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Abstract Few fuzzy temporal logics and modeling formalisms are developed such that their
model checking is both effective and efficient. State-space explosion makes model checking
of fuzzy temporal logics inefficient. That is because either the modeling formalism itself
is not compact, or the verification approach requires an exponentially larger yet intermedi-
ate representation of the modeling formalism. To exemplify, Fuzzy Program Graph (FzPG)
is a very compact, and powerful formalism to model fuzzy systems; yet, it is required to
be translated into an equal Fuzzy Kripke model with an exponential blow-up should it be
formally verified. In this paper, we introduce Fuzzy Computation Tree Logic (FzCTL) and
its direct symbolic model checking over FzPG that avoids the aforementioned state-space
explosion. Considering compactness and readability of FzPG along with expressiveness
of FzCTL, we believe the proposed method is applicable in real-world scenarios. Finally,
we study formal verification of fuzzy flip-flops to demonstrate capabilities of the proposed
method.
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1 Introduction

The real world phenomena will result in human assertions that are imprecise and uncertain;
for instance, measuring quantities in the real world can lead to imprecise, fuzzy, or even vague
assertions.One cannot simply copewith these types of fuzziness, vagueness, and uncertainties
using classical logics; therefore, new types of theories and logics are invented to tackle the
issues arising from uncertainties and imprecisions. Among these newly invented theories
and logics, probabilistic theory and fuzzy logic together can cope with most of those issues.
However, in order to understand what types of uncertainties can be dealt with probability
theory and what aspects of uncertainties are best handled with fuzzy logic, it is best for one
to know about the background of probability theory and fuzzy logic and their application
domains.

Probability theory is defined to deal with uncertainties arising from random events while
fuzzy logic is the theory to deal with the data demonstrating uncertainties other than random-
ness, like fuzziness and sometimes vagueness in expression. The late professor Lotfi Zadeh
discussed some fundamental shortcomings in classical probability theory and took several
issues with the inclusion of fuzzy logics by this theory. Finally, he specifically stated that the
two concepts are complementary; yet, a perception-based probability theory is more general
and more complex than probability theory, conceptually, mathematically, and computation-
ally [29]. Consequently, throughout this paper we neither intend to elaborate on fuzzymodels
nor plan to advocate fuzzy logic; instead, we assume the importance of having fuzzy systems
in parallel with probabilistic systems is already justified.

Model based design and formal verification are getting an ever-increasing attention in
system development. It is common for a system design, should it be formally verified, to
be represented by an appropriate mathematical model, while its behavior is expressed by a
descriptive specification framework; thereupon, one is able to devise an algorithm to sys-
tematically analyze if the model and subsequently the system’s behavior guarantees certain
properties. Since various stochastic phenomena are involved in reliability of a system, verify-
ing if a system design absolutely guarantees certain properties is a rigid notion. Subsequently,
focusing on absolute guaranties while verifying system’s behavior is not empirical.

System’s behavior can be considered uncertain if its reliability is susceptible to external
stimuli that cannot be controlled or prevented. In order to have an empirical verification
approach for systems with uncertain behavior, the mathematical model of the system must
be adapted to grasp certain degrees of uncertainty. Meanwhile, the specification framework
shall also possess correct understanding of uncertainty at the same level. Consequently,
verification approaches are invented to verify certain aspects of systems that show stochastic,
random, and uncertain behaviors.

Systems that are subject to or dealing with random phenomena are comprising both non-
deterministic and probabilistic state transitions simultaneously. Markovian models typically
represent these systems. A discrete-time finite state transition system whose transition to
next state is distributed probabilistically is a discrete-time Markov Chain. A more sophis-
ticated Markovian model in which nondeterministic and probabilistic transitions coexist is
called a Markov Decision Process. In in any state of Markov decision process there exist a
nondeterministic choice between probability distributions for the successors.

Probabilistic Computation Tree Logic (PCTL) is an extension of CTL such that it for-
mulates conditions on a state of a Markov chain and Markov decision process [2,4,10]. In
PCTL, a quantitative counterpart replaced path quantifiers ∃ and ∀ that is denoted as PJ (ϕ),
where J indicates a probabilistic bound on the number of paths satisfying property ϕ and
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Symbolic checking of Fuzzy CTL on Fuzzy Program Graph 3

yet the interpretation of a PCTL formula remains Boolean; that is, a state either satisfies or
violates a PCTL formula. PCTL model checking for Markov chains is a natural extension
of CTL model checking. A state s is considered in satisfaction set for a state formula only
if the probability of s satisfying certain path property is in the probabilistic bound J . Unfor-
tunately Markov chains and Markov decision processes are not powerful enough to model
sophisticated dynamics of systems.

A more sophisticated, and comprehensive class of systems are hybrid systems that con-
sist both discrete and continuous components. In order to model hybrid systems, Henzinger
introduced Hybrid Automata [11]. Hybrid automata grasp the nature of systems that com-
bine discrete and continuous dynamics by combining continuously evolving variables and
finite state control graphs. The discrete components in hybrid automata are usually digital
components that regulate and interact with analog components. Analog sampling and timing
are important in hybrid systems and subsequently in hybrid automata for state transitions can
occur discretely and instantaneously in the control graph or continuously as time passes by.

Although hybrid automata is very powerful in modeling hybrid systems, its verification
problem is generally undecidable even for simple safety properties [12]. Therefore, studies on
hybrid systems focus on classes of hybrid automata where the safety verification problem is
decidable. TimedAutomata are a subclass of hybrid automatawhose reachability is decidable.
Timed automata consist continuous variables called clocks that continuously evolve with
constant slope 1. Clocks are frequently compared to constants and sometimes reset to 0. An
extension of timed automata incorporates probabilistic theory to model systems that deal
with random phenomena [18].

Probabilistic timed automata is also augmented with additional continuous variables in
the form of costs or rewards; the resulting automata is often referred to as priced probabilistic
timed automata. In this class of automata, all state and transitions are labeled with state and
action rewards, respectively. PCTL is augmented with operators to reason about rewards by
comprising a reward operator whose interpretation is Boolean; that is, whenever the expected
value of a reward function on a reward/cost variable belongs to certain continuous bound it
evaluates to 1 and otherwise to 0. A verification approach is also devised for this class of
timed automata and proved to be useful in practice [18]; yet, it is only suitable in formal
verification of probabilistic systems.

While modeling, specifying, and verifying probabilistic systems is well studied, verifica-
tion problem for another subclass of hybrid/dynamic systems that incorporates fuzzy logic
is overlooked. Hybrid automata can also model fuzzy logic controllers, as they are a class
of hybrid systems. Fuzzy logic control systems can be cast in terms that human operators
can understand and better relate to; thus, user’s experience can be used in design phase of
the controller [23]. Consequently, fuzzy logic control systems are very popular because they
mechanizedmost of tasks that humans can successfully perform.Meanwhile, numerous fuzzy
logic models are developed to represent the underlying logic in fuzzy control systems; yet,
few efforts are made to bridge the gap between system modeling and behavior specification,
and from thereon to verification.

Seemingly, a scenario quite similar to the narrative of probabilistic system verification is
also applicable in formal verification of fuzzy logic systems. It beginswith formal verification
of discrete-time fuzzy logic models of corresponding systems; then, higher-level abstractions
and augmented models shall be built on top of discrete-time fuzzy logic models to address
more sophisticated classes of systems. Finally yet importantly, formal verification of fuzzy
logic systems shall encompass continuous time through models like fuzzy logic extended
timed automata. Meanwhile, the specification framework shall also go through the same
development cycle so that it corresponds to the modeling approach.

123



4 M. Ebrahimi et al.

To this date, there are few efforts to define a suitable fuzzy temporal logic; among which,
some used formal statement as the specification framework [9,17]while others used linguistic
statements [3,27]. Some variety of fuzzy extended temporal logics considered the concept
of time to be discrete [5,21] while others presents events in continuous time [3,17,27]. In
most cases, fuzzy extended temporal logics accompany a trace checking method instead of a
formal verification approach. Fuzzy Branching Temporal Logic (FBTL) by Moon et al. [17]
is by far the most notable effort towards a specification framework for fuzzy logic systems.
Unfortunately, no one could devised an applicable model checking method for FBTL yet. If
such an approach should happen to contrive then it will be based on a simpler fuzzy extended
temporal logic defined in discrete time [26]. Therefore, in this paper, we are providing more
comprehensive semantics in formal verification of discrete-time fuzzy systems.

Fuzzy Markov Chain is one of the notable discrete-time fuzzy logic models that has a
finite convergence to a stationary solution [1]. It is also more robust with respect to small
perturbations of the transition matrix compared to probabilistic Markov chains. Although
fuzzy Markov chain is a good candidate to model discrete-time fuzzy logic systems, we
simply believe this is a matter of preference. This paper neither aims nor intends to compare
discrete-time fuzzy logic models but since semantics of our specification language is defined
based on this structure [26] and we simply do not intend to reinvent the wheel, FzKripke
structure is our choice ofmodel for discrete-time fuzzy systems. FzKripke structure is capable
of modeling fuzzy logic controllers, and fuzzy logic circuitry. It was even used for modeling
fuzzy flip-flops, and a medical diagnosis and treatment example [22,26].

Sotudeh also defined a higher-level abstraction of FzKripke structure that ismore compact,
and easier tomanuallymanipulate called Fuzzy ProgramGraph (FzPG) [26]. Although FzPG
is more efficient in modeling phase, its verification requires a direct translation to an equal
FzKripke structure resulting in an exponential blow-up. Due to quantization of truth degrees,
state-space explosion in a fuzzy extended model checking is more plausible compared to the
classical model checking. Main contribution of this paper is a symbolic checking method
for Fuzzy CTL (FzCTL) formulae over FzPG that avoids translation to an equal FzKripke
structure. This saves an exponential blow-up, which is most effective in efficient model
checking of complex fuzzy logic systems.

The rest of this paper is as follows: in Sects. 2 and 3, we study quantized FzKripke
structure and FzCTL, respectively. Quantized FzPG and symbolic checking of FzCTL over
FzPG are studied in Sects. 4 and 5, respectively. We analyze computational and memory
complexity of proposed symbolic method; yet, an alternative symbolic checking method for
FzCTL over FzPG is studied in Appendix A that is of lower memory complexity. Section 6
provides a case study on applicability of the proposed method in design and verification of
fuzzy flip-flops. Finally, in Sect. 7 we conclude and plan our future research.

2 Quantized Fuzzy Kripke model

Fuzzy Kripke Model (FzKripke) Structure [26] is basically χKripke Model [6] whose quasi-
boolean algebra is defined on infinite lattice of interval [0, 1]. Similarly the Quantized
FzKripke (Q-FzKripke) can be defined over quantized [0, 1]. This model is quite similar to
Fuzzy Graph previously introduced in [28]. There are multiple definitions of Fuzzy extended
Kripke structure in the literature [22,26], all of which are equal to some extent, but few of
which are accompanied with a well-defined fuzzy extended temporal logic so that they can
be used in modeling fuzzy control project and fuzzy logic circuitry.
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Symbolic checking of Fuzzy CTL on Fuzzy Program Graph 5

Definition 1 Throughout this paper, [0, 1]Δ denotes the quantization of interval [0, 1] and
is defined as follows:

[0, 1]Δ =
{
kΔ : k ∈ {0, . . . , 1

Δ
}
}

, where Δ ∈ 1

N
.

Definition 2 (Quantized Fuzzy Kripke) This is a tuple M = (S, X,R,L, I) where S =
{s1, . . . , sn} is a set of states, X = 〈x1, . . . , xm〉 is a set of attributes, each of which are
assigned with a truth degree in [0, 1]Δ. Function ValΔ(X) expresses different possible values
for all attributes as a whole as follows:

ValΔ(X) = {〈v1, . . . , vm〉| vi ∈ [0, 1]Δ
}

Similarly, for attribute evaluation, a dot operator provides access to the value of each attribute
as follows:

μ ∈ ValΔ(X), μ = 〈v1, . . . , vm〉 ⇒ vi = μ · xi
Relation “R” defines the possibility of transition from one state to another, function “L”
assigns a label to each state as the state’s specific valuation, and function “I” assigns the
entrance possibility for each state in the initial step.

R : S → ValΔ(X)

L : S × S → [0, 1]Δ
I : S → [0, 1]Δ

Definition 3 Given M = (S, X,R,L, I), finite and infinite execution paths starting from
state si are defined as follows:

π ∈ Pathfin(si ) ⇔ π ∈ si
ri−→ si+1

ri+1−−→ . . .
ri+u−1−−−→ si+u

π ∈ Pathinf (si ) ⇔ π ∈ si
ri−→ si+1

ri+1−−→ si+2
ri+2−−→ . . .

∀i, α ∈ N · ri+α ∈ [0, 1]Δ

Definition 4 Single-Source Quantized Fuzzy Kripke is a Q-FzKripke such that I(s0) = 1
and ∀s ∈ S \ {s0} · I(s) = 0.

An arbitrary Q-FzKripke can be casted to a single-source one using the method presented
for FzKripke in [26]. In order to model check proposition ϕ on a multi-source Q-FzKripke
M , it is enough to check the proposition AX(ϕ) on the equivalent single-source Q-FzKripke
M ′.

The reason behind casting a multi-source FzKripke structure to a single-source one is that
bisimulation equivalence among FzKripke structures is defined on single-source FzKripke
structures [26]. As a reminder it is proved that any CTL∗ formula evaluates to the same
value on bisimilar Kripke structures [2]. Sotudeh and Movaghar also showed that given two
bisimilar FzKripke structures an FzCTL∗ formula is evaluated to a similar truth degree on
both of them [26]. Later, we are going to use this property of bisimilar FzKripke structures
in devising our symbolic model checking approach.
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6 M. Ebrahimi et al.

3 Fuzzy Computational Tree Logic

Throughout this section, we assume the reader has knowledgeable about temporal logics,
specifically the Computational Tree Logic (CTL). For a thorough introduction on CTL, we
suggest to see relevant chapters in [2].

A reactive system is described adequately only if its ongoing behavior in any time step is
addressed. An infinite sequence of actions leaving from current, and leading to next states
represents a behavior of the system. Temporal logic is a well-established concept capable of
describing behaviors of reactive systems [24]. Given analogue inputs as continuous variables
whose range is [0, 1], a fuzzy control system is a reactive system that controls complex and
continuously varying systems. Consequently, if one aims to describe and study behaviors of
fuzzy control systems a fuzzy extended temporal logic can ease the process.

Since in a fuzzy system we are uncertain about the direction of execution path in each
time step, Linear Temporal Logic (LTL) is an immediate inadequacy for describing them. In
order to describe the behavior of such systems, Sotudeh and Movaghar introduced FzCTL∗
in [26] such that it preserves branching time and uncertainty simultaneously. In this section,
we define Fuzzy Computation Tree Logic (FzCTL) by restricting FzCTL∗.

A temporal logic is only as powerful as the logic it is built on top of which. The more
powerful the underlying logic is the more powerful the temporal logic will be in expressing
model’s behavior. A recent study by Haiyu Pan et al. [22] defined a more restricted Fuzzy
Computation Tree Logic that only encompasses fuzzy-{negation, conjunction, disjunction,
and implication} operators. Meanwhile, almost all fuzzy logic operators in FzCTL∗ are
also included in FzCTL making it more descriptive and easier to use. Following subsection
refreshes and redefines some fuzzy logic operators previously seen in [26].

3.1 Fuzzy logic operators

Fuzzy logic operators have a high variety of implementations; see [25,28]. In the present
study, we use their simplest implementations whose properties are similar to that of quasi-
boolean algebra related to χCTL. Fuzzy logic operations are:

true = 1

f alse = 0

¬a = 1 − a

a � b = min(a, b)

a 
 b = max(a, b)

a → b = ¬a 
 b = max(1 − a, b)

Additionally, using the saturationoperator [15], shown in (1),wedefinediscrete-saturation
�a�ε operator, please see (2).

�a� = max(0,min(1, a)) (1)

�a�ε = �ε�a
ε
�� (2)

3.2 Syntax

FzCTL formulae are categorized into two types: state formulae (as ϕ), and path formulae (as
Φ). FzCTL state formulae are formed according to the following grammar:
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Symbolic checking of Fuzzy CTL on Fuzzy Program Graph 7

ϕ ::= r | x | ¬ϕ | ϕ � ϕ | ϕ ≥ ϕ | �ϕ + ϕ� | �aϕ�ε | AΦ | EΦ

where r ∈ [0, 1]Δ, ε ∈ (0, 1]Δ, a ∈ Q
+, and x ∈ X , that is a set of state attributes. Path

formulae express temporal properties of paths; they are formed according to the following
grammar:

Φ ::= X ϕ | ϕ U ϕ

Although operators like bounded-add �ϕ + ϕ�, discrete-saturation �ϕ�ε , and scalar-
multiplication �aϕ�ε are not seen in χCTL, they are determined by this logic. The full set of
temporal operators can be defined using “Next” X and “Until” U as follows:

AFΦ
def== A(true UΦ)

EFΦ
def== E(true UΦ)

AGΦ
def== ¬EF¬Φ

EGΦ
def== ¬AF¬Φ

We borrowed the definitions for quasi-comparison {≺���≈�≈} operators from [26].
Definitions for other comparison operators are also possible through the definition of ≥ in
conjunction with logical operators. Moreover, other auxiliary operators defined in [26] such
as bounded-subtract �ϕ − ϕ� and “if” are defined by FzCTL.

3.3 Semantic

Satisfaction relation can present truth degree of a formula. In the following notations, M
represents an FzKripke model while s represents a certain state in M , and π is an infinite
path defined on M .

P(M, s |� ϕ)
def== P(ϕ | M, s)

P(M, π |� Φ)
def== P(Φ | M, π)

Semantic of state formulae is defined as follows:

P(M, s |� r) = r

P(M, s |� x) = L(s) · x
P(M, s |� ¬ϕ) = ¬P(M, s |� ϕ)

P(M, s |� �aϕ�ε) = �aP(M, s |� ϕ)�ε

P(M, s |� ϕ op ψ) = P(M, s |� ϕ) op P(M, s |� ψ)

where “op” can be a binary logical operator, a comparison operator, a quasi-comparison
operator, or the bounded-add/subtract; the result of comparison operators is either “0” or
“1”.

P(M, s |� AΦ)
def== �

π∈Pathinf (s)
P(M, π |�A Φ)

P(M, s |� EΦ)
def== �

π∈Pathinf (s)
P(M, π |�E Φ)
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8 M. Ebrahimi et al.

Fig. 1 Q-FzKripke K1 with
Δ = 0.1 in which X = x and
function I returns 1 for s0 and 0
for other states. Edges of K1 are
demonstrating the relation R
while relation L is represented by
decimals depicted in each state

s0 0.11 s2 0.4

s1 0.5

0.7

1
0.8

0.4

Semantic of path formulae can be defined as follows:

P(M, π |�E X ϕ)
def== R(π[0], π [1]) � P(M, π[1] |� ϕ)

P(M, π |�A X ϕ)
def== R(π[0], π [1]) → P(M, π[1] |� ϕ)

P(M, π |�A ϕ Uψ)
def== P(M, π |�A ψ)
(

P(M, π |�A ϕ) � P(M, π |�A X(ϕ Uψ))
)

P(M, π |�E ϕ Uψ)
def== P(M, π |�E ψ)
(

P(M, π |�E ϕ) � P(M, π |�E X(ϕ Uψ))
)

Given model M , satisfiability of proposition ϕ is defined as

P(M |� ϕ)
def== �

s∈S

(
I(s) → P(M, s |� ϕ)

)
.

Regarding the semantic of FzCTL formulae, the following equations are in place:

E(ϕ Uψ)
def== μZ .

(
ψ 
 (ϕ � EX Z)

)
¬A(ϕ Uψ)

def== νZ .
(¬ψ 
 (¬ϕ � EX Z)

)

where μZ . f (x) and νZ . f (x) are greatest and smallest fixed points of f , respectively.

Example 1 The following properties hold for K1 as shown in Fig. 1:

P(K1 |� EF(x)) = 0.5

P(K1 |� EF(¬x)) = 0.9

P(K1 |� EG(x < 0.5)) = 0.7

Given an approximation error ε such that 1 is divisible by that, and an approximation func-
tion τε(x), it is shown that applying τε(x) on FzKripke M does not propagate the error while
model checking an approximable FzCTL∗ proposition on it [26]. Similarly, the quantization
we defined on interval [0, 1] can be regarded as an immediate approximation of FzCTL and
FzKripke with approximation error 1

Δ
; which obviously does not propagate the error because

FzCTL is a restricted version of FzCTL∗ that preserves its approximability, and also due to
our choice of fuzzy logic operators.
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Symbolic checking of Fuzzy CTL on Fuzzy Program Graph 9

4 Quantized Fuzzy Program Graph

Fuzzy Program Graph (FzPG) provides higher-level abstraction of fuzzy systems and it
that can be translated to an equivalent FzKripke model [26]. FzPG eases manual modelling
process by providing amore scrutable semantics.We defineQuantized Fuzzy ProgramGraph
(Q-FzPG) quite similar to FzPG. In this section, we investigate Q-FzPG and its properties.

Definition 5 (Quantized Fuzzy Program Graph) This is a tuple G = (S, s0, X, Init,Act)
where S is a set of states, s0 ∈ S is the initial state, and “Init” is a function that defines degree
of entrance to initial state. “Act” is a relation defining state transitions; each state transition
has two parts: (1) a function that defines transition degree, and (2) a function that maps truth
degrees from attribute-set of the source state to that of destination. The formal definitions for
“Init” and “Act” are:

Init ∈ FΔ,X

Act ∈ S × S � FΔ,X × GΔ,X

where FΔ,X ∈ P
(
ValΔ(X) → [0, 1]Δ

)
and GΔ,X = F

|X |
Δ,X .

All functions belonging toFΔ,X have the constraint of being compatiblewith the following
grammar’s syntax:

ϕ::= r | x | ¬φ | ϕ � ϕ | ϕ ≥ ϕ | �ϕ + ϕ� | �aϕ�ε

where r ∈ [0, 1]Δ, ε ∈ (0, 1]Δ, a ∈ Q
+, and x ∈ X . The rest of logical operators, comparison

operators, quasi-comparison, and bounded-subtract are derivable from the above defined
operators.

Although “Act” is a partial function, it is possible to convert it to a total function as it was
proposed for FzPG in [26]. To this end, it is enough to add missing state transitions for all
nodes that are not connected directly, such that:

1. The transition possibility of the new edge is zero.
2. This edge assigns the possibility of the destination attributes by a list of zero values.

We can also make a new source by adding a dummy node ı such that “Init” continuously
returns “1” for ι, meanwhile the previous “Init” function must be merged with “Act”.

Example 2 If X = (x, y), and Δ = 0.1, then ( f, g) is an edge of Q-FzPG where:

f (x, y) = (x > y) � (
0.4 
 (y < 1)

)
g(x, y) =

〈(
�0.5 − �3x�0.2�

) � 0.9, (x > y) 
 �x + 0.2�0.1
〉

4.1 Semantic

In order to express the semantic of FzPG an equivalent FzKripke is inevitably required [26];
similarly there is a KG as an equivalent Q-FzKripke to an arbitrary Q-FzPG like G such that:

1. S′ = S × ValΔ(X)

2. ∀η ∈ ValΔ(X)

(a) if s �= s0, then ∀s ∈ S · I(s, η) = 0
(b) if s = s0, then ∀s ∈ S · I(s, η) = Init(η)
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10 M. Ebrahimi et al.

Fig. 2 An example of Q-FzPG
alongside its equivalent
Q-FzKripke model with Δ = 0.1

s0 s1

[(x = 0.8) � (y � 0.7)
�(y = 0.3 � y = 1)]

[x � y]
〈x > 0.3, y � 0.9〉

[0.8]
〈x, y〉

(a) Example FzPG

s0,
〈0.8,0.3〉

s1,
〈1, 0.9〉

s0,
〈0.9, 1〉

s0,
〈0.8, 1〉

s1,
〈1, 1〉

s0,
〈1, 1〉

0.7

1

0.3 0.8

0.9

0.8 0.8

1

(b) Equivalent Q–FzKripke

3. ∀η ∈ ValΔ(X),∀s ∈ S · L(s, η) = η

4. ∀η, η′ ∈ ValΔ(X),∀s, s′ ∈ S

(a) if Act(s, s′) is not defined, then R((s, η), (s′, η′)) = 0
(b) if (A,B) = Act(s, s′), and η′ = B(η) then R((s, η), (s′, η′)) = A(η)

When the equivalent Q-FzKripke accepts a proposition with a certain truth degree, we
say that initial Q-FzPG also accepts the proposition with the same degree. Although there
is an equivalent Q-FzPG denoted by GK with the same number of states |S| to an arbitrary
Q-FzKripke like K , it is against the purpose of Fuzzy Program Graph, which is to model the
system in a highly compressed format, because for each state of GK there is an equivalent
state in K . To exemplify, an FzPG and an equivalent FzKripke are depicted in Fig. 2.

From this point onwards, for all Q-FzPGs we assume the “Init” function returns “1” for
initial state and “0” for all other states unless otherwise stated. In fact, we define a novel
“Initı” function that returns “1” for a dummy source like ı ; thereupon, by merging “Init” and
“Act”, we obtain a Single-Source Q-FzPG that is referred to instead of the original Q-FzPG.

5 Symbolic checking of FzCTL on FzPG

Heretofore several symbolic methods are proposed to investigate satisfiability of proposi-
tions of multi-valued temporal logics, some of which use ordered binary decision diagram
(OBDD), others use vectors of similar diagrams to store multi-valued Kripke models and
investigate the satisfiability of propositions on that model [6,7].

In order to check the temporal properties of a particular FzPG, initially, we translate it to an
equivalent FzKripke; then, we check temporal properties on that FzKripke. This yields to an
exponential blow-up in the state-space; thus, it is more appropriate to check the specification
directly over the FzPG. To this purpose, we devised a symbolic checking method using
OBDDs and vectors of OBDD.

Let Δ = 2−d , then since all numbers involved in model construction and model checking
are multiples of Δ, a data type with d + 1 bits is sufficient to store truth degrees, where the
first bit of data type is the least significant bit and the dth bit is the most significant one. In
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Symbolic checking of Fuzzy CTL on Fuzzy Program Graph 11

order to store a truth degree like ε in d + 1 bits, it is enough to store ε × 2d instead. For
further readability, from this point forward we assume d ′ = d + 1.

Example 3 Let Δ = 4 then we have:

1.00 ≡ 1.00 × 24 = (10000)2

0.50 ≡ 0.50 × 24 = (01000)2

0.33 ≡ 0.33 × 24 = (00101)2

0.25 ≡ 0.25 × 24 = (00100)2

0.19 ≡ 0.19 × 24 = (00011)2

0.00 ≡ 0.00 × 24 = (00000)2

We also encode attributes in a symbolic form; supposeW is a vector of bit vectors representing
the set of all attributes X as follows:

W = 〈W1, . . . ,Wk〉, k = |X |
where Wi is a bit vector with length d ′ representing encoded attribute xi , hence Wi j is a bit
in vector Wi .

Wi = 〈Wi0, . . . ,Wid 〉, i ∈ 1 · · · k
LetU be union of variables used to encodemodel states S; this union has a total number of

�log2 |S|� members. From this point forward, we repeatedly use copies ofU andW denoted
by U ′ and W ′ respectively.

5.1 Auxiliary OBDD operators

This subsection is devoted to describe the functionality of important vector operations, besides
basic operations defined on OBDDs that are necessary to define the proposed method.

Definition 6 Let v be a vector in terms of variables W and U , the OBDD of vector v is of
maximum size 2h and maximum height h as follows:

h = |W | + |U | = n + kd ′ (3)

where n = |U |, k = |X | and d ′ is the length of W .

Theorem 1 ([16]) Logical combination of two OBDDs of size m and n is of time O(mn).

5.1.1 vConst and vVal

Converting integers and constants to vectors and viceversa is essential. Given an integer like
“c” its vector representation is returned by function vConst. On the other side, function
vVal returns integer representation of a vector like “v”. We define constants “True” and
“False” using vConst as follows:

False
def== vConst(0)

True
def== vConst(2d)

Similarly, in order to convert a truth degree like r ∈ [0, 1]Δ, we have:
Const(r)

def== vConst(r × 2d).
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12 M. Ebrahimi et al.

Algorithm 1
procedure vGeq(v1[0 . . . d], v2[0 . . . d])

if d > 0 then
return (v1[d] > v2[d] ∨ v1[d] = v2[d]) ∧ vGeq(v1[0 . . . d − 1], v2[0 . . . d − 1])

end if
return v1[0] > v2[0] ∨ v1[0] = v2[0]

end procedure

5.1.2 vIf

When called like vIf(x, v1, v2), this returns an OBDD vector whose i th element equates
to diagram if(x, v1[i], v2[i]). Parameter x is an OBDD, v1 and v2 are two vectors with d ′
diagrams. vIf calculates the result iteratively in time O(d ′).

5.1.3 Comparison

Comparison operators return an OBDD by comparing two OBDD vectors. These are defined
recursively (e.g. Algorithm 1). Operators “=, �=,>,≥,<,≤” and function prototypes
“vEql,vNeq,vGrt,vGeq,vLst,vLeq”, are used interchangeably (e.g. vLeq(v1, v2) ≡
v1 ≤ v2). Comparing two OBDD vectors of length d ′ is convertible to an iterative logical
combination of two OBDDs and the result is an OBDD of height h. The iteration is of order
d ′ thus the computational complexity of a comparison operator is O(d ′22h)

5.1.4 vAdd and vSub

Operators vAdd and vSub perform element-wise addition and subtraction of two vectors
with similar length, the result is obviously a vector of same length. vAdd and vSub are
also convertible to an iteration of order d ′ of logical combination of OBDDs; therefore, they
also run in time O(d ′22h). Similarly, bounded-add and bounded-subtract are permissible by
comparison operations and vIf; this indicates that they are of the same order as O(d ′22h).

5.1.5 Logical connectives

Logical operations over OBDD vectors are obtainable via previously defined operators. All
logical operators run in time O(d ′22h).

Not(v1)
def== vSub(True, v1) (4)

Or(v1, v2)
def== vIf(vGeq(v1, v2), v1, v2) (5)

ssAnd(v1, v2)
def== vIf(vGeq(v1, v2), v2, v1) (6)

Conjunction ∧ and disjunction ∨ operators, and function prototypes And and Or are inter-
changeably used from this point onward.

5.1.6 vMul and vDiv

Operators vMul (vDiv) multiplies (divides) elements of a vector v1 by a constant factor like
c. The result is obviously a vector of the same length.
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5.1.7 Add and Mul

We define add or multiply operations over two vectors as follows:

Add(v1, v2)
def== vIf(vGeq(v1,Not(v2)),True,vAdd(v1, v2))

Mul(v1, p, q, h)
def== vMul(vDiv(vMul(v1, p), qh), h)

where h = ε
Δ
, a = p

q and p, q ∈ N.

5.2 Compiling FzCTL property to OBDD vector

For each sub-formula of FzCTL like ϕ, an OBDD vector is calculated recursively called
τ(ϕ) using above defined auxiliary OBDD functions. Following are recursive procedures to
calculate τ for numbers, attributes and operators of a formula.

τ(r)
def== Const(r)

τ (xi )
def== Wi

τ(!ϕ)
def== Not(τ (ϕ))

τ (ϕ � ψ)
def== And(τ (ϕ), τ (ψ))

τ(ϕ ≥ ψ)
def== vGeq(τ (ϕ), τ (ψ))

τ(EX ϕ)
def== Ex(τ (ϕ))

τ (AX ϕ)
def== Ax(τ (ϕ))

τ (EU(ϕ, ψ))
def== Eu(τ (ϕ), τ (ψ))

τ(AU(ϕ, ψ))
def== Au(τ (ϕ), τ (ψ))

τ
(
�ϕ + ψ�

) def== Add(τ (ϕ), τ (ψ))

τ
(
�aϕ�ε

) def==

⎧⎪⎨
⎪⎩
Mul(τ (ϕ), p, q, h) a ≤ 1

vIf(vGeq(τ (ϕ),Const(1/a)),

True,Mul(τ (ϕ), p, q, h)) a > 1

where h = ε
Δ
, a = p

q and p, q ∈ N. We can simply define the truth degree of proposition ϕ,
over a model like KG as follows:

P(KG |� ϕ)
def== �

η∈Val(X)

(P(M, (s, η) |� ϕ)) = �

η∈Val(X)

θ(s, η).

where θ(s, η) denotes P(M, (s, η) |� ϕ) and τ(ϕ) is implicitly represented by vector θ .
Conjunction operator

�
is obtainable using following property:
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14 M. Ebrahimi et al.

Property 1 For conjunction and disjunction of all member of set I ⊂ R we have:
�

i∈I
ai = D ⇔ ∃i ∈ I · ai = D ∧ ∀i ∈ I · ai ≥ D ⇔ ∃i ∈ I · ai ≤ D ∧ ∀i ∈ I · ai ≥ D

⊔
i∈I

ai = D ⇔ ∃i ∈ I · ai = D ∧ ∀i ∈ I · ai ≤ D ⇔ ∃i ∈ I · ai ≥ D ∧ ∀i ∈ I · ai ≤ D

From this point onward, we refer to D as a vector of variables like D = 〈zd , . . . , z0〉. Follow-
ing algorithm is the required procedure to convert OBDD vector τ(ϕ), which is represented
by θ(U,W ), into a decimal number to determine the truth degree of proposition ϕ over an
FzPG. Depending on the algorithms certain preprocesses may be involved prior to evaluate
truth degree of τ(ϕ), some of which are referred later in this paper.

Algorithm 2
1: procedure Evaluate(θ(U,W ))
2: α := U = vConst(s0)
3: for i := 0 to d do
4: λ[i] := θ [i] ∧ α

5: end for
6: β1 := ∃U · ∃W · λ = D
7: β2 := ∀U · ∀W · λ ≥ D
8: β := β1 ∧ β2
9: for i := 0 to d do
10: ρ[i] := ∃D · (D[i] ∧ β)

11: end for
12: return vVal(ρ)

2d
13: end procedure

In line 2, we restrict members of vector α to node s0 in time O(d ′2h), then we restrict
members of θ to nodes in α (that is s0) in line 4 to create vector λ in time O(d ′2h). In lines 6
and 7, the comparison operators are of time complexity of O(d ′22(h+d ′)) and results are
of memory complexity of O(2h+d ′

). In those lines, the universal and existential quantifiers
are restriction operators each of which is of time complexity of O(2h+d ′

). These quantifiers
eliminate participant variables in diagrams and reduce the height of corresponding diagrams
gradually by one. Conjunction over β1 and β2 forms β in time O(22d

′
).

According to properties of
�
, β is a composition of minterms of variables z0 to zd . In

line 10, expression D[i] represents zi , sowhen zi participates inβ, expressionρ[i] evaluates to
1 otherwise to 0, the complexity of calculating vector ρ is O(2d

′
). Finally, dividing vVal(ρ)

by 2d results in the truth degree of ϕ. This algorithm is of time complexity of O(d ′22(h+d ′)).

5.3 Temporal operators

An implication operator represents the transition edge between nodes s and t . A disjunction
over all transition implications forms relation R. In order to add a transition edge to relation
R, we initially calculate and store vectors of Act(s, t), then using implication operator we
calculate the transition edge that eventually aggregates to R with a disjunction; please see
Algorithm 3.

In line 2, it is assumed the Act(s, t) is a total function. Otherwise, we repeatedly call
AddRelation on each and every one of transition edges between each pair. SinceW ′ and B

123



Symbolic checking of Fuzzy CTL on Fuzzy Program Graph 15

Algorithm 3
1: procedure AddRelation(s, t)
2: (A, B) := Act(s, t)
3: α := U (s) ∧U ′(t) ∧ (W ′ = B)

4: R := R∨ vIf(α, A, False)
5: end procedure

are both vectors of k rows and each row is consist of d ′ elements, OBDDs for these variables
is of height kd ′. Accordingly, vEql(W ′

i , Bi ) is of complexity of O(d ′22kd ′
) and therefore

vEql(W ′, B) is of time complexity of O(kd ′22kd ′
). Line 3, calculates α in time O(22h+1)

and line 4 runs in time O(d ′22h+1); subsequently, calculating relation R is of the following
complexity:

O
(
r(22h+1 + d ′22h+1 + kd ′22kd ′

)
) = O

(
r
(
22h+1(1 + d ′) + kd ′22kd ′))

= O
(
r
(
d ′22h+1 + kd ′22kd ′)) = O

(
rd ′22kd ′(

22n+1 + k
))

.

5.3.1 EX operator

According to semantic of EX operator in FzCTL over KG model, we have:

P(M, (s, η) |� EX ϕ) =
⊔

(s′,η′)∈S′
P(M, (s′, η′) |� ϕ) � R((s, η), (s′, η′)). (7)

where R can be obtained according to its definition in KG . Now we can rewrite (7) by
substituting τ(ϕ) with θ and τ(EX ϕ) with ρ as follows:

ρ(s, η) =
⊔

(s′,η′)∈S′
θ(s′, η′) � R((s, η), (s′, η′)).

The simplest method to calculate ρ(s, η) is to find the maximum value for conjunction of
θ and vector R [7]. Algorithm 4 illustrates a procedure to calculate ρ. In this algorithm, ψ
represents the equality of vector D and vector ρ (i.e., a vector of diagrams in terms ofU and
W ) as follows:

ψ
def== (〈ρd , . . . , ρ0〉 = 〈zd , . . . , z0〉

) def== ρd ⊕ zd ∧ · · · ∧ ρ0 ⊕ z0

where ⊕ represents eXclusive-OR. In line 8 of algorithm 4, the expression ∃D · (D[i] ∧ ψ)

forms ρ[i], as for D′ = 〈zd , . . . , zi+1, zi−1, . . . , z0〉 we have:
∃D · (zi ∧ ψ) = ∃D′ · ∃zi · (zi ∧ ψ) = ∃D′ · ∃zi · (

zi ∧ ρi ∧ (
∧
i �= j

z j ⊕ ρ j )
)

= ∃D′ · (
ρi ∧ (

∧
i �= j

z j ⊕ ρ j )
) = ρi ∧ ∃D′ · ( ∧

i �= j

z j ⊕ ρ j
)

= ρi ∧ 1 = ρi

Bits in θ are of height h and bits of R are of height 2h. Line 2 forms θ ′ from θ in time
O(d ′2h). In line 3, λ is formed by applyingAnd on two vectors of d ′ bits which according to
(4) is convertible to vGeq that takes O(d ′) times of conjunctive and disjunctive operations
on corresponding bits. Composition of individual bits of θ ′ and R is of order O(23h) and the
resulted bit is of height 2h. Conjunctive and disjunctive operations on diagrams of height
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16 M. Ebrahimi et al.

Algorithm 4 ρ(U,W ) = Ex
(
θ(U,W )

)
1: procedure ρ(U , W )
2: θ ′ := θ [U ′/U,W ′/W ]
3: λ := θ ′ ∧ R
4: ψ1 := ∃U ′ · ∃W ′ · λ ≥ D
5: ψ2 := ∀U ′ · ∀W ′ · λ ≤ D
6: ψ := ψ1 ∧ ψ2
7: for i := 0 . . . d do
8: ρ[i] := ∃D · (D[i] ∧ ψ)

9: end for
10: end procedure

2h is of order O(24h), which leads us to the computational complexity of O(d ′24h) and a
result of height 2h for vGeq. The vIf is of the same computational complexity therefore
total complexity of line 3 is O(d ′24h).

In order to form ψ1 and ψ2, comparing vectors of size d ′ bits with diagrams of height d ′
and h is required as shown in lines 4 and 5. These comparison operations result in diagrams
of maximum height d ′ + h in time complexity of O(d ′22(h+d ′)); through a similar reasoning
that we used while computing λ in line 3. Universal and existential quantifiers in lines 4 and
5eliminate participant variables in diagrams and reduce the height of corresponding diagrams
gradually by one, consequently all predicates in these lines (i.e., λ ≥ D and λ ≤ D) are
quantified in time complexity of O(22h+d ′

), because we have:

O
(
22h+d ′ + 22h+d ′−1 + · · · + 2h+d ′) = O

(
22h+d ′)

.

Time complexity for universal and existential quantification is negligible in comparison with
the time complexity of comparison operators therefore lines 4 and 5are of time complexity
O(d ′22(h+d ′)). Since ψ1 and ψ2 are of maximum height of h + d ′ the their conjunction in
line 6 is of time O(22(h+d ′)). Subsequently, ψ is obtainable in total time O(d ′22(h+d ′)). In
line 8, D[i] ∧ ψ is of time O(2h+d ′

); moreover, computational complexity of existential
quantification, ∃D, is as follows:

O
(
2h+d ′ + 2h+d ′−1 + · · · + 2h+1) = O

(
2h+d ′)

.

Having computed ψ , then ρ is obtainable in time O(d ′22(h+d ′)); therefore, the total com-
plexity for Ex operator is as follows:

O
(
d ′24h + d ′22(h+d ′) + 2h+d ′) = O

(
d ′24h

)
.

5.3.2 EU operator

The semantic of E(ϕ Uψ) indicates it only equates to “1” only if ψ eventually occurs.
We formally define “strong until” using the fixed-point concept as shown in Algorithm 5.
Computing Eu requires Ex and a variety of auxiliary operations to be called repetitively. For
each iteration computational complexity of auxiliary operators are negligible comparing to
that of Ex operator. Eu operator give rise to a sequence of vectors as follows:

Z1, Z2, . . . , Zg
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Algorithm 5
1: procedure Eu(v1, v2)
2: Z := v2
3: while True do
4: L := v2 ∨ (v1 ∧ Ex(Z))

5: if vEql(L , Z) = 1 then
6: return Z
7: end if
8: Z := L
9: end while
10: end procedure

where Zi is equivalent to a function that maps members of S′ to [0, 1]Δ. This equivalency
can be demonstrated as follows:

Zi =
{(

(s1, η1), v
(i)
1

)
, . . . ,

(
(se, ηe), v

(i)
e

)} ∀ j ∈ {1 . . . e} · v
(i)
j ∈ [0, 1]Δ

where e = |S′|. In each iteration of Eu some values of v
(i)
j are increased till convergence

happens in the gth iteration. This property can be formalized as:

∀i ∈ 1 . . . (g − 1) ·
(
∀ j ∈ 1 . . . e · v

(i+1)
j ≥ v

(i)
j ∧ ∃ j ∈ 1 . . . e · v

(i+1)
j ≥ v

(i)
j + Δ

)
(8)

According to (8) it is obvious g ≤ e
Δ
, because in each iteration there exists at least one v j

whose value is incremented by a minimum of Δ. In order to store all members of S′ we use
all variables U and W , consequently e = O(2h) and g = O(2h+d ′

). In practice the conver-
gence happens quickly and this is the worst-case convergence time. Given the computational
complexity of Ex operator, the computational complexity of Eu is of O(d ′25h+d ′

).

5.3.3 AU operator

The definition of Au operator is quite similar to Eu and similar reasoning applies to its time
complexity analysis; please see Algorithm 6.

Algorithm 6
1: procedure Au(v1, v2)
2: Z := Not(v2)
3: while True do
4: L := Not(v2) ∧ (Not(v1) ∨ Ex(Z))

5: if vEql(L , Z) = 1 then
6: return Not(Z)

7: end if
8: Z := L
9: end while
10: end procedure

5.3.4 AX operator

The definition of Ax is directly obtained from the definition of Ex operator as shown in
Algorithm 7, therefore the time complexity of this operator is similar to that of Ex operator.
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Algorithm 7
1: procedure Ax(v1)

2: return Not
(
E x

(
Not(v1)

))
3: end procedure

5.4 Computational complexity analysis

Forming relation R is the preprocessing step of checking proposition ϕ over a model, then
operators of temporal logic are computed recursively. Finally, we evaluate the truth degree
of ϕ in a post-processing step. The most costly and time-consuming stage in verification of
proposition ϕ are Eu andAu operators. Let |ϕ| be the length of proposition ϕ, then for overall
time complexity we have:

O(rd ′22kd ′
(k + 22n) + |ϕ| × (d ′25h+d ′

) + (d ′22(h+d ′)))

= O(d ′22h(r(1 + k2−2n) + |ϕ| × 23h+d ′ + 22d
′
))

since k is naturally a small number and r = O(|S|2) = O(22n) then computational com-
plexity of checking ϕ over a model is of computational complexity of O(|ϕ| × d ′25h+d ′

).
Please note that we are counting computational steps with different scaling parameters.

Unlike the general convention of considering computational complexity by the size of state-
space, we considered the computational complexity by the length of encoding. The reason
for this unorthodox convention is simply that our applications of interest required a speed-
accuracy trade-off. In other words, we simply calculated the willingness to respond slowly
with fewer errors compared to quick response with relatively more errors.

Whilst this manuscript was under review authors were informed that a similar study is
done for model checking of a fuzzy logic extended CTL over a fuzzy logic extended Kripke
Structure [22]. They claimed the computational complexity of checking fuzzy logic extended
CTL formulae ϕ over a fuzzy logic extended Kripke structure is as follows:

O(|ϕ| × (|S′|2 + |S′| × log |S′|)),
where S′ is the state-space of the Kripke structure. Please note, the state-space of an FzKripke
structure can be larger than that of an equal FzPG by an exponential factor; that is, O(|S′|)
= O(|S×ValΔ(X)|), where S is the state-space of the FzPG. The computational complexity
of our model checking approach with respect to state-space of equal FzKripke is S′ is of
O(|S′|5), which is by no means tight.

Nevertheless, in order to model check a given FzPG, we need to construct the complete
state-space of an equal FzKripke including its whole transition edges so that we are able to
model check the equal FzKripke structure using the approach in [22]. This is computationally
expensive and eventually leads to an state-space explosion; yet, since our approach directly
model checks the FzCTL formula on the FzPG, state space explosion is effectively avoided;
Sects. 6.1 and Appendix A.2 provide intuitive assessments of our method by reporting prac-
tical execution time and memory consumption.

The memory complexity of model checking an FzKripke structure in both approaches is
of O(|S′|2). Although simple operations like comparison are of computational complexity
of O(d) while using OBDD, we believe OBDD provides a more compact and more effi-
cient representation of our state-space. Further research is necessary to provide an insightful
comparison of these two approaches in terms of expressiveness, applicability, and scalability.
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CLK

D
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y2

y3

y4

y5

y6

y7
Q

N

Fig. 3 Block diagram of multi-valued D flip-flop that is proposed in [8]. AND gates represent min function;
similarly OR gates represent max function. We have labeled the output of each and every gate with y1 to y7,
N , and Q for further readability

Fig. 4 FzPG G which represents
the multi-valued D flip-flop
depicted in Fig. 3

s0I s1

F12 G12

F21 G21

F11 G11

F22 G22

6 Fuzzy flip-flops

The concept of fuzzy flip-flops was first proposed by Hirota et al. and then studied in [8,13,
14,19,20]. They presented the idea of designing fuzzy logic hardware systems using fuzzy
flip-flops. Fuzzy flip-flops are made of fuzzy logic gates through having some extensions
to binary flip-flops. Almost none of fuzzy flip-flops are suitable for realizing neurons in a
multilayer perceptron because instability is the issue with almost all of them; this means the
output of the circuit may fluctuate under certain conditions. In this section, we first investigate
the correctness of a previously proposed multi-valued D flip-flop using our proposed formal
method, and then we introduce a formal model of fuzzy J-K flip-flop and investigate the
correctness of its behavior.

6.1 Fuzzy D Flip-Flop

Ben Choi and Kankana Shulka proposed a multi-valued D flip-flop in [8]. Although they
investigated the validity of their proposed circuit via computer simulations, under certain
conditions gate delays lead to dynamic hazards. In this section, we show under which con-
dition an unpredictable sequence of outputs are generated periodically for Choi’s circuitry.
Another multi-valued D flip-flop is verified with a quite similar method, which led to dis-
covery of static hazards in the circuitry [26].

Figure 3 illustrates the block diagram of Choi’s D flip-flop. For the sake of simplicity,
we assume propagation delay for all gates are the same and the value is equal to T = 2−p

where p is a positive integer. We also assume input D is stable and the CLK is a pulse in the
following form:

where α and β are integers. Great values of α and β do not cause any problems except
slowing down the circuit. On the other hand, if α and β would be smaller than a limit there
are no chance for the circuit to stabilize its output therefore it acts incorrectly. We can prove
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by model checking that this design requires the values of α and β to be at least 7. Let us
assume N = 1

T be the maximum possible value for α and β (obviously this is an assumption
to simplify the modeling problem, greater values would not affect the circuit but slowing it
down).

We have also labeled all the outputs for each logical gate in this block diagram, please
see Fig. 3. Fresh primed labels are used to denote the outputs of logical gates after T time
units; now it is easy to compute the output of each gate considering its inputs. From this point
onward we denote CLK as C for further readability.

y′
1 = ¬C

y′
2 = y1 � Q

y′
3 = D � C

y′
4 = y2 
 y3

y′
5 = y4 
 Q

y′
6 = y4 
 N

y′
7 = y5 � y6

Q′ = y4 � y7

N ′ = ¬Q

Now we consider an FzPG with two states s0 and s1. Being in state s0 means CLK is 0
and being in S1 conveys the opposite, please see Fig. 4. The attribute set X is as follows:

X = 〈Γ, u, D,C, y1, y2, y3, y4, y5, y6, y7, Q, N 〉
Attribute Γ represents the passage of time in states of FzPG with steps of T , therefore on
the verge of entering a new state the value for this attribute is 0; whilst on a state, as soon as
Γ changes the output of all gates will change accordingly. Attribute u represents the raising
edge of the clock pulse; it is set to 1 while the clock is pulse raised. Once u is set it will
preserve its value. Participating functions in graph G are defined as:

I = (Γ = 0) � (C = 0) � (u = 0)

F11 = (Γ < αT )

F12 = (Γ = αT )

F22 = (Γ < βT )

F21 = (Γ = βT )

G11 = G22 = 〈�Γ + T �, u, D,C,¬C, y1 � Q, D � C,

y2 
 y3, y4 
 Q, y4 
 N , y5 � y6, y4 � y7,¬Q〉
G12 = 〈0, 1, D, 1, y1, y2, y3, y4, y5, y6, y7, Q, N 〉
G21 = 〈0, u, D, 0, y1, y2, y3, y4, y5, y6, y7, Q, N 〉

6.1.1 Properties of multi-valued D flip-flop

In order to verify Choi’s design of multi-valued D flip-flop, we defined its properties using
FzCTL and then investigated their correctness using model checking.
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Table 1 Unstable condition of fuzzy D flip-flop

Time C y1 y2 y3 y4 y5 y6 y7 Q N

t 1 0 0 D D D D 
 D D D D

t + T 0 1 0 0 D D D 
 D D D D

t + 2T 0 1 D 0 0 D D 
 D D D D

t + 3T 0 1 D 0 D D D D 0 D

t + 4T 0 1 0 0 D D D 
 D D � D D 1

t + 5T 0 1 D 0 0 D 1 D D � D D

t + 6T 0 1 D � D 0 D D � D D D 0 D 
 D

t + 7T 0 1 0 0 D � D D D 
 D D � D 0 1

t + 8T 0 1 D 0 0 D 1 D D � D D

t + 9T 0 1 D � D 0 D D � D D D 0 D 
 D

t + 10T 0 1 0 0 D � D D D 
 D D � D D 1

.
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.
.
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Property 2 6T after the very first raising edge of clock pulse, we will have Q = D for the
rest of time. This property is expressible in FzCTL as follows:

AG
(
u = 1 → AX6 (

AG(Q = D)
))

where D is input, AXn denotes applying AX operator n consecutive times. This proposition
evaluates to 0.

Property 3 6T after the very first raising edge of clock pulse, the possible values for Q are
D, D, and 0. This property is expressible in FzCTL as follows:

AG
(
u = 1 → AX6 (

AG(Q = D 
 Q = 0 
 Q = D)
))

Finally, this proposition evaluates to 1.

Table 1 depicts a trace that nullifies the first property. There is an issue caused by the propa-
gation delay of NOT gate while falling edge occurs. According to Table 1, a dynamic hazard
with a period of 3T emerged at time t + 5T . As can be observed if D < D then on the verge
of clock’s falling edge the next value for Q is among D, 0, or D otherwise if D > D then Q
is either D or 0. A short while after clock’s rising edge (i.e. less than 6T ) the state of circuit
will be reverted to column t . As long as clock pulse is high, the state is preserved.

6.1.2 Experimental results

We ran the experiments on a laptop with 4GBytes of RAM with Intel� CoreTM2 Due (2.6
G.Hz.) CPU that runs Windows XP Professional (32bits). We used BuDDy library [16]
to implement proposed algorithms because this library provides a near comprehensive set
of tools and functions to work with OBDDs and their vectors. In this library nodes of all
diagrams are stored and retrieved by a hashing method. The total size allocated for each node
is 20 bytes and the upper bound for number of nodes is initialized by function “bdd_init”
which we set it to 100,000,000; that is, a total memory of 2GBytes. Due to memory space
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Table 2 Given h = 5 and
considering different values of α

and β, we recorded number of
calls to Ex operator (#Ex),
execution time in milliseconds,
and memory consumption in
terms of BDD nodes

α β #Ex Time (ms) #Nodes

8 8 23 918 632,944

16 8 31 1639 1,040,096

8 16 31 1954 1,171,231

16 16 39 2441 1,314,031

24 8 39 2673 1,436,208

8 24 39 3046 1,613,500

32 8 47 3832 1,742,449

16 24 47 3924 1,882,932

24 16 47 3974 1,838,548

24 24 55 4645 1,969,160

32 16 55 5854 2,183,117

8 32 47 6365 2,090,664

32 24 63 7121 2,457,824

16 32 55 8082 2,390,179

24 32 63 10,430 2,622,073

32 32 71 13,006 2,652,580

Table 3 Given αT = βT = 1
2

we recorded the state-space size,
number of calls to Ex operator
(#Ex), execution time in
milliseconds, and memory
consumption in terms of BDD
nodes for different values of h

h State-space #Ex Time (ms) #Nodes

4 235 23 660 526,395

5 242 39 2441 1,314,031

6 249 71 21,206 2,821,965

7 256 135 129,730 5,715,114

8 263 263 431,222 11,358,475

9 270 519 1,530,087 22,485,129

O(27h+7) O(2h + 7) O(21.85h+4) O(2h+15.44)

constraints, as soon as 70% of the allocated memory is consumed, we reorder diagrams to
reduce number of nodes as well as consumed memory.

We used different parameter values for α and β ranging from 23 to 25; please see Table 2.
For all cases the first property evaluates to 0 while the second property evaluates to 1. In case
of parameter values less than 7 for α or β both properties evaluate to 0. Changing T to any
value ranging from 2−6 to 2−3 did not affect the results yet it affected memory consumption
and execution time of the proposed model checker. Meanwhile, Table 3 presents the practical
orders on computational power and memory space needed for our proposed method. As can
be seen by reported computational and memory complexity are not tight.

6.2 Fuzzy J-K flip-flop

In this subsection we are destined neither to provide an on-chip fuzzy system nor their
applications but a formal model realizing a fuzzy flip-flops.
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Fig. 5 J-K flip-flop block
diagram

CLK

K

J Q

Q

6.2.1 Fuzzy NAND gate

Fuzzy operations are simple to realize physically, except for more complex gates like
eXclusive-OR. Variations of fuzzy NAND gates are implemented in [19], however they
are ignored in this study because of their complexity. The NAND gate depicted in Fig. 5 is a
fuzzy logic gate simply defined by min−max norms as follows:

NAND1(x, y) = 1 − min(x, y) = ¬(x � y)

This gate can also be defined using the Łukasiewicz t-norm as follows:

NAND2(x, y) = 1 − max(0,min(x + y, 1)) = �¬x + ¬y�

6.2.2 Properties of fuzzy J-K flip-flop

Obviously, inputs and outputs of fuzzyNANDgate are decimals from [0, 1]. Suppose numbers
smaller or equal to 0.25 as low and numbers larger or equal to 0.75 as high and the numbers
in-between these two bounds as invalid values. According to Fig. 5 the following properties
holds for each fuzzy J-K flip-flop.

Property 4 If J is high and K is low at the clock edge, then Q output is forced high and
stays high while Q is forced low and stays low for sure. Note that at the beginning initial
values of Q and Q are random and even may be invalid values like 0.5.

The following is FzCTL proposition of the above property:

P1 =J ≥ 0.75 � K ≤ 0.25

→ AF
(
AG(Q ≥ 0.75 � Q ≤ 0.25)

)
Following is the FzPG for Fuzzy J-K flip-flop as depicted in Fig. 6,

G = {{s0}, s0, {J, K , Q, Q}, Init,Act }
Init(s0) = [1]
Act(s0, s0) = ([1], J, K , Qnext , Qnew),

Qnext = NAND(Q,NAND(Q, J )),

Qnext = NAND(Q,NAND(Q, K ))

If we rewrite NAND functions (as shown below), we can use them to construct the corre-
sponding FzPG. Discrete saturation operator is used to quantize input values in order to have
a finite number of states in the equivalent FzKripke.

NAND1(x, y) = ¬(
�x�ε � �y�ε

)
NAND2(x, y) = �¬�x�ε + ¬�y�ε� where ε = 2−d , d ≥ 2
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Fig. 6 FzPG of the J-K flip-flop
shown in Fig. 5 s01 1 , J,K,Qnew, Qnew

Table 4 Unstable condition of
Fuzzy J-K flip-flop using
NAND1

Step J K Q Q

0 0.75 0.25 0.5 0.625

1 0.75 0.25 0.625 0.5

2 0.75 0.25 0.5 0.375

3 0.75 0.25 0.625 0.375

4 0.75 0.25 0.5 0.375

5 0.75 0.25 0.625 0.375

6 0.75 0.25 0.5 0.375

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Using NAND1 while constructing FzPG G there is a condition in which flip-flop works
improperly (and that is when the initial state values for the Q and Q are invalid) thus the
property is incorrect and proposition P1 evaluates to 0; see Table 4 for traces and configuration
ofmodel. By substitution ofNAND1 withNAND2, proposition P1 (for all ε ≥ 0.25) evaluates
to 1, and the property always holds.

If another criterion is imposed to proposition P1, then the property holds for both NAND1

and NAND2. The following proposition corrects improper behavior of the flip-flop.

P ′
1 = J ≥ 0.75 � K ≤ 0.25

� (Q ≥ 0.75 
 Q ≤ 0.25) � (Q ≥ 0.75 
 Q ≤ 0.25)

→ AF
(
AG(Q ≥ 0.75 � Q ≤ 0.25)

)

7 Conclusion and future work

We defined Quantized FzKripke as a variant of multi-valued Kripke structure on interval
[0, 1]Δ. We also defined FzCTL as the modal temporal logic to express temporal properties
of FzKripke. A series of operators like quasi-comparison, bounded-add, bounded-subtract,
and scalar-multiplication on discrete interval are defined in FzCTL that are rarely seen in
other logics introduced prior to this. This gives FzCTL the ability to specify sophisticated
behaviors of fuzzy systems easily.

Having defined a powerful fuzzy temporal logic, we paired it with FzPG as the modeling
structure. This is a more convenient structure to model fuzzy systems due to its compactness
and readability. Moreover, we introduced Quantized FzPG such that it is convertible to
Quantized FzKripke. In order tomodel check an FzCTL formula ϕ over an FzPG a translation
to an equivalent FzKripke with an exponential blow-up was inevitable leading to state-space
explosion. By the means of OBDD vectors, we devised a symbolic method that can perform
direct checking of ϕ on a Quantized FzPG avoiding the aforementioned exponential blow-up.

In order to demonstrate the applicability of our method, we formally investigated the
correctness of a multi-valued D Flip-Flop as a case study, and showed a flaw in the circuitry
that is not seen in design phase with computer simulations. This flaw yields to a dynamic
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hazard making the whole flip-flop unstable under certain initial conditions. Afterwards, by
investigating a potential design for Fuzzy J-K Flip-Flops, we demonstrated how the proposed
method can be useful in design phase of such intuitive circuits for analyzing their complex
behaviors.

Considering the expressibility of FzCTL, compactness and readability of FzPG, our
method is affordable in terms of memory and computational complexity. We believe further
investigation is needed to compare our proposed method with a relevant method introduced
in [22] in terms of expressiveness, scalability, and applicability for real-world scenarios. We
believe it is not the case that these methods are not equivalent but making this comparison
is initially difficult because the modeling structure in [22], i.e., FzKripke structure, is by
an exponential factor larger than FzPG and the model checking method in [22] follows a
different theoretical base.

Furthermore, an improved implementation for Ex operator is proposed in Appendix A,
which is of lower memory and computational complexity. Not only we analysed the worst
case complexity of all algorithms in this paper but we also implemented our method and
made an intuitive assessment. Appendix A.2 reads about practical performance analysis of
the proposed method through an intuitive assessment.

We had covered all preliminaries about abstraction and approximation in fuzzy temporal
logic and models in a discrete setup [26]; and now we covered a symbolic model checker
that deals with state-space explosion in the same setup. The ultimate goal of this series of
research is to apply formal verification in field of fuzzy control systems. To this purpose, it is
required to define some extensions to our modeling, specification, and verification approach.
For future research our intention is to perceive concrete time in form of fuzzy sets and also
to include natural language propositions in an augmented fuzzy extended temporal logic.
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A An alternative solution for EX operator

In the primary design of Ex operator proposed in this paper, not only U and W are used but
also auxiliary variables ofU ′ andW ′ participate in construction of vector R. This redundancy
leads to diagrams of larger size that makes it difficult for models of large state-space and
large attribute-set to fit into memory. Similar issue is in place with λ diagram in line 3
of Algorithm 4. Moreover, another vector called D is involved in lines 4 and 5 of the same
algorithmwhich intensifies the problem; therefore, OBDDs in primary design of Ex operator
are of maximum hight:

L = 2h + d ′ = 2n + (2k + 1)d ′

In this section we introduce another design for this algorithm in which OBDDs are of maxi-
mum height:

L ′ = h + d ′ = n + (k + 1)d ′
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If k is a large number and n is a small number L ′ is approximately half of L . This means
the size of largest OBDD in primary approach is reduced to its squared root by using the
alternative algorithm, in exchange the computational complexity may increase which is fully
addressed later in this section. In order to redesign the algorithm we will use the following
property repeatedly:

Property 5 For conjunction and disjunction of two real values with a third value we have:

a 
 b ≤ D ⇒ a ≤ D ∧ b ≤ D

a 
 b ≥ D ⇒ a ≥ D ∨ b ≥ D

a � b ≤ D ⇒ a ≤ D ∨ b ≤ D

a � b ≥ D ⇒ a ≥ D ∧ b ≥ D

Even by substituting ≤ with < and ≥ with >, these equations hold.

For each pairs of nodes s and t in an FzPG we define:

Act(s, t) = (A, B) ⇔ Ast = A ∧ Bst = B

cst
def== U (s) ∧U ′(t) ∧ (W ′ = Bst )

ast
def== vIf(cst , Ast ,False)

According to above definitions relation R is obtainable as follows:

R =
⊔

s,t ∈ S

ast .

For the sake of brevity, we denote by Y the combination of variables U and W like:

Y = 〈U ;W 〉.

Now using above definition we can rewrite lines 2 to 6 of Algorithm 4 as follows:
1: . . .

2: θ ′ := θ [Y ′/Y ]
3: nop
4: ψ1 := ∃Y ′ · (θ ′ � R ≥ D)

5: ψ2 := ∀Y ′ · (θ ′ � R ≤ D)

6: ψ := ψ1 ∧ ψ2

7: . . .

According to properties of universal and existential quantifiers we have:

¬ψ2 = ∃Y ′ · (θ ′ � R > D).

By defining ϕ1 and ϕ2 like

ϕ1
def== θ ′ > D

ϕ2
def== θ ′ ≥ D,
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we can rewrite ψ1 as follows:

ψ1 = ∃Y ′ · (θ ′ ≥ D ∧ R ≥ D) = ∃Y ′ · (ϕ2 ∧
⊔
s,t∈S

ast ≥ D) = ∃Y ′ · (ϕ2 ∧
∨
s,t∈S

ast ≥ D)

= ∃Y ′ ·
⎛
⎝ ∨

s,t∈S
(ϕ2 ∧ ast ≥ D)

⎞
⎠ =

∨
s,t∈S

∃Y ′ · (ϕ2 ∧ ast ≥ D)

similarly, we have:

¬ψ2 =
∨
s,t∈S

∃Y ′ · (ϕ2 ∧ ast > D);

on the other hand:

(ast ≥ D) = vIf(cst , Ast ,False) ≥ D = if(cst , Ast ≥ D,False ≥ D)

= if(cst , Ast ≥ D, D = False)

now according to following definition

D = (D = False) = ¬zd ∧ · · · ∧ ¬z0

we have:

(ast ≥ D) = if(cst , Ast ≥ D, D) = cst ∧ (Ast ≥ D) ∨ ¬cst ∧ D

which implies:

D ⇒ Ast ≥ D.

Meanwhile, following conditional statement is a tautology:

(q ⇒ p) ⇒ (
(r ∧ p) ∨ ¬(r ∧ q) = (r ∧ p) ∨ q

)
Now we may conclude:

(ast ≥ D) = D ∨ cst ∧ (Ast ≥ D)

similarly we may write:

(ast > D) = if(cst , Ast > D,False > D) = if(cst , Ast > D, 0) = cst ∧ (Ast > D).

By defining Pst as the inner part of ψ1 like

Pst
def== ∃Y ′ · (ϕ2 ∧ (ast ≥ D))

we have:

Pst = ∃Y ′ · (ϕ2 ∧ (D ∨ cst ∧ (Ast ≥ D))) = ∃Y ′ · ((ϕ2 ∧ D) ∨ (ϕ2 ∧ cst ∧ (Ast ≥ D)))

= ∃Y ′ · (ϕ2 ∧ D) ∨ ∃Y ′ · (ϕ2 ∧ cst ∧ (Ast ≥ D)).

The following conditional statement is easily verified:

(D ⇒ θ ′ ≥ D) ⇒ (ϕ2 ∧ D = D)
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As can be seen (Ast ≥ D) is independent from Y ′ therefore we can unnest it from existential
quantification with following definitions:

Est
def== ∃Y ′ · (ϕ2 ∧ cst )

βst
def== (Ast ≥ D) ∧ Est

now we have:

Pst = D ∨ βst

and with replacing cst we have:

Est = ∃Y ′ · (ϕ2 ∧U (s) ∧U ′(t) ∧ (W ′ = Bst ))

now we can unnest U (s) from ∃Y ′ as it is independent from Y ′ like:

Est = U (s) ∧ ∃Y ′ · (ϕ2 ∧U ′(t) ∧ (W ′ = Bst ))

= U (s) ∧ ∃W ′ · ∃U ′ · (ϕ2 ∧U ′(t) ∧ (W ′ = Bst ))

as can be seen (W ′ = Bst ) is independent from U ′ thus can be unnested from ∃U ′. We can
rewrite Est using following definition as

ηst = ∃U ′ · (ϕ2 ∧U ′(t))
Est = U (s) ∧ ∃W ′ · ((W ′ = Bst ) ∧ ηst )

Now regarding the famous one-point rule we may replace W ′ with Bst assuming:

Bst = 〈b1; . . . ; bk〉
W ′ = 〈W ′

1; . . . ;W ′
k〉

regarding the following definition

η̂st
def== ηst [Bst/W

′] = [b1/W ′
1; . . . ; bk/W ′

k]
we have:

βst = (Ast ≥ D) ∧U (s) ∧ η̂st

Similarly above arguments can be repeated for ¬ψ2 with following definitions:

αst
def== ∃Y ′.(ϕ1 ∧ (ast > D))

γst
def== ∃U ′.(ϕ1 ∧U ′(t))

γ̂st
def== γst [Bst/W

′]
Now by substituting ast > D and cst we have:

αst = ∃Y ′ · (ϕ1 ∧ cst ∧ (Ast > D)) = (Ast > D) ∧ ∃Y ′ · (ϕ1 ∧ cst )

= (Ast > D) ∧U (s) ∧ γ̂st

Eventually, we can rewrite ψ like:

ψ = ψ1 ∧ ψ2 =
∨
s,t∈S

(D ∨ βst ) ∧ ¬
∨
s,t∈S

αst =
⎛
⎝D ∨

∨
s,t∈S

βst

⎞
⎠ ∧ ¬

∨
s,t∈S

αst
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and according to Algorithm 4 we have:

∀i ∈ 0 . . . d · ρ[i] = ∃D · (zi ∧ ψ)

consequently

ρ[i] = ∃D ·
⎛
⎝zi ∧ ¬

∨
s,t∈S

αst ∧
⎛
⎝D ∨

∨
s,t∈S

βst

⎞
⎠

⎞
⎠

= ∃D ·
⎛
⎝zi ∧ D ∧ ¬

∨
s,t∈S

αst ∨ zi ∧ ¬
∨
s,t∈S

αst ∧
∨
s,t∈S

βst

⎞
⎠

according to definition zi ∧ D = 0 therefore above equation can be simplified as:

ρ[i] = ∃D ·
⎛
⎝zi ∧ ¬

∨
s,t∈S

αst ∧
∨
s,t∈S

βst

⎞
⎠

and by the following definition

ψ̂ = ¬
∨
s,t∈S

αst ∧
∨
s,t∈S

βst

we have:

ρ[i] = ∃D · (zi ∧ ψ̂).

In order to compute ψ̂ it is required to calculate αst and βst for edges of the Fuzzy Program
Graph. Finally, we show how to compute ρ using ψ̂ instead of using ψ . With the above
premises we can rewrite Algorithm 4 as below:

Algorithm 8 ρ(U,W ) = Ex
(
θ(U,W )

)
1: procedure ρ(U , W )
2: θ ′ := θ [U ′/U,W ′/W ]
3: θ1 := vGrt(θ ′, D)

4: θ2 := vGeq(θ ′, D)

5: α := 0
6: β := 0
7: for each transition edge Act (s, t) = (A, 〈B1, . . . , Bk 〉) do
8: γ := ∃U ′ · (U ′(t) ∧ θ1)
9: η := ∃U ′ · (U ′(t) ∧ θ2)
10: γ̂ := γ [B1/W ′

1, . . . , Bk/W
′
k ]

11: η̂ := η[B1/W ′
1, . . . , Bk/W

′
k ]

12: α := α ∨ (γ̂ ∧ vGrt(A, D) ∧U (s))
13: β := β ∨ (η̂ ∧ vGrt(A, D) ∧U (s))
14: end for
15: ψ := β∧!α
16: for i := 0 . . . d do
17: ρ[i] := ∃D · (D[i] ∧ ψ)

18: end for
19: end procedure
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In line 7 we assumeAct is a total function; however, in case of a partial function or relation
we may replace the following line:
for each transition edge ((s, t) = (A, 〈B1, . . . , Bk〉)) ∈ Act do

...

end for

A.1 Computational complexity

In above algorithm, line 2 is of time complexity of O(d ′2h), lines 3 and 4are of time complex-
ity of O(d ′22(h+d ′)). The for loop in line 7 iterates for r times, lines 8 and 9 are restrictions
on OBDD diagram θ1 and θ2 and take computational time proportional to the size of these
diagrams, both of which are of memory complexity of O(2h+d ′

). In lines 10 and 11we have
simultaneous replacement of diagrams with variables; a recursive algorithm to this purpose
is proposed in [16] called “bdd_compose”. The structure of this algorithm for replacing N
variables according to recursive relation is as follows:

ϕ[αi/yi , . . . , αN /yN ] = ¬αi ∧ ϕ[0/yi ][αi+1/yi+1, . . . , αN /yN ] ∨ αi

∧ ϕ[1/yi ][αi+1/yi+1, . . . , αN /yN ]
However, we assume variables yi in diagram ϕ are prioritized by their index, from most
significant y1 to least significant yN , and they also have higher priorities over other participant
variables in ϕ.We also assume variables yi do not participate in diagrams αi . Let the reminder
of participant variables in diagram ϕ be z1 to zD and also let the participant variables in each
αi be a subset of variables x1 to xH then the total replacement time equates to T (N ) which
is expressible by the following recursive relation:

T (N ) = O(22(D+H)) +
{
2T (N − 1), N> 0;
0, N = 0.

Since yi has higher priority than yi+1, computing ϕ[0/yi ] and ϕ[1/yi ] is of time com-
plexity of O(1). However, diagrams αi are of memory complexity of O(2H ) (which also
is of complexity of O(2D+H )); operands of ∨ are of memory complexity of O(2D+H )

(due to replacement of yi with x j ) which makes this operation of computational com-
plexity of O(22(D+H)); the computational complexity of ∧ is of O(22(D+H)) for similar
reason. Accordingly the result of above relation is O(2N .22(D+H)) = O(2N+2(D+H)).
According to above preparations lines 10 and 11 are of O(2(2k+1)d ′

) because each W ′
i

is composed of d ′ variables therefore there are a total of N = kd ′ variables in W ′.
Apart from W ′, the variable list D (which is composed of d ′ variables) is participating
in diagrams η and γ . Meanwhile the variable list W (with kd ′ variables) is participating
in each Bi . Total complexity of these lines are of O(2kd

′ + 2(d ′+kd ′)) which equates to
O(2(2k+1)d ′

).
In line 12, A is of height kd ′ and D is of height d ′ therefore vGrt is of O(d ′22d ′(k+1)).γ̂

and vGrt(A, D) are of height (k + 1)d ′, consequently their composition can be done in
time O(d ′22d ′(k+1)). Computing U (s) takes a little time with a simple diagram of memory
complexity of O(n) therefore its composition with γ̂ ∧ vGrt(A, D) is of computational
complexity of O(n2(k+1)d ′

). Eventually total complexity of line 12 is as follows:

O
(
d ′22d ′(k+1) + n2(k+1)d ′ + 22(h+d ′)

)
= O

(
22d

′(k+1)(d ′ + 22n)
)

.

Likewise, line 13 is of the same computational complexity. Considering the operands of
conjunction operator in line 14, this line is of complexity of O(22(h+d ′)) and ψ is of memory

123



Symbolic checking of Fuzzy CTL on Fuzzy Program Graph 31

Table 5 Performance evaluation
of proposed method, assuming
n = 2, k = 8

d h #EX Time (s) #Nodes P(ϕ)

2 26 5 0.06 24,275 0.25 ± 0.25

3 34 6 1.91 1,230, 107 0.375 ± 0.125

4 42 6 149.00 34,058,231 0.500 ± 0.0625

5 50 7 2426.00 35,561,429 0.46875 ± 0.03125

complexity of O(2h+d ′
). Similar to the primary algorithm, ρ is obtainable in O(d ′2h+d ′

) by
having ψ computed. Total complexity for this operator is as follows:

O
(
d ′2h + d ′22(h+d ′) + 2h+d ′) + O

(
r
(
2(2k+1)d ′ + 22d

′(k+1)(d ′ + 22n
)))

+ O
(
22(h+d ′) + d ′2h+d ′) = O

(
r22d

′(k+2)(d ′ + 22n
) + d ′22(h+d ′)

)

Usually d ′ is a small number comparing to |S| therefore it is safe to assume d ′ = O(2n). In
most cases, r = O(|S|2) = O(22n) the overall time complexity of proposed algorithm for
Ex operator is of O(22(h+d ′+n)). The Ax is directly obtainable from Ex operator therefore
it is of the same computational complexity as Ex. Time complexity of Au and Eu operators
are O(2h+d ′

) times the computational complexity of Ex operator. Since no preprocessing is
required if using the latter implementation of Ex operator the total time complexity of model
checking process is as follows:

O(|ϕ|(23h+3d ′+2n) + (d ′22(h+d ′))) = O(|ϕ|.23h+3d ′+2n).

The upper bound of time complexity of Ex operator for the first method is O(d ′24h) and for
the second method is O(22(h+d ′+n)) which is far less than the former. It is expected that the
second method is of lower memory complexity due to lower height of diagrams.

A.2 Performance evaluation: an intuitive assessment

As the behavior of OBDD is unpredictable the assumptions over the complexity orders
of proposed algorithms are not reliable. These orders are not tight and there are certain
conditions and scenarios in which the first implementation of Ex operator outperforms the
second implementation. Alternatively, in this subsection we provide an intuitive assessment
of our proposedmethod using the secondary definition ofEx operator.We ran the experiments
on an execution platform similar to the one that we described in Sect. 6.1.2.

Since there is no benchmark to evaluate our method we perform assessment using random
data. We create a random single-source graph like G = (S, s0, X,Act) with following
restrictions:

S = {0, . . . , N − 1}, N = 2n, s0 = 0, X = {x1, . . . , xk}

Act(0, 1) =
(

k�

r=1

(γ ′
r � xr � γ ′′

r � xr ),r =k
1 〈xr 〉

)

Act(i, j)=(xpi j 
 xp′
i j


 αi j ,r =k
1 〈�xqi jr 
 xq ′

i jr

 βi jr +λi jr�〉), ∀i, j ∈ {1, . . . , N − 1}
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All participant numbers in above relations are factors of Δ as follows:

∀r ∈ {1, . . . , k}.γ ′
r , γ

′′
r ∈ [0, 1]

∧ ∀i, j ∈ {1, . . . , N − 1}.αi j ∈ [0, 1] ∧ pi j , p
′
i j ∈ {1, . . . , k}

∧ (∀r ∈ {1, . . . , k}.βi jr ∈ [0, 1] ∧ λi jr ∈ [−1, 1] ∧ qi jr , q
′
i jr ∈ {1, . . . , k})

In order to evaluate the performance of our method, an FzCTL formula ϕ is required to be
verified over above-defined random graph. ϕ is defined as follows:

ϕ = AX

(
EF

(
k�

r=1

(γr � xr )

))

where γr are random numbers belong to interval [0, 1]Δ. Bymanipulating parameters n and k
and considering different precisions of d , several models are obtainable, all of which different
from one another in terms of execution time and memory used. In our experiments we used
permutations of n ∈ {1, . . . , 5}, k ∈ {4, 8, 12, 16, 20}, and d ∈ {2, . . . , 6}; some of which
failed due to lack of allocated memory. If d ′ = d + 1 and h = n + kd ′ then all experiments
with h ≤ 50 succeeded while consuming about 2GBytes of allocated memory. Table 5
demonstrates execution time, number of nodes (#Nodes), number of calls to Ex operator
(#EX) and obtained truth degree of ϕ for an experiment setup of n = 2 and k = 8. Total
execution time in proportion to number of calls to Ex operator depicts the average elapsed
time for Ex operator. As can be observed, incrementing d will result in more accuracy and
better precision yet the execution time grows exponentially. In a nutshell, considering all
these parameters, we automatically verified ϕ on models whose size are of O(250) on a fairly
weak laptop with an acceptable accuracy and precision.
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