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Abstract TSO-to-TSO linearizability is a variant of linearizability for concurrent libraries
on the total store order (TSO) memory model. It is proved in this paper that TSO-to-TSO
linearizability for a bounded number of processes is undecidable. We first show that the trace
inclusion problem of a classic-lossy single-channel system, which is known undecidable,
can be reduced to the history inclusion problem of specific libraries on the TSO memory
model. Based on the equivalence between history inclusion and extended history inclusion
for these libraries, we then prove that the extended history inclusion problem of libraries
is undecidable on the TSO memory model. By means of extended history inclusion as an
equivalent characterization of TSO-to-TSO linearizability, we finally prove that TSO-to-TSO
linearizability is undecidable for a bounded number of processes. Additionally, we prove that
all variants of history inclusion problems are undecidable on TSO for a bounded number of
processes.

1 Introduction

Libraries of high performance concurrent data structures have beenwidely used in concurrent
programs to take advantage of multi-core architectures, such as java.util.concurrent for Java
and std::thread for C++11. It is important but notoriously difficult to ensure that concurrent
libraries are designed and implemented correctly. Linearizability [13] is accepted as a de
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facto correctness condition for a concurrent library with respect to its sequential specification
on the sequential consistency (SC) memory model [14]. Intuitively, linearizability provides
the vision that every individual operation appears to take place instantaneously at some
point between its invocation and return. It is well known that on the SC memory model
linearizability of a concurrent library is decidable for a bounded number of processes [1],
but undecidable for an unbounded number of processes [6].

However, modern multiprocessors (e.g., 86 × [17], POWER [18]) and programming
languages (e.g., C/C++ [5], Java [16]) do not comply with the SC memory model. As a
matter of fact, they provide relaxed memory models, which allow subtle behaviors due to
hardware or compiler optimization. For instance, in a multiprocessor system implementing
the total store order (TSO) memory model [17], each processor is equipped with a FIFO store
buffer. Any write action performed by a processor is put into its local store buffer first and
can then be flushed into the main memory at any time.

The notion of linearizability has been extended for relaxed memory models, e.g., TSO-
to-TSO linearizability [8] and TSO-to-SC linearizability [12] for the TSO memory model
and two variants of linearizability [3] for the C++ memory model. These notions generalize
the original one by relating concurrent libraries with their abstract implementations, in the
way as shown in [11] for the SC memory model. It is worth mentioning that these notions
of linearizability satisfy the abstraction theorem [3,8,12]: if a library is linearizable with
respect to its abstract implementation, every observable behavior of any client program using
the former can be observed when the program uses the latter instead. Concurrent software
developer can benefit from this correspondence in that the library can be safely replaced with
its abstract implementation for the sake of optimization or the ease of verification of the client
program.

Thedecision problems for linearizability on relaxedmemorymodels becomemore compli-
cated. Because of the hierarchy of memorymodels, it is rather trivial to see that linearizability
on relaxed memory models is undecidable for an unbounded number of processes, based on
the known undecidability result on the SC memory model [6]. But the decision problem
of linearizability on relaxed memory models remains open for a bounded number of pro-
cesses.

In this paper we mainly study the decision problem for the TSO-to-TSO linearizability
of concurrent libraries within a bounded number of processes. TSO-to-TSO linearizability
is the first definition of linearizability on relaxed memory models. It relates a library run-
ning on the TSO memory model to its abstract implementation running also on the TSO
memory model. Histories of method invocations/responses are typically concerned by the
standard notion of linearizability. For TSO-to-TSO linearizability, such histories have to be
extended to reflect the interactions between concurrent libraries and processor-local store
buffers.

The main result of this paper is that TSO-to-TSO linearizability is undecidable for a
bounded number of processes. We first show that the extended history inclusion is an equiv-
alent characterization of TSO-to-TSO linearizability. Then, we prove our undecidability
result by reducing the trace inclusion problem between any two configurations of a classic-
lossy single-channel system to the extended history inclusion problem between two specific
libraries. Recall that the trace inclusion problem between configurations of a classic-lossy
single-channel system is undecidable [19]. The reduction is achieved by using as a bridge
the history inclusion between these two specific libraries.

Technically, we present a library template that can be instantiated as a specific library
for a configuration of a classic-lossy single-channel system. The library is designed with
three methods Mi for 1 ≤ i ≤ 3. We use two processes P1 and P2, calling methods M1 and
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M2, respectively, to simulate the traces of the classic-lossy single-channel system starting
from the given configuration. This is based on the observation that on the TSO memory
model, a process may miss updates by other processes because multiple flush actions may
occur between consecutive read actions of the process [2]. But a channel system accesses
the content of a channel always in a FIFO manner; while on the contrary, a process on
the TSO memory model always reads the latest updates in its local store buffer (whenever
possible). Herein, processes P1 and P2 alternatively update their own store buffers, but read
only from each other’s store buffer. In this way, the labeled transitions of the classic-lossy
single-channel system can be reproduced through the interactions between processes P1 and
P2. Furthermore, we use the third process P3, calling method M3 repeatedly, to return each
fired transition label repeatedly, so that the traces of the classic-lossy single-channel system
starting from a given configuration can be mimicked by the histories of the library exactly.
Specially,methodsM1 andM2 never return, whilemethodM3 just uses an atomicwrite action
to return labels in order not to touch process P3’s store buffer. Consequently, we can easily
establish the equivalence between the history inclusion and the extended history inclusion
between the specific libraries.

By constructing two specific libraries based on the above library template, we show that
the trace inclusion problem between any two configurations of a classic-lossy single-channel
system can be reduced to the history inclusion problem between the corresponding two
concurrent libraries, while the history inclusion relation and the extended history inclu-
sion relation are equivalent between these two libraries. Then, the undecidability result of
TSO-to-TSO linearizability for a bounded number of processes follows from its equivalent
characterization and the undecidability result of classic-lossy single-channel system. To our
best knowledge, this is the first result on the decidability of linearizability of concurrent
libraries on relaxed memory models.

Apart from histories and extended histories, there are other forms of sequences that are
used to represented behaviors of libraries. For example, in [9,10] the behavior of concurrent
libraries on TSO are essentially recorded by sequences of call and flush return actions.
Based on this variant of history, they propose TSO-linearizability, a variant of linearizability
without abstraction theorem, as correctness condition. To deal with various possible forms
of histories, we also consider variants of histories. As by-product of our work, we prove that
all variants of history inclusion problems, including history inclusion problem and extended
history inclusion problem, are undecidable on TSO for a bounded number of processes.
Some variants of history inclusion problems can be similarly proved as history inclusion
problem and extended history inclusion problem. To deal with other variants of history
inclusion problems, we slightly modify the specific libraries. Then the traces of the classic-
lossy single-channel system can be mimicked by sequences of call actions.

Related work Efforts have been devoted on the decidability and model checking of lin-
earizability on the SC memory model [1,6,7,15,20]. The principle of our equivalent
characterization for TSO-to-TSO linearizability is similar to that of the characterization
given by Bouajjani et al. in [7], where history inclusion is proved to be an equivalent char-
acterization of linearizability. Alur et al. proved that for a bounded number of processes,
checking whether a regular set of histories is linearizable with respect to its regular sequen-
tial specification can be reduced to a history inclusion problem, and hence is decidable [1].
Bouajjani et al. proved that the problem of whether a library is linearizable with respect
to its regular sequential specification for a unbounded number of processes is undecidable,
by a reduction from the reachability problem of a counter machine (which is known to be
undecidable) [6].
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On the other hand, the decidability of linearizability on relaxed memory models is still
open for a bounded number of processes. The closest work to ours is [2] by Atig et al., where
a lossy channel system is simulated by a concurrent program on the TSO memory model.
Our approach of using methods M1 and M2 to simulate a classic-lossy single-channel system
is inspired by their work. However, in [2], it was the decidable reachability problem of the
channel system that was reduced to the reachability problem of the concurrent program on
the TSO memory model. Hence, only the start and end configurations of the channel system
are needed in their reduction. In this paper, we reduce the trace inclusion problem between
any two configurations of a classic-lossy single-channel system, which is undecidable, to
the TSO-to-TSO linearizability problem. Our reduction needs to show exactly each step of
transitions in the channel system.

Paper outline We give the definitions of libraries, concurrent systems and its operational
semantics in Sect. 2. We introduce the definition of TSO-to-TSO linearizability and variants
of histories, and prove that extended history inclusion is an equivalent characterization of
TSO-to-TSO linearizability in Sect. 3. In Sect. 4, we present how to generate specific libraries
to mimic behaviors of classic-lossy single-channel systems. We prove in Sect. 5 that TSO-
to-TSO linearizability and all variants of history inclusion problems are undecidable on TSO
for a bounded number of processes. We conclude in Sect. 6.

Differences from the conference paper This article is an extended version of our ATVA’15
conference paper [22], containing all the proofs of the lemmas and theorems mentioned in
the paper. Since the conference, we have also extended our result from undecidability of
history inclusion problem and extended history inclusion problem into all variants of history
inclusion problems.

2 TSO concurrent systems

In this section, we first present the notations of libraries, the most general clients and TSO
concurrent systems. Then, we introduce their operational semantics on the TSO memory
model.

2.1 Notations

In general, a finite sequence on an alphabet � is denoted l = α1 · α2 · . . . · αk , where · is
the concatenation symbol and αi ∈ � for each 1 ≤ i ≤ k. Let |l| denote the length of l, i.e.,
|l| = k, and l(i) denote the i th element of l for 1 ≤ i ≤ k, i.e., l(i) = αi . For an alphabet
�′, let l ↑�′ denote the projection of l to �′. Given a function f , let f [x : y] be the function
that shares the same value as f everywhere, except for x , where it has the value y. We use _
for an item, of which the value is irrelevant.

A labelled transition system (LT S) is a tuple A = (Q, �,→, q0), where Q is a set of
states, � is a set of transition labels, →⊆ Q × � × Q is a transition relation and q0 is the
initial state. A state of the LTSAmay be referred to as a configuration in the rest of the paper.

A path of A is a finite transition sequence q1
β1−→ q2

β2−→ · · · βk−→ qk+1 for k ≥ 0. A
trace of A is a finite sequence t = β1 · β2 · . . . · βk , where k ≥ 0 if there exists a path

q1
β1−→ q2

β2−→ · · · βk−→ qk+1 of A. Let path(A, q) and trace(A, q) denote all the paths and
traces ofA that start from q , respectively. We write path(A) and trace(A) for short if q = q0.
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TSO-to-TSO linearizability is undecidable 653

2.2 Libraries and the most general clients

A library implementing a concurrent data structure provides a set of methods for external
users to access the data structure. It may contain private memory locations for its own use.
A client program is a program that interacts with libraries. For simplicity, we assume that
each method has just one parameter and one return value if it returns. Furthermore, all the
parameters and the return values are passed via a special register r f .

For a library, let X be a finite set of its memory locations,M be a finite set of its method
names, D be its finite data domain, R be a finite set of its register names and RE be a finite
set of its register expressions over R. Then, a set PCom of primitive commands considered
in this paper includes:

– Register assign commands in the form of r1 = re;
– Register reset commands in the form of havoc;
– Read commands in the form of read(x, r1);
– Write commands in the form of write(r1, x);
– Lock commands in the form of lock;
– Unlock commands in the form of unlock;
– Assume commands in the form of assume(r1);
– Call commands in the form of call(m);

where r1 ∈ R, re ∈ RE, x ∈ X . Herein, the commands in this paper are borrowed from [8],
where lock and unlock commands are called xlock and xunlock in [8]. A havoc command
[8] assigns arbitrary values to all registers in R.

A control-flow graph is a tuple CFG = (N , L , T, qi , q f ), where N is a finite set of
program positions, L is a set of primitive commands, T ⊆ N × L × N is a control-flow
transition relation, qi is the initial position and q f is the final position.

A library L can then be defined as a tuple L = (QL,→L, InitVL), such that QL =⋃
m∈M Qm is a finite set of program positions, where Qm is the program positions of a

method m of this library; →L= ⋃
m∈M →m is a control-flow transition relation, where

for each m ∈ M, (Qm,PCom,→m, im, fm) is a control-flow graph with a unique initial
position im and a unique final position fm ; InitVL : X → D is an initial valuation for its
memory locations.

The most general client of a library is a special client program that is used to exhibit
all possible behaviors of the library. Formally, the most general client MGC of library
L is defined as a tuple ({qc, q ′

c},→c), where qc and q ′
c are two program positions,

→c= {(qc, havoc, q ′
c)} ∪ {(q ′

c, call(m), qc)|m ∈ M} is a control-flow transition relation
and ({qc, q ′

c},PCom,→c, qc, qc) is a control-flow graph. Intuitively, the most general client
repeatedly calls an arbitrary method with an arbitrary argument for arbitrarily many times.

2.3 TSO operational semantics

Assume a concurrent system consists of n processes, each of which runs the most general
client program of a library on a separate processor. Then, the operational semantics of a
library can be defined in the context of the concurrent system.

For a library L=(QL,→L, InitVL), its operational semantics on the TSO memory model
is defined as an LTS �L, n�te

1 = (Confte, �te, →te, InitConfte), where Confte, �te, →te,

InitConfte are defined as follows.

1 “t” represents TSO memory model. “e” represents that the operational semantics in this paper extends
standard TSO operational semantics [17] similarly as [8].
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Each configuration of Confte is a tuple (p, d, u, r, l), where

– p : {1, . . . , n} → {qc, q ′
c} ∪ QL represents control states of each process;

– d : X → D represents values at each memory location;
– u : {1, . . . , n} → ({(x, a)|x ∈ X , a ∈ D} ∪ {call(m, a)|m ∈ M, a ∈ D} ∪

{return(m, a)|m ∈ M, a ∈ D})∗ represents contents of each processor-local store buffer;
each processor-local store buffer may contain a finite sequence of pending write, pending
call or pending return actions;

– r : {1, . . . , n} → (R → D) represents values of the registers of each process.
– l ⊆ {1, . . . , n} contains all the processes that can currently execute commands.

�te consists of the following subsets of actions as transition labels.

– Internal actions: {τ(i)|1 ≤ i ≤ n};
– Read actions: {read(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
– Write actions: {write(i, x, a)|1 ≤ i ≤ n, x ∈ X , a ∈ D};
– Lock actions: {lock(i)| 1 ≤ i ≤ n};
– Unlock actions: {unlock(i)| 1 ≤ i ≤ n};
– Flush actions: {flush(i, x, a)| 1 ≤ i ≤ n, x ∈ X , a ∈ D};
– Call actions: �cal = {call(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D};
– Return actions: �ret = {return(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D};
– Flush call actions: �fcal = {flushCall(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D};
– Flush return actions: �fret = {flushReturn(i,m, a)|1 ≤ i ≤ n,m ∈ M, a ∈ D}.
The initial configuration InitConfte ∈ Confte is a tuple (pinit, InitVL, uinit, rinit, linit),

where pinit(i) = qc, uinit(i) = ε (representing an empty buffer), rinit(i)(r) = regVinit (a
special initial value of a register) and linit = {1, . . . , n} for 1 ≤ i ≤ n, r ∈ R;

The transition relation →te is the least relation satisfying the transition rules shown in
Fig. 1. Our operational semantics is similar to the one presented in [8].

– Register-Assign rule: A function fre : (R → D) × RE → D is used to evaluate register
expression re under register valuation rv of current process, and its value is assigned to
register r1.

– Library-Havoc and MGC-Havoc rules: havoc commands are executed for libraries and
the most general clients respectively.

– Assume rule: If the value of register r1 is true, current process can execute assume
command. Otherwise, it must wait.

– Read rule: A function lookup(u, d, i, x) is used to search for the latest value of x from
its processor-local store buffer or the main memory, i.e.,

lookup(u,d,i,x) =
{
a if u(i) ↑�x = (x, a) · l, for some l ∈ �∗

x
d(x) otherwise

where �x = {(x, a)|a ∈ D} is the set of pending write actions for x .
A read actionwill take the latest value of x from its processor-local store buffer if possible,
otherwise, it looks up the value in memory.

– Write rule: A write action will insert a pair of a location and a value to the tail of its
processor-local store buffer.

– Lock and unlock rules: Only when the processor-local store buffer is empty, a processor
can perform lock or unlock commands. A process executing lock makes itself the only
active process and prevents other processes from executing commands. After a process
executes unlock command, other processes become active. Thus, the commands executed
from lock to unlock are not interleaved with commands of other processes.
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Fig. 1 Transition rules of →te

– Flush rule: The memory system may decide to flush the entry at the head of a processor-
local store buffer to memory at any time.

– Call and return rules: To deal with call command, a call marker is added into the tail of
processor-local store buffer and current process starts to execute the initial position of
method m. When the process comes to the final position of method m it can launch a
return action, add a return marker to the tail of processor-local store buffer and start to
execute the most general client.

– Flush-Call and Flush-Return rules: The call and return marker can be discarded when
they are at the head of processor-local store buffer. Such actions are used to define TSO-
to-TSO linearizability only.

Given above commands, a memory barrier can be implemented as “lock;unlock”. The
cas (compare-and-swap) commands can also be implemented. A cas command takes three
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arguments: amemory location x , an expected value a and a new value b. It atomically reads x ,
updates it with b and returns 1 when the value of x is a; otherwise, it does nothing and return
0. As in [8], cas(x, a, b) is defined as syntactic sugar for the control-flow graph representation
of:

lock;
if (x==a) {x=b; unlock; return 1;}
{unlock; return 0;}

3 TSO-to-TSO linearizability and equivalent characterization

In this section we introduce the definition of TSO-to-TSO linearizability and then prove that
it can be equivalently characterized by extended history inclusion. We also give definitions
of variants of histories.

3.1 TSO-to-TSO linearizability

The behavior of a library is typically represented by histories of interactions between the
library and the clients calling it (through call and return actions). A finite sequence h ∈
(�cal∪�ret)

∗ is a history of an LTSA if there exists a trace t ofA such that t ↑(�cal∪�ret)= h.
Let history(A) denote all the histories of A.

TSO-to-TSO linearizability is a variant of linearizability on the TSO memory model. It
additionally concerns the behavior of a library in the context of processor-local store buffers,
i.e., the interactions between the library and store buffers through flush call and flush return
actions. A finite sequence eh ∈ (�cal ∪�ret ∪�fcal ∪�fret)

∗ is an extended history of an LTS
A if there exists a trace t ofA such that t ↑(�cal∪�ret∪�fcal∪�fret)= eh. Let ehistory(A) denote
all the extended histories ofA, and eh|i the projection of eh to the actions of the i th process.
Two extended histories eh1 and eh2 are equivalent, if for each 1 ≤ i ≤ n, eh1|i = eh2|i .
Definition 1 (TSO-to-TSO linearizability [8]) For any two extended histories eh1 and eh2
of libraries, eh1 is TSO-to-TSO linearizable to eh2, if

– eh1 and eh2 are equivalent;
– there is a bijection π : {1, . . . , |eh1|} → {1, . . . , |eh2|} such that for any 1 ≤ i ≤ |eh1|,

eh1(i) = eh2(π(i));
– for any 1 ≤ i < j ≤ |eh1|, if (eh1(i) ∈ �ret ∪ �fret) ∧ (eh1( j) ∈ �cal ∪ �fcal), then

π(i) < π( j).

For two libraries L1 and L2, we say that L2 TSO-to-TSO linearizes L1, if for any
eh1 ∈ ehistory(�L1, n�te), there exists eh2 ∈ ehistory(�L2, n�te), such that eh1 is
TSO-to-TSO linearizable to eh2.

Informally speaking, if eh1 is TSO-to-TSO Linearizable to eh2, then eh2 keeps all the non-
overlapping pairs of call/flush call and return/flush return actions in eh1 in the same order.
It is proved in [8] that TSO-to-TSO linearizability satisfies a so-called abstraction theorem.
Therefore, if L2 TSO-to-TSO linearizes L1, then it is safe to replace L1 with L2 and this will
not introduce any new behaviors in the view of client programs.

The following is an example of implementation library and its specification library of
TSO-to-TSO linearizability in [8]. The implementation library, spinlock, of software lock is
used in various version of the Linux kernel [4] and is shown in (a):
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Method release writes 1 to x without executing a memory barrier or lock, which can result
in a delay for other processes on TSO. The abstraction library is given in (b) as follows:

word x = 1;
acquire() {

while (1) {
lock;
x–;
if (x >= 0) {

unlock;
return;

}
unlock;
while (x <= 0) ;

}
}

release() { x = 1; }
(a)

word x = 1;
acquire() {

lock;
assume(x == 1);
x = 0;
unlock;

}

release() { x = 1; }

(b)

Here, the write to x in the release of abstraction library can also be delayed in the store
buffer. It can be seen that the resulting specification still guarantees mutual exclusion. It has
been proved in [8] that the abstraction library TSO-to-TSO linearizes the implementation
library.

Apart from histories and extended histories, there are other forms of sequences that are
used to represent behaviors of libraries. For example, in [9,10] the behavior of a method
starts with call action and ends with flush return action. In such situation the behavior of a
library essentially contains sequences of call and flush return actions. To deal with all possible
variants of histories, we generalize the notions of history as follows: Let cal, ret, fcal and
fret represent call, return, flush call and flush return actions, respectively. Given distinct
x, y, z, w ∈ {cal, ret, fcal, fret}, a (x)-history is a sequence of x actions, a (x, y)-history is
a sequence of x and y actions, a (x, y, z)-history is a sequence of x , y and z actions, and a
(x, y, z, w)-history is a sequence of x , y, z andw actions. It is easy to see that there are fifteen
variants of histories, while the (standard) histories can be defined as (call, ret)-histories, and
extended histories can be defined as (call, ret, fcal, fret)-histories.

3.2 Equivalence characterization

To handle the decision problem of TSO-to-TSO linearizability, we show that the extended
history inclusion is an equivalent characterization of TSO-to-TSO linearizability. It is obvious
that extended history inclusion implies TSO-to-TSO linearizability. To prove the opposite
direction, we need to prove that if L2 TSO-to-TSO linearizes L1, eh1 ∈ ehistory(�L1, n�te),
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eh2 ∈ ehistory(�L2, n �te) and eh1 is TSO-to-TSO linearizable to eh2, then eh1 ∈
ehistory(�L2, n�te).

A transformation ⇒ER is a relation between two extended histories and is defined as
follows: eh1 ⇒ER eh2, if eh1 = l1 · α · β · l2, eh2 = l1 · β · α · l2 and (α, β) is neither in
(�ret∪�fret)×(�cal∪�fcal), nor actions of same process. Or we can say, eh2 can be obtained
by swapping two adjacent elements of eh1 without violating TSO-to-TSO linearizability. We
write ⇒∗

ER to denote the transition closure of ⇒ER.
Given twoequivalent extendedhistories eh1 and eh2,we say thatπ is their bijection, ifπ is a

bijectionbetween {1, . . . , |eh1|} and {1, . . . , |eh2|}, and eh1(i) = eh2(π(i)) for each i .Weuse
predicate eWit(eh1, eh2, i1, i2) to denote a difference between two equivalent extended histo-
ries, and eWit(eh1, eh2, i1, i2) holds if i1 < i2 and π−1(i1) > π−1(i2). Given two equivalent
extended histories eh1 and eh2, a non-negative distance function eWit Sum(eh1, eh2) is used
to measure the difference between them. Formally, eWitSum(eh1, eh2) = |{(m, n)|eWit(eh1,
eh2,m, n) holds}|.

Through the well-defined transformation relation and distance function, we can show that
if an extended history eh1 is TSO-to-TSO linearizable to another extended history eh2 and
eh1 
= eh2, then there exists a third extended history eh3, such that

– eh1 is TSO-to-TSO linearizable to eh3;
– eh3 ⇒ER eh2;
– eh3 is TSO-to-TSO linearizable to eh2;
– the distance between eh1 and eh3 is strictly less than the one between eh1 and eh2.

Based on this, we prove that if eh1 is TSO-to-TSO linearizable to eh2, then eh1 ⇒∗
ER eh2.

Or we can say, eh2 can be obtained from eh1 by a finite number of ⇒ER transformations. We
also prove that if eh2, an extended history of �L, n�te, can be obtained from eh1 by one step
of ⇒ER transformation, then eh1 is also an extended history of �L, n�te.

Based on the two results in above paragraph, it is not hard to see that TSO-to-TSO
linearizability implies extended history inclusion. Therefore, extended history inclusion is
an equivalent characterization of TSO-to-TSO linearizability, as presented by the following
lemma.

Lemma 1 For any two libraries L1 and L2, L2 TSO-to-TSO linearizes L1 if and only if
ehistory(�L1, n�te) ⊆ ehistory(�L2, n�te).

4 Specific libraries for classic-lossy single-channel systems

In this section, we introduce the definition of classic-lossy single-channel systems, and then
show how to simulate a classic-lossy single-channel system with a concurrent library.

4.1 Classic-lossy single-channel systems

A classic-lossy single-channel system [19] is a tuple S = (Qcs, �cs, {ccs}, �cs, 	cs), where
Qcs is a finite set of control states, �cs is a finite alphabet of messages, ccs is the name of the
single channel, �cs is a finite set of transition labels and 	cs ⊆ Qcs ×�∗

cs ×�cs × Qcs ×�∗
cs

is a transition relation.
Given two finite sequences l1 = α1 · α2 · . . . · αu and l2 = β1 · β2 · . . . · βv , we say that

l1 is a subword of l2, denoted l1 � l2, if there exists 1 ≤ i1 < · · · < iu ≤ v such that for
any 1 ≤ j ≤ u, α j = βi j . Then, the operational semantics of S is given by an LTS CL(S)
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= (Confcs, �cs,→cs, initConfcs), where Confcs = Qcs × �∗
cs is a set of configurations with

initConfcs ∈ Confcs as the initial configuration. The transition relation →cs is defined as

follows: (q1,W1)
α−→cs (q2,W2) if there exists (q1,U, α, q2, V ) ∈ 	cs and W ′ ∈ �∗

cs such
that U · W ′ � W1 and W2 � W ′ · V .

It is known that for two configurations (q1,W1), ( q2,W2) ∈ Confcs of a classic-lossy
single-channel system S, the trace inclusion between (q1,W1) and (q2,W2) is undecidable
[19].

4.2 Simulation on the TSO memory model

On the TSO memory model flush actions are launched nondeterministically by the memory
system. Therefore, between two consecutive read(x, _) actions,more than one flush actions to
x may happen. The second read action can only read the latest flush action to x , while missing
the intermediate ones. These missing flush actions are similar to the missing messages that
may happen in a classic-lossy single-channel system. This makes it possible to simulate a
classic-lossy single-channel system with a concurrent program running on the TSO memory
model. We implement such simulation through a library LS,q,W specifically constructed
based on a classic-lossy single-channel system S and a given configuration (q,W ) ∈ Confcs.

For a classic-lossy single-channel system S =(Qcs, �cs, {ccs}, �cs,	cs), assume the finite
data domain Dcs = Qcs ∪ �cs ∪ 	cs ∪ {
, start, end,⊥, true, false, regVinit, rule f }, where
Qcs ∩ �cs = ∅, Qcs ∩ 	cs = ∅, �cs ∩ 	cs = ∅, and the symbols 
, start, end, ⊥, true, false,
regVinit and rule f do not exist in Qcs ∪ �cs ∪ 	cs. Given a configuration (q,W ) ∈ Confcs of
S, the library LS,q,W is constructed with three methods M1, M2 and M3, and three private
memory locations x , y and z. x is used to transmit the channel contents from M2 to M1, while
y is used to transmit the channel contents from M1 to M2. z is used to transmit the transition
labels of CL(S) from M2 to M3. It is also used to synchronize M2 and M3. The symbol 


is used as the delimiter to ensure that one element will not be read twice. The symbols start
and end represent the start and the end of the channel contents, respectively. ⊥ is the initial
value of x , y and z. The symbol rule f is an additional transition rule that is used to indicate
the end of a simulation.

We now present the three methods in the pseudo-code, shown in Methods 1, 2 and 3. The
if and while statements used in the pseudo-code can be easily implemented by the assume
commands as well as other commands in our formation of a library. For the sake of brevity,
the following macro notations are used. For sequence l = a1 · . . . · am , let writeSeq(x,l)
denote the commands of writing a1, 
, . . . , am, 
 to x in sequence, and readSeq(x,l) denote
the commands of reading a1, 
, . . . , am, 
 from x in sequence. We use v := readOne(x)
to represent the commands of reading e, 
 from x in sequence for some e 
= 
 and then
assigning e to v. If readSeq(x, l) or readOne(x) fails to read the specified content, then the
calling process will no long proceed. We use writeOne(x, reg) to represent the commands of
writing a, 
 to x in sequence where a is the current value of register reg. In the pseudo-code,
r is a register in R.

The pseudo-code of method M1 is shown in Method 1. M1 contains an infinite loop that
never returns (Lines 1–3). At each round of the loop, it reads a new update from x and writes
it to y.

123



660 C. Wang et al.

Method 1: M1

Input: an arbitrary argument
1 while true do
2 r := readOne(x);
3 writeOne(y, r);

The pseudo-code of method M2 is shown in Method 2. M2 first guesses a transition rule
rule1, puts rule1 and W into the processor-local store buffer by writing them to x (Lines
1–2). Then, it begins an infinite loop that never returns (Lines 3–16). At each round of the
loop, it reads the current transition rule rule2 ∈ 	cs of S (Line 4) and guesses a transition
rule rule3 ∈ 	cs ∪ {rule f } (Line 5). If M2 guesses the rule rule f in Line 5, then in the next
round of this loop it will be blocked at Line 4 and the simulation terminates. M2 does not
confirm rule2 until it reads start ·U1 from y at Line 6 (intermediate values of y may be lost).
At Line 7, it writes rule3 · start to y. Then, it reads the remaining contents of method M1’s
processor-local store buffer (intermediate values of y may be lost) and writes them and V1
to x (Lines 8–13). In Lines 14–16, it transmits the transition label α1 to method M3.

Method 2: M2

Input: an arbitrary argument
1 guess a transition rule rule1 = (q, _, _, _, _) ∈ 	cs ∪ {rule f };
2 writeSeq(x, rule1 · start · W · end);
3 while true do
4 r := readOne(y) for some rule rule2 = (q1,U1, α1, q2, V1) ∈ 	cs;
5 guess a transition rule rule3 that is either some (q2, _, _, _, _) ∈ 	cs or rule f ;
6 readSeq(y, start ·U1);
7 writeSeq(x, rule3 · start);
8 while true do
9 r := readOne(y);

10 if r = end then
11 break;
12 writeSeq(x, r);
13 writeSeq(x, V1 · end);
14 z := α1;
15 while z 
= ⊥ do
16 ;

The pseudo-code of method M3 is shown in Method 3. M3 first waits for M2 to transmit
transition label to it though z by a non ⊥ value (Lines 1–4). Then it acknowledges M2 at
Lines 5–7 and returns this transition label z at Line 8. M3 uses lock and unlock commands to
communicate with M2. It never puts a pending write action to its processor-local store buffer.
If the programming language does not provide lock and unlock commands of TSO memory
model but cas command instead, it is safe to use cas(z, r,⊥); to take place of Lines 5–7 of
method M3.
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Method 3: M3

Input: an arbitrary argument
Output: transition label for one step in CL(S)

1 while true do
2 r := z;
3 if r 
= ⊥ then
4 break;
5 lock;
6 z := ⊥;
7 unlock;
8 return r ;

5 Undecidability of TSO-to-TSO linearizability

As themain result of this paper, we present in this section that the TSO-to-TSO linearizability
of concurrent libraries is undecidable for a bounded number of processes. We first reduce
the trace inclusion problem between any two configurations of a classic-lossy single-channel
system to the history inclusion problem between two specific concurrent libraries. Then, our
main undecidability result follows from the equivalence between the history inclusion and the
extended history inclusion for these two libraries. Recall that the latter is equivalent to TSO-
to-TSO linearizability between the two libraries based on the above Lemma 1. Moreover, we
prove that in general all variants of history inclusion problems, including history inclusion
problem and extended history inclusion problem, are undecidable on TSO for a bounded
number of processes.

5.1 Undecidability of history inclusion

In this subsection we show that given a classic-lossy single-channel system S and a con-
figuration (q,W ) ∈ Con fcs , the histories of library LS,q,W simulate exactly the paths of
S starting from (q,W ). Therefore, trace inclusion between (q1,W1) and (q2,W2) can be
reduced into history inclusion between history(�LS,q1,W1 , 3�te) and history(�LS,q2,W2 , 3�te).

A path pS = (q1,W1)
α1−→cs (q2,W2)

α2−→cs · · · αk−→cs (qk+1,Wk+1) ∈ path(CL(S),

(q1,W1)) is conservative, if the following two conditions hold: (1) it contains at least one
transition, (2) assume the i th step uses rule ri = (qi ,Ui , αi , qi+1, Vi ) for each 1 ≤ i ≤ k,
then for each 1 ≤ i ≤ k, there exists W ′

i ,W
′′
i ∈ �∗

cs such that Ui · W ′
i � Wi , W ′′

i � W ′
i and

Wi+1 = W ′′
i ·Vi . Intuitively, each i th step of a conservative path does not lose any element in

Vi . We prove that the traces of conservative paths equals to that of all paths for classic-lossy
single-channel systems. A trace tL ∈ trace(�LS,q,W , 3�te) is effective, if tL contains at least
one return action return(_, M3, _). Otherwise, it is ineffective.

There is actually a close connection between the conservative paths of CL(S) and the
effective traces of �LS,q,W , 3�te. An effective trace tL ∈ trace(�LS,q,W , 3�te) and a conser-
vative path pS ∈ path(CL(S), (q,W )) correspond, if the sequence of return values of M3

in tL is the same as the sequence of transition labels of pS . The following lemma states that
given a conservative path pS ∈ path(CL(S), (q,W )), there exists a corresponding effective
trace tL ∈ trace(�LS,q,W , 3�te).
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Lemma 2 Given a conservative path pS ∈ path(CL(S), (q,W )), there exists an effective
trace tL ∈ trace(�LS,q,W , 3�te) such that tL and pS correspond.

Proof (Sketch) Assume pS = (q1,W1)
α1−→cs (q2,W2)

α2−→cs · · · αk−→cs (qk+1,Wk+1),
where (1) (q1,W1) = (q,W ), (2) for each i , the i th transition uses rule ri =
(qi ,Ui , αi , qi+1, Vi ), (3) for each i , ∃W ′

i ,W
′′
i , such that Ui · W ′

i � Wi , W ′′
i � W ′

i and
Wi+1 = W ′′

i · Vi .
Let us sketch how to construct a path pL ∈ path(�LS,q,W , 3�te) that simulates k transitions

on pS . From initial configuration we first perform the following actions in sequence:

– Call M1 in process 1 and call M2 in process 2.
– Run M2 from Line 1 to Line 2, write r1 · start · W1 · end to x while no flush action of

process 2 happens during this period.

To simulate the i th (1 ≤ i ≤ k) transition of pS , we need to perform the following actions
in sequence:

– Call M3 in process 3.
– Run M2 from Line 3 to Line 13. M2 reads ri · start · Ui · W ′′

i · end from y and writes
ri+1 · start · W ′′

i · Vi · end to x (in the case of i = k, M2 write rule f · start · W ′′
k · Vk · end

instead). Then M2 transmits transition label αi to M3 and M3 returns αi . Since Wi+1 is
equal to W ′′

i · Vi , M2 writes Wi+1 to x while it simulates the i th transition of pS .

It is obvious that pL holds as required and its trace, tL, corresponds with pS . This com-
pletes the proof of Lemma 2. ��

Figure 2 shows an example of generating a corresponding effective trace of �LS,q,W ,

3�te from a conservative path of CL(S). Note that many possible executions of �LS,q,W ,

3�te can get into deadlock due to the operational semantics and the pseudo-code of each
method. Herein, we consider only the executions where M3 always manages to output return
labels accordingly. In Fig. 2, contents of a store buffer are written from left to right, while
the time progresses from left to right, too. Assume (q,W ) = (q1, a · a) and there is a

conservative path pS = (q1, a · a)
α1−→cs (q2, b · c) α2−→cs (q3, a), where the first step uses

rule rule1 = (q1, a, α1, q2, b · c) (loses a in the channel), and the second one uses rule
rule2 = (q2, b, α2, q3, a) (loses c in the channel). For this path, we can get a corresponding
effective trace of tL as follows:

1. Run M1, M2 and M3 in processes P1, P2 and P3 respectively. Recall that M1 and M2

never return, while each invocation of M3 is associated with an interval shown in Fig. 2.
2. At Line 2 of Method 2, M2 puts (x, rule1), (x, 
), (x, start), (x, 
), (x, a), (x, 
), (x, a),

(x, 
), (x, end), (x, 
) into the store buffer of process P2.
3. By several loops between Lines 1–3, M1 captures the updates of x in a lossy manner,

and puts (y, rule1), (y, 
), (y, start), (y, 
), (y, a), (y, 
), (y, end), (y, 
) into the store
buffer of process P1.

4. At Line 4 of Method 2, M2 captures the updates of y in a lossy manner. M2 guesses an
applicable transition rule rule2, and then puts (x, rule2) ,(x, 
), (x, start), (x, 
), (x, b),
(x, 
), (x, c), (x, 
), (x, end), (x, 
) into the store buffer of process P2, according to
transition rule rule1.

5. M2 sends the transition label α1 to M3 at Line 14 of Method 2. Then, M3 returns α1 and
we finish simulating the first transition in pS .
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Fig. 2 A conservative path and its corresponding effective trace

6. By several loops between Lines 1–3, M1 captures the updates of x in a lossy manner,
and puts (y, rule2), (y, 
), (y, start), (y, 
), (y, b), (y, 
), (y, end), (y, 
) into the store
buffer of process P1.

7. At Line 4 of Method 2, M2 captures the updates of y. Then, M2 decides to terminate the
simulation and puts (x, rule f ),(x, 
), (x, start), (x, 
), (x, a), (x, 
), (x, end), (x, 
) into
the store buffer of process P2, according to transition rule rule2.

8. M2 sends the transition label α2 to M3 at Line 14 of Method 2. Then, M3 returns α2 and
we finish simulating the second transition in pS .

It can be seen that tL and pS correspond in this example. The following lemma is the
opposite direction of Lemma 2.

Lemma 3 For each effective trace tL ∈ trace(�LS,q,W , 3�te), there exists a conservative
path pS ∈ path(CL(S), (q,W )) such that tL and pS correspond.

Proof (Sketch) Given a path pL ∈ path(�LS,q,W , 3�te) and let tL be its trace. It is easy to
see that the sequence of values of x which is read by M1 is a subword of the the sequence of
values of x which is written by M2. And the sequence of values of y which is read by M2 is
a subword of the the sequence of values of y which is written by M1.

A round ofM2 is executions fromLine 1 to Line 2 or fromLine 3 to Line 13 ofM2. Assume
that tL has k return actions of M3, and for each 1 ≤ i ≤ k, M2 guesses rule ri = (qi ,Ui , αi ,

qi+1, Vi ) in its i th round. M2 writes r1 · start ·W · end to x during its first round. Assume for
each 1 < i ≤ k, M2 reads ri · start · Ui · L ′

i · end from y during its i+1th round and writes
ri · start · L ′

i · Vi · end to x during its i+1th round.
Recall that M2 acts according to transition rules ri and when M1 reads updates of x or

M2 reads updates of y, arbitrary message can be lost. Therefore, it is not hard to see that

pS = (q,W )
α1−→cs (q2, L ′

1 · V1) α2−→cs · · · αk−→cs (qk+1, L ′
k · Vk) is a conservative path of

path(CL(S), (q,W )) and tL and pS correspond, which completes the proof of Lemma 3. ��
Lemmas 2 and 3 states that there is a close connection between the conservative paths

of CL(S) and the effective traces of �LS,q,W , 3�te. Based on them we can now prove the
following lemma, which shows that the history inclusion between concurrent libraries is
undecidable on the TSO memory model for a bounded number of processes.

Lemma 4 For any two libraries L1 and L2, it is undecidable whether history(�L1, 3�te)
⊆ history(�L2, 3�te).
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Proof (Sketch) Based on Lemmas 2 and 3, for any two configurations (q1,W1), (q2, W2) ∈
Confcs of a classic-lossy single-channel systemS, let us prove that history(�LS,q1,W1 , 3�te) ⊆
history (�LS,q2,W2 , 3�te), if and only if trace(CL (S), (q1,W1)) ⊆ trace( CL(S), (q2,W2)).

The only if direction is proved by contradiction. Assume history(�LS,q1,W1 , 3�te) ⊆
history(�LS,q2,W2 , 3�te) but trace(CL(S), (q1,W1)) is not a subset of trace(CL(S), (q2,
W2)). Thus there must exists a trace tS1, such that tS1 ∈ trace(CL(S), (q1,W1)) and
tS1 /∈ trace(CL(S), (q2, W2)). It is clear that tS1 
= ε.

Let pS1 be the path of tS1 on CL(S) from (q1,W1). We can safely assume pS1 to be
conservative. According to Lemma 2 there exists an effective trace tL1 ∈ trace(�LS,q1,W1 ,

3�te), such that tL1 and pS1 correspond. Let history h = tL1 ↑(�cal∪�ret). It is obvious that
h ∈ history(�LS,q1,W1 , 3�te) and by assumption h ∈ history(�LS,q2,W2 , 3�te).

There exists a trace tL2 ∈ trace(�LS,q2,W2 , 3�te) such that h = tL2 ↑(�cal∪�ret). It is
obvious that tL2 is effective. According to Lemma 3, there exists a conservative path pS2 ∈
path(CL(S), (q2,W2)) such that tL2 and pS2 correspond. Let trace tS2 be the trace of pS2.
Thus tS2 ∈ trace(CL(S), (q2,W2)) by its definition. Because the sequence of return values of
M3 in tL1 is same to that in tL2, tL1 and pS1 correspond, and tL2 and pS2 correspond, we can
obtain that tS1 = tS2 and tS1 ∈ trace(CL(S), (q2,W2)), which contradicts our assumption.

The if direction can be similarly proved and its proof is omitted here. Therefore, the
undecidability result follows from the fact that the trace inclusion problem between any two
configurations of a classic-lossy single-channel system is undecidable [19]. ��
5.2 Undecidability of TSO-to-TSO linearizability

Although we prove above that history inclusion is undecidable on the TSO memory model,
there is still a gap between the history inclusion and the extended history inclusion between
concurrent libraries. Obviously there exist libraries L1 and L2 such that history(�L1, n�te) ⊆
history(�L2, n�te) but ehistory(�L1, n�te) � ehistory(�L2, n�te). We show in this subsection
that for the two librariesLS,q1,W1 andLS,q2,W2 , corresponding to the configurations (q1,W1)

and (q2,W2) of a classic-lossy single-channel system, respectively, the history inclusion and
the extended history inclusion betweenLS,q1,W1 andLS,q2,W2 coincides on the TSOmemory
model.

Without loss of generality, assume M1 and M2 of LS,q,W are called by processes P1,
P2, respectively; while M3 of LS,q,W is repeatedly called by process P3. Then, an extended
history eh ∈ ehistory(�LS,q,W , 3�te) that contains at least one return action of M3 is in the
following form:

– The first six actions of eh are always call and corresponding flush call actions of M1, M2

and M3, while these actions may occur in any order.
– The projection of eh on Pi is exactly call(i, Mi , _) · flushCall(i, Mi , _) for i ∈ {1, 2}.
– Figure 3 shows the possible positions of flush call (fcal) and flush return (fret) actions in

eh. Since M3 always executes lock and unlock commands before it returns, during each
round of a call to M3 in P3, the flush call action must occur before the lock action (see the
dashed vertical lines in Fig. 3); hence it can only occur before the return action of M3.
During each round of a call to M3 in P3, the flush return action may occur alternatively
at two positions: the first position is after the return action of M3 and before the next
round of a call action of M3, as shown by the position of fret1 in Fig. 3 (a); while the
second one is after the next round of a call action of M3 and before the consequent flush
call action, as shown by the position of fret1 in Fig. 3 (b).
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(a)

(b)

Fig. 3 Possible positions of flush call and flush return actions. a fret1 occurs between ret1 and cal2, b fret1
occurs between cal2 and fcal2

To prove that the history inclusion and the extended history inclusion coincide
between libraries LS,q1,W1 and LS,q2,W2 , we need to show that for an extended his-
tory eh1 of �LS,q1,W1 , 3�te, if eh1 contains a return action in P3 and eh1 ↑(�cal∪�ret)∈
history(�LS,q2,W2 , 3�te), then eh1 ∈ ehistory(�LS,q2,W2 , 3�te). Because eh1 ↑(�cal∪�ret) is
a history of �LS,q2,W2 , 3�te, there exists a path p′

L of �LS,q2,W2 , 3�te corresponding to eh1.
From p′

L we can generate another path pL of �LS,q2,W2 , 3�te such that the extended history
along pL is exactly eh1.

The path pL is generated from p′
L by changing the positions of the flush return actions.

Recall that during each round of a call to M3, the flush return action may occur alternatively
at two positions only. Since M3 does not insert any pending write action into the process P3’s
store buffer, p′

L can be transformed into pL by swapping each flush return action in p′
L from

its current position to the other possible one (if necessary).
An extended history is effective if it contains at least one return(_, M3, _) action. Other-

wise, it is ineffective. The following lemma formalizes the idea describe above.

Lemma 5 For a classic-lossy single-channel system S and two configurations (q1,W1),

(q2,W2) ∈ Confcs, if eh1 ∈ ehistory(�LS,q1,W1 , 3�te) is an effective extended history and
eh1 ↑(�cal∪�ret ) ∈ history(�LS,q2,W2 , 3�te), then eh1 ∈ ehistory(�LS,q2,W2 , 3�te).

With the help of Lemma 5, we can prove that the history inclusion and the extended history
inclusion between the specific libraries coincide on the TSO memory model.

Lemma 6 For two configurations (q1,W1), (q2,W2) of a classic-lossy single-channel
system S, history(�LS,q1,W1 , 3�te) ⊆ history(�LS,q2,W2 , 3�te) if and only if ehistory
(�LS,q1,W1 , 3�te) ⊆ ehistory(�LS,q2,W2 , 3�te).

Proof The if direction is obvious.
The only if direction can be proved by contradiction. Assume there is an extended history

eh1 such that eh1 ∈ ehistory(�LS,q1,W1 , 3�te) but eh1 /∈ ehistory(�LS,q2,W2 , 3�te).
It can be seen that the sets of the ineffective extended histories of LS,q1,W1 and LS,q2,W2

are the same. By assumption, eh1 is not an ineffective extended history of LS,q2,W2 , so eh1
must be an effective extended history of LS,q1,W1 .

Let history h = eh1 ↑(�cal∪�ret). It is obvious that h ∈ history(�LS,q1,W1 , 3�te). Then, by
assumption, h ∈ history(�LS,q2,W2 , 3�te). By Lemma 5, eh1 ∈ ehistory( �LS,q2,W2 , 3 �te),
which contradicts the assumption. ��
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The undecidability of TSO-to-TSO linearizability for a bounded number of processes is
a direct consequence of Lemmas 1, 4 and 6.

Theorem 1 For any two concurrent libraries L1 and L2, it is undecidable whether L2 TSO-
to-TSO linearizes L1 for a bounded number of processes.

5.3 Undecidability of all variants of history inclusion problems

In this subsection we show that all variants of history inclusion problems are undecidable on
TSO for a bounded number of processes.

By constructing a close connection between the conservative paths of CL(S) and return
sequences, as in the undecidability proof of Lemma 4, it is not hard to prove that (ret)-history
inclusion problem is also undecidable on TSO for a bounded number of processes.

Recall that flush call action has fixed positions, flush return action has two possible posi-
tions and can be swapped from one position to another position if necessary. Therefore, it
can be similarly proved as in Theorem 1 that, the (fcal, ret)/ (cal, fcal, ret)/ (fret)/ (cal, fret)/
(fcal, fret)/ (cal, fcal, fret)/ (ret, fret)/ (cal, ret, fret)/ (fcal, ret, fret)-history inclusion prob-
lems are all undecidable on TSO for a bounded number of processes.

To prove that other variants of history inclusion problems to be undecidable, we slightly
modify the library LS,q,W into library Lc

S,q,W . The only difference between Lc
S,q,W and

LS,q,W is method M3, and the pseudo-code of method M3 of Lc
S,q,W is shown in Method

4. M3 of Lc
S,q,W needs to ensure that if M3 returns, then its argument and return value must

equal to one step of transitions of S.

Method 4: M3

Input: some value a ∈ �cs

Output: transition label for one step in CL(S)

1 while true do
2 r := z;
3 if r 
= ⊥ then
4 break;
5 lock;
6 z := ⊥;
7 unlock;
8 while r 
= a do
9 ;

10 return r ;

According to the construction ofLc
S,q,W , it is obvious that if α1 · . . . ·αk is a trace of CL(S)

from (q,W ), then there must be a trace t ∈ trace(�Lc
S,q,W , 3�te), such that t contains k + 1

call actions of M3, and the first k arguments of M3 are α1, . . . , αk , while the last argument
of M3 is irrelevant. It is not hard to construct a close connection between the conservative
paths of CL(S) and sequences of call actions (except the last one), and this also holds for
flush call actions. Therefore, it is not hard to prove that, the (cal)/ (fcal)/ (cal, fcal)-history
inclusion problems are undecidable on TSO for a bounded number of processes.

The following theoremstates that all variants of history inclusion problems are undecidable
on TSO for a bounded number of processes.
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Theorem 2 On TSO memory model, all variants of history inclusion problem are undecid-
able for a bounded number of processes.

Similarly, method M3 of Lc
S,q,W can use cas commands instead of lock and unlock com-

mands. Therefore, on other relaxed memory models that are weaker than TSO and also
provides TSO behaviors for write, read and cas commands , the (cal)/ (ret)/ (cal, ret)-history
inclusion problems are still undecidable for a bounded number of processes.

6 Conclusion and future work

We have shown that the decision problem of TSO-to-TSO linearizability is undecidable for a
bounded number of processes. The proof method is essentially by a reduction from a known
undecidable problem, the trace inclusion problemof a classic-lossy single-channel system. To
facilitate such a reduction, we introduced an intermediate notion of history inclusion between
concurrent libraries on the TSO memory model. We then demonstrated that a configuration
(q,W ) of a classic-lossy single-channel system S can be simulated by a specific library
LS,q,W , interacting with three specific processes on the TSO memory model. Although his-
tory inclusion does not coincide with extended history inclusion in general, they do coincide
on a restricted class of libraries. We prove that LS,q,W lies within such class. Finally, our
undecidability result follows from the equivalence between extended history inclusion and
TSO-to-TSO linearizability.

The problem of the linearizability between libraries on the SC memory model [11] can
be shown to be decidable for a bounded number of processes. This is due to the provable
equivalence between history inclusion and linearizability on the SC memory model, while
the former is decidable. Thus, our work states clearly a boundary of decidability for lineariz-
ability of concurrent libraries on various memory models. As by-product of this work, we
prove that all variants of history inclusion problems are undecidable on TSO for a bounded
number of processes. This reveals that the undecidability of TSO-to-TSO linearizability
comes from the unbounded size of processor-local store buffer, instead of which actions are
chosen.

Other relaxed memory models, such as the memory models of POWER and ARM, are
much weaker than the TSO memory model. We conjecture that variants of linearizability
on these relaxed memory models may also be reduced to some new forms of extended
history inclusion, similar to the variants of linearizability for C/C++ memory model in
[3], and these variants should also be undecidable. However, the decision problem of
TSO-to-SC linearizability, which amounts to checking whether histories of a library on
the TSO memory model belong to a regular language, still remains open. For concurrent
programs using write, read and cas commands but not call and return actions, Atig et al.
proved in [2] that the reachability problem between any two configurations is decidable
for a bounded number of processes on the TSO memory model. However, this reacha-
bility problem turns much more complex when call and return actions are involved. In
[21], we have already proved that if the number of call and return actions is bounded in
a history, the decision problem of TSO-to-SC linearizability is decidable for a bounded
number of processes. As future work, we would like to further investigate the decidabil-
ity of TSO-to-SC linearizability and other variants of linearizability for relaxed memory
models.
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