researchers systematically, where we can see the effect of
the heuristics on growing specifications, and on the other hand, the SYNTECH15 and SYN-
TECH17 specifications, which were not created systematically and describe 11 very different
Lego robot systems. Also each system has different specifications that are a result of different
revisions and they can be very different from one another.

Finally, none of the specifications were written by engineers in an industrial setting, so
we cannot evaluate how our results may generalize to large scale real-world specifications in
practice.

Despite all the above, it is important to note that in comparison to related works in the
field of GR(1) synthesis, the set of specifications that we used for the evaluation is rather
large and diverse.

5 Related work

We discuss related works that deal with BDD variable reorder and other performance heuris-
tics for reactive synthesis and DDMin.

BDD variable reorder It is well known that the order of BDD variables heavily influences the
performance of BDD-based algorithms [23,51]. A lot of work has been done regarding BDD
reordering in the context of symbolic representation of states. Ranjan et al. [45] discussed
the combination of applying static heuristics to find a good initial order and using dynamic
reordering during the computations. They concluded that it is crucial to use dynamic reorder-
ing and that the static heuristics have a positive effect. In a more recent work, Kissmann and
Hoffmann [26] found that static heuristics are ineffective at reducing BDD size compared to
the dynamic reordering.

Our experience showed similar results. Any static reordering heuristics and experiments
with employing dynamic reordering at different points did not compare to the dynamic
reordering presented by Rudell [46] and implemented in the CUDD package [49] as the
default reordering algorithm. The GR(1) implementation of Slugs [17] also uses the default
dynamic variable reordering of CUDD, though during strategy construction Slugs turns
reordering off. Filippidis et al. [18] reported better performance with reordering during strat-
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egy construction. We did not focus on strategy construction in the present work. We are not
aware of any GR(1) specific heuristics for dynamic BDD variable ordering. We use CUDD
as a black box, therefore improving BDD variable order in the dynamic reordering algorithm
itself was beyond the scope of the present work. Still, in our heuristics, we did try to influence
reordering from the application side by using grouping of variableswith strong affinity, which
was suggested in [40], and claimed beneficial for primed and unprimed variables in [51].

Performance heuristics for reactive synthesis A number of heuristics for BDD-based safety
game solvers have been reported as outcome of the SYNTCOMP reactive synthesis com-
petitions [22–25]. Most of these heuristics are on the level of predecessor computations
(operators in Algorithm 1 and in Algorithm 2). We employ similar ideas of reordering,
eager BDD deallocation, combined conjunction and existential abstraction, and transition
partitioning. In addition, we implement heuristics at the level of fixed-points and repeated
computations, whichwere not discussed there. Notably, an approach for predicate abstraction
for predecessor computation has already been implemented for GR(1) synthesis [47,50], and
evaluated on a set of specifications for device drivers.

Partitioned transition relation was used in several works [6,24], though in the context of a
simpler case of circuits representations where every latch can be represented by a function.
The idea to have smaller BDDs by keeping several parts of a transition relation instead of
a single transition was first suggested in [9], and the first automated ordering heuristics for
the partitions was given in [20]. This work suggests a greedy algorithm to find the order that
will quantify out the most variables in each iteration. A more complex ordering heuristics
that uses a cost function to greedily choose the best set of variables to quantify out at each
step was suggested in [45].

Performance heuristics for DDMin Könighofer et al. [27] presented diagnoses and cor-
responding algorithms for dealing with unrealizable GR(1) specifications. They also
implemented the heuristics for DDMinmentioned in Sect. 3.3.1. They suggest further heuris-
tics that approximate the set of system winning states. These heuristics are different from the
ones we presented as they are riskier: in case they fail the computation reverts to the original
GR(1) algorithm. An analysis of the speedup obtained from their heuristics for DDMin alone
was not reported.

Strategy construction Others have focused on strategy construction for GR(1). Strategies are
constructed from thememory stored in the X,Y, and Z arrays in Algorithm 1 andAlgorithm 2.
Schlaipfer et al. [48] suggest synthesis of separate strategies for each justice guarantee to avoid
a blow-up of the BDD representation. Bloem et al. [5] discuss minimizations of synthesized
strategies that do not necessarily minimize their BDDs. We consider space and time related
heuristics for strategy construction an interesting topic for future work.

Performance heuristics for specifications Finally, as a very different and complementary
approach to ours, one can consider rewriting the GR(1) specification to speed up realizability
checking and synthesis. Filippidis et al. [18] report on obtaining a speedup of factor 100
for synthesizing AMBA by manually changing the AMBA specification of [5] to use fewer
variables and weaker assumptions. We have not focused on these very specific heuristics
of single specifications. Our work presents and evaluates heuristics that are specification
agnostic.
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6 Conclusion

We presented a list of heuristics to potentially reduce running times for GR(1) syn-
thesis and related algorithms. The list includes efficient computations of the con-
trolled predecessors and BDD level operations, specifically grouping of variables and
their primed copies, combined conjunction and existential abstraction, and use of par-
titioned transition relation. It further includes fixed-point related heuristics, specifi-
cally early detection of fixed-points, early detection of unrealizability, and fixed-point
recycling. Finally, it includes heuristics for accelerating unrealizable core computa-
tion.

We have implemented the heuristics and integrated the implementation in the Spectra syn-
thesizer, part of Spectra Tools, a set of tools for writing specifications and running synthesis
and related analyses, see [53].

We evaluated the heuristics and their combination on three sets of benchmarks, first SYN-
TECH15, a set of 78 specifications created by 3rd year undergraduate computer science
students in a project class of one semester, second SYNTECH17, a set of 149 specifications
created in a repetition of the class, and finally on the two systems, AMBA and GenBuf,
which are well-studied in the GR(1) literature. All specifications used in our evaluation, the
raw data recorded from all runs, and the program to reproduce our experiments are available
from [54].

Our evaluation shows that most heuristics have a positive effect on running times
for checking realizability of a specification and for unrealizable core computation. Most
importantly, their combination outperforms the individual heuristics, even though there is
a risk that some heuristics will increase the running time. It is evident that the great-
est improvement is for specifications that have slower original running times. This is
a positive result, as these specifications are the ones it is most important to address
in order to make GR(1) and related algorithms more useful and applicable in prac-
tice.

Moreover, our evaluation shows that the Spectra tool outperforms the two previously pub-
lished tools, RATSY and Slugs, on large specifications. For small specifications, the overhead
of the pre-processing computations is too large compared to the running time of the original
implementation. However, the positive effect of the heuristics increases as the specifications
grow in size, i.e., the larger the specification, the faster Spectra becomes relative to the two
other tools.

We consider the following future research directions. First, onemay better investigate why
some heuristics do not work well in general and on particular specifications. Perhaps some
specifications have special characteristics that make them resist some of the heuristics we
have considered. Such an investigation may result in suggestions for additional heuristics,
including ones that assist in predicting, given a specification, which if any heuristics may be
applied to it successfully.

Second, one may consider the application of the same heuristics to other GR(1)
related algorithms, including, e.g., identifying non-well-separation and computing non-well-
separation core [34], repair of unrealizable GR(1) specifications [36], etc. These algorithms
use building blocks that are very similar to the GR(1) algorithm and thus one may expect
similar positive effect of the same heuristics.

Third, we consider further evaluation over additional sets of specifications, both syn-
thetic and real. It may be interesting to evaluate Spectra against the specifications used
in the series of SYNTCOMP competitions [22–25]. Note however, that these are either
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LTL or safety-only specifications. Spectra cannot handle LTL specifications beyond GR(1).
While Spectra can handle safety-only specifications, some of our suggested heuristics are
irrelevant to these specifications. Our current work, as implemented in Spectra, focuses on
GR(1) specifications, which include not only safety but also justice assumptions and guar-
antees.

Finally, it may be interesting to collect and report not only running time performance
data but also iteration depth and memory usage data, specifically comparing the effect of
the different heuristics on each of these. Intuitively, we expect the combined conjunction
and abstraction heuristics from Sect. 3.1.2 to reduce the maximal memory usage by avoid-
ing the computation of the BDD of the conjunction of the transition relation and the target
states. Similarly, we expect the partitioned transition relation heuristics from Sect. 3.1.3 to
reduce the maximal memory usage. The fixed-point recycling heuristics from Sect. 3.2.3
is very likely to reduce the number of fixed-point iterations at the cost of additional mem-
ory.

Our work is part of a larger project on bridging the gap between the theory and algo-
rithms of reactive synthesis on the one hand and software engineering practice on the
other. As part of this project we are developing the Spectra specification language [35]
and new algorithms and engineer-friendly tools for reactive synthesis, see, e.g., [1,30–
34,36].
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A Specification sizes

There are three sets of specifications (Sect. 4.2), and each set is divided to realizable and
unrealizable specifications. We present in Tables 9 and 10 the sizes of the specifications in
these sets in quartiles. Furthermore, we show in Tables 11 and 12 the sizes of the AMBA
and GenBuf specifications respectively. All the sizes are rounded to the nearest integer. The
sizes are given as follows:

– 2·|X | - the number of primed and unprimed environment variables, equivalent to |X ∪X ′|
– |ρe| - the number of safety assumptions
– |Bρe | - the number of nodes in the BDD of the environment transition relation
– |J e| - the number of justice assumptions
– 2 · |Y| - the number of primed and unprimed system variables, equivalent to |Y ∪ Y ′|
– |ρs | - the number of safety guarantees
– |Bρs | - the number of nodes in the BDD of the system transition relation
– |J e| - the number of justice guarantees

123

http://creativecommons.org/licenses/by/4.0/


Performance heuristics for GR(1) synthesis… 75

Table 9 Realizable specifications’ sizes

Quartile Assumptions Guarantees

2 · |X | |ρe| |Bρe | |Je| 2 · |Y| |ρs | |Bρs | |J s |
SYNTECH15 realizable

MIN 2 0 0 0 4 0 4 0

Q1 8 1 7 2 22 18 243 1

Q2 12 2 14 3 40 30 698 2

Q3 20 3 24 4 46 40 1150 2

MAX 26 5 144 7 66 61 4433 4

SYNTECH17 realizable

MIN 4 0 0 0 0 0 0 0

Q1 15 3 15 0 26 11 687 1

Q2 24 5 91 3 36 16 1499 3

Q3 28 9 758 5 46 38 5551 4

MAX 60 16 80504 19 80 65 88789 6

AMBA/GenBuf realizable

MIN 10 1 2 2 22 38 199 3

Q1 18 3 6 2 32 65 850 6

Q2 24 11 67 2 44 112 1240 10

Q3 43 42 223 2 61 268 3218 18

MAX 88 87 436 2 106 1005 57668 41

Table 10 Unrealizable specifications’ sizes

Quartile Assumptions Guarantees

2 · |X | |ρe| |Bρe | |Je| 2 · |Y| |ρs | |Bρs | |J s |
SYNTECH15 unrealizable

MIN 2 0 0 0 10 6 41 0

Q1 6 1 4 2 26 18 276 1

Q2 10 2 14 3 32 27 426 1

Q3 12 2 38 4 46 29 798 2

MAX 26 4 382 5 62 47 3389 4

SYNTECH17 unrealizable

MIN 12 0 7 0 20 8 657 1

Q1 14 2 17 1 26 16 1130 2

Q2 20 3 41 3 34 23 1703 3

Q3 27 6 167 6 60 36 5197 5

MAX 48 14 11205 18 86 65 31330 6

AMBA/GenBuf unrealizable

MIN 10 0 0 1 22 38 209 3

Q1 18 3 6 1 30 61 777 6

Q2 24 11 67 2 44 112 1550 10

Q3 48 47 168 2 64 315 3005 21

MAX 88 87 436 2 106 1006 19134 42
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Table 11 AMBA specifications’
sizes

No. of masters Assumptions Guarantees

|X | |ρe| |Je| |Y| |ρs | |J s |
1 5 1 2 11 38 3

2 7 2 2 15 60 5

3 9 3 2 19 82 7

4 11 4 2 23 104 9

5 13 5 2 27 126 11

6 15 6 2 30 148 13

7 17 7 2 33 170 15

8 19 8 2 37 192 17

9 21 9 2 41 214 19

10 23 10 2 44 236 21

Table 12 GenBuf specifications’
sizes

No. of senders Assumptions Guarantees

|X | |ρe| |Je| |Y| |ρs | |J s |
5 9 17 2 15 60 6

10 14 27 2 21 120 11

20 24 47 2 32 315 21

30 34 67 2 42 610 31

40 44 87 2 53 1005 41

50 54 107 2 63 1500 51

60 64 127 2 73 2095 61

70 74 147 2 84 2790 71

80 84 167 2 94 3585 81

90 94 187 2 104 4480 91
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