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Abstract
Turi and Plotkin introduced an elegant approach to structural operational semantics based
on universal coalgebra, parametric in the type of syntax and the type of behaviour. Their
framework includes abstract GSOS, a categorical generalisation of the classical GSOS rule
format, as well as its categorical dual, coGSOS. Both formats are well behaved, in the sense
that each specification has a uniquemodel onwhich behavioural equivalence is a congruence.
Unfortunately, the combination of the two formats does not feature these desirable proper-
ties. We show that monotone specifications—that disallow negative premises—do induce a
canonical distributive law of a monad over a comonad, and therefore a unique, compositional
interpretation.

1 Introduction

Structural operational semantics (SOS) is an expressive and popular framework for defining
the operational semantics of programming languages and calculi. There is a wide variety of
specification formats that syntactically restrict the full power of SOS, but guarantee certain
desirable properties to hold [1]. A famous example is the so-called GSOS format [5]. Any
GSOS specification induces a unique interpretation which is compositional with respect to
(strong) bisimilarity.

In their seminal paper [30], Turi and Plotkin introduced an elegant mathematical approach
to structural operational semantics, where the type of syntax is modeled by an endofunctor
Σ and the type of behaviour is modeled by an endofunctor B. Operational semantics is
then given by a distributive law of Σ over B. In this context, models are bialgebras, which
consist of a Σ-algebra and a B-coalgebra over a common carrier. One major advantage of
this framework over traditional approaches is that it is parametric in the type of behaviour.
Indeed, by instantiating the theory to a particular functor B, one can obtain well behaved
specification formats for probabilistic and stochastic systems, weighted transition systems,
streams, and many more [4,16,17].
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Turi and Plotkin introduced several kinds of natural transformations involving Σ and B,
the most basic one being of the form ΣB ⇒ BΣ . If B is a functor representing labelled
transition systems, then a typical rule that can be represented in this format is the following:

x
a−→ x ′ y

a−→ y′

x ⊗ y
a−→ x ′ ⊗ y′ (1)

This rule should be read as follows: if x can make an a-transition to x ′, and y an a-transition
to y′, then x ⊗ y can make an a-transition to x ′ ⊗ y′. Any specification of the above kind
induces a unique supported model, which is a B-coalgebra over the initial algebra of Σ . If
Σ represents a signature and B represents labelled transition systems, then this model is a
transition system of which the state space is the set of closed terms in the signature, and,
informally, a term makes a transition to another term if and only if there is a rule in the
specification justifying this transition.

A more interesting kind is an abstract GSOS specification, which is a natural transforma-
tion of the form Σ(B × Id) ⇒ BΣ∗, where Σ∗ is the free monad for Σ (assuming it exists).
If B is a functor that models (image-finite) transition systems, and Σ is a functor represent-
ing a signature, then such specifications correspond to classical GSOS specifications [4,30].
As opposed to the basic format, GSOS rules allow complex terms in conclusions, as in the
following rule specifying a constant c:

c
a−→ σ(c)

(2)

where σ is some other operator in the signature (represented by Σ), which can itself be
defined by some GSOS rules. The term σ(c) is constructed from a constant and a unary
operator from the signature, as opposed to the conclusion x ′ ⊗ y′ of the rule in (1), which
consists of a single operator and variables. Indeed, the freemonadΣ∗ occurring in an abstract
GSOS specification is precisely what allows a complex term such as σ(c) in the conclusion.

Dually, one can consider coGSOS specifications, which are of the form ΣB∞ ⇒ B(Σ +
Id), where B∞ is the cofree comonad for B (assuming it exists). In the case of image-finite
labelled transition systems, this format corresponds to the safe ntree format [30]. A typical
coGSOS rule is the following:

x
a−→ x ′ x ′/a−→
σ(x)

a−→ x ′ (3)

This rule uses two steps of lookahead in the premise; this is supported by the cofree comonad

B∞ in the natural transformation. The symbol x ′/a−→ represents a negative premise, which is
satisfied whenever x ′ does not make an a-transition.

Both GSOS and coGSOS specifications induce distributive laws, and as a consequence
they induce unique supported models on which behavioural equivalence is a congruence.
The two formats are incomparable in terms of expressive power: GSOS specifications allow
rules that involve complex terms in the conclusion, whereas coGSOS allows arbitrary looka-
head in the arguments. It is straightforward to combine GSOS and coGSOS as a natural
transformation of the form ΣB∞ ⇒ BΣ∗, called a biGSOS specification, generalising both
formats. However, such specifications are, in some sense, too expressive: they do not induce
unique supported models, as already observed in [30]. For example, the rules (2) and (3)
above (which are GSOS and coGSOS respectively) can be combined into a single biGSOS
specification. Suppose this combined specification has a model. By the axiom for c, there is

a transition c
a−→ σ(c) in this model. However, is there a transition σ(c)

a−→ σ(c)? If there is
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Distributive laws for monotone specifications 587

not, then by the rule for σ , there is; but if there is such a transition, then it is not derivable, so
it is not in the model! Thus, a supported model does not exist. In fact, it was recently shown
that, for biGSOS, it is undecidable whether a (unique) supported model exists [19].

The use of negative premises in the above example (and in [19]) is crucial. In the present
paper, we introduce the notion ofmonotonicity of biGSOS specifications, generalisingmono-
tone abstractGSOS [9]. In the case that B is a functor representing labelled transition systems,
this corresponds to the absence of negative premises, but the format does allow lookahead
in premises as well as complex terms in conclusions. Monotonicity requires an order on the
functor B—technically, our definition of monotonicity is based on the similarity order [12]
induced on the final coalgebra.

We show that if there is a pointed DCPO structure on the functor B, then any monotone
biGSOS specification yields a leastmodel as its operational interpretation. Indeed, monotone
specifications do not necessarily have a unique model, but it is the least model which makes
sense operationally, since this corresponds to the natural notion that every transition has
a finite proof. Our main result is that if the functor B has a DCPO structure, then every
monotone specification yields a canonical distributive law of the free monad for Σ over the
cofree comonad for B. Its unique model coincides with the least supported model of the
specification. As a consequence, behavioural equivalence on this model is a congruence.

However, the conditions of these results are a bit too restrictive: they rule out labelled
transition systems, themain example. The problem is that the functors typically used tomodel
transition systems either fail to have a cofree comonad (the powerset functor) or to have a
DCPO structure (the finite or countable powerset functor). In the final section, we mitigate
this problem using the theory of (countably) presentable categories and accessible functors.
This allows us to relax the requirement of DCPO structure only to countable sets, given that
the functor B is countably accessible (this is weaker than being finitary, a standard condition
in the theory of coalgebras) and the syntax consists only of countably many operations each
with finite arity. In particular, this applies to labelled transition systems (with countable
branching) and certain kinds of weighted transition systems.

Related work The current paper is an extended version of a conference paper presented
at EXPRESS/SOS 2017 [24]. The main new material is proofs of all results, most of which
were missing in the conference version; more backgroud material, in particular on biGSOS
rule formats; a result showing that the constructed distributive law extends a given biGSOS
specification in the sense of [18].

The idea of studying distributive laws of monads over comonads that are not induced by
GSOS or coGSOS specifications has been around for some time (e.g., [4]), but, according
to a recent overview paper [17], general bialgebraic formats (other than GSOS or coGSOS)
which induce such distributive laws have not been proposed so far. In fact, it is shown by Klin
andNachyła that the general problem of extending biGSOS specifications to distributive laws
is undecidable [18,19]. The current paper shows that one does obtain distributive laws from
biGSOS specifications when monotonicity is assumed (negative premises are disallowed).
A fundamentally different approach to positive formats with lookahead, not based on the
framework of bialgebraic semantics but on labelled transition systemsmodeled very generally
in a topos, was introduced in [29]. It is deeply rooted in labelled transition systems, and
hence seems incomparable to our approach based on generic coalgebras for ordered functors.
An abstract study of distributive laws of monads over comonads and possible morphisms
between them is in [22], but it does not include characterisations in terms of simpler natural
transformations.
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Structure of the paper Section 2 contains preliminaries on (co)algebras, and Sect. 3 recalls
(abstract) rule formats based on various kinds of distributive laws. In Sect. 4 the notion
of similarity on coalgebras is recalled, which is then used in Sect. 5 to define monotone
specifications and prove the existence of least supported models. Section 6 contains our main
result: canonical distributive laws for monotone biGSOS specifications. In Sect. 7, this result
is extended to countably accessible functors.

2 Preliminaries

We recall the necessary definitions on order theory, algebras, coalgebras, and distributive
laws of monads over comonads. For an introduction to coalgebra see [14,27]. All of the
definitions and results below and most of the examples can be found in [17], which provides
an overview of bialgebraic semantics. Unless mentioned otherwise, all functors considered
are endofunctors on the category Set of sets and functions.

Notation By P we denote the (covariant) power set functor; Pc is the countable power
set functor and P f the finite power set functor. Given a relation R ⊆ X × Y , we write
π1 : R → X and π2 : R → Y for its left and right projection, respectively. Given another
relation S ⊆ Y × Z we denote the composition of R and S by R ◦ S. We let Rop = {(y, x) |
(x, y) ∈ R}. For a set X , we let ΔX = {(x, x) | x ∈ X}. The graph of a function f : X → Y
is Graph( f ) = {(x, f (x)) | x ∈ X}. The image of a set S ⊆ X under f is denoted simply by
f (S) = { f (x) | x ∈ S}, and the inverse image of V ⊆ Y by f −1(V ) = {x | f (x) ∈ V }. The
pairing of two functions f , g with a common domain is denoted by 〈 f , g〉 and the copairing
(for functions f , g with a common codomain) by [ f , g]. The set of functions from X to Y
is denoted by Y X . Any relation R ⊆ Y × Y can be lifted pointwise to a relation on Y X ;
in the sequel we will simply denote such a pointwise extension by the relation itself, i.e.,
for functions f , g : X → Y we have f R g iff f (x) R g(x) for all x ∈ X , or, equivalently,
( f × g)(ΔX ) ⊆ R. Composition of functors F,G (of the appropriate type) is denoted by
F ◦G or simply by FG, and composition of natural transformations α, β by α ◦ β, given by
(α ◦ β)X = αX ◦ βX .

DCPOs We recall the basic order-theoretic structures that we will use in fixed point con-
structions; see, e.g., [7] for details. Let (P,≤) be a poset. Given a subset S ⊆ P we denote
the least upper bound of S by

∨
S, if it exists. A subset S ⊆ P is called directed if S is

non-empty, and every finite subset of S has an upper bound in S. A directed complete par-
tial order (DCPO) is a poset in which every directed subset has a least upper bound (these
are sometimes referred to as CPOs, but we prefer DCPO as it emphasises the directedness
aspect). Further, a DCPO is called pointed if it has a least element ⊥. In this paper, every
DCPO is assumed to be pointed, and thus will sometimes refer to a pointed DCPO simply
as a DCPO. A map f : P → Q between pointed DCPOs is called strict if f (⊥) = ⊥, and
continuous if, for every directed set S ⊆ P , f (S) is again directed, and f (

∨
S) = ∨

f (S).
We denote by DCPO⊥ the category of pointed DCPOs and strict continuous maps.

Every monotone map f : P → P on a pointed DCPO has a least fixed point μ f (see,
e.g., [7, Theorem 8.22]). Moreover, this can be computed (e.g., Exercise 8.19 in loc. cit.) via
the ordinal-indexed chain defined for all α, λ with λ a limit ordinal by:

f 0(⊥) = ⊥ , f α+1(⊥) = f ( f α(⊥)) , f λ(⊥) =
∨

β<λ

f β(⊥) .
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Distributive laws for monotone specifications 589

This gives rise to a proof technique: to show that a predicate 	 holds for all x ∈ μ f , it
suffices to show that, if x ∈ 	 then f (x) ∈ 	, and if S ⊆ 	 is a directed set then

∨
S ∈ 	.

2.1 Algebras andmonads

An algebra for a functor Σ : Set → Set consists of a set X and a function f : ΣX → X .
An (algebra) homomorphism from f : ΣX → X to g : ΣY → Y is a function h : X → Y
such that h ◦ f = g ◦ Σh. The category of algebras and their homomorphisms is denoted by
alg(Σ).

A monad is a triple T = (T , η, μ) where T : Set → Set is a functor and η : Id ⇒ T and
μ : T T ⇒ T are natural transformations such that μ ◦ Tη = id = μ ◦ ηT and μ ◦ μT =
μ ◦ Tμ. An (Eilenberg-Moore, or EM)-algebra for T is a T -algebra f : T X → X such that
f ◦ ηX = id and f ◦ μX = f ◦ T f . We denote the category of EM-algebras by Alg(T ).
We assume that a free monad (Σ∗, η, μ) for Σ exists; in the sequel we often refer to

this monad by the underlying functor Σ∗. This means that there is a natural transformation
ι : ΣΣ∗ ⇒ Σ∗ such that for any set X , the copairing

[ιX , ηX ] : ΣΣ∗X + X → Σ∗X

is an initial algebra for the functorΣ + X . By Lambek’s lemma, [ιX , ηX ] is an isomorphism.
Any algebra f : ΣX → X induces a Σ + X -algebra [ f , id], and therefore by initiality a
Σ∗-algebra f ∗ : Σ∗X → X , which we call the inductive extension of f . In particular, the
inductive extension of ιX is μX . This construction preserves algebra homomorphisms: if h
is a homomorphism from a Σ-algebra f to a Σ-algebra g, then it is also a homomorphism
from f ∗ to g∗. It establishes (one side of) an isomorphism of categories alg(Σ) ∼= Alg(Σ∗),
where the other direction (from right to left) is given by precomposing with the natural
transformation κ in:

κ := (
Σ

Ση
ΣΣ∗ ι

Σ∗
)

.

A signature is a functorΣ : N → Set, whereN is the discrete category of natural numbers.
This models a countable collection of operator names with finite arity: for each n, Σ(n) is
the set of operator names of arity n.

Any signature Σ gives rise to a polynomial Set endofunctor which, abusing notation, we
also denote by Σ :

ΣX =
∐

n∈N
Σ(n) × Xn .

The free monad Σ∗ constructs terms, that is, Σ∗X is given by the grammar

t ::= σ(t1, . . . , tn) | x
where x ranges over X and σ ranges over the operator names (and n is the arity of σ ). In
particular, Σ∗∅ is the set of closed terms over Σ .

2.2 Coalgebras and comonads

A coalgebra for the functor B consists of a set X and a function f : X → BX . A (coalgebra)
homomorphism from f : X → BX to g : Y → BY is a function h : X → Y such that Bh ◦
f = g ◦h. The category of B-coalgebras and their homomorphisms is denoted by coalg(B).
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The associated forgetful functor is denoted by U : coalg(B) → Set. An F-coalgebra (Z , z)
is called final if it is a final object in coalg(B), i.e., if there exists a unique homomorphism
from every F-coalgebra into (Z , z).

A comonad is a triple D = (D, ε, δ) consisting of a functor D : Set → Set and natural
transformations ε : D ⇒ Id and δ : D ⇒ DD satisfying axioms dual to the monad axioms.
The category of Eilenberg-Moore coalgebras forD, defined dually to EM-algebras, is denoted
by CoAlg(D).

We assume that a cofree comonad (B∞, ε, δ) for B exists. This means that there is a
natural transformation θ : B∞ ⇒ BB∞ such that θX is a cofree coalgebra on the set X , that
is, the pairing

〈θX , εX 〉 : B∞X → (BB∞X) × X

is a final coalgebra for the functor B × X . Any coalgebra f : X → BX induces a B × X -
coalgebra 〈 f , id〉, and therefore by finality a B∞-coalgebra f ∞ : X → B∞X , which we
call the coinductive extension of f . In particular, the coinductive extension of θX is δX .
Similar to the case of algebras, this construction is functorial, and establishes an isomorphism
coalg(B) ∼= CoAlg(B∞). From right to left, this is given by composing with the natural
transformation ν in:

ν := (
B∞ θ

BB∞ Bε
B

)
.

Example 2.1 Consider the Set functor BX = A × X for a fixed set A. Coalgebras for B
are called stream systems. There exists a final B-coalgebra, whose carrier can be presented
as the set Aω of all streams over A, i.e., Aω = {σ | σ : ω → A} where ω is the set of
natural numbers. For a set X , B∞X = (A × X)ω. Given f : X → A × X , its coinductive
extension f ∞ : X → B∞X maps a state x ∈ X to its infinite unfolding. The final coalgebra
ofGX = A×X+1 consists of finite and infinite streams over A, that is, elements of A∗∪Aω.
For a set X , G∞X = (A × X)ω ∪ (A × X)∗ × X .

Example 2.2 Labelled transition systems are coalgebras for the functor (P−)A, where A is
a fixed set of labels. Image-finite transition systems are coalgebras for the functor (P f −)A,
and coalgebras for (Pc−)A are transition systems which have, for every action a ∈ A and
every state x , a countable set of outgoing a-transitions from x . For an LTS f : X → (PX)A,

we sometimes write x
a−→ x ′ if x ′ ∈ f (x)(a). A coalgebra homomorphism from an LTS X

to an LTS Y is a map h : X → Y such that, for all x ∈ X and a ∈ A:

– if x
a−→ x ′ then h(x)

a−→ h(x ′), and
– if h(x)

a−→ y′ then there is x ′ such that x
a−→ x ′ and h(x ′) = y′.

A final coalgebra for (P−)A does not exist (so there is no cofree comonad for it). However,
both (P f −)A and (Pc−)A have a final coalgebra, consisting of (equivalence classes of)
possibly infinite rooted trees, edge-labelled in A, modulo strong bisimilarity, where for each
label, the set of children is finite respectively countable. The cofree comonad of (P f −)A

respectively (Pc−)A, applied to a set X , consist of all trees as above, node-labelled in X .
The counit εX maps such a tree to its root.

Example 2.3 A complete monoid is a (necessarily commutative) monoid M together with an
infinitary sum operation consistent with the finite sum [8]. Define the functorM : Set → Set
by M(X) = {ϕ | ϕ : X → M} and, for f : X → Y , M(h)(ϕ) = λy.

∑
x∈ f −1(y) ϕ(x). A

weighted transition system over a set of labels A is a coalgebra f : X → (MX)A. Similar

123



Distributive laws for monotone specifications 591

to the case of labelled transition systems, we obtain weighted transition systems whose
branching is countable for each label as coalgebras for the functor (Mc−)A, where Mc is
defined by Mc(X) = {ϕ : X → M | ϕ(x) �= 0 for countably many x ∈ X}. We note that
this only requires a countable sum on M to be well-defined and, by further restricting to
finite support, weighted transition systems are defined for any commutative monoid (see,
e.g., [16]).

Labelled transition systems are retrieved by taking the monoid with two elements and
logical disjunction as sum. Another example arises by taking the monoid M = R

+ ∪ {∞}
of non-negative reals extended with a top element ∞, with the supremum operation.

2.3 Distributive laws

In Sect. 3, we will use distributive laws as a common generalisation of several abstract rule
formats. For now, we only recall a few basic definitions and properties.

A distributive law of a monad T = (T , η, μ) over a comonad D = (D, ε, δ) is a natural
transformation λ : T D ⇒ DT making the following diagrams commute.

T T D
Tλ

μD

T DT
λT

DT T

Dμ

D

ηD
Dη

T D
λ

T δ

DT

δT

T D
λ

T ε

DT

εT

T DD
λD

DT D
Dλ

DDT T

The axioms ensure compatibility with the monad and comonad structure. For more details
of their use in SOS, see [17].

A lifting of a functor T : Set → Set to CoAlg(D) is a functor T making the following
commute:

CoAlg(D)

U

T
CoAlg(D)

U

Set
T

Set

where the vertical arrows are the forgetful functor. Further, a monad (T , η, μ) on CoAlg(D)

is a lifting of a monad T = (T , η, μ) on Set if

– T is a lifting of T ;
– Uη = ηU and Uμ = μU .

A lifting of T to coalg(B) is defined similarly. Distributive laws of T overD are in one-to-one
correspondence with liftings of (T , η, μ) to CoAlg(D) [15,30]. If D is the cofree comonad
for B, then CoAlg(D) ∼= coalg(B), hence a further equivalent condition is that T lifts to
coalg(B).

Given a distributive law λ : T D ⇒ DT , a λ-bialgebra is a triple (X , a, f ) where X is
a set, a is an EM-algebra for T and f is an EM-coalgebra for D, such that the following
diagram commutes:
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T X
a

T f

X
f

DX

T DX
λX

DT X

Da

Any distributive law λ induces, by initiality, a unique coalgebra h : T∅ → DT∅ such that
(T∅, μ∅, h) is λ-bialgebra, i.e., making the diagram on the left below commute:

T T∅ μ∅

Th

T∅ h
DT∅ T D1

k

T δ1

D1
δ1

DD1

T DT∅ λT∅
DTT∅

Dμ∅

T DD1
λD1

DT D1

Dk

Similarly, there is a unique algebra structure k : T D1 → D1 (where 1 is a singleton, so that
D1 is the carrier of a final coalgebra) making the diagram on the right commute.

The map h is a coalgebra for the comonad D. If D is the cofree comonad B∞ of a functor
B, then h corresponds to a B-coalgebra; we refer to the latter as the operational model of λ.

The coalgebra h : T∅ → DT∅ plays a special role. As we will see in the next section,
in the context of certain rule formats on, e.g., labelled transition systems, it is the labelled
transition system over closed terms induced by a given specification. In this context, the
semantics arises by finality, as the unique coalgebra morphism s : T∅ → D1 in the diagram
on the left:

T∅
h

s
D1

δ1

T T∅
μ∅

T s
T D1

T k

DT∅ Ds
DD1 T∅ s

D1

Dually, the algebra k is the interpretation of the operations defined in the specification on the
final coalgebra. It is easy to show that the same map s (defined as the unique map to a final
coalgebra) is also an algebra morphism from the initial algebra (as on the right above). This
means that behavioural equivalence on h, i.e., identification of elements by the ‘semantics
map’ s, is a congruence (since s is an algebra morphism). For a more extensive explanation,
see [17,30].

3 Abstract rule formats: GSOS, coGSOS and biGSOS

In this section we recall the abstract rule formats originally introduced in [30], and their
combination, called biGSOS in [18].

3.1 GSOS

Probably the most important instance of these formats is abstract GSOS, which generalises
the classical GSOS format for labelled transition systems [5]. An abstract GSOS specification
[30] is a natural transformation of the form

ρ : Σ(B × Id) ⇒ BΣ∗ .
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Distributive laws for monotone specifications 593

This notion gives rise to concrete rule formats for different types of coalgebras, by varying
the functor B. We recall this for streams and labelled transition systems.

Example 3.1 Given a signature Σ (Sect. 2.1), a stream GSOS rule [11,17] for an operator σ

of arity n is of the form

x1
a1−→ x ′

1 . . . xn
an−→ x ′

n

σ(x1, . . . xn)
b−→ t

where x1, . . . , xn, x ′
1, . . . , x

′
1 are pairwise distinct variables; t is a term over these variables

and the signature Σ ; and a1, . . . , an, b ∈ R.
A stream GSOS specification is a collection of stream GSOS rules over a common signa-

ture such that, for every operator σ (of arity n) and every sequence (a1, . . . , an) ∈ R
n , there

is exactly one rule with premises x1
a1−→ x ′

1, …, xn
an−→ x ′

n .
Let BX = R × X , and let Σ be a signature. Every stream GSOS specification gives

rise to an abstract GSOS specification Σ(B × Id) ⇒ BΣ∗ involving these functors, and
conversely, every abstract GSOS specification arises in this way [17]. Rather than recalling
the exact construction, we consider an example of basic operations on streams: a binary sum
⊕, (shuffle) product ⊗ and a constant r for each r ∈ R. The following stream GSOS rules
define their semantics (corresponding to the usual behavioural differential equations [26]):

x
r−→ x ′ y

s−→ y′

x ⊕ y
r+s−−→ x ′ ⊕ y′

x
r−→ x ′ y

s−→ y′

x ⊗ y
r×s−−→ (x ′ ⊗ y) ⊕ (x ⊗ y′) r

r−→ 0

To model this as an abstract GSOS specification, we take ΣX = (X × X) + (X × X) + R,
and denote the left coproduct injection of a pair (x, y) by x ⊕ y, the middle by x ⊗ y and the
right (for an element r ∈ R) by r . Then the natural transformation ρ : Σ(B × Id) ⇒ BΣ∗
(with BX = R× X ) corresponding to the above specification is given on a component X by

ρX ((x, r , x ′) ⊕ (y, s, y′)) = (r + s, (x ′ ⊕ y′))
ρX ((x, r , x ′) ⊗ (y, s, y′)) = (r × s, (x ′ ⊗ y) ⊕ (x ⊗ y′))

ρX (r) = (r , 0)

Example 3.2 Given a signatureΣ , aGSOS rule [5] for an operator σ of arity n is of the form

{xi j
a j→ y j } j=1..m {xik /

bk−→}k=1..l

σ(x1, . . . , xn)
c→ t

(4)

where m and l are the number of positive and negative premises respectively; a1, . . . , am,

b1, . . . , bl , c ∈ A are labels; x1, . . . , xn , y1, . . . , ym are pairwise distinct variables, and t is
a term over these variables and the signature Σ .

A GSOS specification is a collection of rules satisfying an image-finiteness condition.
As first observed in [30], and proved in detail in [4], specifications in the GSOS format
are generalised by abstract GSOS specifications, where Σ models the signature and BX =
(P f X)A.

Amodel of an abstract GSOS specification ρ : Σ(B× Id) ⇒ BΣ∗ is a triple (X , a, f )where
X is a set, a : ΣX → X an algebra and f : X → BX a coalgebra, such that the diagram on
the left below commutes:
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ΣX
a

Σ〈 f ,id〉

X
f

BX ΣΣ∗∅ ι∅

Σ〈 f ,id〉

Σ∗∅ f
BΣ∗∅

Σ(B × Id)X
λX

BΣ∗X

Ba∗

Σ(B × Id)Σ∗∅ λΣ∗∅
BΣ∗Σ∗∅

Bμ∅

Of particular interest are models on the initial algebra, i.e., where the algebra part is given
by ι∅ : ΣΣ∗∅ → Σ∗∅. It turns out that, in this case, there is a unique coalgebra structure f
turning (Σ∗∅, ι∅, f ) into a model, as depicted on the right above. We call this the supported
model of the abstract GSOS specification ρ, since it generalises the usual notion of supported

model for labelled transition systems, informally stating that a transition σ(t1, . . . , tn)
a−→ t ′

is in the model iff it is provable by the rules.
The uniqueness of the supported model follows from the theory of distributive laws, using

that every abstract GSOS specification ρ induces a distributive law λ : Σ∗B∞ ⇒ B∞Σ∗ of
the free monad over the cofree comonad [17,20].

It also follows from this correspondence that behavioural equivalence on the supported
model of ρ is a congruence.

3.2 coGSOS

The ‘dual’ of GSOS is coGSOS, introduced in [30]. It is used a lot less than GSOS, since
it appears most examples (such as the standard operators of the stream calculus [26]) fit
in the GSOS format and not in the coGSOS format. A coGSOS specification is a natural
transformation of the form

ρ : ΣB∞ ⇒ B(Σ + Id) .

In case of labelled transition systems, these natural transformations can be obtained from
specifications in the safe ntree format, which we will see as a special case of a more general
situation below (Example 3.6).

Example 3.3 In case of streams (i.e., BX = R× X ), coGSOS specifications can be presented
concretely as a rule format which allows lookahead in premises, but where the term t , the
right-hand side of the conclusion, can only be a single operation, or a variable.

Concretely, a stream coGSOS rule [17] for an operator σ of arity n is of the form

{xi1
ai1−→ xi+1

1 }i∈N>0 . . . {xin
ain−→ xi+1

n }i∈N>0

σ(x1, . . . xn)
b−→ t

where N>0 is the set of positive natural numbers, x11 , . . . , x
1
n , x

2
1 , . . . , x

2
1 , . . . are pairwise

distinct variables; t is either a single operator over these variables or a single variable drawn
from this set; and b, a11, . . . , a

1
n, a

2
1 , . . . , a

2
n , . . . ∈ R.

Note that coGSOS specifications allow infinitely many premises; in particular, one can
inspect the entire argument stream in the premise. This is operationally rather questionable,
but for practicular purposes, one may give rules which only mention a finite number of
premises for each argument. For instance, consider the following rule:

x
a−→ x ′ x ′ a′−→ x ′′

even(x)
a−→ even(x ′′)
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It is straightforward to extend this to a collection of rules in the coGSOS format, by extending
the premises to infinite sequences in all possible ways; see [17] for details.

The notion of (supported) model of a coGSOS specification is defined similarly (dually) to
that of a GSOS specification; wewill see amore definition that generalises both in the context
of the biGSOS format, introduced next. Just like the GSOS case, coGSOS specifications have
unique supported models, on which behavioural equivalence is a congruence [17].

3.3 biGSOS

The abstract GSOS and coGSOS formats have a straightforward common generalisation,
called biGSOS in [18]. This notion, as well as the associated notion of model which we
define later, subsumes both abstract GSOS and coGSOS.

Definition 3.4 A biGSOS specification is a natural transformation of the form

ρ : ΣB∞ ⇒ BΣ∗ .

Example 3.5 For streams (i.e., BX = R× X ), a concrete presentation of the biGSOS format
is very similar to the (coGSOS) format given in Example 3.3; however, the term t on the
right-hand side of the conclusion of a rule is now allowed to be an arbitrary term over the
variables introduced in the premises, rather than just a single operator or variable.

Of course, all GSOS and coGSOS rules form examples of biGSOS rules. As pointed out
in [4], a nice example that fits in the biGSOS format but not in one of the other formats, is
the Δc operator from [28], called Laplace–Carson transform (on the left below):

x
r−→ x ′ x ′ r ′−→ x ′′

Δc(x)
r−→ Δc(x ′ ⊕ (X ⊗ x ′′)) X

0−→ 1

It makes use of the shuffle product, sum (Example 3.1) and the operator X (defined above,
using the constant 1), so together with those operations it forms a biGSOS specification.

Example 3.6 If BX = (P f X)A, then one can obtain biGSOS specifications from concrete
rules in the ntree format. An ntree rule (as taken from [17]) for an operator σ with arity n is
of the form

{zi ai→ yi }i∈I {w j/
b j−→} j∈J

σ(x1, . . . , xn)
c→ t

(5)

where I and J are countable possibly infinite sets, the zi , yi , w j , xk are variables, and
b j , c, ai ∈ A; the xk and yi are all distinct and they are the only variables that occur in
the rule; the dependency graph of premise variables (where positive premises are seen as
directed edges) is well-founded, and t is a term over the variables. An ntree rule is called safe
if t is either a single variable or a term built of a single operator from the signature and the
variables.

As stated in [30], every ntree specification (a collection of ntree rules with a certain
image-finiteness condition) induces a biGSOS specification where Σ models the signature
and BX = (P f X)A. Safe ntree rules induce coGSOS specifications. The construction of
a biGSOS specification ρ from an ntree specification is sketched in [30]. Here, we fill in
some of the details. Note that it is not known whether there is a converse, i.e., whether every
biGSOS specification is derived from an ntree specification [17].
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First, note that by the conditions imposed on ntree rules (5), the premises give rise to
collection of n disjoint trees with roots x1, . . . , xn respectively, edge-labelled in A and node-
labelled in variables, with a unique label for each node. Let V be the set of variables that
occur in the nodes of these trees. Given b ∈ B∞X and a map h : V → B∞X , we write
xi |�h bi if

1. h(xi ) = bi , and
2. if x

a−→ x ′ (in the rooted tree induced by the premises) then h(x)
a−→ h(x ′), and

3. if x /
a−→ (an explicit negative premise in the rule) then h(x) /

a−→ (no a-transition from h(x)).

Now, ρ : ΣB∞ ⇒ (P f Σ
∗X)A (for BX = (P f X)A) is defined as follows: u ∈

ρX (σ (b1, . . . , bn))(a) iff u = Σ∗(εX ◦ h)(t) for some t ∈ Σ∗X and h as above such that
there is a rule of the form (5) with for each i , xi |�h bi . We prove naturality in Appendix A.

A triple (X , a, f ) consisting of a set X , an algebra a : ΣX → X and a coalgebra f : X →
BX (i.e., a bialgebra) is called a ρ-model if the diagram on the left below commutes.

ΣX
a

Σ f ∞

X
f

BX ΣΣ∗∅ ι∅

Σ f ∞

Σ∗∅ f
BΣ∗∅

ΣB∞X
λX

BΣ∗X

Ba∗

ΣB∞Σ∗∅ λΣ∗∅
BΣ∗Σ∗∅

Bμ∅ (6)

In particular, we define a supportedmodel as a ρ-model on the initial algebra, i.e., a coalgebra
f : Σ∗∅ → BΣ∗∅ such that the diagram on the right above commutes.
Contrary to the case of GSOS and coGSOS, in general there is no (unique) supported

model. This is witnessed, for instance, by the example specification in the introduction. In
Example 3.7, we shall see that biGSOS specifications may also have multiple supported
models, and that behavioural equivalence is not even a congruence, in general.

Example 3.7 In this example we consider a signature with constants c and d , and unary
operators σ and τ . Consider the specification (represented by concrete rules) on labelled
transition systems where c and d are not assigned any behaviour, and σ and τ are given by
the following rules:

x
a−→ x ′ x ′ a−→ x ′′

σ(x)
a−→ x ′′ τ(x)

a−→ σ(τ(x))

The behaviour of τ(x) is independent of its argument x . Which transitions can occur in a

supported model? First, for any t there is a transition τ(t)
a−→ σ(τ(t)). Moreover, a transition

σ(τ(t))
a−→ t ′′ can be in the model, although it does not need to be. But if it is there, it is

supported by an infinite proof.
In fact, one can easily construct a model in which the behaviour of σ(τ(c)) is different

from that of σ(τ(d))—for example, a model where σ(τ(c)) does not make any transitions,

whereas σ(τ(d))
a−→ t for some t . Then behavioural equivalence is not a congruence; c is

bisimilar to d , but σ(τ(c)) is not bisimilar to σ(τ(d)).

The above example features a specification that has many different interpretations as a
supported model, on the set of closed terms. We are interested in the least model, since that
only features finite proofs. It is sensible to speak about the least model of this specification,
since it does not contain any negative premises.More generally, absence of negative premises
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Distributive laws for monotone specifications 597

can be defined based on an ordered functor and the induced similarity order, as we will see
in the next sections.

Every GSOS and coGSOS specification induces a distributive law. Using this, one can
prove that such specifications have unique supported models on which behavioural equiv-
alence is a congruence. The above examples of biGSOS specifications, where some do not
have a model and some have multiple models, suggest that the correspondence with distribu-
tive laws does not go through for biGSOS specifications. To make this slightly more precise,
we say a distributive law λ : Σ∗B∞ ⇒ B∞Σ∗ of monad over comonad extends a biGSOS
specification ρ : ΣB∞ ⇒ BΣ∗ if the following diagram commutes [18]:

ΣB∞ ρ

κB∞

BΣ∗

Σ∗B∞
λ

B∞Σ∗
νΣ∗

Klin andNachyła [18] show that, in case of stream systems or labelled transition systems, it is
undecidable whether a given biGSOS specification ρ extends (uniquely) to a distributive law
λ. In fact, not even the full power of biGSOS is used there: every individual rule is required
to be either in the GSOS or in the coGSOS format.

The current paper takes a different approach, by disallowing negative premises—which are
crucial in the proof ofKlin andNachyła. Further,wewill construct a canonical distributive law
that extends a given biGSOS specification (satisfying a monotonicity condition generalising
absence of negative premises), but we make no claims about uniqueness.

4 Similarity on cofree coalgebras

In this section, we recall the notion of simulation of coalgebras from [12], and prove a few
basic results concerning the similarity preorder on final coalgebras. This similarity preorder
will be used in Sect. 5 to formulate what it means for a biGSOS specification to be monotone.

Throughout this section, let B : Set → Set be a functor for which a cofree coalgebra B∞
exists. The (canonical) relation lifting of B is defined on a relation R ⊆ X × Y by

Rel(B)(R) = {(b, c) ∈ BX × BY | ∃d ∈ BR. Bπ1(d) = b and Bπ2(d) = c} .

It thus extends a relation R ⊆ X × Y to a relation Rel(B)(R) ⊆ BX × BY , by taking the
image of BR along the pairing 〈Bπ1, Bπ2〉 : BR → BX × BY . For instance, for the functor
B(X) = A × X , we have

Rel(B)(R) = {((a, x), (a, y)) | a ∈ A and (x, y) ∈ R} .

Relation lifting can be used to define a notion of bisimulation, which we recall, as the notion
of simulation that we use later is a variation on it. Let (X , f ) and (Y , g) be B-coalgebras.
A relation R ⊆ X × X is a bisimulation if R ⊆ ( f × g)−1(Rel(B)(R)). For a detailed
account of bisimulations and relation lifting, see, e.g., [13]. We recall the following standard
properties, which will be useful later.

Lemma 4.1 For any functor F : Set → Set and any R ⊆ X × X ′, S ⊆ Y × Y ′:

1. Rel(F)(ΔX ) = ΔFX .
2. For any R′ ⊆ X × X ′: if R ⊆ R′ then Rel(F)(R) ⊆ Rel(F)(R′).
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3. For any f : X → Y , g : X ′ → Y ′: (F f × Fg)(Rel(F)(R)) ⊆ Rel(F)(( f × g)(R)).
4. Rel(F)(R)op = Rel(F)(Rop).
5. If F preserves weak pullbacks, then for any f : X → Y : Rel(F)(Graph( f )) =

Graph(F f ) .
6. For any f : X → Y , g : X ′ → Y ′: if f S g then F( f ) Rel(F)(S) F(g),

Proof The first five properties are standard (see, e.g., [13]). For (6), by assumption we have
( f × g)(ΔX ) ⊆ S. By (2) this implies Rel(F)(( f × g)(ΔX )) ⊆ Rel(F)(S). Further, by (1)
and (3), we have (F f × Fg)(ΔFX ) = (F f × Fg)(Rel(F)(ΔX )) ⊆ Rel(F)(( f × g)(ΔX )).
Thus (F f × Fg)(ΔFX ) ⊆ Rel(F)(S) as desired. ��

An ordered functor is a pair (B,�) of functors B : Set → Set and �: Set → PreOrd
such that

PreOrd

Set
B

�

Set

commutes, where the arrow from PreOrd to Set is the forgetful functor mapping a preorder
to its carrier. Concretely, this means:

– For any set X , there is a preorder �BX ⊆ BX × BX ;
– For any map f : X → Y , B f is monotone, i.e., b �BX c implies B f (b) �BY B f (c).

Let (B,�) be an ordered functor. The lax relation lifting Rel� is defined as follows:

Rel�(B)(R ⊆ X × Y ) = �BX ◦ Rel(B)(R) ◦ �BY .

Let (X , f ) and (Y , g) be B-coalgebras. A relation R ⊆ X × Y is a simulation (between f
and g) if R ⊆ ( f × g)−1(Rel�(B)(R)). The greatest simulation between coalgebras f and
g is called similarity, denoted by �g

f , or � f if f = g, or simply � if f and g are clear from
the context.

Given a set X and an ordered functor (B,�), we define the ordered functor (B × X , �̃)

by

(b, x) �̃BX (c, y) iff b �BX c and x = y .

The induced notion of simulation can naturally be expressed in terms of the original one:

Lemma 4.2 Let� be the similarity relation between coalgebras 〈 f , f ′〉 : X → BX × Z and
〈g, g′〉 : X → BX × Z. Then for any relation R ⊆ X × X:

R ⊆ (〈 f , f ′〉 × 〈g, g′〉)−1(Rel�̃(B × Z)(R))

iff R ⊆ ( f × g)−1(Rel�(B)(R)) and for all (x, y) ∈ R: f ′(x) = g′(x).

Proof We compute a more concrete presentation of Rel�̃(B × Z)(R):

Rel�̃(B × Z)(R) = �̃ ◦ Rel(B × Z)(R) ◦ �̃
= �̃ ◦ {((B × Z)(π1)(z), (B × Z)(π2)(z)) | z ∈ (B × Z)(R)} ◦ �̃
= �̃ ◦ {((Bπ1(u), v), (Bπ2(u), v)) | u ∈ BR, v ∈ Z} ◦ �̃
= �̃ ◦ {((b, v), (c, v)) | (b, c) ∈ Rel(B)(R), v ∈ Z} ◦ �̃
= {((b, v), (c, v)) | (b, c) ∈ Rel�(B)(R), v ∈ Z} .

The desired equivalence follows easily from this presentation. ��
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Given an ordered functor (B,�) we write

�B∞X

for the similarity order induced by the ordered functor (B × X , �̃) on the cofree coalgebra
(B∞X , 〈θX , εX 〉). We discuss a few examples of ordered functors and similarity; see [12]
for many more.

Example 4.3 For the functor L f X = (P f X)A ordered by (pointwise) subset inclusion, a
simulation as defined above is a (strong) simulation in the standard sense. For elements
p, q ∈ L∞

f X , we have p �L∞
f X q iff there exists a (strong) simulation R between the

underlying trees of p and q , so that pairs in R agree on labels in the set X . Concretely, for
all p, q ∈ R:

– εX (p) = εX (q), and
– if p

a−→ p′ then there is q ′ such that q a−→ q ′ and (p′, q ′) ∈ R.

Example 4.4 For any G : Set → Set, the functor B = G + 1, where 1 = {⊥}, can be ordered
as follows: x ≤ y iff x = ⊥ or x = y, for all x, y ∈ BX . If G = A × Id then B∞X consists

of finite and infinite sequences of the form x0
a0−→ x1

a1−→ x2
a2−→ . . . with xi ∈ X and ai ∈ A

for each i (cf. Example 2.1). For σ, τ ∈ B∞X we have σ �B∞X τ if τ does not terminate
before σ does, and σ and τ agree on labels in X and A on each position where σ is defined.

In the remainder of this section we state a few technical properties concerning similarity
on cofree comonads, which will be necessary in the following sections.

Lemma 4.5 Coalgebra homomorphisms h, k preserve similarity: if x � y then h(x) � k(y).

Proof Let h : X → X ′ be a coalgebra homomorphism from (X , f ) to (X ′, f ′), and k : Y →
Y ′ a coalgebra homomorphism from (Y , g) to (Y ′, g′). In [12], it is shown that x � y
iff h(x) � k(y) under the assumption of a stable order (meaning that Rel�(B) is a fibred
functor); but this is not necessary for the implication from left to right. In fact, the desired
implication follows from the abstract theory of bifibrations, see, e.g., [23, Proposition 3.3.7].

For a more concrete proof, we show that the direct image of a simulation under (h × k)
is again a simulation. To this end, let R ⊆ ( f × g)−1(Rel�(B)(R)). Then

(h × k)(R) ⊆ (h × k)(( f × g)−1(Rel�(B)(R)))

and the result follows (i.e., (h × k)(R) is a simulation) once we show that

(h × k)(( f × g)−1(Rel�(B)(R))) ⊆ ( f ′ × g′)−1(Rel�(B)((h × k)(R))) .

The latter inclusion in turn follows from the following two facts:

– (h×k)( f ×g)−1 ⊆ ( f ′×g′)−1(Bh×Bk) (pointwise inclusion). This is a straightforward
computation: let S ⊆ BX × BY , and suppose ( f (x), g(y)) ∈ S; we need to prove that
(h(x), h(y)) ∈ ( f ′ ×g′)−1(Bh× Bk)(S). Indeed, we have ((Bh)( f (x)), (Bk)(g(y))) ∈
(Bh × Bk)(S), so we have ( f ′(h(x)), k′(g(y))) ∈ (Bh × Bk)(S) (since h and k are
homomorphisms), as desired.

– (Bh × Bk)(Rel�(B)(R)) ⊆ Rel�(B)((h × k)(R)) is shown concretely in [12, Lemma
4.2].

��
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Pointwise inequality of coalgebras implies pointwise similarity of coinductive extensions:

Lemma 4.6 Let (B,�) be an ordered functor, and let f and g be B-coalgebras on a common
carrier X. If f �BX g then f ∞ �B∞X g∞.

Proof Suppose f �BX g. This is equivalent to ( f × g)(ΔX ) ⊆ �BX . Since �BX is reflex-
ive, we have �BX⊆ (�BX ◦ΔBX◦ �BX ). Further ΔBX = Rel(B)(ΔX ) by Lemma 4.1 (1),
so that �BX⊆ (�BX ◦Rel(B)(ΔX )◦ �BX ) = Rel�(B)(ΔX ). Combined with the assump-
tion, this yields ( f × g)(ΔX ) ⊆ Rel�(B)(ΔX ), so ΔX is a simulation between f and g.
By Lemma 4.2 this implies that x � x for any x ∈ X , where � is the similarity order
between (X , 〈 f , id〉) and (X , 〈g, id〉) induced by (B × X , �̃). Notice that f ∞ and g∞ are
coalgebra homomorphisms from 〈 f , id〉 and 〈g, id〉 respectively into the cofree coalgebra
(B∞X , 〈θ, ε〉), so by Lemma 4.5 we have ( f ∞ × g∞)(ΔX ) ⊆ �B∞X . ��

Recall from Sect. 2 that any B-homomorphism yields a B∞-homomorphism between
coinductive extensions. A similar fact holds for inequalities.

Lemma 4.7 Let (B,�) be an ordered functor where B preserves weak pullbacks, and let
f : X → BX, g : Y → BY and h : X → Y .

1. If Bh ◦ f �BY g ◦ h then B∞h ◦ f ∞ �B∞Y g∞ ◦ h.
2. If Bh ◦ f �BY g ◦ h then B∞h ◦ f ∞ �B∞Y g∞ ◦ h.

Proof The assumption in item 1. is equivalent to: ( f (x), g(h(x)) ∈ (Graph(Bh) ◦ �BY ) for
all x ∈ X . Thus ( f (x), g(h(x)) ∈ (�BX ◦Graph(Bh)◦�BY ) since�BX is reflexive.We have
Graph(Bh) = Rel(B)(Graph(h)) by Lemma 4.1 (5) and the assumption that B preserves
weak pullbacks, so by the above, Graph(h) is a simulation between f and g. By Lemma 4.2
it follows that x � h(x), where � is the similarity order between 〈 f , h〉 : X → BX ×Y and
〈g, id〉 : Y → BY × Y induced by (B × Y , �̃).

Next, observe that from the following commutative diagram it follows that B∞h ◦ f ∞ is
a B × Y -coalgebra homomorphism:

X

〈 f ,id〉

f ∞
B∞X

〈θX ,εX 〉

B∞h
B∞Y

〈θY ,εY 〉

BX × X
B f ∞×id

Bid×h

BB∞X × X
BB∞h×h

id×h

BB∞Y × Y

BX × Y
B f ∞×id

BB∞ × Y

BB∞h×id

The upper left square commutes by definition of f ∞, the upper right by naturality of
θ and ε, and the rest trivially. Since g∞ is a coalgebra homomorphism as well (from
〈g, id〉 to (B∞Y , 〈θY , εY 〉)), by the fact that coalgebra homomorphisms preserve similar-
ity (Lemma 4.5) we obtain B∞h ◦ f ∞ �B∞Y g∞ ◦ h as desired.

For item 2. by assumption we have g(h(x)) �BY Bh( f (x)) for all x ∈ X , so
(g(h(x)), f (x)) ∈ (�BY ◦ Graph(Bh)op), which implies (g(h(x)), f (x)) ∈ (�BY ◦
Graph(Bh)op ◦ �BX ). But we have

Graph(Bh)op = (Rel(B)(Graph(h)))op = Rel(B)(Graph(h)op)
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by Lemma 4.1 (item 4 and 5 respectively), so by the above, Graph(h)op is a simulation
between g and f . Similar to the above case, applying homomorphisms g∞ and B∞h ◦ f ∞
yields the desired result. ��

5 Monotone biGSOS specifications

Definition 5.1 A biGSOS specification ρ : ΣB∞ ⇒ BΣ∗ is monotone if the restriction of
ρX × ρX to Rel(Σ)(�B∞X ) corestricts to �BΣ∗X , for any set X .

If Σ represents a signature, then monotonicity can be conveniently restated as follows (c.f.
[6], where monotone GSOS is characterised in a similar way). For every operator σ :

b1 �B∞X c1 . . . bn �B∞X cn
ρX (σ (b1, . . . , bn)) �BΣ∗X ρX (σ (c1, . . . , cn))

for every set X and every b1, . . . , bn, c1, . . . , cn ∈ B∞X . Thus, in a monotone specification,
if ci simulates bi for each i , then the behaviour of σ(b1, . . . , bn) is “less than” the behaviour
of σ(c1, . . . , cn).

Example 5.2 In the case of an ntree specification for labelled transition systems, if there are
no negative premises then the induced biGSOS specification (Example 3.6) is monotone.

To see this, suppose that for all i , we have xi |�h bi (notation of Example 3.6), and
bi �B∞X ci . By definition of �B∞X (cf. Example 4.3) and |�h , and the absence of negative
premises, it follows that there is a map k : V → B∞X from the set of variables occuring
in the premises of the rules (notation of Example 3.6), such that εX ◦ k = εX ◦ h (i.e., they
agree on node labels), and for all i : xi |�k ci . It follows that ρX (σ (b1, . . . , bn)) �BΣ∗X
ρX (σ (c1, . . . , cn)), as needed.

Notice that the example specification in the introduction consisting of rules (2) and (3),
which does not have a model, is not monotone. This is no coincidence: every monotone
biGSOS specification has a model, if BΣ∗∅ is a pointed DCPO, as we will see next. In
fact, the proper canonical choice is the least model, corresponding to behaviour obtained in
finitely many proof steps.

5.1 Models of monotone specifications

Let ρ be a monotone biGSOS specification. Suppose BΣ∗∅ is a pointed DCPO. Then the
set of coalgebras coalg(B)Σ∗∅ = { f | f : Σ∗∅ → BΣ∗∅}, ordered pointwise, is a pointed
DCPO as well.

Consider the function ϕ : coalg(B)Σ∗∅ → coalg(B)Σ∗∅, defined as follows:

ϕ( f ) = Bμ∅ ◦ ρΣ∗∅ ◦ Σ f ∞ ◦ ι−1
∅ (7)

where ι∅ : ΣΣ∗∅ → Σ∗∅ is the initial Σ-algebra. Since ι∅ is an isomorphism (Sect. 2.1),
a function f is a fixed point of ϕ if and only if it is a supported model of ρ (Eq. 6). We are
interested in the least supported model. To show that it exists, since coalg(B)Σ∗∅ is a pointed
DCPO, it suffices to show that ϕ is monotone.

Lemma 5.3 The function ϕ is monotone.
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Proof Suppose f , g : Σ∗∅ → BΣ∗∅ and f �BΣ∗∅ g. ByLemma4.6,we have f ∞ �B∞Σ∗∅
g∞. By Lemma 4.1 (6) we derive

Σ f ∞ Rel(Σ)(�B∞Σ∗∅) Σg∞

and now the result follows by monotonicity of ρ (assumption) and monotonicity of Bμ∅ (B
is ordered). ��
Corollary 5.4 If BΣ∗∅ is a pointed DCPO and ρ is a monotone biGSOS specification, then
ρ has a least supported model.

The condition of the Corollary is satisfied if B is of the form B = G + 1 (c.f. Example 4.4),
that is, B = G + 1 for some functor G (where the element in the singleton 1 is interpreted as
the least element of the pointedDCPO). Consider, as an example, the functor BX = A×X+1
of finite and infinite streams over A. Any specification that does not mention termination (i.e.,
a specification for the functor GX = A × X ) yields a monotone specification for B.

Example 5.5 Consider the following specification (in terms of rules) for the functor BX =
N× X + 1 of (possibly terminating) stream systems over the natural numbers. It specifies a
unary operator σ , a binary operator ⊕, infinitely many unary operators m ⊗ − (one for each
m ∈ N), and constants ones, pos, c:

x
n−→ x ′ x ′ m−→ x ′′

σ(x)
n−→ n ⊗ (m ⊗ σ(x ′′))

x
n−→ x ′ y

m−→ y′

x ⊕ y
n+m−−→ x ′ ⊕ y′

x
n−→ x ′

m ⊗ x
m×n−−→ m ⊗ x ′

ones
1−→ ones pos

1−→ ones ⊕ pos c
1−→ σ(c)

where+ and× denote addition andmultiplication of natural numbers, respectively. The rules
for⊕ and⊗ define standard pointwise addition andmultiplication by a constant, respectively.
The operator σ is slightly more curious; of interest here is that it requires lookahead, and is
therefore not a GSOS rule. In fact, the rule for σ is GSOS nor coGSOS, since it uses both
lookahead and a complex conclusion. By the above Corollary, it has amodel. The coinductive
extension maps pos to the increasing stream of positive integers, and σ(pos) is the stream
(1, 6, 120, . . .) = (1!, 3!, 5!, . . .). But c does not represent an infinite stream, since σ(c) is
undefined.

The case of labelled transition systems is a bit more subtle. The problem is that (P f Σ
∗∅)A

and (PcΣ
∗∅)A are not DCPOs, in general, whereas the functor (P−)A does not have a cofree

comonad. However, if the set of closed terms Σ∗∅ is countable, then (PcΣ
∗∅)A is a pointed

DCPO, and thus Corollary 5.4 applies. The specification in Example 3.7 can be viewed as
a specification for the functor (Pc−)A, and it has a countable set of terms. Therefore it has,
by the Corollary, a least supported model. In this model, the behaviour of σ(t) is empty, for
any t ∈ Σ∗∅.

6 Distributive laws for biGSOS specifications

In the previous section we have seen how to construct a least supported model of a monotone
biGSOS specification, as the least fixed point of a certain monotone function. In the present
section we show that, given a monotone biGSOS specification, the construction of a least
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model generalises to a lifting of the free monad Σ∗ to the category of B-coalgebras. It then
immediately follows that there exists a canonical distributive law of the monad Σ∗ over the
comonad B∞, and that the (unique) operational model of this distributive law corresponds
to the least supported model as constructed above.

In order to proceed we define a DCPO⊥-ordered functor as an ordered functor (Sect. 4)
where PreOrd is replaced by DCPO⊥. Below we assume that (B,�) is DCPO⊥-ordered, and
Σ and B are as before (having a free monad and cofree comonad respectively). Throughout
this section we assume a monotone biGSOS specification ρ : ΣB∞ ⇒ BΣ∗.

Example 6.1 A general class of functors that areDCPO⊥-ordered are those of the form B+1,
where the singleton 1 is interpreted as the least element and all other distinct elements are
incomparable (see Example 4.4). Another example is the functor (P−)A of labelled transition
systemswith arbitrary branching, but this example can not be treated here because there exists
no cofree comonad for it. The case of labelled transition systems is treated in Sect. 7.

Let coalg(B)Σ∗X be the set of B-coalgebras with carrier Σ∗X , pointwise ordered as a
DCPO by the order on B. The lifting of Σ∗ to coalg(B) that we are about to define maps a
coalgebra c : X → BX to the least coalgebra c : Σ∗X → BΣ∗X , w.r.t. the above order on
coalg(B)Σ∗X , making the following diagram commute.

ΣB∞Σ∗X
ρΣ∗X

BΣ∗Σ∗X
BμX

BΣ∗X BX
BηX

ΣΣ∗X
ιX

Σ(c)∞

Σ∗X

c

X
ηX

c

(8)

Equivalently, c is the least fixed point of the operator

ϕc : coalg(B)Σ∗X → coalg(B)Σ∗X
f �→ [BμX ◦ ρΣ∗∅ ◦ Σ f ∞, BηX ◦ c] ◦ [ιX , ηX ]−1 .

Following the proof of Lemma 5.3 it is easy to verify:

Lemma 6.2 For any c : X → BX, the function ϕc is monotone.

For the lifting of Σ∗, we need to show that the above construction preserves coalgebra
morphisms.

Theorem 6.3 The functor Σ∗ : coalg(B) → coalg(B) defined by

Σ∗(X , c) = (Σ∗X , c) and Σ∗(h) = Σ∗h

is a lifting of the functor Σ∗.

Proof Let (X , c) and (Y , d) be BΣ∗-coalgebras. We need to prove that, if h : X → Y is a
coalgebra homomorphism from c to d , then Σ∗h is a homomorphism from c to d .

The proof is by transfinite induction on the iterative construction of c and d as limits of
the ordinal-indexed initial chains of ϕc and ϕd respectively. For the limit (and base) case,
given a (possibly empty) directed family of coalgebras fi : Σ∗X → BΣ∗X and another
directed family gi : Σ∗Y → BΣ∗Y , such that BΣ∗h ◦ fi = gi ◦ Σ∗h for all i , we have
BΣ∗h ◦∨

i fi = ∨
i (BΣ∗h ◦ fi ) = ∨

i (gi ◦Σ∗h) = (
∨

i gi )◦Σ∗h by continuity of BΣ∗h
and assumption.
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Let f : Σ∗X → BΣ∗X and g : Σ∗Y → BΣ∗Y be such that BΣ∗h ◦ f = g ◦ Σ∗h. To
prove: BΣ∗h ◦ ϕc( f ) = ϕd(g) ◦ Σ∗h, i.e., commutativity of the outside of:

Σ∗X
[ιX ,ηX ]−1

Σ∗h

ΣΣ∗X + X
Σ f ∞+c

ΣΣ∗h+h

ΣB∞Σ∗X + BX
ρΣ∗X+id

ΣB∞Σ∗h+Bh

BΣ∗Σ∗X + BX
[BμX ,BηX ]

BΣ∗Σ∗h+Bh

BΣ∗X

BΣ∗h

Σ∗Y
[ιY ,ηY ]−1

ΣΣ∗Y + Y
Σg∞+d

ΣB∞Σ∗Y + BY
ρΣ∗Y+id

BΣ∗Σ∗Y + BY [BμY ,BηY ] BΣ∗Y

From left to right, the first square commutes by naturality of [ι, η] (and the fact that it is an
isomorphism), the second by assumption that Σ∗h is a B-coalgebra homomorphism from f
to g (and therefore a B∞-coalgebra homomorphism) and the assumption that h is a coalgebra
homomorphism from c to d , the third by naturality of ρ, and the fourth by naturality of μ

and η. ��

We show that the (free) monad (Σ∗, η, μ) lifts to coalg(B). This is the heart of the
matter. The main proof obligation is to show that μX is a coalgebra homomorphism from
Σ∗(Σ∗(X , c)) to Σ∗(X , c), for any B-coalgebra (X , c).

Theorem 6.4 If B preserves weak pullbacks, then the functor Σ∗ extends to a monad
(Σ∗, η, μ) on coalg(B), which is a lifting of the free monad (Σ∗, η, μ).

Proof Let (X , c) be a BΣ∗-coalgebra. We need to show that ηX : X → Σ∗X is a coalge-
bra homomorphism from (X , c) to Σ∗(X , c), and μX : Σ∗Σ∗X → Σ∗X is a coalgebra
homomorphism from Σ(Σ(X , c)) to Σ(X , c):

X

c

ηX
Σ∗X

c

BX
BηX

BΣ∗X

Σ∗Σ∗X

c

μX
Σ∗X

c

BΣ∗Σ∗X
BμX

BΣ∗X

For ηX , this is immediate from the definition of c. For μX , we split the proof in two inequal-
ities, both established by transfinite induction. First we prove BμX ◦ c �BΣ∗X c ◦ μX .
Suppose BμX ◦ fi �BΣ∗X c ◦ μX for a (possibly empty) directed family of coalgebras
fi : Σ∗Σ∗X → BΣ∗Σ∗X . Then

BμX ◦
∨

i

fi =
∨

i

(BμX ◦ fi ) �BΣ∗X c ◦ μX

by assumption and since BμX is continuous (B is DCPO⊥-ordered).
Now suppose BμX ◦ f �BΣ∗X c ◦ μX for some f : Σ∗Σ∗X → BΣ∗Σ∗X . We must

show that BμX ◦ ϕc( f ) �BΣ∗X c ◦ μX . Applying Lemma 4.7 to the assumption yields
B∞μX ◦ f ∞ �B∞Σ∗X (c)∞ ◦ μX . Applying Lemma 4.1 (6) yields

Σ(B∞μX ◦ f ∞) Rel(Σ)(�B∞Σ∗X ) Σ((c)∞ ◦ μX ) .

Since ρ is monotone, and BμX as well, we obtain

BμX ◦ ρΣ∗X ◦ Σ(B∞μX ◦ f ∞) �BΣ∗X BμX ◦ ρΣ∗X ◦ Σ((c)∞ ◦ μX ) . (9)
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The following commutes by naturality of ρ and a monad axiom:

ΣB∞Σ∗Σ∗X
ΣB∞μX

ρΣ∗Σ∗X

ΣB∞Σ∗X

ρΣ∗X

BΣ∗Σ∗Σ∗X
BΣ∗μX

BμΣ∗X

BΣ∗Σ∗X

BμX

BΣ∗Σ∗X
BμX

BΣ∗X

(10)

Combined with (9), this yields

BμX ◦ BμΣ∗X ◦ ρΣ∗Σ∗X ◦ Σ f ∞ �BΣ∗X BμX ◦ ρΣ∗X ◦ Σ(c)∞ ◦ ΣμX . (11)

Now consider the following diagram:

Σ∗Σ∗X
μX

[ιΣ∗X ,ηΣ∗X ]−1

ϕc( f )

Σ∗X

[ιX ,ηX ]−1

c

ΣΣ∗Σ∗X + Σ∗X
[inl◦ΣμX ,[ιX ,ηX ]−1]

Σ f ∞+c

ΣΣ∗X + X

Σ(c)∞+c

ΣB∞Σ∗Σ∗X + BΣ∗X

ρΣ∗Σ∗X+id

ΣB∞Σ∗X + BX

ρΣ∗X+id

BΣ∗Σ∗Σ∗X + BΣ∗X

[BμΣ∗X ,BηΣ∗X ]

BΣ∗Σ∗X + BX

[BμX ,BηX ]

BΣ∗Σ∗X
BμX

BΣ∗X

The left-most and right-most parts commute; by definition of ϕ and since ϕc(c) = c. For the
upper square, one uses that [ιX , ηX ] and [ιΣ∗X , ηΣ∗X ] are isomorphisms, and proves that for
both components of ΣΣ∗Σ∗X + Σ∗X , the two paths to Σ∗ (obtained by inverting the iso)
commute; for the left component this is because μX is an algebra homomorphism from ιΣ∗X
to ιX , for the right component since μX ◦ ηΣ∗X = id = [ιX , ηX ] ◦ [ιX , ηX ]−1.

Now, proving that BμX ◦ϕc( f ) �BΣ∗X c◦μX , by the above diagram reduces toEq. (11)—
which we already have—and

BμX ◦ BηΣ∗X ◦ c �BΣ∗X [BμX ◦ ρΣ∗∅ ◦ Σ(c)∞, BηX ◦ c] ◦ [ιX , ηX ]−1(= ϕc(c)) (12)

which holds since BμX ◦ BηΣ∗X = id (a monad axiom), and c = ϕc(c). This concludes the
proof for the successor step.

For the other inequality, i.e., BμX ◦ c �BΣ∗X c ◦ μX , one proves again by transfinite
induction that BμX◦c �BΣ∗X f ◦μX for any f : Σ∗X → BΣ∗X in the chain approximating
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c. The limit case is straightforward. For the successor step, assume BμX ◦ c �BΣ∗X f ◦μX ;
we must prove that BμX ◦ c �BΣ∗X ϕc( f ) ◦ μX .

We apply Lemma 4.7 to the assumption, to obtain B∞μX ◦ (c)∞ �B∞Σ∗X f ∞ ◦ μX .
Similar to the previous case, we derive

BμX ◦ BμΣ∗X ◦ ρΣ∗Σ∗X ◦ Σ(c)∞ �BΣ∗X BμX ◦ ρΣ∗X ◦ Σ( f ∞ ◦ μX ) . (13)

And we consider the following diagram:

Σ∗Σ∗X
μX

[ιΣ∗X ,ηΣ∗X ]−1

c

Σ∗X

[ιX ,ηX ]−1

ϕc( f )

ΣΣ∗Σ∗X + Σ∗X
[inl◦ΣμX ,[ιX ,ηX ]−1]

Σ(c)∞+c

ΣΣ∗X + X

Σ f ∞+c

ΣB∞Σ∗Σ∗X + BΣ∗X

ρΣ∗Σ∗X+id

ΣB∞Σ∗X + BX

ρΣ∗X+id

BΣ∗Σ∗Σ∗X + BΣ∗X

[BμΣ∗X ,BηΣ∗X ]

BΣ∗Σ∗X + BX

[BμX ,BηX ]

BΣ∗Σ∗X
BμX

BΣ∗X

The left-most and right-most parts commute; by definition of ϕ and since ϕc(c) = c. Similar
to the previous case, the upper square commutes, and because of (13) the only remaining
proof obligation is:

c �BΣ∗X [BμX ◦ ρΣ∗∅ ◦ Σ f ∞, BηX ◦ c] ◦ [ιX , ηX ]−1(= ϕc( f ))

which holds: we have c �BΣ∗X f by assumption, hence ϕc(c) �BΣ∗X ϕc( f ) since ϕc is
monotone, and combined with ϕc(c) = c this gives the desired result. ��

The lifting gives rise to a distributive law of monad over comonad.

Theorem 6.5 Let ρ : ΣB∞ ⇒ BΣ∗ be a monotone biGSOS specification, where B is
DCPO⊥-ordered and preserves weak pullbacks. There exists a distributive law λ : Σ∗B∞ ⇒
B∞Σ∗ of the free monad Σ∗ over the cofree comonad B∞ such that the operational model
of λ is the least supported model of ρ.

Proof By Theorem 6.4, we obtain a lifting of (Σ∗, η, μ) to coalg(B). As explained in
Sect. 2.3, such a lifting corresponds uniquely to a distributive law of the desired type. The
operational model of λ can be obtained by applying the lifting to the unique coalgebra
! : ∅ → B∅. But that coincides, by definition of the lifting, with the least supported model as
defined in Sect. 5. ��
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It follows from the general theory of bialgebras that the unique coalgebra morphism
from the least supported model to the final coalgebra is an algebra homomorphism, i.e.,
behavioural equivalence on the least supported model of a monotone biGSOS specification
is a congruence.

At the end of Sect. 3, we recalled that in general it is undecidable whether a given biGSOS
specification extends uniquely to a distributive law. Above, we have shown how to construct
a distributive law for a monotone biGSOS specification, in terms of a lifting. We next show
that the constructed distributive law indeed extends the original biGSOS specification.

Theorem 6.6 The distributive law λ constructed in Theorem 6.5 extends the original mono-
tone biGSOS specification ρ.

Proof We first recall how the distributive law λ is obtained from the monad lifting Σ∗. To
this end, let θX : Σ∗X → BΣ∗X be the coalgebra obtained by applying the lifting Σ∗ to the
coalgebra θX : B∞ → BB∞. The distributive law λ is characterised, on a component X , by
finality, as the unique map making the following diagram commute:

Σ∗X

Σ∗B∞X
λX

θX

Σ∗εX

B∞Σ∗X
θΣ∗X

εΣ∗X

BΣ∗B∞X
BλX

BB∞Σ∗X

(14)

Now, consider the following diagram.Wewill prove that the entire diagram commutes, which
implies that λ is an extension of ρ.

ΣB∞X
ΣδX

ΣηB∞X

κB∞X

ΣB∞B∞X
ΣB∞εX

ΣB∞ηB∞X

ΣB∞X

ΣB∞ηX

ρX

ΣΣ∗B∞X
Σ(θX )∞

ιB∞X

ΣB∞Σ∗B∞X
ΣB∞Σ∗εX

ρΣ∗B∞X

ΣB∞Σ∗X

ρΣ∗X

BΣ∗Σ∗B∞X
BΣ∗Σ∗εX

BμB∞X

BΣ∗Σ∗X

BμX

BΣ∗X
BΣ∗ηX

Σ∗B∞X
θX

λX

BΣ∗B∞X
BΣ∗εX

BλX

BΣ∗X

B∞Σ∗X
θΣ∗X

νΣ∗X

BB∞Σ∗X
BεΣ∗X

BΣ∗X

The upper crescent commutes by a comonad axiom, the left by definition of κ and the bottom
bydefinition of ν. The rectangle on the left in themiddle commutes by definition of θX , see (8).
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The squares on the bottom row commute by (14). Most of the remaining parts commute by
naturality; except the upper square on the left. For that, observe first that ηB∞X is a coalgebra
morphism by Theorem 6.4, as on the left below:

B∞X
ηB∞X

θX

Σ∗B∞X

θX

BB∞X
BηB∞X

BΣ∗B∞X

B∞X
ηB∞X

δX=θ∞
X

Σ∗B∞X

(θX )∞

B∞B∞X
BηB∞X

B∞Σ∗B∞X

Since coinductive extensions preserve homomorphisms, the diagram on the right commutes;
finally, we use that θ∞

X = δX . ��

Labelled transition systems The results above do not apply to labelled transition systems.
The problem is that the cofree comonad for the functor (P−)A does not exist. A first attempt
would be to restrict to the finitely branching transition systems, i.e., coalgebras for the functor
(P f −)A. But this functor is not DCPO⊥-ordered, and indeed, contrary to the case of GSOS
and coGSOS, even with a finite biGSOS specification one can easily generate a least model
with infinite branching, so that a lifting as in the previous section can not exist.

Example 6.7 Consider the following specification on (finitely branching) labelled transition
systems, involving a unary operator σ and a constant c:

c
a−→ σ(c) σ (x)

a−→ σ(σ (x))

x
a−→ x ′ a−→ x ′′ a−→ x ′′′

σ(x)
a−→ x ′′′

The left rule for σ constructs an infinite chain of transitions from σ(x) for any x , so in
particular for σ(c). The right rule takes the transitive closure of transitions from σ(c), so in
the least model there are infinitely many transitions from σ(c).

The model in the above example has countable branching. One might ask whether it can be
adapted to generate uncountable branching, i.e., that we can construct a biGSOS specification
for the functor (Pc−)A, such that the model of this specification would feature uncountable
branching. However, as it turns out, this is not the case, at least if we assume Σ to be a
polynomial functor (a countable coproduct of finite products, modelling a signature with
countably many operations each of finite arity), and the set of labels A to be countable. This
is shown more generally in the next section.

7 Liftings for countably accessible functors

In the previous section, we have seen that one of the most important instances—the case of
labelled transition systems—does not meet the necessary assumptions for our construction of
a distributive law, because of size issues: the functors in question either do not have a cofree
comonad, or are not DCPO-ordered. In the current section, we solve this problem by showing
that, if both functors B,Σ are reasonably well-behaved, then it suffices to have a DCPO-
ordering of B only on countable sets. The general approach is to first construct a lifting of the
free monad to the category of coalgebras with a countable carrier, and subsequently extend
it to a lifting to the category of all coalgebras.

To state the assumption more precisely, let cSet be the full subcategory of countable sets,
with inclusion I : cSet → Set. We assume that (B,�) is an ordered functor on Set, and that
its restriction to countable sets is DCPO⊥-ordered:
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DCPO⊥ PreOrd

cSet

�

I
Set

�

B
Set

This is a weaker assumption than in Sect. 6: before, every set BX was assumed to be a pointed
DCPO, whereas here, they only need to be pointed DCPOs when X is countable (and just a
preorder otherwise).

Example 7.1 The functor (Pc−)A coincides with the DCPO⊥-ordered functor (P−)A when
restricted to countable sets, hence it satisfies the above assumption. Notice that (Pc−)A is
not DCPO⊥-ordered. The functor (P f −)A does not satisfy the above assumption.

The functor (M−)A, for the complete monoid R
+ ∪ {∞} (Example 2.3), is ordered as a

complete lattice [25], so also DCPO⊥-ordered. Similar to the above, the functor (Mc−)A is
DCPO⊥-ordered when restricted to countable sets, i.e., satisfies the above assumption.

We define coalgc(B) to be the full subcategory of B-coalgebras whose carrier is a count-
able set, with inclusion I : coalgc(B) → coalg(B). The associated forgetful functor is
denoted by U : coalgc(B) → cSet.

The pointed DCPO structure on each BX , for X countable, suffices to carry out the fixed
point constructions from the previous sections for coalgebras over countable sets, if we
assume that Σ∗ preserves countable sets. Notice that the (partial) order on the functor B is
still necessary to define the simulation order on B∞X , and hence speak about monotonicity
of biGSOS specifications. The proof of the following theorem is essentially the same as in
the previous section.

Theorem 7.2 Suppose Σ∗ preserves countable sets, and B is an ordered functor which pre-
serves weak pullbacks and whose restriction to cSet is DCPO⊥-ordered. Let (Σ∗

c , ηc, μc) be
the restriction of (Σ∗, η, μ) to cSet. Any monotone biGSOS specification ρ : ΣB∞ ⇒ BΣ∗
gives rise to a lifting (Σ∗

c, η
c, μc) of the monad (Σ∗

c , ηc, μc) to coalgc(B).

The main result of this section is that, under certain additional conditions on B and Σ∗,
the above lifting extends to a lifting of the monad Σ∗ from Set to coalg(B), and hence a
distributive law of the monad Σ∗ over the cofree comonad B∞ (Theorem 7.5). It relies on
the fact that, under certain conditions, we can present every coalgebra as a (filtered) colimit
of coalgebras over countable sets.

We use the theory of locally (countably, i.e., ω1-) presentable categories and (countably)
accessible categories. For now, we only recall a concrete characterisation of when a functor
on Set is countably accessible, since this will be assumed both for B and Σ∗ later on. For
details, see [3] and the appendix; the latter also contains the proofs of the results below.

On Set, a functor B : Set → Set is countably accessible if for every set X and element
x ∈ BX , there is an injective function i : Y → X from a finite set Y and an element y ∈ BY
such that Bi(y) = x . Intuitively, such functors are determined by how they operate on
countable sets.

Example 7.3 Any finitary functor is countably accessible. Further, the functors (Pc−)A and
(Mc−)A (c.f. Example 7.1) are countably accessible if A is countable.

A functor is called strongly countably accessible if it is countably accessible and additionally
preserves countable sets, i.e., it restricts to a functor cSet → cSet.Wewill assume this for our
“syntax” functor Σ∗. If Σ correponds to a signature with countably many operations each
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of finite arity (so is a countable coproduct of finite products) then Σ∗ is strongly countably
accessible.

The central idea of obtaining a lifting to coalg(B) from a lifting to coalgc(B) is to extend
the monad on coalgc(B) along the inclusion I : coalgc(B) → coalg(B). Concretely, a

functor T : Set → Set extends Tc : cSet → cSet if there is a natural isomorphism α : I Tc ∼=⇒
T I . Amonad (T , η, μ) on Set extends amonad (Tc, ηc, μc) on cSet if Tc extends T with some
isomorphism α such that α◦ Iηc = ηI and α◦ Iμc = μI ◦Tα◦αTc. This notion of extension
is generalised naturally to arbitrary locally countably presentable categories. Monads on the
subcategory of countably presentable objects1 can always be extended (Lemma B.2).

Since B is countably accessible, coalg(B) is locally countably presentable and coalgc(B)

is the associated category of countably presentable objects [2]. Thismeans every B-coalgebra
can be presented as a filtered colimit of B-coalgebras with countable carriers. The above
lemma applies, so we can extend the monad on coalgc(B) of Theorem 7.2 to a monad on
coalg(B), resulting in Theorem 7.5 below. The latter relies on Theorem 7.4, which ensures
that, doing so, we will get a lifting of the monad on Set that we started with.

In the remainder of this section, we will consider a slightly relaxed version of functor
liftings, up to isomorphism, similar to extensions defined before. This is harmless—those
still correspond to distributive laws—but since the monad on coalg(B) is constructed only
up to isomorphism, it is more natural to work with in this setting. We say (T , η, μ) lifts
(T , η, μ) (up to isomorphism) if there is a natural isomorphism α : UT ⇒ TU such that
α ◦Uη = ηU and α ◦Uμ = μU ◦ Tα ◦ αT .

Theorem 7.4 Let B : Set → Set be countably accessible. Suppose (Tc, ηc, μc) is a monad
on cSet, which lifts to a monad (T c, η

c, μc) on coalgc(B). Then

1. (Tc, ηc, μc) extends to (T , η, μ) along I : cSet → Set,
2. (T c, η

c, μc) extends to (T , η, μ) along I : coalgc(B) → coalg(B),
3. (T , η, μ) is a lifting (up to isomorphism) of (T , η, μ).

The (functor) liftings are summarised in the following diagram. The back face represents the
assumed lifting, the left and right faces commute trivially, the bottom and top faces depict
the extensions of the first two items respectively, and the front face the lifting in the third
item.

coalgc(B)
T c

U

I

coalgc(B)

U

I

coalg(B)
T

U

coalg(B)

UcSet
Tc

I

cSet
I

Set
T

Set

By instantiating the above theorem with the lifting of Theorem 7.2, the third point gives us
the desired lifting to coalg(B). In particular Tc is instantiated to the restriction Σ∗

c of Σ∗,
which means that the extension in the first point is just Σ∗ itself.

1 On Set, the countably presentable objects are precisely the countable sets.
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Theorem 7.5 Let ρ : ΣB∞ ⇒ BΣ∗ be a monotone biGSOS specification, where B is an
ordered functor whose restriction to countable sets is DCPO⊥-ordered, B is countably acces-
sible, B preserves weak pullbacks, and Σ∗ is strongly countably accessible. There exists a
distributive law λ : Σ∗B∞ ⇒ B∞Σ∗ of the free monad Σ∗ over the cofree comonad B∞
such that the operational model of λ is the least supported model of ρ.

As explained in Examples 7.1 and 7.3, if B is either (Pc−)A or (Mc−)A (weighted in
the non-negative real numbers) with A countable, then it satisfies the above hypotheses (that
Mc preserves weak pullbacks follows essentially from [10]). So the above theorem applies
to labelled transition systems and weighted transition systems (of the above type) over a
countable set of labels, as long as the syntax is composed of countably many operations each
with finite arity. Hence, behavioural equivalence on the operational model of any biGSOS
specification for such systems is a congruence.

8 Future work

In this paper we provided a bialgebraic foundation of positive specification formats over
ordered functors, involving rules that feature lookahead in the premises as well as complex
terms in conclusions. From a practical point of view, it would be interesting to find more
concrete rules formats corresponding to the abstract format of the present paper. In particular,
concrete GSOS formats for weighted transition systems exist [16]; they could be a good
starting point.

It is currently unclear to us whether the assumption of weak pullback preservation in the
main results is necessary. This assumption is used in our proof of Lemma 4.7, which in turn is
used in the proof that the freemonad lifts to the category of coalgebras (Theorem6.4). Further,
in the current paper we focused on monotone biGSOS specifications ρ : ΣB∞ ⇒ BΣ∗. It
could be interesting to study stronger order-theoretic conditions; for instance, continuous
biGSOS specifications. This would require extending the DCPO-order on B to a DCPO-
order on the cofree comonad B∞, for which the techniques of [12] may be of use. The
potential advantage of continuous specifications is that they could prohibit rules which use
the infinite behaviour of premises, an operationally questionable feature of coGSOS and
biGSOS. We leave an investigation of continuous specifications, both at the abstract level of
biGSOS and more concrete syntactic formats, for future work.

Acknowledgements The author is grateful to Henning Basold, Marcello Bonsangue, Bartek Klin and Beata
Nachyła for inspiring discussions and suggestions.
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A Naturality of biGSOS induced from ntree

We show that the induced ρ from an ntree specification (Example 3.6) is indeed natural.
Thus, weneed to prove that for every map f : X → Y :
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ΣB∞X
ρX

ΣB∞ f

(P f Σ
∗X)A

(P f Σ
∗ f )A

ΣB∞Y
ρY

(P f Σ
∗Y )A

commutes. This means concretely that for all b1, . . . , bn ∈ B∞X and a ∈ A: (i) for all
u ∈ ρX (σ (b1, . . . , bn))(a), Σ∗ f (u) ∈ ρY (σ (B∞ f (b1), . . . , B∞ f (bn)))(a), and (ii) for
all v ∈ ρY (σ (B∞ f (b1), . . . , B∞ f (bn)))(a) there is u ∈ ρX (σ (b1, . . . , bn))(a) such that
Σ∗ f (u) = v.

For (i), suppose u = Σ∗(εX ◦ h)(t) for some t , h and rule of the form (5) s.t. xi |�h bi
for all i . Since B∞ f is a B-coalgebra homomorphism (Example 2.2), the latter implies
xi |�(B∞ f )◦h B∞ f (bi ) for all i . Further,

Σ∗ f (u) = Σ∗ f (Σ∗(εX ◦ h))(t) = Σ∗( f ◦ εX ◦ h))(t) = Σ∗(εY ◦ (B∞ f ) ◦ h)(t)

by functoriality and naturality. Hence Σ∗ f (u) ∈ ρY (σ (B∞ f (b1), . . . , B∞ f (bn)))(a) as
desired.

For (ii), assume v ∈ ρY (σ (B∞ f (b1), . . . , B∞ f (bn)))(a), i.e., v = Σ∗(εY ◦ k)(t) for
some k : V → B∞(Y ) with ∀i .xi |�k B∞ f (bi ).

We define a map h : V → B∞X , by induction on the depth d of the trees (recall that V
is the set of nodes of a disjoint collection of trees), such that:

– (B∞ f ) ◦ h = k, and
– for every node x at depth strictly below d , x

a−→ x ′ implies h(x)
a−→ h(x ′), and x/

a−→
implies h(x) /

a−→.

For d = 0 we look at the roots xi , and define h(xi ) = bi . The conditions are trivially satisfied;
in particular (B∞ f ) ◦ h(xi ) = k(xi ) since xi |� B∞ f (bi ).

For the inductive case, supposeh is definedup to (and including) nodes at depthd satisfying

the above properties, and let x be a node at depth d . If x /
a−→ then k(x) /

a−→, hence B∞ f (h(x)) =
k(x) /

a−→ and hence h(x) /
a−→, since B∞ f is a coalgebramorphism.Otherwise, suppose x

a−→ x ′.
Then k(x)

a−→ k(x ′), and since k(x) = (B∞ f )(h(x)) and B∞ f is a coalgebra morphism,

there is a y such that h(x)
a−→ y and B∞ f (y) = k(x ′). Define h(x ′) = y. This is well-

defined since x ′ only occurs once in the tree (here we use well-foundedness), and it satisfies
the requirements.

This concludes the definition of the map h satisfying the above properties. It follows
that xi |�h bi . Hence Σ∗(εX ◦ h)(t) ∈ ρX (σ (b1, . . . , bn))(a). But Σ∗ f ◦ Σ∗(εX ◦ h) =
Σ∗( f ◦ εX ◦ h) = Σ∗(εY ◦ B∞ f ◦ h) = Σ∗(εY ◦ k) = v, so we are done.

B Proofs of Section 7

In this section, we prove the results on countable presentability and accessibility that were
used in Sect. 7. Parts are shown in the more general setting of κ-presentable categories; we
recall a few basics here, but for understanding the proofs basic familiarity with those concepts
is assumed. See [3] for an extensive treatment.

A category C is locally κ-presentable, for κ a regular cardinal, if it is locally small,
cocomplete, and there is a set S of κ-presentable objects from C such that every object in C
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is a κ-filtered colimit of objects from S. For a locally κ-presentable category C, we denote
by Cκ the full subcategory of κ-presentable objects, with the inclusion I : Cκ → C.

For arbitrary categories C,D we denote the category of functors by [C,D]. For C and
D both locally κ-presentable categories, we say F : C → C is κ-accessible if it preserves
κ-filtered colimits. We denote the category of such κ-accessible functors by [C,D]κ .

Let ω1 be the first uncountable ordinal. A category is called locally countably presentable
if it is locallyω1-presentable, and a functor is called countably accessible if it isω1-accessible.
The latter coincides with the concrete notion introduced in Sect. 7.

Let C,D be locally κ-presentable categories. Let I ∗ : [C,D]κ → [Cκ ,D] be the functor
that precomposes with the inclusion I : Cκ → C. This functor has a left adjoint LanI , which
is the left Kan extension (along I); for a functor G : Cκ → D, the functor LanI G is called
the left Kan extension of G along I ; such a left Kan extension is always κ-accessible [21,
Proposition 2.4.3]. In fact, gives rise to an adjoint equivalence; this is a special case of [21,
Corollary 2.1.9].

[Cκ ,D]
LanI

∼= [C,D]κ
I ∗

(15)

The unit ι is given on a component G by the unit ιG : G → (LanI G)I of the left Kan
extension. Notice in particular that this unit ιG is always an isomorphism.

Lemma B.1 Let C be a locally κ-presentable category, with I : Cκ → C the subcategory
of countably presentable objects. Let F : C → C be a κ-accessible functor, G : Cκ → C a
functor and α : G ⇒ F I a natural isomorphism.

Cκ

G
I ∼=
C

F
C

Then (F, α) is a left Kan extension of G along I .

Proof By the universal property of the Kan extension (LanI G, ιG), there exists a unique
natural transformation α̂ such that

G
ιG

α

LanI G I

α̂ I

F I

Since ιG and α are both iso [the former by (15)], α̂ I is as well. By the equivalence (15),
it follows that α̂ : LanI G ⇒ F is iso. It is now easy to show that (F, α) is a left Kan
extension. ��

Lemma B.2 Let C be a locally κ-presentable category, with I : Cκ → C the subcategory
of countably presentable objects. Any monad (Tκ , ηκ , μκ) on Cκ extends uniquely to a (κ-
accessible) monad (T , η, μ) on C, along I : Cκ → C.
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Cκ
Tκ

I

Cκ

I∼=

C
T

C

Proof First of all, define T as the left Kan extension of I Tκ along I , with unit α : I Tκ ⇒ T I
[this is an isomorphism (15)]. By Lemma B.1 it follows that, for any i , T i is a left Kan
extension of I T i

κ along I . In particular, T 0 = Id and T 2 are Kan extensions:

Cκ
Id

I

Cκ

I∼=id

C
Id

C

Cκ
Tκ

I

Cκ

I∼=α

Tκ Cκ

I∼=α

C
T

C
T

C

Now, to define the unit and multiplication of T , we use the universal property of the above
left Kan extensions respectively on α ◦ ηκ : I ⇒ T I and α ◦ Iμκ : I TκTκ ⇒ T I to obtain a
unique η and μ making the following diagrams commute:

I
id

Iηκ

I

ηI

I Tκ α
T I

I TκTκ
αTκ

Iμκ

T I Tκ
Tα

T T I

μI

I Tκ α
T I

(16)

Once we show that (T , η, μ) is a monad, the above diagrams assert that (T , η, μ) is an
extension of (Tκ , ηκ , μκ).

For the monad axioms, first consider the following diagram:

I Tκ
α

I Tκηκ

T I
T Iηκ

TηI

I TκTκ

Iμκ

αTκ
T I Tκ

Tα
T T I

μI

I Tκ α
T I

The crescent commutes by a monad axiom, the upper left part by naturality of α, and the
triangle and lower rectangle by 16. Hence μI ◦ TηI ◦ α = α = id ◦ α, which means
μ ◦ Tη = id by the universal property of the Kan extension (T , α). In a similar way we
obtain μI ◦ ηT I ◦ α = α, so that μ ◦ ηT = id.

Finally, for the associativity consider:

T T T I

TμI

T T I Tκ
T Tα

T I TκTκ

T Iμκ

TαTκ
I TκTκTκ

αTκTκ

IμκTκI Tκμκ

αTκTκ
T I TκTκ

TαTκ
T T I Tκ

T Tα

μI Tκ

T T T I

μT I

T T I

μI

T I Tκ
Tα

I TκTκ
αTκ

Iμκ

I TκTκ
αTκ

Iμκ

T I Tκ
Tα

T T I

μI

T I I Tκ
α α

T I

123



Distributive laws for monotone specifications 615

which commutes by (16), a monad axiom (associativity μκ ) and naturality. Hence,

μI ◦ TμI ◦ T Tα ◦ TαTκ ◦ αTκTκ = μI ◦ μT I ◦ T Tα ◦ TαTκ ◦ αTκTκ

so that μ ◦ Tμ = μ ◦ μT , since (T 3, T Tα ◦ TαTκ ◦ αTκTκ ) is a left Kan extension of I T 3

along I . ��

Wenowmove to countably accessible functors B on Set, to prove themain lifting theorem.

Proof of Theorem 7.4 The first two points are instances of Lemma B.2. For the second point,
we use that coalg(B) is locally countably presentable, with coalgc(B) the set of countably
presentable objects, since B : Set → Set is a countably presentable Set endofunctor [2]. (This
is a non-trivial result, and coalg(B) is not finitely presentable in general even for finitary
functors B, as shown as well in [2].)

It remains to show that (T , η, μ) is a lifting of (T , η, μ). First, we instantiate the equiva-
lence (15) to:

[coalgc(B), Set]
LanI

∼= [coalg(B), Set]c
I
∗

(17)

where [coalg(B), Set]c is the category of countably accessible functors from coalg(B) to
Set.

Next, we observe there is an isomorphism as in the horizontal path below, constructed
from the (unnamed) assumed isomorphisms (some are actually equalities) in the cube (drawn
with double lines):

TU I
T∼=

α I

T IU
∼=U

I TcU
I∼=

IUT c
∼=T c

U I T c
U∼=

UT I (18)

The functors T and T are both accessible by Lemma B.2. The forgetful functor
U : coalg(B) → Set always preserves colimits, so it is accessible as well. Hence TU and
UT are accessible. Now, by the equivalence (17), it is not difficult to show that there is a
natural isomorphism α making the above crescent commute.

This proves that T is a lifting of T . It remains to show that the monad (T , η, μ) is a lifting
of (T , η, μ). That follows from the equivalence (17) once we show that the following two
diagrams commute:

TU I
α I

UT I

U I
ηU I UηI

T TU I
Tα I

μU I

TUT I
αT I

UT T I

UμI

TU I
α I

UT I

Commutativity essentially follows from the lifting of (Tc, ηc, μc) to (T c, η
c, μc) and the two

extensions, and a straightforward but tedious computation, by unfolding α I as in (18). ��
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