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Abstract For higher-order (process) languages, characterising contextual equivalence is
a long-standing issue. In the setting of a higher-order π-calculus with session types, we
develop characteristic bisimilarity, a typed bisimilarity which fully characterises contextual
equivalence. To our knowledge, ours is the first characterisation of its kind. Using simple
values inhabiting (session) types, our approach distinguishes from untyped methods for
characterising contextual equivalence in higher-order processes: we show that observing as
inputs only a precise finite set of higher-order values suffices to reason about higher-order
session processes. We demonstrate how characteristic bisimilarity can be used to justify
optimisations in session protocols with mobile code communication.

1 Introduction

Context In higher-order process calculi communicated values may contain processes.
Higher-order concurrency has received significant attention from untyped and typed per-
spectives; see, e.g., [13,15,20,26,30,33]. In this work, we consider HOπ , a higher-order
process calculus with session communication: it combines functional constructs (abstrac-
tions/applications, as in the call-by-value λ-calculus) and concurrent primitives (synchro-
nisation on shared names, communication on linear names, recursion). By amalgamating
functional and concurrent constructs, HOπ may specify complex session protocols that
include both first-order communication (name passing) and higher-order processes (pro-
cess passing) and that can be type-checked using session types [9]. By enforcing shared and
linear usage policies, session types ensure that each communication channel in a process
specification conforms to its prescribed protocol. In session-based concurrency, distinguish-
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272 D. Kouzapas et al.

ing between shared and linear names is important, for computation conceptually involves
two distinct phases: the first one is non-deterministic and uses shared names, as it represents
the interaction of processes seeking compatible protocol partners; the second phase proceeds
deterministically along linear names, as it specifies the concurrent execution of the session
protocols established in the first phase.

Although models of higher-order concurrency with session communication have been
already developed (cf. works by Mostrous and Yoshida [25] and by Gay and Vasconce-
los [5]), their behavioural equivalences remain little understood. Clarifying the status of
these equivalences is essential to, e.g., justify non-trivial optimisations in protocols involv-
ing both name and process passing. An important aspect in the development of these typed
equivalences is that typed semantics are usually coarser than untyped semantics. Indeed,
since (session) types limit the contexts (environments) in which processes can interact, typed
equivalences admit stronger properties than their untyped counterpart.

The form of contextual equivalence typically used in concurrency is barbed congru-
ence [10,24]. A well-known behavioural equivalence for higher-order processes is context
bisimilarity [31]. This is a characterisation of barbed congruence that offers an adequate dis-
tinguishing power at the price of heavy universal quantifications in output clauses. Obtaining
alternative characterisations of context bisimilarity is thus a recurring, important problem
for higher-order calculi—see, e.g., [13,15,21,30,31,34]. In particular, Sangiorgi [30,31]
has given characterisations of context bisimilarity for higher-order processes; such char-
acterisations, however, do not scale to calculi with recursive types, which are essential
to express practical protocols in session-based concurrency. A characterisation that solves
this limitation was developed by Jeffrey and Rathke [13]; their solution, however, does
not consider linearity which, as explained above, is an important aspect in session-based
concurrency.

This work Building upon [13,30,31], our discovery is that linearity as induced by session
types plays a vital rôle in solving the open problem of characterising context bisimilarity
for higher-order mobile processes with session communication. Our approach is to exploit
the coarser semantics induced by session types to limit the behaviour of higher-order session
processes. Indeed, the use of session typed contexts (i.e., environments disciplined by session
types) leads to process semantics that admit stronger properties than untyped semantics.
Formally, we enforce this limitation in behaviour by defining a refined labelled transition
system (LTS) which effectively narrows down the spectrum of allowed process behaviours,
exploiting elementary processes inhabiting session types. We then introduce characteristic
bisimilarity: this new notion of typed bisimilarity ismore tractable than context bisimilarity,
in that it relies on the refined LTS for input actions and, more importantly, does not appeal
to universal quantifications on output actions.

Our main result is that characteristic bisimilarity coincides with context bisimilarity.
Besides confirming the value of characteristic bisimilarity as a useful reasoning technique
for higher-order processes with sessions, this result is remarkable also from a technical
perspective, for associated completeness proofs do not require operators for name match-
ing, in contrast to Jeffrey and Rathke’s technique for higher-order processes with recursive
types [13].

Outline Next, we informally overview the key ideas of characteristic bisimilarity, our char-
acterisation of contextual equivalence. Then, Sect. 3 presents the session calculus HOπ .
Section 4 gives the session type system for HOπ and states type soundness. Section 5
develops characteristic bisimilarity and states our main result: characteristic bisimilarity
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Characteristic bisimulation for higher-order session processes 273

and contextual equivalence coincide for well-typed HOπ processes (Theorem 2). Section 6
discusses related works, while Sect. 7 collects some concluding remarks.

This paper is a revised, extended version of the conference paper [16]. This presentation
includes full technical details—definitions and proofs, collected in Appendices 1 and 2.
In particular, we introduce higher-order bisimilarity (an auxiliary labelled bisimilarity) and
highlight its rôle in the proof of Theorem 2.We also elaborate further on the use case scenario
for characteristic bisimilarity given in [16] (the Hotel Booking scenario). Using an additional
example, given in Sect. 6,we compare our approachwith Jeffrey andRathke’s [13].Moreover,
we offer extended discussions of related works.

2 Overview: characteristic bisimulations

We explain how we exploit session types to define characteristic bisimilarity. Key notions
are triggered and characteristic processes/values. We first informally introduce some basic
notation and terminology; formal definitions will be given in Sect. 3.

Preliminaries The syntax of HOπ considered in this paper is given below. We write n to
range over shared names a, b, . . . and s, s′, . . . to range over session (linear) names. Also,
u, w denotes a name or a name variable. Session names are sometimes called endpoints. We
consider a notion of duality on names, particularly relevant for session names: we shall write
s to denote the dual endpoint of s.

Values V,W ::= u names (shared and linear)
| λx . P abstractions

Processes P, Q ::= u!〈V 〉.P | u?(x).P output and input
| u � l.P | u � {li : Pi }i∈I labelled choice
| X | μX.P recursion
| V W value application
| P | Q | (ν n)P | 0 composition, restriction, inaction

Hence, the higher-order character of HOπ comes from the fact that values exchanged in
synchronisations include abstractions.

The semantics ofHOπ can be given in terms of a labelled transition system (LTS), denoted

P
�−→ P ′, where � denotes a transition label or the internal action τ . This way, for instance,

P
n?〈V 〉−−−→ P ′ denotes an input transition (a value V received along n) and P

(ν m̃)n!〈V 〉−−−−−−→ P ′
denotes an output transition (a valueV emitted alongn, extruding names m̃).Weak transitions,

written P
�	⇒ P ′, abstract from internal actions in the usual way. Throughout the paper, we

write �,�′, . . . to denote binary relations on (typed) processes.
HOπ processes specify structured communications (protocols) as disciplined by session

types, denoted S, S′, . . ., which we informally describe next:

S ::= !〈U 〉; S | ?(U ); S output/input value of type U , continue as S
| ⊕{li : Si }i∈I | &{li : Si }i∈I internal/external labelled choice of an Si
| μt.S | t recursive protocol
| end completed protocol

As we will see, type U denotes first-order values (i.e., shared and session names) but also
shared and linear functional types, denoted U→
 and U� 
, respectively, where 
 is the
type for processes.
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274 D. Kouzapas et al.

Issues of context bisimilarity Context bisimilarity (denoted≈, cf. Definition 12) is an overly
demanding relation on higher-order processes. It is far from satisfactory due to two issues,
associated to demanding clauses for output and input actions. A first issue is the universal
quantification in the output clause of context bisimilarity. Suppose P � Q, for some context
bisimulation �. We have the following clause:

(�) Whenever P
(ν m̃1)n!〈V 〉−−−−−−→ P ′ there exist Q′, W such that Q

(ν m̃2)n!〈W 〉	⇒ Q′ and,
for all R with fv(R) = {x}, (ν m̃1)(P ′ | R{V/x})� (ν m̃2)(Q′ | R{W/x}).

Intuitively, process R above stands for any possible context to which the emitted value (V
and W ) is supposed to go. (As usual, R{V/x} denotes the capture-avoiding substitution of
V for x in process R.) As explained in [31], considering all possible contexts R is key to
achieve an adequate distinguishing power.

The second issue is due to inputs, and follows from the fact that we work with an early
labelled transition system (LTS). Thus, an input prefix may observe infinitely many different
values.

To alleviate these issues, in characteristic bisimilarity (denoted≈C, cf. Definition 18) we
take two (related) steps:

(a) We replace (�) with a clause involving a context more tractable than R{V/x} (and
R{W/x}); and

(b) We refine inputs to avoid observing infinitely many actions on the same input prefix.

Trigger processes To address (a), we exploit session types. We first observe that, for any V ,
process R{V/x} in (�) is context bisimilar to the process

P = (ν s)((λz. z?(x).R) s | s!〈V 〉.0)

In fact, through a name application and a synchronisation on session endpoint s we do have
P ≈ R{V/x}:

P
τ−→ (ν s)(s?(x).R | s!〈V 〉.0)
τ−→ R{V/x} | 0

where it is worth noticing that application and endpoint synchronisations are deterministic.
Now let us consider process TV below, where t is a fresh name:

TV = t?(x).(ν s)(x s | s!〈V 〉.0) (1)

If TV inputs value λz. z?(x).R then we have:

TV
t?〈λz. z?(x).R〉−−−−−−−−→ R{V/x} ≈ P

Processes such as TV offer a value at a fresh name; this class of trigger processes already
suggests a tractable formulation of bisimilarity without the demanding output clause (�).
Process TV in (1) requires a higher-order communication along t . As we explain below, we
can give an alternative trigger process; the key is using elementary inhabitants of session
types.
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Characteristic bisimulation for higher-order session processes 275

Characteristic processes and values To address (b), we limit the possible input values (such
as λz. z?(x).R above) by exploiting session types. The key concept is that of characteristic
process/value of a type, i.e., a simple process term that inhabits that type (Definition 13). To
illustrate the key idea underlying characteristic processes, consider the session type

S =?(S1→
); !〈S2〉;end ,

which abstracts a protocol that first inputs an abstraction (i.e., a function from values S1 to
processes), and then outputs a value of type S2. Let P be the process u?(x).(u!〈s2〉.0 | x s1),
where s1, s2 are fresh names. It can be shown that P inhabits session type S; for the purposes of
the behavioural theory developed in this paper, process P will serve as a kind of characteristic
(representative) process for S along name u.

Given a session type S and a name u, we write [(S)]u for the characteristic process of S
along u. Also, given a value type U (i.e., a type for channels or abstractions), we write [(U )]c
to denote its characteristic value (cf. Definition 13). As we explain next, we use [(U )]c to
refine input transitions.

Refined input transitions To refine input transitions, we need to observe an additional value,
λx . t?(y).(y x), called the trigger value (cf. Definition 14). This is necessary: it turns out that
a characteristic value alone as the observable input is not enough to define a sound bisimu-
lation (cf. Example 5). Intuitively, the trigger value is used to observe/simulate application
processes.

Based on the above discussion, we define an alternative LTS on typed processes, denoted
��−→. We use this refined LTS to define characteristic bisimulation (Definition 18), in which

the demanding clause (�) is replaced with a more tractable output clause based on character-
istic trigger processes (cf. (2) below). Key to this alternative LTS is the following (refined)
transition rule for input actions (cf. Definition 15) which, roughly speaking, given some fresh
t , only admits names m, trigger values λx . t?(y).(y x), and characteristic values [(U )]c:

P
n?〈V 〉−−−→ P ′ ∧ (V = m ∨ V ≡ λx . t?(y).(y x) ∨ V ≡ [(U )]c) ⇒ P

n?〈V 〉�−→ P ′

Note the different notation for standard and refined transitions:
n?〈V 〉−−−→ vs.

n?〈V 〉�−→ .

Characteristic triggers Following the same reasoning as (1), we can use an alternative trigger
process, called characteristic trigger process, to replace clause (�). Given a fresh name t and
a value V of with type U , we have:

t ⇐C V :U def= t?(x).(ν s)(s?(y).[(U )]y | s!〈V 〉.0) (2)

This formulation is justified, because given TV as in (1), we may show that

TV
t?〈[(?(U );end)]c〉�−→ ≈ t?(x).(ν s)(s?(y).[(U )]y | s!〈V 〉.0)

Thus, unlike process (1), the characteristic trigger process in (2) does not involve a higher-
order communication on t . In contrast to previous approaches [13,30] our characteristic
trigger processes do not use recursion or replication. This is key to preserve linearity of
session endpoints.

It is also noteworthy that HOπ lacks name matching, which is crucial in [13] to prove
completeness of bisimilarity. The lack of matching operators is compensated here with the
use of (session) types. Matching gives the observer the ability to test the equality of received
names. In contrast, in our theory a process trigger embeds a name into a characteristic process
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276 D. Kouzapas et al.

n, m ::= a, b | s, s u, w ::= n | x, y, z V, W ::= u | λx. P

P, Q ::= u! V .P | u?(x).P | | {li : Pi}i∈I

| X | μX.P | V W | P | Q | (ν n)P | 0

(a) Syntax.

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

μX.P ≡ P{μX.P/X} (ν n)0 ≡ 0

P | (ν n)Q ≡ (ν n)(P | Q) (n /∈ fn(P )) P ≡ Q if P ≡α Q

(b) Structural Congruence.

[App] (λx. P )V −→ P{V/x} [Pass] n! V .P | n?(x).Q −→ P | Q{V/x}

[Sel]
j ∈ I

j .Q | {li : Pi}i∈I −→ Q | Pj
[Res]

P −→ P

(ν n)P −→ (ν n)P

[Par]
P −→ P

P | Q −→ P | Q
[Cong]

P ≡ Q −→ Q ≡ P

P −→ P

(c) Reduction Semantics.

Fig. 1 HOπ : syntax and semantics (structural congruence and reduction)

so as to observe its (typed) behaviour. Thus, equivalent processes dealwith (possibly different)
names that have the same (typed) behaviour.

3 A higher-order session π -calculus

We introduce the higher-order session π -calculus (HOπ) which, as hinted at above, includes
both name and abstraction passing, shared and session communication, as well as recursion;
it is essentially the language proposed in [25], where a behavioural theory is not developed.

3.1 Syntax

The syntax of HOπ is defined in Fig. 1a. We use a, b, c, . . . to range over shared names
and s, s, . . . to range over session names. We use n,m, t, . . . for session or shared names.
Intuitively, session names represent deterministic communication endpoints, while shared
names represent non-deterministic points. We define the dual operation over names n as n
with s = s and a = a. This way, e.g., session names s and s are two dual endpoints. Name
variables are denoted with x, y, z, . . . , and recursive variables are denoted with X, Y, . . . .
Values V,W include name identifiers u, v, . . . (first-order values) and abstractions λx . P
(higher-order values), where P is a process P and x is a name parameter.

Process terms include usual π -calculus constructs for sending and receiving values V :
process u!〈V 〉.P denotes the output of V over name u, with continuation P , while process
u?(x).P denotes the input prefix on name u of a value that will substitute variable x in
the continuation P . Recursion is expressed by μX.P , which binds the recursive variable X
in process P . Process V W represents the application of abstraction V to value W . Typing
ensures thatV is not a name. In the spirit of session-basedπ-calculi [9], we consider processes
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Characteristic bisimulation for higher-order session processes 277

u � {li : Pi }i∈I and u � l.P to define labelled choice: given a finite index set I , process
u � {li : Pi }i∈I offers a choice among processes with pairwise distinct labels; process u � l.P
selects label l on name u and then behaves as P . Constructs for inaction 0 and parallel
composition P1 | P2 are standard. Name restriction (ν n)P is also as customary; we notice
that restriction for session names (ν s)P simultaneously binds endpoints s and s in P .

We usefv(P) andfn(P) to denote the sets of free variables and names in P , respectively.
In a statement, we will say that a name is fresh if it is not among the names of the objects
(processes, actions, etc.) of the statement. We assume that V in u!〈V 〉.P does not include
free recursive variables X . If fv(P) = ∅, we call P closed.

3.2 Semantics

Figure 1c defines the operational semantics of HOπ , given as a reduction relation that relies
on a structural congruence relation, denoted≡ (Fig. 1b): it includes a congruence that ensures
the consistent renaming of bound names, denoted ≡α . We assume the expected extension
of ≡ to values V . Reduction is denoted −→; some intuitions on the rules in Fig. 1 follow.
Rule [App] defines value application. Rule [Pass] defines an interaction/synchronization at n;
it can be on a shared name (with n = n) or a session endpoint. Rule [Sel] is the standard rule
for labelled choice/selection [9]: given a finite index set I , a process selects label l j on name
n over a pairwise distinct set of labels {li }i∈I offered by a branching on the dual endpoint n;
as a result, process Pj is selected, and the remaining alternatives are discarded. Other rules
are standard. We write −→∗ for a multi-step reduction.

3.3 An example: the hotel booking scenario

To illustrateHOπ and its expressive power, let us consider a usecase scenario that adapts the
example given byMostrous and Yoshida [25,26]. The scenario involves aClient process that
wants to book a hotel room. Client narrows the choice down to two hotels, and requires a
quote from the two in order to decide. The round-trip time (RTT) required for taking quotes
from the two hotels in not optimal, so the client sends mobile processes to both hotels to
automatically negotiate and book a room.

We now present two HOπ implementations of this scenario. For convenience, we write
if e then (P1 ; P2) to denote a conditional process that executes P1 or P2 depending
on boolean expression e (encodable using labelled choice). The first implementation is as
follows:

Client1
def= (ν h1, h2)(s1!〈λx . Pxy{h1/y}〉.s2!〈λx . Pxy{h2/y}〉.0 |

h1?(x).h2?(y).if x ≤ y then

(h1 � accept.h2 � reject.0 ; h1 � reject.h2 � accept.0))

Pxy
def= x !〈room〉.x?(quote).y!〈quote〉.y �

{

accept : x � accept.x !〈credit〉.0 ,

reject : x � reject.0
}

Process Client1 sends two abstractions with body Pxy , one to each hotel, using sessions s1
and s2. That is, Pxy is the mobile code with free names x, y: while name x is meant to be
instantiated by the hotel as the negotiating endpoint, name y is used to interact with Client1.
Intuitively, process Pxy :

(i) sends the room requirements to the hotel;
(ii) receives a quote from the hotel;
(iii) sends the quote to Client1;
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Client1 Hotel1 Hotel2

Code1 Code2

λx. Pxy

λx. Pxy

room
quote

room
quote

quote
quote

⊕

accept

accept

credit
reject

reject

⊕

accept
accept

credit

reject
reject

Client2 Hotel1 Hotel2

Code1 Code2

λx. Q1

λx. Q2

room
quote

room
quote

quote

quote

⊕
accept

credit
reject ⊕

accept

credit
reject

Fig. 2 Sequence diagrams for Client1 and Client2, as in Sect. 3.3

(iv) expects a choice from Client1 whether to accept or reject the offer;
(v) if the choice is accept then it informs the hotel and performs the booking; otherwise,

if the choice is reject then it informs the hotel and ends the session.

Client1 instantiates two copies of Pxy as abstractions on session x . It uses two fresh endpoints
h1, h2 to substitute channel y in Pxy . This enables communication with the mobile code(s).
In fact, Client1 uses the dual endpoints h1 and h2 to receive the negotiation result from the
two remote instances of P and then inform the two processes for the final booking decision.

We present now a second implementation in which the two mobile processes reach an
agreement by interacting with each other (rather than with the client):

Client2
def= (ν h)(s1!〈λx . Q1{h/y}〉.s2!〈λx . Q2{h/y}〉.0)

Q1
def= x !〈room〉.x?(quote1).y!〈quote1〉.y?(quote2).Rx

Q2
def= x !〈room〉.x?(quote1).y?(quote2).y!〈quote1〉.Rx

Rx
def= if quote1 ≤ quote2 then (x � accept.x !〈credit〉.0 ; x � reject.0)

Processes Q1 and Q2 negotiate a quote from the hotel in the same fashion as process Pxy
in Client1. The key difference with respect to Pxy is that y is used for interaction between
process Q1 and Q2. Both processes send their quotes to each other and then internally follow
the same logic to reach to a decision. Process Client2 then uses sessions s1 and s2 to send
the two instances of Q1 and Q2 to the two hotels, using them as abstractions on name x . It
further substitutes the two endpoints of a fresh channel h to channels y respectively, in order
for the two instances to communicate with each other.

The different protocols implemented by Client1 and Client2 can be represented by the
sequence diagrams of Fig. 2. We will assign session types to these processes in Example 1.
Later on, in Sect. 5.9 we will show that Client1 and Client2 are behaviourally equivalent
using characteristic bisimilarity; see Proposition 3.

4 Types and typing

We define a session typing system for HOπ and state its main properties. As we explain
below, our system distils the key features of [25,26].
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Characteristic bisimulation for higher-order session processes 279

4.1 Types

The syntax of types of HOπ is given below:

(value) U ::= C | L
(name) C ::= S | 〈S〉 | 〈L〉
(abstractions) L ::= U→
 | U�

(session) S ::= !〈U 〉; S | ?(U ); S | ⊕ {li : Si }i∈I | &{li : Si }i∈I

| μt.S | t | end

Value types U include the first-order types C and the higher-order types L . Session types
are denoted with S and shared types with 〈S〉 and 〈L〉. We write 
 to denote the process
type. The functional types U→
 and U� 
 denote shared and linear higher-order types,
respectively. Session types have the meaning already motivated in Sect. 2. The output type
!〈U 〉; S first sends a value of typeU and then follows the type described by S. Dually, ?(U ); S
denotes an input type. The selection type ⊕{li : Si }i∈I and the branching type &{li : Si }i∈I
define labelled choice, implemented at the level of processes by internal and external choice
mechanisms, respectively. Type end is the termination type. We assume the recursive type
μt.S is guarded, i.e., the type variable t only appears under prefixes. This way, e.g., the type
μt.t is not allowed. The sets of free/bound variables of a session type S are defined as usual;
the sole binder is μt.S. Closed session types do not have free type variables.

Our type system is strictly included in that considered in [25,26], which admits asyn-
chronous communication and arbitrary nesting in functional types, i.e., their types are of the
form U�T (resp. U→T ), where T ranges over U and the process type 
. In contrast, our
functional types are of the form U�
 (resp. U→
).

We rely on notions of duality and equivalence for types. Let us write S1 ∼ S2 to denote
that S1 and S2 are type-equivalent (see Definition 21 in the Appendix). This notion extends
to value types as expected; in the following, we write U1 ∼ U2 to denote that U1 and U2 are
type-equivalent. We write S1 dual S2 if S1 is the dual of S2. Intuitively, duality converts !
into ? and ⊕ into & (and vice-versa). More formally, following [4], we have a co-inductive
definition for type duality:

Definition 1 (Duality) Let ST be a set of closed session types. Two types S and S′ are
said to be dual if the pair (S, S′) is in the largest fixed point of the monotone function
F : P(ST × ST) → P(ST × ST) defined by:

F(�) = {(end,end)}
∪{(!〈U1〉; S1, ?(U2); S2) | (S1, S2) ∈ �, U1 ∼ U2}
∪{(?(U1); S1, !〈U2〉; S2) | (S1, S2) ∈ �, U1 ∼ U2}
∪{(⊕{li : Si }i∈I , &{li : S′i }i∈I ) | ∀i ∈ I.(Si , S

′
i ) ∈ �}

∪{(&{li : Si }i∈I , ⊕{li : S′i }i∈I ) | ∀i ∈ I.(Si , S
′
i ) ∈ �}

∪{(μt.S, S′) | (S{μt.S/t}, S′) ∈ �}
∪{(S, μt.S′) | (S, S′{μt.S′/t}) ∈ �}

Standard arguments ensure that F is monotone, thus the greatest fixed point of F exists. We
write S1 dual S2 if (S1, S2) ∈ �.
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4.2 Typing environments and judgements

Typing environments are defined below:

Γ ::= ∅ | Γ · x : U→
 | Γ · u : 〈S〉 | Γ · u : 〈L〉 | Γ · X : Δ
Λ ::= ∅ | Λ · x : U�

Δ ::= ∅ | Δ · u : S

Typing environments Γ , Λ, and Δ satisfy different structural principles. Intuitively, the
exchange principle indicates that the ordering of type assignments does notmatter.Weakening
says that type assignments need not be used. Finally, contraction says that type assignments
may be duplicated.

The environment Γ maps variables and shared names to value types, and recursive vari-
ables to session environments; it admits weakening, contraction, and exchange principles.
WhileΛmaps variables to linear higher-order types,Δmaps session names to session types.
BothΛ andΔ are only subject to exchange. The domains ofΓ,Λ andΔ are assumed pairwise
distinct.

Given Γ , we write Γ \x to denote the environment obtained from Γ by removing the
assignment x : U→
, for some U . This notation applies similarly to Δ and Λ; we write
Δ\Δ′ (and Λ\Λ′) with the expected meaning. Notation Δ1 ·Δ2 means the disjoint union of
Δ1 and Δ2. We define typing judgements for values V and processes P:

Γ ;Λ;Δ � V �U Γ ;Λ;Δ � P � 

While the judgement on the left says that under environments Γ , Λ, and Δ value V has type
U ; the judgement on the right says that under environments Γ , Λ, and Δ process P has
the process type 
. The type soundness result for HOπ (Theorem 1) relies on two auxiliary
notions on session environments:

Definition 2 (Session environments: balanced/reduction) Let Δ be a session environment.

• Δ is balanced if whenever s : S1, s : S2 ∈ Δ then S1 dual S2.
• We define the reduction relation −→ on session environments as:

Δ · s :!〈U 〉; S1 · s :?(U ); S2 −→ Δ · s : S1 · s : S2
Δ · s : ⊕{li : Si }i∈I · s : &{li : S′i }i∈I −→ Δ · s : Sk · s : S′k (k ∈ I )

We rely on a typing system that is similar to the one developed in [25,26]. The typing system
is defined in Fig. 3. Rules [Sess], [Sh], [LVar] are name and variable introduction rules. Rule
[Prom] allows a value with a linear type U�
 to be used as U→
 if its linear environment
is empty. Rule [EProm] allows to freely use a shared type variable in a linear way.

Abstraction values are typedwith Rule [Abs]. The key type for an abstraction is the type for
the bound variable of the abstraction, i.e., for a bound variable with typeC the corresponding
abstraction has type C� 
. The dual of abstraction typing is application typing, governed
by Rule [App]: we expect the type U of an application value W to match the type U�
 or
U→
 of the application variable x .

In Rule [Send], the typeU of the sent value V should appear as a prefix on the session type
!〈U 〉; S of u. Rule [Rcv] is its dual. We use a similar approach with session prefixes to type
interaction between shared names as defined in Rules [Req] and [Acc], where the type of the
sent/received object (S and L , respectively) shouldmatch the type of the sent/received subject
(〈S〉 and 〈L〉, respectively). Rules [Sel] and [Bra] for selection and branching are standard:
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[SESS]

Γ ; ∅; {u : S

[SH]

Γ · u : U ; ∅;
[LVAR]

Γ ; {x : U ;

[PROM]
Γ ; ∅;
Γ ; ∅;

[EPROM]
Γ ;Λ · x : U ;Δ
Γ · x : U ;Λ;Δ

[ABS]
Γ ;Λ;Δ1 Γ ; ∅;Δ2

Γ\x;Λ;Δ1\Δ2

[APP]
U = U U Γ ;Λ;Δ1 ; ∅;Δ2

Γ ;Λ;Δ1 · Δ2

[SEND]
Γ ;Λ1;Δ1 Γ ;Λ2;Δ2 : S ∈ Δ1 · Δ2

Γ ;Λ1 · Λ2; ((Δ1 · Δ2)\u) · u :! U ;S u! V

[RCV]
Γ ;Λ1;Δ1 · u : S Γ ;Λ2;Δ2

Γ\x;Λ1 · Λ2;Δ1\Δ2 · u :?(U);S u?(x)

[REQ]
Γ ; ∅; U Γ ;Λ;Δ1 Γ ; ∅;Δ2

Γ ;Λ;Δ1 · Δ2 u! V

[ACC]
Γ ; ∅; U Γ ;Λ1;Δ1 Γ ;Λ2;Δ2

Γ\x;Λ1\Λ2;Δ1\Δ2 u?(x)

[BRA]
∀i ∈ I Γ ;Λ;Δ · u : Si Pi

Γ ;Λ;Δ · u : &{li : Si}i∈I {li : Pi}i∈I

[SEL]
Γ ;Λ;Δ · u : Sj j ∈ I

Γ ;Λ;Δ · u : ⊕{li : Si}i∈I j

[RESS]
Γ ;Λ;Δ · s : S1 · s : S2 S1 dual S2

Γ ;Λ;Δ (ν s)

[RES]
Γ · a : S ;Λ;Δ

Γ ;Λ;Δ (ν a)

[PAR]
Γ ;Λi;Δi Pi i = 1, 2

Γ ;Λ1 · Λ2;Δ1 · Δ2 P1 | P2

[END]
Γ ;Λ;Δ u dom(Γ, Λ, Δ)

Γ ;Λ;Δ · u : end

[REC]
Γ · X : Δ; ∅;Δ

Γ ; ∅;Δ
[RVAR]

Γ · X : Δ; ∅;Δ
[NIL]

Γ ; ∅; 0

Fig. 3 Typing rules for HOπ

both rules prefix the session type with the selection type ⊕{li : Si }i∈I and &{li : Si }i∈I ,
respectively.

A shared name creation a creates and restricts a in environment Γ as defined in Rule
[Res]. Creation of a session name s creates and restricts two endpoints with dual types in
Rule [ResS]. Rule [Par], combines the environments Λ and Δ of the parallel components of
a parallel process. The disjointness of environments Λ and Δ is implied. Rule [End] adds
a name with type end in Δ. The recursion requires that the body process matches the type
of the recursive variable as in Rule [Rec]. The recursive variable is typed directly from the
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shared environment Γ as in Rule [RVar]. Rule [Nil] says that the inactive process 0 is typed
with empty linear environments Λ and Δ.

We state the type soundness result for HOπ processes.

Theorem 1 (Type soundness) Suppose Γ ; ∅;Δ � P � 
 with Δ balanced. Then P −→ P ′
implies Γ ; ∅;Δ′ � P ′ � 
 and Δ = Δ′ or Δ −→ Δ′ with Δ′ balanced.

Proof Following standard lines. See Appendix 1 for details. ��
Example 1 (The hotel booking example, revisited) We give types to the client processes
of Sect. 3.3. Assume

S = !〈quote〉;&{accept : end, reject : end}
U = !〈room〉; ?(quote);⊕{accept :!〈credit〉;end, reject : end}

While the typing for λx . Pxy is ∅; ∅; y : S � λx . Pxy � U� 
, the typing for Client1 is
∅; ∅; s1 :!〈U�
〉;end · s2 :!〈U�
〉;end � Client1 � 
.
The typings for Q1 and Q2 are ∅; ∅; y :!〈quote〉; ?(quote);end � λx . Qi �U�
 (i =

1, 2) and the type for Client2 is ∅; ∅; s1 :!〈U�
〉;end · s2 :!〈U�
〉;end � Client2 � 
.

5 Characteristic bisimulation

We develop a theory for observational equivalence over session typed HOπ processes that
follows the principles laid in our previous works [18,19]. We introduce higher-order bisim-
ulation (Definition 17) and characteristic bisimulation (Definition 18), denoted ≈H and ≈C,
respectively.Weprove that they coincidewith (reduction-closed) barbed congruence (denoted
∼=, cf. Definition 11), the form of contextual equivalence used in concurrency. This charac-
terisation result is given in Theorem 2.

We briefly summarise our strategy for obtaining Theorem 2. We begin by defining an
(early) labelled transition system (LTS) on untyped processes (Sect. 5.1). Then, using the
environmental transition semantics (Sect. 5.2), we define a typed LTS that formalises how
a typed process interacts with a typed observer. Later, we define reduction-closed, barbed
congruence and context bisimilarity, respectively (Sects. 5.3 and5.4). Subsequently,wedefine
the refined LTS based on characteristic values (Sect. 5.5). Building upon this LTS, we define
higher-order and characteristic bisimilarities (Sect. 5.6). Then, we develop an auxiliary proof
technique based on deterministic transitions (Sect. 5.7). Our main result, the characterisation
of barbed congruence in terms of ≈H and ≈C, is stated in Sect. 5.8. Finally, we revisit our
two implementations for the Hotel Booking Scenario (Sect. 3.3), using Theorem 2 to show
that they are behaviourally equivalent (Sect. 5.9).

5.1 Labelled transition system for processes

We define the interaction of processes with their environment using action labels �:

� ::= τ | (ν m̃)n!〈V 〉 | n?〈V 〉 | n ⊕ l | n& l

Label τ defines internal actions. Action (ν m̃)n!〈V 〉 denotes the sending of value V over
channel n with a possible empty set of restricted names m̃ (we may write n!〈V 〉 when m̃ is
empty). Dually, the action for value reception is n?〈V 〉. Actions for select and branch on a
label l are denoted n⊕ l and n& l, respectively. We write fn(�) and bn(�) to denote the sets
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APP

(λx. P )V
τ−→ P{V/x}

SND

n! V .P
n! V−−−−→ P

RV

n?(x).P
n? V−−−−→ P{V/x}

SEL

s⊕l−−→ P

BRA
j ∈ I

{li : Pi}i∈I
s & lj−−−−→ Pj

ALPHA

P ≡α Q Q −→ P

P −→ P

RES

P −→ P n /∈ fn( )

(ν n)P −→ (ν n)P

NEW

P
(ν m̃)n! V−−−−−−−−→ P m1 ∈ fn(V )

(ν m1)P
(ν m1·m̃)n! V−−−−−−−−−−→ P

PARL

P −→ P bn( ) ∩ fn(Q) = ∅
P | Q −→ P | Q

TAU

P 1−→ P Q 2−→ Q 1 2

P | Q
τ−→ (ν bn( 1) ∪ bn( 2))(P | Q )

REC

P{μX.P/X} −→ P

μX.P −→ P

Fig. 4 The untyped LTS for HOπ processes. We omit Rule 〈ParR〉

of free/bound names in �, respectively. Given � �= τ , we say � is a visible action; we write
subj(�) to denote its subject. This way, we have: subj((ν m̃)n!〈V 〉) = subj(n?〈V 〉) =
subj(n ⊕ l) = subj(n& l) = n.

Dual actions occur on subjects that are dual between them and carry the same object;
thus, output is dual to input and selection is dual to branching.

Definition 3 (Dual actions) We define duality on actions as the least symmetric relation �
on action labels that satisfies:

n ⊕ l � n& l (ν m̃)n!〈V 〉 � n?〈V 〉

The (early) labelled transition system (LTS) fpr untyped processes is given in Fig. 4. We

write P1
�−→ P2 with the usual meaning. The rules are standard [18,19]; we comment on

some of them. A process with an output prefix can interact with the environment with an
output action that carries a value V (Rule 〈Snd〉). Dually, in Rule 〈Rv〉 a receiver process can
observe an input of an arbitrary value V . Select and branch processes observe the select and
branch actions in Rules 〈Sel〉 and 〈Bra〉, respectively. Rule 〈Res〉 enables an observable action
from a process with an outermost restriction, provided that the restricted name does not occur
free in the action. If a restricted name occurs free in the carried value of an output action,
the process performs scope opening (Rule 〈New〉). Rule 〈Rec〉 handles recursion unfolding.
Rule 〈Tau〉 states that two parallel processes which perform dual actions can synchronise by
an internal transition. Rules 〈ParL〉/〈ParR〉 and 〈Alpha〉 define standard treatments for actions
under parallel composition and α-renaming.

5.2 Environmental labelled transition system

Our typedLTS is obtained by coupling the untypedLTS given beforewith a labelled transition
relation on typing environments, given in Fig. 5. Building upon the reduction relation for
session environments in Definition 2, such a relation is defined on triples of environments by
extending the LTSs in [18,19]; it is denoted
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[SRV]
s /∈ dom(Δ) Γ ;Λ ;Δ

(Γ ;Λ;Δ · s :?(U);S)
s? V−−−−→ (Γ ;Λ · Λ ;Δ · Δ · s : S)

[SHRV]
Γ ; ∅; U Γ ;Λ ;Δ

(Γ ;Λ;Δ)
a? V−−−−→ (Γ ;Λ · Λ ;Δ · Δ )

[SSND]
Γ · Γ ;Λ ;Δ ; ∅;Δj mj j s /∈ dom(Δ)
Δ \(∪jΔj) ⊆ (Δ · s : S) Γ ; ∅;Δj mj j Λ ⊆ Λ

(Γ ;Λ;Δ · s :! U ;S)
(ν m̃)s! V−−−−−−−→ (Γ · Γ ;Λ\Λ ; (Δ · s : S · ∪jΔj)\Δ )

[SHSND]
Γ · Γ ;Λ ;Δ ; ∅;Δj mj j Γ ; ∅; U
Δ \(∪jΔj) ⊆ Δ Γ ; ∅;Δj mj j Λ ⊆ Λ

(Γ ;Λ;Δ)
(ν m̃)a! V−−−−−−−−→ (Γ · Γ ;Λ\Λ ; (Δ · ∪jΔj)\Δ )

[SEL]
s /∈ dom(Δ) j ∈ I

(Γ ;Λ;Δ · s : ⊕{li : Si}i∈I)
s⊕lj−−−→ (Γ ;Λ;Δ · s : Sj)

[BRA]
s /∈ dom(Δ) j ∈ I

(Γ ;Λ;Δ · s : &{li : Ti}i∈I)
s & lj−−−−→ (Γ ;Λ;Δ · s : Sj)

[TAU]
Δ1 −→ Δ2 ∨ Δ1 = Δ2

(Γ ;Λ;Δ1)
τ−→ (Γ ;Λ;Δ2)

Fig. 5 Labelled transition system for typed environments

(Γ1,Λ1,Δ1)
�−→ (Γ2,Λ2,Δ2)

Recall that Γ admits weakening. Using this principle (not valid for Λ and Δ), we have

(Γ ′,Λ1,Δ1)
��−→ (Γ ′,Λ2,Δ2) whenever (Γ,Λ1,Δ1)

��−→ (Γ ′,Λ2,Δ2).

Input actions are defined by Rules [SRv] and [ShRv]. In Rule [SRv] the type of value V and
the type of the object associated to the session type on s should coincide. The resulting
type tuple must contain the environments associated to V . The dual endpoint s cannot be
present in the session environment: if it were present the only possible communication would
be the interaction between the two endpoints (cf. Rule [Tau]). Following similar principles,
Rule [ShRv] defines input actions for shared names.

Output actions are defined by Rules [SSnd] and [ShSnd]. Rule [SSnd] states the conditions
for observing action (ν m̃)s!〈V 〉 on a type tuple (Γ,Λ,Δ · s : S). The session environment
Δ · s : S should include the session environment of the sent value V (denoted Δ′ in the
rule), excluding the session environments of namesm j in m̃ which restrict the scope of value
V (denoted Δ j in the rule). Analogously, the linear variable environment Λ′ of V should
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be included in Λ. The rule defines the scope extrusion of session names in m̃; consequently,
environments associated to their dual endpoints (denotedΔ′

j in the rule) appear in the resulting
session environment. Similarly for shared names in m̃ that are extruded. All free values used
for typing V (denoted Λ′ and Δ′ in the rule) are subtracted from the resulting type tuple.
The prefix of session s is consumed by the action. Rule [ShSnd] follows similar ideas for
output actions on shared names: the name must be typed with 〈U 〉; conditions on value V
are identical to those on Rule [SSnd].

Other actions Rules [Sel] and [Bra] describe actions for select and branch. Rule [Tau]
defines internal transitions: it reduces the session environment (cf. Definition 2) or keeps
it unchanged.

We illustrate Rule [SSnd] by means of an example:

Example 2 Consider environment tuple (Γ ; ∅; s :!〈(!〈S〉;end)� 
〉;end · s′ : S) and
typed value V = λx . x !〈s′〉.m?(z).0 with

Γ ; ∅; s′ : S · m :?(end);end � V � (!〈S〉;end)�

Then, by Rule [SSnd], we can derive:

(Γ ; ∅; s :!〈(!〈S〉;end)�
〉;end · s′ : S)
(ν m)s!〈V 〉−−−−−−→ (Γ ; ∅; s : end · m :!〈end〉;end)

Observe how the protocol along s is partially consumed; also, the resulting session environ-
ment is extended with m, the dual endpoint of the extruded name m.

Notation 4 Given a value V of type U, we sometimes annotate the output action (ν m̃)n!〈V 〉
with the type of V as (ν m̃)n!〈V : U 〉.
The typed LTS combines the LTSs in Figs. 4 and 5.

Definition 5 (Typed transition system) A typed transition relation is a typed relation

Γ ;Δ1 � P1
�−→ Δ2 � P2 where:

1. P1
�−→ P2 and

2. (Γ,∅,Δ1)
�−→ (Γ,∅,Δ2) with Γ ; ∅;Δi � Pi � 
 (i = 1, 2).

Wewrite	⇒ for the reflexive and transitive closure of−→,
�	⇒ for the transitions	⇒ �−→	⇒,

and
�̂	⇒ for

�	⇒ if � �= τ otherwise 	⇒.

A typed transition relation requires type judgements with an empty Λ, i.e., an empty
environment for linear higher-order types. Notice that for open process terms (i.e., with free
variables), we can always apply Rule [EProm] (cf. Fig. 3) and obtain an emptyΛ. As it will be
clear below (cf. Definition 7), we will be working with closed process terms, i.e., processes
without free variables.

5.3 Reduction-closed, barbed congruence (∼=)

We now define typed relations and contextual equivalence (i.e., barbed congruence). To
define typed relations, we first define confluence over session environments Δ. Recall that
Δ captures session communication, which is deterministic. The notion of confluence allows
us to abstract away from alternative computation paths that may arise due to non-interfering
reductions of session names.

123



286 D. Kouzapas et al.

Definition 6 (Session environment confluence) Two session environments Δ1 and Δ2 are
confluent, denoted Δ1 � Δ2, if there exists a Δ such that: i) Δ1 −→∗ Δ and ii) Δ2 −→∗ Δ

(here we write −→∗ for the multi-step reduction in Definition 2).

We illustrate confluence by means of an example:

Example 3 (Session environment confluence) Consider the (balanced) session environ-
ments:

Δ1 = {s1 : T1 · s2 :?(U2);end · s2 :!〈U2〉;end}
Δ2 = {s1 : T1 · s2 :!〈U1〉; ?(U2);end · s2 :?(U1); !〈U2〉;end}

Following Definition 2, we have that Δ1 −→ {s1 : T1 · s2 : end · s2 : end} and Δ2 −→−→
{s1 : T1 · s2 : end · s2 : end}. Therefore, Δ1 and Δ2 are confluent. ��

Typed relations relate only closed processes whose session environments are balanced
and confluent:

Definition 7 (Typed relation) We say that a binary relation over typing judgements

Γ ; ∅;Δ1 � P1 � 
 � Γ ; ∅;Δ2 � P2 � 

is a typed relation whenever:

1. P1 and P2 are closed;
2. Δ1 and Δ2 are balanced (cf. Definition 2); and
3. Δ1 � Δ2 (cf. Definition 6).

Notation 8 (Typed relations) We write

Γ ;Δ1 � P1 � Δ2 � P2

to denote the typed relation Γ ; ∅;Δ1 � P1 � 
 � Γ ; ∅;Δ2 � P2 � 
.
Next we define barbs [24] with respect to types.

Definition 9 (Barbs) Let P be a closed process. We write

1. (a) P ↓n if P ≡ (ν m̃)(n!〈V 〉.P2 | P3) or P ≡ (ν m̃)(n � l.P2 | P3), with n /∈ m̃.
(b) We write P ⇓n if P −→∗↓n .

2. Similarly, we write

(a) Γ ; ∅;Δ � P ↓n if Γ ; ∅;Δ � P � 
 with P ↓n and n /∈ Δ.
(b) We write Γ ; ∅;Δ � P ⇓n if P −→∗ P ′ and Γ ; ∅;Δ′ � P ′ ↓n .

A barb ↓n is an observable on an output (resp. select) prefix with subject n; a weak barb ⇓n

is a barb after zero or more reduction steps. Typed barbs ↓n (resp. ⇓n) are observed on typed
processes Γ ; ∅;Δ � P � 
. When n is a session name we require that its dual endpoint n is
not present in the session environment Δ.

Notice that observing output barbs is enough to (indirectly) observe input actions. For
instance, the process P = n?(x).P ′ has an input barb on n; by composing P with
n!〈m〉.succ!〈〉.0 (with a fresh name succ) then one obtains a (weak) observation uniquely
associated to the input along n in P .

To define a congruence relation, we introduce the family C of contexts:
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Definition 10 (Context) Context C is defined over the syntax:

C::= − | u!〈V 〉.C | u?(x).C | u!〈λx .C〉.P | (ν n)C | (λx .C)u | μX.C

| C | P | P | C | u � l.C | u � {l1 : P1, · · · , li : C, · · · , ln : Pn}
Notation C[P] denotes the result of substituting the hole − in C with process P .

The first behavioural relation that we define is reduction-closed, barbed congruence [10].

Definition 11 (Reduction-closed, barbed congruence) Typed relation

Γ ;Δ1 � P � Δ2 � Q

is a reduction-closed, barbed congruence whenever:

(1) (a) If P −→ P ′ then there exist Δ′
1, Q

′,Δ′
2 such that Q −→∗ Q′ and

Γ ;Δ′
1 � P ′ � Δ′

2 � Q′;
(b) and the symmetric case;

(2) (a) If Γ ;Δ1 � P ↓n then Γ ;Δ2 � Q ⇓n ;
(b) and the symmetric case;

(3) For all C, there exist Δ′′
1,Δ

′′
2 such that Γ ;Δ′′

1 � C[P] � Δ′′
2 � C[Q].

The largest such relation is denoted with ∼=.

5.4 Context bisimilarity (≈)

Following Sangiorgi [31], we now define the standard (weak) context bisimilarity.

Definition 12 (Context bisimilarity) A typed relation � is a context bisimulation if for all
Γ ;Δ1 � P1 � Δ2 � Q1,

(1) Whenever Γ ;Δ1 � P1
(ν m̃1)n!〈V1〉−−−−−−−→ Δ′

1 � P2, there exist Q2, V2, Δ′
2 such that Γ ;Δ2 �

Q1
(ν m̃2)n!〈V2〉	⇒ Δ′

2 � Q2 and for all R with fv(R) = {x}:
Γ ;Δ′′

1 � (ν m̃1)(P2 | R{V1/x}) � Δ′′
2 � (ν m̃2)(Q2 | R{V2/x});

(2) For all Γ ;Δ1 � P1
�−→ Δ′

1 � P2 such that � is not an output, there exist Q2, Δ′
2 such

that Γ ;Δ2 � Q1
�̂	⇒ Δ′

2 � Q2 and Γ ;Δ′
1 � P2 � Δ′

2 � Q2; and
(3) The symmetric cases of 1 and 2.

The largest such bisimulation is called context bisimilarity and is denoted by ≈.

As suggested in Sect. 2, in the general case, context bisimilarity is an overly demanding
relation on processes. Below we introduce higher-order bisimulation and characteristic
bisimulation, which are meant to offer a tractable proof technique over session typed pro-
cesses with first- and higher-order communication.

5.5 Characteristic values and the refined LTS

We formalise the ideas given in Sect. 2, concerning characteristic processes/values and the
refined LTS. We first define characteristic processes/values:

Definition 13 (Characteristic process and values) Let u and U be a name and a type,
respectively. The characteristic process ofU (along u), denoted [(U )]u , and the characteristic
value of U , denoted [(U )]c, are defined in Fig. 6.
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Fig. 6 Characteristic processes (left) and characteristic values (right)

We can verify that characteristic processes/values do inhabit their associated type.

Proposition 1 (Characteristic processes/values inhabit their types)

1. Let U be a channel type. Then, for some Γ,Δ, we have Γ ; ∅;Δ � [(U )]c �U.
2. Let S be a session type. Then, for some Γ,Δ, we have Γ ; ∅;Δ · s : S � [(S)]s � 
.
3. Let U be a channel type. Then, for some Γ,Δ, we have Γ · a : U ; ∅;Δ � [(U )]a � 
.
Proof (Sketch) The proof is done by induction on the syntax of types. See Proposition 4 in
the Appendix for details. ��

We give an example of a characteristic process inhabiting a recursive type.

Example 4 (Characteristic process for a recursive session type) Consider the type S =
μt.!〈U1〉; ?(U2); t. By Definition 13, we have that [(S)]s = [(!〈U1〉; ?(U2);end)]s =
s!〈[(U1)]c〉.t !〈s〉.0. For this process, we can infer the following type derivations:

Γ ; ∅;Δ � [(U1)]c �U2Γ ; ∅; t :!〈?(U2);end〉;end · s :?(U2);end � t !〈s〉.0 � 

Γ ; ∅;Δ · t :!〈?(U2);end〉;end · s :!〈U1〉; ?(U2);end � s!〈[(U1)]c〉.t !〈s〉.0 � 


and

Γ ; ∅;Δ · t :!〈?(U2);μt.!〈U1〉; ?(U2); t〉;end · s :?(U2);μt.!〈U 〉; t � t !〈s〉.0 � 

Γ ; ∅;Δ · t :!〈?(U2);μt.!〈U 〉; t〉;end · s : μt.!〈U 〉; t � s!〈[(U1)]c〉.t !〈s〉.0 � 


The following example motivates the refined LTS explained in Sect. 2. We rely on the
following definition.

Definition 14 (Trigger value) Given a fresh name t , the trigger value on t is defined as the
abstraction λx . t?(y).(y x).

Example 5 (The need for the refined typed LTS) We illustrate the complementary rôle that
characteristic values (cf. Fig. 6) and the trigger value (Definition 14) play in defining sound
bisimilarities.

We first notice that observing characteristic values as inputs is not enough to define a
sound bisimulation. Consider processes

P1 = s?(x).(x s1 | x s2) P2 = s?(x).(x s1 | (λz. 0) s2) (3)

such that

Γ ; ∅;Δ · s :?((end)→
);end � Pi � 
 (i ∈ {1, 2})
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with Δ = s1:end · s2:end. If P1 and P2 input along s a characteristic value of the form
[((end)→
)]c = λz. 0 (cf. Fig. 6), then both of them would evolve into:

Γ ; ∅;Δ � (λz. 0) s1 | (λz. 0) s2 � 

therefore becoming context bisimilar. However, processes P1 and P2 in (3) are clearly not
context bisimilar: many input actions may be used to distinguish them. For example, if P1
and P2 input λx . (ν s′)(a!〈s′〉.0) with Γ ; ∅; ∅ � a � 〈end〉, then their derivatives are not
bisimilar:

Γ ; ∅;Δ � P1
s?〈λx . (ν s′)(a!〈s′〉.0)〉−−−−−−−−−−−−→ τ−→ τ−→

Δ � (ν s′)(a!〈s′〉.0) | (ν s′)(a!〈s′〉.0)

Γ ; ∅;Δ � P2
s?〈λx . (ν s′)(a!〈s′〉.0)〉−−−−−−−−−−−−→ τ−→

Δ � (ν s′)(a!〈s′〉.0) | (λz. 0) s2

Observing only the characteristic value results in an under-discriminating bisimulation.
However, if a trigger value λx . t?(y).(y x) (Definition 14) is received along s, we can distin-
guish P1 and P2 in (3):

Γ ; ∅;Δ � P1
s?〈λx . t?(y).(y x)〉	⇒ Δ � t?(x).(x s1) | t?(x).(x s2) and

Γ ; ∅;Δ � P2
s?〈λx . t?(y).(y x)〉	⇒ Δ � t?(x).(x s1) | (λz. 0) s2

In the light of this example, one natural question is whether the trigger value suffices to
distinguish two processes (hence no need of characteristic values). This is not the case:
the trigger value alone also results in an under-discriminating bisimulation relation. In fact,
the trigger value can be observed on any input prefix of any type. For example, consider
processes:

(ν s)(n?(x).(x s) | s!〈λx . R1〉.0) (4)

(ν s)(n?(x).(x s) | s!〈λx . R2〉.0) (5)

If processes in (4) and (5) input the trigger value, we obtain:

(ν s)(t?(x).(x s) | s!〈λx . R1〉.0)

(ν s)(t?(x).(x s) | s!〈λx . R2〉.0)

thus we can easily derive a bisimulation relation if we assume a definition of bisimulation
that allows only trigger value input. But if processes in (4)/(5) input the characteristic value
λz. z?(x).(t !〈z〉.0 | x m) (where m is a fresh name) then, under appropriate Γ and Δ, they
would become:

Γ ; ∅;Δ � (ν s)(s?(x).(t !〈s〉.0 | x m) | s!〈λx . Ri 〉.0) ≈ Δ � Ri {m/x} (i = 1, 2)

which are not bisimilar if R1{m/x} �≈ R2{m/x}.
These examples illustrate the need for both trigger and characteristic values as an input

observation in the refined transition relation. This will be the content of Definition 15 below.
��

As explained in Sect. 2, we define the refined typed LTS by considering a transition rule for
input in which admitted values are trigger or characteristic values or names:
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Definition 15 (Refined typed labelled transition system) The refined typed labelled transition
relation on typing environments

(Γ1;Λ1;Δ1)
��−→ (Γ2;Λ2;Δ2)

is defined on top of the rules in Fig. 5 using the following rules:

[Tr]
(Γ1;Λ1;Δ1)

�−→ (Γ2;Λ2;Δ2) � �= n?〈V 〉
(Γ1;Λ1;Δ1)

��−→ (Γ2;Λ2;Δ2)

[RRcv]
(Γ1;Λ1;Δ1)

n?〈V 〉−−−→ (Γ2;Λ2;Δ2) V = m ∨ V ≡ [(U )]c ∨ V ≡ λx . t?(y).(y x) t fresh

(Γ1;Λ1;Δ1)
n?〈V 〉�−→ (Γ2;Λ2;Δ2)

Then, the refined typed labelled transition system

Γ ;Δ1 � P1
��−→ Δ2 � P2

is given as in Definition 5, replacing the requirement (Γ,∅,Δ1)
�−→ (Γ,∅,Δ2) with

(Γ1;Λ1;Δ1)
��−→ (Γ2;Λ2;Δ2), as just defined. Following Definition 5, we write �	⇒

for the reflexive and transitive closure of
τ�−→,

�
�	⇒ for the transitions �	⇒ ��−→ �	⇒, and

�̂
�	⇒

for
�

�	⇒ if � �= τ otherwise �	⇒.

Notice that the (refined) transition Γ ;Δ1 � P1
��−→ Δ2 � P2 implies the (ordinary)

transition Γ ;Δ1 � P1
�−→ Δ2 � P2.

Notation 16 We sometimes write
(ν m̃)n!〈V :U 〉�−→ when the type of V is U.

5.6 Higher-order bisimilarity (≈H) and characteristic bisimilarity (≈C)

Having introduced a refined LTS onHOπ processes, we now define higher-order bisimilarity
and characteristic bisimilarity, two tractable bisimilarity relations. As explained in Sect. 2,
the two bisimulations use two different trigger processes [cf. (2)]:

t ←↩H V
def=

{

t?(x).(ν s)(s?(y).(x y) | s!〈V 〉.0) if V is a first-order value

t?(x).(ν s)(s?(y).(y x) | s!〈V 〉.0) if V is a higher-order value
(6)

t ⇐C V :U def= t?(x).(ν s)(s?(y).[(U )]y | s!〈V 〉.0) (7)

The process in (6) is called higher-order trigger process, while process in (7) is called
characteristic trigger process. Notice that while in (6) there is a higher-order input on t , in
(7) the variable x does not play any rôle.

We use higher-order trigger processes to define higher-order bisimilarity:

Definition 17 (Higher-order bisimilarity) A typed relation� is a higher-order bisimulation
if for all Γ ;Δ1 � P1 � Δ2 � Q1

(1) Whenever Γ ;Δ1 � P1
(ν m̃1)n!〈V1〉�−→ Δ′

1 � P2, there exist Q2, V2, Δ′
2 such that Γ ;Δ2 �

Q1
(ν m̃2)n!〈V2〉

�	⇒ Δ′
2 � Q2 and, for a fresh t ,

Γ ;Δ′′
1 � (ν m̃1)(P2 | t ←↩H V1) � Δ′′

2 � (ν m̃2)(Q2 | t ←↩H V2)
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(2) For all Γ ;Δ1 � P1
��−→ Δ′

1 � P2 such that � is not an output, there exist Q2, Δ′
2 such

that Γ ;Δ2 � Q1
�̂

�	⇒ Δ′
2 � Q2 and Γ ;Δ′

1 � P2 � Δ′
2 � Q2; and

(3) The symmetric cases of 1 and 2.

The largest such bisimulation is called higher-order bisimilarity, denoted by ≈H.

We exploit characteristic trigger processes to define characteristic bisimilarity:

Definition 18 (Characteristic bisimilarity) A typed relation � is a characteristic bisimula-
tion if for all Γ ;Δ1 � P1 � Δ2 � Q1,

(1) Whenever Γ ;Δ1 � P1
(ν m̃1)n!〈V1:U1〉�−→ Δ′

1 � P2 then there exist Q2, V2, Δ′
2 such that

Γ ;Δ2 � Q1
(ν m̃2)n!〈V2:U2〉

�	⇒ Δ′
2 � Q2 and, for a fresh t ,

Γ ;Δ′′
1 � (ν m̃1)(P2 | t ⇐C V1 :U1) � Δ′′

2 � (ν m̃2)(Q2 | t ⇐C V2 :U2)

(2) For all Γ ;Δ1 � P1
��−→ Δ′

1 � P2 such that � is not an output, there exist Q2, Δ′
2 such

that Γ ;Δ2 � Q1
�̂

�	⇒ Δ′
2 � Q2 and Γ ;Δ′

1 � P2 � Δ′
2 � Q2; and

(3) The symmetric cases of 1 and 2.

The largest such bisimulation is called characteristic bisimilarity, denoted by ≈C.

Observe how we have used Notation 16 to explicitly refer to the type of the emitted value
in output actions.

Remark 1 (Differences between≈H and≈C) Although≈H and≈C are conceptually similar,
they differ in the kind of trigger process considered. Because of the application in t ←↩H V (cf.
(6)),≈H cannot be used to reason about first-order session processes (i.e., processes without
higher-order features). In contrast,≈C is more general: it can uniformly input characteristic,
first- or higher-order values.

5.7 Deterministic transitions and up-to techniques

As hinted at earlier, internal transitions associated to session interactions or β-reductions are
deterministic. To define an auxiliary proof technique that exploits determinacy we require
some auxiliary definitions.

Definition 19 (Deterministic transitions) Suppose Γ ; ∅;Δ � P � 
 with balanced Δ.
Transition Γ ;Δ � P

τ�−→ Δ′ � P ′ is called:

– session-transition whenever transition P
τ−→ P ′ is derived using Rule 〈Tau〉 (where

subj(�1) and subj(�2) in the premise are dual endpoints), possibly followed by uses
of Rules 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉 (cf. Fig. 4).

– aβ-transitionwhenever transition P
τ−→ P ′ is derived usingRule 〈App〉, possibly followed

by uses of Rules 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉 (cf. Fig. 4).
Notation 20 We use the following notations:

– Γ ;Δ � P
τs�−→ Δ′ � P ′ denotes a session-transition.

– Γ ;Δ � P
τβ�−→ Δ′ � P ′ denotes a β-transition.

– Γ ;Δ � P
τd�−→ Δ′ � P ′ denotes either a session-transition or a β-transition.
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– We write
τd

�	⇒ to denote a (possibly empty) sequence of deterministic steps
τd�−→.

Deterministic transitions imply the τ -inertness property [7], which ensures behavioural
invariance on deterministic transitions:

Proposition 2 (τ -inertness) Suppose Γ ; ∅;Δ � P � 
 with balanced Δ. Then

1. Γ ;Δ � P
τd�−→ Δ′ � P ′ implies Γ ;Δ � P ≈H Δ′ � P ′.

2. Γ ;Δ � P
τd

�	⇒ Δ′ � P ′ implies Γ ;Δ � P ≈H Δ′ � P ′.

Proof (Sketch) The proof of Part 1 requires to show that relation (we omit type information)

� = {(P, P ′) | Γ ;Δ � P
τd�−→ Δ′ � P ′}

is a higher-order bisimulation. The proof for Part 2 is direct from Part 1. See “Deterministic
transitions” section of Appendix 2 for the details. ��

Using the above properties, we can state the following up-to technique.

Lemma 1 (Up-to deterministic transition) Let Γ ;Δ1 � P1 � Δ2 � Q1 such that if when-
ever:

1. ∀(ν m̃1)n!〈V1〉 such that Γ ;Δ1 � P1
(ν m̃1)n!〈V1〉�−→ Δ3 � P3 implies that ∃Q2, V2 such

that Γ ;Δ2 � Q1
(ν m̃2)n!〈V2〉

�	⇒ Δ′
2 � Q2 and Γ ;Δ3 � P3

τd
�	⇒ Δ′

1 � P2 and for a fresh
name t and Δ′′

1,Δ
′′
2:

Γ ;Δ′′
1 � (ν m̃1)(P2 | t ←↩H V1) � Δ′′

2 � (ν m̃2)(Q2 | t ←↩H V2)

2. ∀� �= (ν m̃)n!〈V 〉 such that Γ ;Δ1 � P1
��−→ Δ3 � P3 implies that ∃Q2 such that

Γ ;Δ1 � Q1
�̂

�	⇒Δ′
2 � Q2 andΓ ;Δ3 � P3

τd
�	⇒ Δ′

1 � P2 andΓ ;Δ′
1 � P2 �Δ′

2 � Q2.
3. The symmetric cases of 1 and 2.

Then � ⊆ ≈H.

Proof (Sketch) The proof proceeds by considering the relation

�
τd

�	⇒ = {Γ ;Δ′
1 � P2,Δ

′
2 � Q1 | Γ ;Δ1 � P1 � Δ′

2 � Q1, Γ ;Δ1 � P1
τd

�	⇒ Δ′
1 � P2}

We may verify that �
τd

�	⇒ is a higher-order bisimulation by using Proposition 2. ��
5.8 Characterisation of higher-order and characteristic bisimilarities

This section proves the main result; it allows us to use ≈C and ≈H as tractable reasoning
techniques for HOπ processes.

Lemma 2 ≈C = ≈H.

Proof (Sketch) The main difference between≈H and≈C is the trigger process (higher-order
triggers t ←↩H V in ≈H and characteristic triggers t ⇐C V :U in ≈C). Thus, the most
interesting case in the proof is when we observe an output from a process. When showing
that ≈C ⊆ ≈H, the key after the output is to show that

(ν m̃1)(P1 | t ⇐C V :U ) ≈H (ν m̃2)(P2 | t ⇐C V2 :U )
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given that

(ν m̃1)(P1 | t ←↩H V ) ≈H (ν m̃2)(P2 | t ←↩H V2).

Similarly, in the proof of ≈H ⊆ ≈C, the key step is showing that

(ν m̃1)(P1 | t ←↩H V ) ≈C (ν m̃2)(P2 | t ←↩H V2)

given that

(ν m̃1)(P1 | t ⇐C V :U ) ≈C (ν m̃2)(P2 | t ⇐C V2 :U ).

The proof for the above equalities is coinductive, exploiting the freshness of the trigger
name in each case; see Lemma 13 in the Appendix. While the proof of the first equality
(i.e., higher-order triggers imply characteristic triggers) follows expected lines, the proof of
the second equality (i.e., characteristic triggers imply higher-order triggers) is a bit more
involved. Indeed, while higher-order trigger processes can input trigger values, characteristic
triggers cannot. However, we prove that this does not represent a difference in behaviour;
see case 2(c) in Lemma 13. To this end, we exploit an alternative trigger process, denoted
t ↼A V , simpler than the higher-order trigger t ←↩H V in (6):

t ↼A V = t?(x).(ν s)(x s | s!〈V 〉.0)

In the proofs for these coincidence results, we exploit some auxiliary results for trigger
processes, including a two-way connection between t ←↩H V and t ↼A V (cf. Lemma 12
(3) in the Appendix). We thus infer that characteristic trigger processes t ⇐C V :U and
higher-order trigger processes t ←↩H V exhibit a similar behaviour.

In turn, using the above results we can show that typed relations induced by ≈H and ≈C

coincide. The full proof is in “Proof of Theorem 2” section in Appendix 2, Lemma 14. ��
The next lemma is crucial for the characterisation of higher-order and characteristic bisim-

ilarities. It states that if two processes are equivalent under the trigger value then they are
equivalent under any higher-order substitution.

Lemma 3 (Process substitution) Let P and Q be two processes and some fresh t. If

Γ ;Δ′
1 � P{λx . t?(y).(y x)/z} ≈H Δ′

2 � Q{λx . t?(y).(y x)/z}
then for all R such that fv(R) = {x}, we have

Γ ;Δ1 � P{λx . R/z} ≈H Δ2 � Q{λx . R/z}.
The full proof of Lemma 3 can be found in “Proof of Theorem 2” section in Appendix 2,

Lemma 17; it is obtained by (i) constructing a typed relation on the substitution properties
stated by the lemma and (ii) proving that it is a higher-order bisimulation, using the auxiliary
result given next. In the following, given a finite index set I = {1, . . . , n}, we shall write
∏

i∈I Pi to stand for P1 | P2 | · · · | Pn .
Lemma 4 (Trigger substitution) Let P and Q be processes. Also, let t be a fresh name. If

Γ ;Δ1 � (ν m̃1)

(

P |
∏

i∈I
(λx . ti?(y).(y x)) ni

)

≈H � Δ2(ν m̃2)

(

Q |
∏

i∈I
(λx . ti?(y).(y x))mi

)
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then for all λx̃ . R, there exist Δ′
1,Δ

′
2 such that

Γ ;Δ′
1 � (ν m̃1)(P | (λx̃ . R) ñ) ≈H Δ′

2 � (ν m̃2)(Q | (λx̃ . R) m̃).

Proof (Sketch) The proof follows the definition of the characteristic process; see Lemma 16,
in the Appendix for details. Let us consider the particular case in which I is a singleton; we
then construct a typed relation �:
� = {Γ ;Δ′

1 � (ν m̃1)(P | (λx . R) n1) , Δ′
2 � (ν m̃2)(Q | (λx . R) n2) |

Γ ;Δ1 � (ν m̃1)(P | (λx . t?(y).(y x)) n1) ≈H Δ2 � (ν m̃2)(Q | (λx . t?(y).(y x)) n2)}
The typed relation � can be shown to be a higher-order bisimulation by taking advantage
of the shape of the characteristic process; each time that a characteristic process does a
transition, an output t !〈n〉.0 (on a fresh name t) is observed, where n is either a shared or a
session name. To better illustrate this, let us sketch the demanding case of the proof that � is
a higher-order bisimulation. Assume that

Γ ; ∅;Δ′
1 � (ν m̃1)(P | R{n1/x}) τd�−→ �1�−→ Δ′′

1 � (ν m̃1
′)(P ′ | R′{n1/x})

for some Δ′′
1. Then, from the definition of �, we have:

Γ ; ∅;Δ1 � (ν m̃1)(P | (λx . t?(y).(y x)) n1) τd�−→t?〈[(U )]c〉�−→ τd
�	⇒ Δ3 � (ν m̃1

′′)(P | [(U )]n1)
for some Δ3. Characteristic processes have the following property, for any U �= end:

[(U )]n �−→ t !〈n〉.0
By the last property we can always observe, for some Δ′′

3 (note that below �1 may be an
action τ , thus denoting the interaction of P and [(U )]n1 ):

Γ ; ∅;Δ3 � (ν m̃1
′′)(P | [(U )]n1) �1�−→ (ν m̃1

′′′)(P ′ | t ′!〈n1〉.0)
t ′!〈n1〉�−→ Δ′′

3 � (ν m̃1
′′′)P ′

which implies, from the requirements of higher-order bisimulation, that there exist
(ν m̃2

′′)(Q′ | [(U )]x {n2/x}) and Δ4 such that

Γ ; ∅;Δ2 � (ν m̃2)(Q | (λx . t?(y).(y x)) n2) τd�−→t?〈[(U )]c〉
�	⇒ τd

�	⇒ Δ4 � (ν m̃2
′′)(Q′ | [(U )]n2)

By the shape of the characteristic process we can always observe for �2,subj(�2) =
subj(�1) if �1 is output, and �2 = �1 otherwise, that:

Γ ; ∅;Δ4 � (ν m̃2
′′)(Q′ | [(U )]x {n2/x}) �2

�	⇒ (ν m̃2
′′′)(Q′′ | t ′!〈n2〉.0)

t ′!〈n2〉�−→ Δ′
4 � (ν m̃2

′′′)Q′′ (8)

for some Δ′
4 and

Γ ;Δ′′
3 � (ν m̃1

′′′)(P ′ | t ′′ ←↩H n1) ≈H Δ′′
4 � (ν m̃2

′′′)(Q′′ | t ′′ ←↩H n2) (9)

for some Δ′′
4. From (8) we get

Γ ; ∅;Δ′
2 � (ν m̃2)(Q | R{n2/x}) �2

�	⇒ Δ′′
2 � (ν m̃2

′)(Q′′ | R′{n2/x})
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for some Δ′′
2 and from (9) we get

Γ ;Δ′′
3 � (ν m̃1

′′′)(P ′ | (λx . t ′′?(y).(y x)) n1) ≈H Δ′′
4 � (ν m̃2

′′′)(Q′′ | (λx . t ′′?(y).(y x)) n2)
which implies from the definition of � that for R′ we get

Γ ;Δ′′
1 � (ν m̃1

′)(P ′ | R′{n1/x}) � Δ′′
2 � (ν m̃2

′)(Q′′ | R′{n2/x})
as required. ��

We now show that higher-order bisimilarity is sound with respect to context bisimilarity.
To show soundness we use the crucial result of Lemma 3:

Lemma 5 ≈H ⊆ ≈.

Proof (Sketch) The proof relies on Lemma 3 to establish that:

1. Whenever two processes are higher-order bisimilar under the input of a characteristic
value and a trigger value then they are higher-order bisimilar under the input of any
value λx . R, which is the requirement for ≈ (cf. Definition 12).

2. The input requirement is then further used to prove that the output clause requirement
for ≈H (cf. Definition 17):

Γ ;Δ1 � (ν m̃1)(P2 | t ←↩H V1) � Δ2 � (ν m̃2)(Q2 | t ←↩H V2)

implies the output clause requirement for ≈, that is, for all R with fv(R) = {x}:
Γ ;Δ1 � (ν m̃1)(P2 | R{V1/x}) � Δ2 � (ν m̃2)(Q2 | R{V2/x}).

The full proof is found in “Proof of Theorem 2” section in Appendix 2, Lemma 18. ��
Context bisimilarity is included in barbed congruence:

Lemma 6 ≈ ⊆ ∼=.

Proof (Sketch) We show that ≈ satisfies the defining properties of ∼=. It is easy to show
that ≈ is reduction-closed and barb preserving (cf. Definition 6 and Definition 9). The most
challenging part is to show that ≈ is a congruence, in particular a congruence with respect
to parallel composition. To this end, we construct the following relation:

S = {(Γ ; ∅;Δ1 ·Δ3 � (ν ñ1)(P1 | R) , Γ ; ∅;Δ2 ·Δ3 � (ν ñ2)(P2 | R)) |
Γ ;Δ1 � P1 ≈ Δ2 � P2 and ∀R such that Γ ; ∅;Δ3 � R � 
}

We show that S is a context bisimulation by a case analysis on the transitions of the pairs in
S. The full proof is found in “Proof of Theorem 2” section in Appendix 2, Lemma 19. ��

The last ingredient required for our main result is the following inclusion.

Lemma 7 ∼= ⊆ ≈H.

Proof (Sketch) The proof exploits the definability technique developed in [8, §6.7] and
refined for session types in [18,19]. Intuitively, this technique exploits small test processes
that reveal the presence of a visible action by reducing with a given pair of processes and
exhibiting a barb on a fresh name.
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Intuitively, for each visible action �, we use a fresh name succ to we define a (typed) test
process Γ ; ∅;Δ2 � T 〈�, succ〉 � 
 with the following property:

Γ ;Δ1 � P | T 〈�, succ〉 −→ Δ2 � P ′ | succ!〈m〉.0 ↓succ iff Γ ;Δ � P
��−→ Γ ;Δ′ � P ′

See Definition 25 for the formal definition. The test processes can therefore be used to check
the typed labelled transition interactions of two processes that are related by reduction-closed,
barbed congruence. Indeed, we have that

Γ ;Δ1 � P ∼= Δ2 � Q

implies from congruence of ∼=, that if there exist Δ3,Δ4 such that:

Γ ;Δ3 � P | T 〈�, succ〉 ∼= Δ4 � Q | T 〈�, succ〉
then it implies from reduction-closeness of ∼= and the definition of T 〈�, succ〉:

Γ ;Δ′
3 � P ′ | succ!〈m〉.0 ∼= Δ′

4 � Q′ | succ!〈m〉.0 (10)

which in turn means that whenever Γ ;Δ1 � P � 
 can perform an action
��−→ then we can

derive that Γ ;Δ2 � Q � 
 can also perform action
�

�	⇒ because of the result in (10). By
applying Lemma 21 on (10) we can deduce that Γ ;Δ′

1 � P ′ ∼= Δ′
2 � Q′. This concludes

the requirements of ≈:

Γ ;Δ � P ≈H Δ′ � Q

The full details can be found in “Proof of Theorem 2” section in Appendix 2, Lemma 22.
��

We can finally state our main result:

Theorem 2 (Coincidence) ∼=, ≈, ≈H and ≈C coincide in HOπ .

Proof The proof is a direct consequence from our previous results: Lemma 2 (which proves
≈H=≈C), Lemma 5 (which proves≈H⊆≈), Lemma 6 (which proves≈⊆∼=), and Lemma 7
(which proves ∼= ⊆ ≈H). Indeed, we may conclude

∼= ⊆ ≈H = ≈C ⊆ ≈ ⊆ ∼=
��

5.9 Revisiting the hotel booking scenario (Sect. 3.3)

Now we revisit our running example to prove that Client1 and Client2 in Sect. 3.3 are
behaviourally equivalent.

Proposition 3 Let S =!〈room〉; ?(quote);⊕{accept :!〈credit〉;end, reject : end} and
Δ = s1 :!〈S� 
〉;end · s2 :!〈S� 
〉;end. Then ∅;Δ � Client1 ≈C Δ � Client2, where
Client1 and Client2 are as in Sect. 3.3.

Proof We show a case where each typed process simulates the other, according to the defini-
tion of≈C (cf. Definition 18). In order to show the bisimulation game consider the definition
of the characteristic process for type ?(S�
);end. For fresh sessions s, k, we have

[(?(S�
);end)]s = s?(x).(t !〈s〉.0 | [(S�
)]x )
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∅; ∅;Δ Client1

s1! λx. Pxy{h1/y
; ∅; s2 :! S ; end · k1 : S

(ν h1, h2)(s2! λx. Pxy{h2/y .0 | h1?(x).h2?(y).R
| t1 ⇐C Pxy{h1/y} :S )

s2! λx. Pxy{h2/y
; ∅; k1 : S · k2 : S (ν h1, h2)(h1?(x).h2?(y).R

t1 ⇐C Pxy{h1/y} :S t2 ⇐C Pxy{h2/y} :S )
t1? b t2? b τd τd ; ∅; k1 : S · k2 : S (ν h1, h2)(h1?(x).h2?(y).R

| (ν s1, s2)(Pxy{h1/y}{k1/x} | Pxy{h1/y}{k2/x})
| t3! s1 .0 | t4! s2 .0)

t3! s1 t4! s2 ; ∅; k1 : S · k2 : S (ν h1, h2)(h1?(x).h2?(y).R
| Pxy{h1/y}{k1/x} | Pxy{h1/y}{k2/x})
| (ν s1, s2)(t3 ⇐C s1 : end | t4 ⇐C s2 : end)

t3! c t4! c

τd τd τd τd ; ∅; k1 : S · k2 : S (ν h1, h2)(h1?(x).h2?(y).R
| Pxy{h1/y}{k1/x} | Pxy{h1/y}{k2/x})

k1! room k2! room

k1? quote k2? quote
; ∅; k1 : S · k2 : S (ν h1, h2)(h1?(x).h2?(y).R
| h1! quote .Q{h1/z} | h2! quote .Q{h2/z})

τd τd τd ; ∅; k1 : S · k2 : S

(ν h1, h2)(h1 accept.h2 reject.0 | Q{h1/z} | Q{h2/z})
τd τd ; ∅; k1 : S · k2 : S k1 accept.k1! credit .0 | k2 reject.0

k1⊕accept k2⊕reject k1⊕credit
; ∅; 0

Fig. 7 Observable actions from Client1 (cf. Sect. 5.9)

For convenience, we recall the definition of Client1:

Client1
def= (ν h1, h2)(s1!〈λx . Pxy{h1/y}〉.s2!〈λx . Pxy{h2/y}〉.0 | h1?(x).h2?(y).R′)

where

Pxy
def= x !〈room〉.x?(quote).y!〈quote〉.y �

{

accept : x � accept.x !〈credit〉.0 ,

reject : x � reject.0
}

R′ ≡ if x ≤ y then (h1 � accept.h2 � reject.0 ; h1 � reject.h2 � accept.0)

Also, the definition of Client2 is as follows:

Client2
def= (ν h)(s1!〈λx . Q1{h/y}〉.s2!〈λx . Q2{h/y}〉.0)

Q1
def= x !〈room〉.x?(quote1).y!〈quote1〉.y?(quote2).Rx

Q2
def= x !〈room〉.x?(quote1).y?(quote2).y!〈quote1〉.Rx

Rx
def= if quote1 ≤ quote2 then (x � accept.x !〈credit〉.0 ; x � reject.0)

A detailed account of the observable behaviour of Client1 is given in Fig. 7, where we use
the following shorthand notation:
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∅; ∅;Δ Client2

s1! λx. Q1{h/y
; ∅; s2 :! S ; end · k1 : S (ν h)(s2! λx. Q2{h/y .0
| t1 ⇐C Q1{h/y} :S )

s2! λx. Q2{h/y
; ∅; k1 : S · k2 : S

(ν h)(t1 ⇐C Q1{h/y} :S t2 ⇐C Q2{h/y} :S )
t1? b t2? b τd τd ; ∅; k1 : S · k2 : S (ν h)(P{h/y}{k1/x} | Pxy{h/y}{k2/x}

| (ν s1, s2)(t3! s1 .0 | t4! s2 .0))
t3! s1 t4! s2 ; ∅; k1 : S · k2 : S (ν h)(P{h/y}{k1/x} | Pxy{h/y}{k2/x}

| (ν s1, s2)(t3 ⇐C s1 : end | t4 ⇐C s2 : end))
t3! c t4! c

τd τd τd τd ; ∅; k1 : S · k2 : S (ν h)(P{h/y}{k1/x} | Pxy{h/y}{k2/x})
k1! room k2! room

k1? quote k2? quote
; ∅; k1 : S · k2 : S (ν h)(h! quote1 .h?(quote2).R{k1/x}
| h?(quote2).h! quote1 .R{k2/x})

τd τd ; ∅; k1 : S · k2 : S R{k1/x} | R{k2/x}
τd τd ; ∅; k1 : S · k2 : S k1 accept.k1! credit .0 | k2 reject.0

k1⊕accept k2⊕reject k1⊕credit
; ∅; 0

Fig. 8 Observable actions from Client2 (cf. Sect. 5.9)

Q ≡ z � {accept : k2 � accept.k2!〈credit〉.0, reject : k2 � reject.0}
Similarly, Fig. 8 illustrates the actions possible from Client2, which are the same as for

Client1. ��

6 Related work

Since types can limit contexts (environments) where processes can interact, typed equiva-
lences usually offer coarser semantics than untyped equivalences. Pierce and Sangiorgi [28]
demonstrated that IO-subtyping can justify the optimal encoding of the λ-calculus by
Milner—this was not possible in the untyped polyadic π-calculus [23]. After [28], several
works on typed π-calculi have investigated correctness of encodings of known concurrent
and sequential calculi in order to examine semantic effects of proposed typing systems.

A type discipline closely related to session types is a family of linear typing systems.
Kobayashi, Pierce, and Turner [14] first proposed a linearly typed reduction-closed, barbed
congruence and used it to reason about a tail-call optimisation of higher-order functions
encoded as processes. Yoshida [35] used a bisimulation of graph-based types to prove the
full abstraction of encodings of the polyadic synchronous π-calculus into the monadic syn-
chronousπ-calculus. Later, typed equivalences of a family of linear and affine calculi [2,3,36]
were used to encode PCF [22,29], the simply typed λ-calculus with sums and products, and
System F [6] fully abstractly (a fully abstract encoding of the λ-calculi was an open problem
in [23]). Yoshida et al. [37] proposed a new bisimilarity method associated with a linear
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type structure and strong normalisation; it presented applications to reason about secrecy in
programming languages. A subsequent work [11] adapted these results to a practical direc-
tion, proposing new typing systems for secure higher-order and multi-threaded programming
languages. In these works, typed properties, linearity and liveness, play a fundamental rôle
in the analysis. In general, linear types are suitable to encode “sequentiality” in the sense
of [1,12].

Our work follows the behavioural semantics in [18,19,27] where a bisimulation is defined
on an LTS that assumes a session typed observer. Our theory for higher-order sessions differ-
entiates from the work in [19] and [18], which considers (first-order) binary and multiparty
session types, respectively. Pérez et al [27] studied typed equivalences for a theory of binary
sessions based on linear logic, without shared names.

Our approach to typed equivalences builds upon techniques developed by Sangiorgi [30,
31] and Jeffrey and Rathke [13]. As we have discussed, although context bisimilarity has
a satisfactory discriminative power, its use is hindered by the universal quantification on
output. To deal with this, Sangiorgi proposes normal bisimilarity, a tractable equivalence
without universal quantification. To prove that context and normal bisimilarities coincide,
the approach in [30] uses triggered processes. Triggered bisimulation is also defined on first-
order labels where context bisimulation is restricted to arbitrary trigger substitution. This
characterisation of context bisimilarity was refined in [13] for calculi with recursive types,
not addressed in [30,31] and quite relevant in session-based concurrency. The bisimulation
in [13] is based on an LTS extended with trigger meta-notation. As in [30,31], the LTS
in [13] observes first-order triggered values instead of higher-order values, offering a more
direct characterisation of contextual equivalence and lifting the restriction to finite types.
Environmental bisimulations [32] use a higher-order LTS to define a bisimulation that stores
the observer’s knowledge; hence, observed actions are based on this knowledge at any given
time. This approach is enhanced in [15]with amapping from constants to higher-order values.
This allows to observe first-order values instead of higher-order values. It differs from [13,31]
in that the mapping between higher- and first-order values is no longer implicit.

Comparison with respect to [13]We briefly contrast the approach by Jeffrey and Rathke [13]
and our approach based on characteristic bisimilarity (≈C):

• The LTS in [13] is enriched with extra labels for triggers; an output action transition
emits a trigger and introduces a parallel replicated trigger. Our approach retains usual
labels/transitions; in case of output, ≈C introduces a parallel non-replicated trigger.

• Higher-order input in [13] involves the input of a trigger which reduces after substitution.
Rather than a trigger name, ≈C decrees the input of a trigger value λz. t?(x).(x z).

• Unlike [13], ≈C treats first- and higher-order values uniformly. As the typed LTS distin-
guishes linear and shared values, replicated closures are used only for shared values.

• In [13] name matching is crucial to prove completeness of bisimilarity. In our case,HOπ

lacks name matching and we use session types: a characteristic value inhabiting a type
enables the simplest form of interactions with the environment.

To further compare our approach to that in [13], we use a representative example.

Example 6 Let V = λx . x (λy. y!〈m〉.0) be a value. Consider a process such that

Γ ; ∅;Δ · n :!〈U 〉;end � n!〈V 〉.0 � 

withU = (((!〈S〉;end)→
)→
)→
.Wecontrast the transitions from P . In our framework,

we have a typed transition Γ ; ∅;Δ ·n :!〈U 〉;end � P
n!〈V 〉−−−→ Γ ; ∅;Δ � 0. In the framework
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t ⇐C V :U
= Γ ; ∅;Δ t?(z).(ν s)(s?(x).[ (U)]x | s! λx. x (λy. y! m .0) .0)
= Γ ; ∅;Δ t?(z).(ν s)(s?(x).x (λy. (y a)) | s! λx. x (λy. y! m .0) .0)

(1)
t? b−−−→ Γ ; ∅;Δ (ν s)(s?(x).x (λy. (y a)) | s! λx. x (λy. y! m .0) .0)

(2)
τd−→ Γ ; ∅;Δ λx. x (λy. y! m .0) (λy. (y a))

(3)
τd−→ Γ ; ∅;Δ (λy. (y a)) (λy. y! m .0)

(4)
τd−→ Γ ; ∅;Δ (λy. y! m .0) a

(5)
τd−→ Γ ; ∅;Δ a! m .0

(a) Our approach.

Γ ; ∅;Δ t?(x).x (λy. y! m .0)

(1)
t? τl−−−−→ Γ ; ∅;Δ t?(x).x (λy. y! m .0) | (λx. x (λy. y! m .0)) τl

(2)
τd−→ Γ ; ∅;Δ t?(x).x (λy. y! m .0) | τl (λy. y! m .0)

(3)
(ν k)l! τk−−−−−−−→ Γ ; ∅;Δ t?(x).x (λy. y! m .0) | ∗ k?(y).y! m .0

(4)
k? a−−−−→ Γ ; ∅;Δ t?(x).x (λy. y! m .0) | ∗ k?(y).y! m .0 | (λy. y! m .0) a

(5)
τd−→ Γ ; ∅;Δ t?(x).x (λy. y! m .0) | ∗ k?(y).y! m .0 | a! m .0

(b) Jeffrey and Rathke’s approach [13].

Fig. 9 Comparing labelled transitions associated to the process in Example 6

of [13] a similar (but untyped) output transition takes place. Figure 9 presents a complete
comparison of the labelled transitions in our approach (Fig. 9a) and in [13] (Fig. 9b). In our
approach, we let

[(U )]x = x (λy. (y a)) for some fresh a

Then we have one input transition (Line (1)), followed by four deterministic internal tran-
sitions; no replicated processes are needed. The approach of [13] also uses five transitions,
but more visible transitions are required (three, see Lines (1), (2), and (3) in Fig. 9b) and at
the end, two replicated processes remain (on t and k). This is how linearity information in
session types enables simpler bisimulations. Note that τl and τk in Lines (1) and (3) denote
triggered processes on names l and k.

The previous comparison shows how our approach requires less visible transitions and
replicated processes. Therefore, linearity information does simplify analyses, as it enables
simpler witnesses in coinductive proofs.

7 Concluding remarks

Obtaining tractable characterisations of contextual equivalence is a long-standing issue for
higher-order languages. In this paper, we have addressed this challenge for a higher-order lan-
guage which integrates functional constructs and features from concurrent processes (name
andprocess passing), andwhose interactions are governedby session types, a behavioural type
discipline for structured communications. The main result of our study is the development
of characteristic bisimilarity, a relation on session typed processes which fully characterises
contextual equivalence.
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Compared to the well-known context bisimilarity, our notion of characteristic bisimilar-
ity enables more tractable analyses without sacrificing distinguishing power. Our approach
to simplified analysis rests upon two simple mechanisms. First, using trigger processes we
lighten the requirements involved in output clauses. In particular, we can lift the need for
heavy universal quantifications. Second, using characteristic processes and values we refine
the requirements for input clauses. Formally supported by a refined LTS, the use of character-
istic processes and values effectively narrows down input actions. Session type information
(which includes linearity requirements on reciprocal communications), naturally available
in scenarios of interacting processes, is crucial to define these two new mechanisms, and
therefore to enable technical simplifications in our developments. As already discussed, our
coincidence result is insightful also in the light of previous works on labelled equivalences for
higher-order processes, in particular with respect to characterisations by Sangiorgi [30,31]
and by Jeffrey and Rathke [13]. Our main result combines several technical innovations,
including, e.g., up-to techniques for deterministic behaviours (cf. Lemma 1) and an alterna-
tive behavioural equivalence, called higher-order bisimilarity (denoted≈H, cf. Definition 17),
which uses simpler trigger processes and is applicable to processes without first-order pass-
ing.

In addition to their intrinsic significance, our study has important consequences and appli-
cations in other aspects of the theory of higher-order processes. In particular, we have recently
explored the relative expressivity of higher-order sessions [17].Both characteristic andhigher-
order bisimilarities play an important rôle in establishing tight correctness properties (e.g.,
operational correspondence and full abstraction) for encodability results connecting different
variants of HOπ . Such variants cover features such as pure process passing (with first- and
higher-order abstractions), pure name passing, polyadicity, linear/shared communication.
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Appendix 1: The typing system of HOπ

We first formally define type equivalence. Then we give details of the proof of Theorem 1.

Type equivalence

Definition 21 (Type equivalence) Let ST be a set of closed session types. Two types S and
S′ are said to be isomorphic if a pair (S, S′) is in the largest fixed point of the monotone
function F : P(ST × ST) → P(ST × ST) defined by:

F(�) = {(end,end)}
∪{(!〈U1〉; S1, !〈U2〉; S2) | (S1, S2), (U1,U2) ∈ �}
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∪{(?(U1); S1, ?(U2); S2) | (S1, S2), (U1,U2) ∈ �}
∪{(&{li : Si }i∈I , &{li : S′i }i∈I ) | ∀i ∈ I.(Si , S

′
i ) ∈ �}

∪{(⊕{li : Si }i∈I , ⊕{li : S′i }i∈I ) | ∀i ∈ I.(Si , S
′
i ) ∈ �}

∪{(μt.S, S′) | (S{μt.S/t}, S′) ∈ �}
∪{(S, μt.S′) | (S, S′{μt.S′/t}) ∈ �}

Standard arguments ensure that F is monotone, thus the greatest fixed point of F exists.
We write S1 ∼ S2 if (S1, S2) ∈ �.
Proof of Theorem 1 (type soundness)

As our type system is closely related to that considered by Mostrous and Yoshida [26], the
proof of type soundness requires notions and properties which are instances of those already
shown in [26]. We first state weakening and strengthening lemmas, which have standard
proofs.

Lemma 8 (Weakening—Lemma C.2 in [26])

– If Γ ;Λ;Δ � P � 
 and x /∈ dom(Γ,Λ,Δ) then Γ · x : U→
;Λ;Δ � P � 

Lemma 9 (Strengthening—Lemmas C.3 and C.4 in [26]) We have:

– If Γ · x : U→
;Λ;Δ � P � 
 and x /∈ fv(P) then Γ ;Λ;Δ � P � 

– If Γ ;Λ;Δ · s : end � P � 
 and s /∈ fn(P) then Γ ;Λ;Δ � P � 

Below, shared value means that there are no free linear names, thus Λ,Δ are empty (cf.

Rule [Prom] in Fig. 3).

Lemma 10 (Substitution Lemma—Lemma C.10 in [26]) We have:

1. Suppose Γ ;Λ;Δ · x : S � P � 
 and s /∈ dom(Γ,Λ,Δ).
Then Γ ;Λ;Δ · s : S � P{s/x} � 
.

2. Suppose Γ · x : 〈U 〉;Λ;Δ � P � 
 and a /∈ dom(Γ,Λ,Δ).
Then Γ · a : 〈U 〉;Λ;Δ � P{a/x} � 
.

3. Suppose Γ ;Λ1 · x : U�
;Δ1 � P � 
 and Γ ;Λ2;Δ2 � V �U�
 with Λ1,Λ2 and
Δ1,Δ2 defined. Then Γ ;Λ1 ·Λ2;Δ1 ·Δ2 � P{V/x} � 
.

4. Suppose Γ · x : U→
;Λ;Δ � P � 
 and shared value V such that
Γ ; ∅; ∅ � V �U→
 Then Γ ;Λ;Δ � P{V/x} � 
.

Proof In all four parts, we proceed by induction on the typing for P , with a case analysis on
the last applied rule. ��

We now state the instance of type soundness that we can derive from [26]. It is worth
noticing the definition of structural congruence in [26] is richer than ours. Also, their state-
ment for subject reduction relies on an ordering on typings, associated to queues and other
runtime elements. Since we are working with synchronous communication this ordering can
be omitted. The second part of the following statement corresponds to Theorem 1:

Theorem 3 (Type soundness)We have:

1. (Subject congruence) SupposeΓ ;Λ;Δ � P�
. Then P ≡ P ′ impliesΓ ;Λ;Δ � P ′�
.
2. (Subject reduction) Suppose Γ ; ∅;Δ � P �
 with balanced Δ. Then P −→ P ′ implies

Γ ; ∅;Δ′ � P ′ � 
 and Δ = Δ′ or Δ −→ Δ′.
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Proof Part (1) is standard, using weakening and strengthening lemmas. Part (2) proceeds by
induction on the last reduction rule used. Below, we give some details:

1. Case [App]: Then we have

P = (λx . Q) u −→ Q{u/x} = P ′

Suppose Γ ; ∅; Δ � (λx . Q) u �
. We examine one possible way in which this assump-
tion can be derived; other cases are similar or simpler:

Γ ; ∅; Δ · {x : S} � Q � 
 Γ ′; ∅; {x : S} � x � S

Γ ; ∅; Δ � λx . Q � S�
 Γ ; ∅; {u : S} � u � S
Γ ; ∅; Δ · u : S � (λx . Q) u � 


Then, by combining premise Γ ; ∅; Δ · {x : S} � Q � 
 with the substitution lemma
(Lemma 10(1)), we obtain Γ ; ∅; Δ · u : S � Q{u/x} � 
, as desired.

2. Case [Pass]: There are several sub-cases, depending on the type of the communication
subject n (which could be a shared or a linear name) and the type of the object V
(which could be an abstraction or a shared/linear name). We analyse two representative
sub-cases:

(a) n is a shared name and V is a name v. Then we have the following reduction:

P = n!〈v〉.Q1 | n?(x).Q2 −→ Q1 | Q2{v/x} = P ′

By assumption, we have the following typing derivation:

(11) (12)

Γ ; ∅; Δ1 · {v : S} ·Δ3 � n!〈v〉.Q1 | n?(x).Q2 � 

where (11) and (12) are as follows:

Γ ′ · n : 〈S〉; ∅; ∅ � n � 〈S〉 Γ ; ∅; Δ1 � Q1 � 
 Γ ; ∅; {v : S} � v � S

Γ ; ∅; Δ1 · {v : S} � n!〈v〉.Q1 � 
 (11)

Γ ′ · n : 〈S〉; ∅; ∅ � n � 〈S〉 Γ ; ∅; Δ3 · x : S � Q2 � 

Γ ; ∅; Δ3 � n?(x).Q2 � 
 (12)

Now, by applying Lemma 10(1) on Γ ; ∅; Δ3 · x : S � Q2 � 
 we obtain

Γ ; ∅; Δ3 · v : S � Q2{v/x} � 

and the case is completed by using Rule [Par] with this judgement:

Γ ; ∅;Δ1 � Q1 � 
 Γ ; ∅; Δ3 · v : S � Q2{v/x} � 

Γ ; ∅;Δ1 ·Δ3 · v : S � Q1 | Q2{v/x} � 


Observe how in this case the session environment does not reduce.
(b) n is a shared name and V is a higher-order value. Then we have the following

reduction:

P = n!〈V 〉.Q1 | n?(x).Q2 −→ Q1 | Q2{V/x} = P ′

By assumption, we have the following typing derivation (below, we write L to stand
for C→
 and Γ to stand for Γ ′ \ x).

(13) (14)

Γ ; ∅; Δ1 ·Δ3 � n!〈v〉.Q1 | n?(x).Q2 � 
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where (13) and (14) are as follows:

Γ ; ∅; ∅ � n � 〈L〉 Γ ; ∅; Δ1 � Q1 � 
 Γ ; ∅; ∅ � V � L

Γ ; ∅; Δ1 � n!〈V 〉.Q1 � 
 (13)

Γ ′; ∅; ∅ � n � 〈L〉 Γ ′; ∅; Δ3 � Q2 � 
 Γ ′; ∅; ∅ � x � L

Γ ; ∅; Δ3 � n?(x).Q2 � 
 (14)

Now, by applying Lemma 10(4) on Γ ′\x; ∅; Δ3 � Q2 � 
 and Γ ; ∅; ∅ � V � L
we obtain

Γ ; ∅; Δ3 � Q2{V/x} � 

and the case is completed by using Rule [Par] with this judgement:

Γ ; ∅;Δ1 � Q1 � 
 Γ ; ∅; Δ3 � Q2{V/x} � 

Γ ; ∅;Δ1 ·Δ3 � Q1 | Q2{V/x} � 


Observe how in this case the session environment does not reduce.

3. Case [Sel]: The proof is standard, the session environment reduces.
4. Cases [Par] and [Res]: The proof is standard, exploiting induction hypothesis.
5. Case [Cong]: follows from Theorem 3(1).

Appendix 2: Proofs for Sect. 5

Typability of characteristic processes

We state and prove a more detailed form of Proposition 1. The case of recursive session
types requires the following two auxiliary definitions for session type unfolding and prefix
deletion.

Definition 22 (Session type unfolding) Given a session type S, the function unfold(S) is
defined as:

unfold(!〈U 〉; S) =!〈U 〉; S unfold(?(U ); S) =?(U ); S
unfold(⊕{li : Si }i∈I ) = ⊕{li : Si }i∈I unfold(&{li : Si }i∈I ) = &{li : Si }i∈I

unfold(μt.S) = unfold(S{μt.S/t}) unfold(end) = end

Lemma 11 Let S be a session type. Then unfold(S) = S′ and S′ �= μt.S′′.
Proof A straightforward induction on the syntax of S. ��

We define a relation for session type prefix deletion:

Definition 23 (Session type prefix deletion) Given a session type S, the set del(S) is defined
inductively as follows:

del(!〈U 〉; S) = {S} del(?(U ); S) = {S}
del(⊕{li : Si }i∈I ) = {Si }i∈I del(&{li : Si }i∈I ) = {Si }i∈I

del(μt.S) = del(unfold(μt.S)) del(end) = {end}
We may now finally state and prove the following proposition:

Proposition 4 (Characteristic processes/values inhabit their types)

1. Let U and [(U )]c be a type and its characteristic value, respectively.

(a) If U = S then, for some s, we have ∅; ∅; s : S � [(S)]c � S.
(b) If U = 〈S〉 then, for some a, we have a : 〈S〉; ∅; ∅ � [(〈S〉)]c � 〈S〉.
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(c) If U = 〈L〉 then, for some a, we have a : 〈L〉; ∅; ∅ � [(〈L〉)]c � 〈L〉.
(d) If U = U ′→
 and Γ ; ∅;Δ � [(U ′)]x � 
 then we have

Γ \x; ∅;Δ\x � [(U ′→
)]c �U ′→
.
(e) If U = U ′�
 and Γ ; ∅;Δ � [(U ′)]x � 
 then we have

Γ \x; ∅;Δ\x � [(U ′�
)]c �U ′�
.
2. Let S and [(S)]s be a session type and its characteristic process, respectively.

(a) If S = end then ∅; ∅; ∅; � [(end)]s � 
.
(b) If S =!〈U 〉; S′ and Γ ; ∅;Δ � [(U )]c �U then

Γ ; ∅;Δ · t :!〈S′〉;end · s :!〈U 〉; S′ � [(!〈U 〉; S′)]s � 
.
(c) If S =?(U ); S′ and Γ ; ∅;Δ � [(U )]x � 
 then

Γ \x; ∅; (Δ\x) · t :?(S′);end · s :!〈U 〉; S′ � [(?(U ); S′)]s � 
.
(d) If S = ⊕{li : Si }i∈I then

∅; ∅; {ti :!〈Si 〉;end}i∈I · s : ⊕{li : Si }i∈I � [(⊕{li : Si }i∈I )]s � 
.
(e) If S = &{li : Si }i∈I then

∅; ∅; {ti :!〈Si 〉;end}i∈I · s : &{li : Si }i∈I � [(&{li : Si }i∈I )]s � 
.
(f) If S = μt.S′ then either

– ∅; ∅; ∅ � [(μt.S′)]s � 

– for all Si ∈ del(S) there exist Γ,Δ, and S′i such that

Γ ; ∅;Δ · {ti : S′i }i∈I · s : S′{end/t} � [(S′{end/t})]s � 


and Γ ; ∅;Δ · {ti :!〈Si 〉;end}i∈I · s : μt.S′ � [(μt.S′)]s � 
.

3. Let U and [(U )]a be a channel type and its characteristic process, respectively.
(a) If U = 〈S〉 and ∅; ∅;Δ � [(S)]c � S then

a : 〈S〉; ∅;Δ · t :!〈〈S〉〉;end � [(〈S〉)]a � 
.
(b) If U = 〈L〉 and Γ ; ∅;Δ � [(L)]c � L then

Γ · a : 〈L〉; ∅;Δ · t :!〈〈L〉〉;end � [(〈L〉)]a � 
.
(c) If U = U ′→
 and Γ ; ∅;Δ � [(U ′)]c �U ′ then

Γ · x : U ′→
; ∅;Δ � [(U ′→
)]x � 
.
(d) If U = U ′�
 and Γ ; ∅;Δ � [(U ′)]c �U ′ then

Γ · x : U ′→
; ∅;Δ � [(U ′�
)]x � 
.

Proof The proof proceeds by mutual induction on the syntax of types. We analyze the three
parts separately:

1. We use the results from Parts 2 and 3 in a case analysis on the syntax of U .

– Cases (a) U = S, (b) U = 〈S〉, and (c) U = 〈L〉: The proof is straightforward from
Rules [Sess] and [Sh] (cf. Fig. 3).

– Case (d)U = U ′→
: By Parts 2 and 3 of this lemma we obtain Γ ; ∅;Δ � [(U ′)]x �
,
which implies Γ \x; ∅;Δ\x � [(U ′→ 
)]c � U ′→ 
 by Rules [Abs] and [EProm] (cf.
Fig. 3).

– Case (e) U = U ′�
: Similar, using Rule [Abs] (cf. Fig. 3).

2. The proof is by induction on the syntax of S. We detail some notable cases:
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(a) Case S =!〈U 〉; S′: Then, by Definition 13, we have [(S)]s = s!〈[(U )]c〉.t !〈s〉.0 and we
may obtain the following derivation:

Γ ; ∅; s : S′ · t :!〈S′〉;end � t !〈s〉.0 � 
 (Induction)
Γ ; ∅;Δ � [(U )]c �U

Γ ; ∅;Δ · s :!〈U 〉; S′ · t :!〈S〉;end � s!〈[(U )]c〉.t !〈s〉.0 � 

(b) Case S =?(S1); S2: Then, by Definition 13, we have [(S)]s = s?(x).(t !〈s〉.0 | [(S1)]x ).

and we may obtain the following derivation:

Γ ; ∅;Δ · x : S1 � [(S1)]x � 
 (Induction)
Γ ; ∅; t :!〈S2〉;end · s : S2 � t !〈s〉.0 � 


Γ ; ∅;Δ · x : S1 · t :!〈S2〉;end · s : S2 � t !〈s〉.0 | [(S1)]x � 

Γ ; ∅;Δ · t :!〈S2〉;end · s :?(U ); S2 � s?(x).(t !〈s〉.0 | [(S1)]x ) � 


(c) Case S = μt.S′: Then, by Definition 13, [(S)]=[(S′{end/t})]u . The proof is done by
induction on the shape of S′. We detail two sub-cases; the rest is similar or simpler.
(i) Sub-case S′ = &{li : Si }i∈I : Then [(S′{end/t})]s = s � {li : ti !〈s〉.0}i∈I and

del(S) = {Si }i∈I :
∀i ∈ I,∅; ∅; ti : Si {end/t} � ti !〈s〉.0 � 


∅; ∅; ti : Si {end/t} · s : S′{end/t} � s � {li : ti !〈s〉.0}i∈I � 

We may then type [(μt.&{li : Si }i∈I )]s :

∀i ∈ I,∅; ∅; ti : Si � ti !〈s〉.0 � 

∅; ∅; ti : Si · s : μt.&{li : Si }i∈I � s � {li : ti !〈s〉.0}i∈I � 


(ii) Sub-case S′ = μt’.S′′: Then [(μt’.S′′{end/t})]s = [(S′′{end/t}{end/t’})]s . If
[(S′′{end/t}{end/t’})]s = 0 then the proof is straightforward. If del(S) = {Si }i∈I
then by induction

(Induction)

Γ ; ∅;Δ · ti : Si {end/t}{end/t’} · s : S′′{end/t}{end/t’} � [(S′′{end/t}{end/t’})]s � 

We may then type [(S)]s :

(Induction)

Γ ; ∅;Δ · ti : Si · s : S � [(μt.μt’.S′′)]s � 

3. The proof uses the result of Part 1. We do a case analysis on the structure of U .

(a) CaseU = 〈S〉: From Part 1 we have that ∅; ∅;Δ � [(S)]c � S. By applying Rule [Req]

(cf. Fig. 3) we obtain:

a : 〈S〉; ∅;Δ � [(S)]c � S a : 〈S〉; ∅; t :!〈〈S〉〉;end � t !〈a〉.0 � 

a : 〈S〉; ∅;Δ · t :!〈〈S〉〉;end � [(〈S〉)]a � 


(b) Case U = 〈S〉: Similar argumentation as in the previous case.
(c) Case U = U ′�
: From Part 1 we know that Γ ; ∅;Δ � [(U ′)]c � U ′. By applying

Rules [App] and [EProm] (cf. Fig. 3) we obtain:

Γ ; ∅;Δ � [(U ′)]c �U ′ Γ ; x : U ′�
; ∅ � x �U ′�

Γ ; x : U ′�
;Δ � x [(U ′)]c � 


Γ · x : U ′→
; ∅;Δ � [(U ′�
)]x � 

(d) Case U = U ′→
: Similar argumentation as in the previous case without applying

Rule [EProm] (cf. Fig. 3). ��
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Deterministic transitions

The proofs for Theorem 2 require an auxiliary result on deterministic transitions (Lemma 1).
Some notions needed to prove this auxiliary result are presented next.

In the following we sometimes use polyadic abstractions (denoted λx̃ . P) and polyadic
name passing (denoted u!〈˜V 〉.P and u?(̃x).P , respectively) as shorthand notations.

We now prove Proposition 2:

Proposition 5 (τ -inertness) Suppose Γ ; ∅;Δ � P � 
 with balanced Δ. Then

1. Γ ;Δ � P
τd�−→ Δ′ � P ′ implies Γ ;Δ � P ≈H Δ′ � P ′.

2. Γ ;Δ � P
τd

�	⇒ Δ′ � P ′ implies Γ ;Δ � P ≈H Δ′ � P ′.

Proof Weonly provePart 1; the proof for Part 2 follows straightforwardly. The proof proceeds
by showing that the relation

� = {(P, P ′) | Γ ;Δ � P
τd�−→ Δ′ � P ′}

is a higher-order bisimulation.

Suppose first that Γ ;Δ � P
��−→ Δ′ � P ′′, for some P ′′; we have to show that P ′ can

produce an appropriate matching action. There are two main cases: � �= τ (a visible action)
and � = τ (an unobservable, possibly deterministic action).

1. The first case follows easily by typing conditions and type soundness, which ensure that
P ′ has the same potential as P for performing visible actions.

2. The second case can be divided into two sub-cases: first, if τ = τd then P ′ = P ′′ and
the thesis trivially follows; second, if τ �= τd (i.e., P has the possibility of performing
both τd and some other τ ) then either P ′ has the same τ or P ′ does not have it, because
τd excluded the occurrence of τ . The thesis follows by noticing that, in the first case,
P ′ can match the move from P; the second case cannot occur because of typing and the
definition of deterministic transitions.

Suppose now that Γ ;Δ � P ′ ��−→ Δ′ � P ′′, for some P ′′. This case follows immediately
by noticing that P can always match action � by performing the deterministic action τd first,

i.e., we can always have Γ ;Δ � P
τd�−→ ��−→ Δ′ � P ′′. This concludes the proof. ��

Proof of Theorem 2

We split the proof of Theorem 2 into several lemmas:

– Lemma 12 establishes useful properties of characteristic and higher-order processes,
including a two-way connection between higher-order trigger processes and an alternative
trigger process (denoted t ↼A V , defined below).

– Lemma 13 establishes the equivalence between characteristic and higher-order trigger
processes.

– Lemma 14 establishes ≈H = ≈C.
– Lemma 16 establishes a trigger substitution lemma (Lemma 4 in the main text), using

Lemma 15.
– Lemma 18 exploits the process substitution result given by Lemma 17 (Lemma 3 in the

main text) to prove that ≈H ⊆ ≈.
– Lemma 19 shows that ≈ is a congruence which implies ≈ ⊆ ∼=.

123



308 D. Kouzapas et al.

– Lemma 22 shows that∼=⊆≈H using Lemma 20 (definability) and Lemma 21 (extrusion).

We introduce a useful notation for action labels, which will be used in the following to
represent matching actions.

Definition 24 Let � be an action label (cf. Sect. 5.1). We define the action �̆ as

�̆ =
{

(ν m̃2)(n!〈V2〉) if � = (ν m̃1)(n!〈V1〉), for someV2, m̃2

� otherwise

Thus, given �, its corresponding action �̆ is either identical to �, or an output on the same
name, possibly with different object and extruded names.

We now introduce an alternative trigger process that is used to simplify the proofs. Let

t ↼A V = t?(x).(ν s)(x s | s!〈V 〉.0) (15)

The simpler formulation of alternative trigger process (with respect to the higher-order
trigger process, cf. (6)) is useful in proofs. However, the input of characteristic values on
name t results in the creation of redundant parallel components:

t?(x).(ν s)(x s | s!〈V 〉.0)

t?〈λx . x?(y).(t ′!〈x〉.0 | [(U ′)]y)〉�−→ (ν s)((λx . x?(y).(t ′!〈x〉.0 | [(U ′)]y)) s | s!〈V 〉.0)
τd�−→ τd�−→ (ν s)([(U )]y{V/y} | t ′!〈s〉.0)

≡ [(U )]y{V/y} | (ν s)(t ′!〈s〉.0)

Indeed, processes of the form (ν s)t ′!〈s〉.0 are redundant because the restricted name s has
no interactions. The following lemma shows that we can ignore these processes (up to ≈H

and ≈C). It also states the equivalence (up to ≈H) between higher-order trigger processes
t ←↩H V (cf. (6)) and t ↼A V .

Lemma 12 (Auxiliary results for trigger processes) Let P and Q be processes.

1. Let t be a fresh name, Δ1 = Δ3 · t :!〈end〉;end, and Δ2 = Δ4 · t :!〈end〉;end. Then
Γ ;Δ1 � (ν m̃1)(P | (ν s)(t !〈s〉.0)) ≈H Δ2 � (ν m̃2)(Q | (ν s)(t !〈s〉.0))

if and only if

Γ ;Δ3 � (ν m̃1)P ≈H Δ4 � (ν m̃2)Q

2. Let t a fresh name, Δ1 = Δ3 · t :!〈end〉;end and Δ2 = Δ4 · t :!〈end〉;end. Then
Γ ;Δ1 � (ν m̃1)(P | (ν s)(t !〈s〉.0)) ≈C Δ2 � (ν m̃2)(Q | (ν s)(t !〈s〉.0))

if and only if

Γ ;Δ3 � (ν m̃1)P ≈C Δ4 � (ν m̃2)Q

3. Let t be a fresh name. Then

Γ ;Δ1 � (ν m̃1)(P | t ↼A V1) ≈H Δ2 � (ν m̃2)(Q | t ↼A V2)

if and only if, for some Δ3,Δ4,

Γ ;Δ3 � (ν m̃1)(P | t ←↩H V1) ≈H Δ4 � (ν m̃2)(Q | t ←↩H V2)
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Proof We analyze each of the three parts:

– Part 1. We split the proof into the two directions of the if and only if requirements.

(a) First direction. Consider the typed relation (we omit the type information):

� = {((ν m̃1)P , (ν m̃2)Q) | Γ ;Δ1 � (ν m̃1)(P | (ν s)(t !〈s〉.0))

≈H Δ2 � (ν m̃2)(Q | (ν s)(t !〈s〉.0))}
We check the requirements of higher-order bisimulation for �. Suppose that

Γ ;Δ3 � (ν m̃1)P
��−→ Δ′

3 � (ν m̃1
′)P ′

then we need to show a matching action from (ν m̃2)Q. We can derive that

Γ ;Δ1 � (ν m̃1)(P | (ν s)(t !〈s〉.0))
��−→ Δ′

1 � (ν m̃1
′)(P ′ | (ν s)(t !〈s〉.0))

for someΔ′
1 which, from the freshness of t , implies that there exist Q′ andΔ′

2 such that

Γ ;Δ2 � (ν m̃2)(Q | (ν s)(t !〈s〉.0))
�̆

�	⇒ Δ′
2 � (ν m̃2

′)(Q′ | (ν s)(t !〈s〉.0)) (16)

and

Γ ;Δ′
1 � (ν m̃1

′)(P ′ | C1 | (ν s)(t !〈s〉.0)) ≈H Δ′
2 � (ν m̃2

′)(Q′ | C2 | (ν s)(t !〈s〉.0))

where the shape of C1,C2 depends on � and �̆: if they are output actions with objects
V1 and V2, respectively, then C1 = t ′ ←↩H V1 and C2 = t ′ ←↩H V2; otherwise,
C1 = C2 = 0. The latter equation implies from the definition of �
Γ ;Δ′

1 � (ν m̃1
′)(P ′ | C1 | (ν s)(t !〈s〉.0)) � Δ′

2 � (ν m̃2
′)(Q′ | C2 | (ν s)(t !〈s〉.0))

and (16) implies

Γ ;Δ2 � (ν m̃2)Q
�̆

�	⇒ Δ′
2 � (ν m̃2

′)Q′

to complete the proof of the case.
(b) Second direction. Consider the typed relation (we omit the type information):

� = {((ν m̃1)(P | (ν s)(t !〈s〉.0)) , (ν m̃2)(Q | (ν s)(t !〈s〉.0))) | Γ ;
Δ3 � (ν m̃1)(P) ≈H Δ4 � (ν m̃2)(Q)}

We check the requirements of higher-order bisimulation for �.
Suppose that (ν m̃1)(P | (ν s)(t !〈s〉.0))moves; we need to infer an appropriatematching
action from (ν m̃2)(Q | (ν s)(t !〈s〉.0)). We analyse three cases:

(i) Process P moves autonomously, i.e., for some Δ′
1 we have:

Γ ;Δ1 � (ν m̃1)(P | (ν s)(t !〈s〉.0))
��−→ Δ′

1 � (ν m̃1
′)(P ′ | (ν s)(t !〈s〉.0))

Then the proof is similar to the previous case.
(ii) An action on the fresh name t , i.e., for some Δ′

1 we have:

Γ ;Δ1 � (ν m̃1)(P | (ν s)(t !〈s〉.0))
t !〈s〉�−→ Δ′

1 � (ν m̃1)P

First notice that the typing derivation reveals that Δ1(t) = Δ2(t) =!〈end〉;end.
This is because the dual endpoint of the (restricted) session s does not appear in
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(ν s)(t !〈s〉.0) and thus it has the inactive type end. We can then observe that, for
some Δ′

2, we have:

Γ ;Δ2 � (ν m̃2)(Q | (ν s)(t !〈s〉.0))
t !〈s〉
�	⇒ Δ′

2 � (ν m̃2)Q
′

We need to show that

Γ ;Δ′
1 � (ν m̃1)(P | t ′ ←↩H s) ≈H Δ′

2 � (ν m̃2)(Q
′ | t ′ ←↩H s)

The proof is easy if we consider that both processes can perform the up-to deter-

ministic transitions
t ′?〈λz. 0〉�−→ τd

�	⇒:

Γ ; ∅;Δ′
1 � (ν m̃1)(P | t ′ ←↩H s)

t ′?〈λz. 0〉�−→ Δ′
1 � (ν m̃1)(P | (ν s′)(s′?(y).((λz. 0) y) | s′!〈s〉.0))

τd�−→ Δ′
1 � (ν m̃1)P

and

Γ ; ∅;Δ′
2 � (ν m̃2)(Q | t ′ ←↩H s)

t ′?〈λz. 0〉
�	⇒ Δ′

2 � (ν m̃2)(Q
′ | (ν s′)(s′?(y).((λz. 0) y) | s′!〈s〉.0))

τd�−→ Δ′
2 � (ν m̃2)Q

′

The result is then immediate from the definition of � that requires

Γ ;Δ′
1 � (ν m̃1)P ≈H Δ′

2 � (ν m̃2)Q
′

(iii) A synchronization along name t : this is not possible due to the freshness of t .

This concludes the proof of Part 1.

• Part 2 follows same arguments and structure as the proof for Part 1.
• Part 3 relies on Part 1. We analyse the two directions of the if and only if requirement.

(a) First direction. Let � be the typed relation (we omit the type information):

� = {((ν m̃1)(P | t ←↩H V1) , (ν m̃2)(Q | t ←↩H V2)) |
Γ ;Δ1 � (ν m̃1)(P | t ↼A V1) ≈H Δ2 � (ν m̃2)(Q | t ↼A V2)}

We show that� ⊆≈H, with a case analysis on the defining requirements of higher-order
bisimulation. Suppose that (ν m̃1)(P | t ←↩H V1)moves;weneed to showan appropriate
matching action from (ν m̃2)(Q | t ←↩H V2). We analyze three possibilities:

(i) P moves on its own, i.e., for some Δ′
1 we have:

Γ ;Δ1 � (ν m̃1)(P | t ←↩H V1)
��−→ Δ′

1 � (ν m̃1
′)(P ′ | t ←↩H V2)

The proof is similar to case (a) of Part 1 of this lemma.
(ii) An input action of the form t?〈n〉 along a fresh name t . LetU be such that [(U )]c = n

and let V1 be a higher-order value. There exists a Δ′
1 such that:

Γ ;Δ1 � (ν m̃1)(P | t ←↩H V1)
t?〈n〉�−→ Δ′

1 � (ν m̃1
′)(P | (ν s)(s?(y).(y n) | s!〈V1〉.0))

τd�−→ Δ′
1 � (ν m̃1

′)(P | (V1 n))
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Furthermore, we can see that, for some Δ′
2, we have

Γ ;Δ2 � (ν m̃2)(Q | t ←↩H V2)
t?〈n〉
�	⇒ Δ′

2 � (ν m̃2
′)(Q′ | (V2 n))

We therefore need to show that

Γ ;Δ′
1 � (ν m̃1

′)(P | (V1 n)) ≈H Δ′
2 � (ν m̃2

′)(Q′ | (V2 n))

This is done by considering the requirements of �.
Because of the definition of the alternative trigger, the input of the trigger value has
no effect on the bisimulation relation:

Γ ; ∅; Δ1 � (ν m̃1)(P | t ↼A V1)
t?〈λz. t ′?(w).w z〉�−→ τd�−→ τd�−→ Δ′′

1 � (ν m̃1
′)(P | t ′ ↼A V1)

Since [(U )]c = n, we have that [((?(U );end)→
)]c = λz. z?(y).(t ′!〈z〉.0 | (y n)):

Γ ; ∅; Δ1 � (ν m̃1)(P | t ↼A V1)
t?〈[((?(U );end)→
)]c〉�−→ Δ′

1 � (ν m̃1
′)(P | (ν s)(λz. z?(y).(t ′!〈z〉.0 | (y n)) s | s!〈V1〉.0))

Furthermore, we can see that

Γ ;Δ2 � (ν m̃2)(Q | t ↼A V2)
t?〈[((?(U );end)→
)]c〉

�	⇒ Δ′
2 � (ν m̃2

′)(Q′ | (V2 n) | (ν s)(t ′!〈s〉.0))

We also have

Γ ; ∅; Δ′
1 � (ν m̃1

′)(P | (ν s)(λz. z?(y).(t ′!〈z〉.0 | (y n)) s | s!〈V1〉.0))
τd�−→ τd�−→ Δ′

1 � (ν m̃1
′)(P | (V1 n) | (ν s)(t ′!〈s〉.0))

and so we can infer from the up-to technique for deterministic transitions (Lemma 1)
that

Γ ;Δ′
1 � (ν m̃1

′)(P | (V1 n) | (ν s)(t ′!〈s〉.0))

≈H Δ′
2 � (ν m̃2

′)(Q′ | (V2 n) | (ν s)(t ′!〈s〉.0))

which implies, by Part 1 of this lemma, the desired conclusion:

Γ ;Δ′
1 � (ν m̃1

′)(P | (V1 n)) ≈H Δ′
2 � (ν m̃2

′)(Q′ | (V2 n))

(iii) An action of the form t?〈λz. [(U ′)]z〉 along the fresh name t . LetU such that [(U )]c =
λz. [(U ′)]z . There exist U and Δ′

1 such that

Γ ;Δ1 � (ν m̃1)(P | t ←↩H V1)
t?〈λz. [(U ′)]z〉�−→ Δ′

1 � (ν m̃1
′)(P | (ν s)(s?(y).((λz. [(U ′)]z) y) | s!〈V1〉.0))

τd�−→ Δ′
1 � (ν m̃1

′)(P | (λz. [(U ′)]z) V1)
Furthermore, we have the following transition, for some Δ′

2:

Γ ;Δ2 � (ν m̃2)(Q | t ←↩H V2)
t?〈λz. [(U ′)]z〉

�	⇒ Δ′
2 � (ν m̃2

′)(Q′ | (λz. [(U ′)]z) V2)
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We need to show that, for some Δ′
3,Δ

′
4, the following holds:

Γ ;Δ′
3 � (ν m̃1

′)(P | (λz. [(U ′)]z) V1) ≈H Δ′
4 � (ν m̃2

′)(Q′ | (λz. [(U ′)]z) V2)
This is done by considering the requirements of �.
Here again note that the input of the trigger value has no effect on the bisimulation
relation.

Γ ; ∅; Δ1 � (ν m̃1)(P | t ↼A V1)
t?〈λz. t ′?(w).w z〉�−→ τd�−→ τd�−→ Δ′′

1 � (ν m̃1
′)(P | t ′ ↼A V1)

We now consider the input of the characteristic value on t . From the fact that [(U )]c =
λz. [(U ′)]z weobtain that [((?(U );end)→
)]c = λw.w?(y).(t ′!〈w〉.0 | (λz. [(U ′)]z) y)
and

Γ ; ∅; Δ1 � (ν m̃1)(P | t ↼A V1)
t?〈[((?(U );end)→
)]c〉�−→

Δ′
1 � (ν m̃1

′)(P | (ν s)((λw.w?(y).(t ′!〈w〉.0 | (λz. [(U ′)]z) y)) s | s!〈V1〉.0))

Furthermore, we have the following transition, for some Δ′
2:

Γ ;Δ2 � (ν m̃2)(Q | t ↼A V2)
t?〈([(?(U );end)]c)→
〉

�	⇒
Δ′

2 � (ν m̃2
′)(Q′ | (λz. [(U ′)]z) V2 | (ν s)(t ′!〈s〉.0))

We also have

Γ ; ∅; Δ′
1 � (ν m̃1

′)(P | (ν s)((λw. w?(y).(t ′!〈w〉.0 | (λz. [(U ′)]z) y)) s | s!〈V1〉.0))
τd�−→ τd�−→ Δ′

1 � (ν m̃1
′)(P | (λz. [(U ′)]z) V1 | (ν s)(t ′!〈s〉.0))

and so we can infer from the up-to technique for deterministic transitions (Lemma 1)
that

Γ ;Δ′
1 � (ν m̃1

′)(P | (λz. [(U ′)]z) V1 | (ν s)(t ′!〈s〉.0)) ≈H

� Δ′
2(ν m̃2

′)(Q′ | (λz. [(U ′)]z) V2 | (ν s)(t ′!〈s〉.0))

which implies, by Part 1 of this lemma, the desired conclusion:

Γ ;Δ′
1 � (ν m̃1

′)(P | (λz. [(U ′)]z) V1) ≈H Δ′
2 � (ν m̃2

′)(Q′ | (λz. [(U ′)]z) V2)
(b) Second direction. Let � be the typed relation (we omit the type information):

� = {((ν m̃1)(P | t ↼A V1) , (ν m̃2)(Q | t ↼A V2)) |
Γ ;Δ3 � (ν m̃1)(P | t ←↩H V1) ≈H Δ4 � (ν m̃2)(Q | t ←↩H V2)}

We show that� ⊆≈H, with a case analysis on the defining requirements of higher-order
bisimulation. We focus on the cases related to an input action on the fresh name t ; other
cases are similar.

i. Value V1 is a higher-order value: This implies that there exist U and Δ′
1 such that

[(?(U );end)]c = λz. z?(y).(t ′!〈z〉.0 | y n) and

Γ ; ∅; Δ1 � (ν m̃1)(P | t ↼A V1)
t?〈[(?(U );end)]c〉�−→ Δ′

1 � (ν m̃1
′)(P | (ν s)((λz. z?(y).(t ′!〈z〉.0 | (y n))) s | s!〈V1〉.0))
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and

Γ ; ∅; Δ′
1 � (ν m̃1

′)(P | (ν s)((λz. z?(y).(t ′!〈z〉.0 | (y n))) s | s!〈V1〉.0))
τd�−→ τd�−→ Δ′

1 � (ν m̃1
′)(P | (V1 n) | (ν s)(t ′!〈s〉.0))

Furthermore we can see that there exists Δ′
2 such that

Γ ;Δ2 � (ν m̃2)(Q | t ↼A V2)
t?〈[(?(U );end)]c〉

�	⇒ Δ′
2 � (ν m̃2

′)(Q′ | (V2 n) | (ν s)(t ′!〈s〉.0))

We need to show that

Γ ;Δ′
1 � (ν m̃1

′)(P | (V1 n) | (ν s)(t ′!〈s〉.0))

≈H Δ′
2 � (ν m̃2

′)(Q | (V2 n) | (ν s)(t ′!〈s〉.0))

This is done by considering the requirements of �. We know that [(U )]c = n:

Γ ; ∅; Δ3 � (ν m̃1)(P | t ←↩H V1)
t?〈n〉�−→ Δ′

3 � (ν m̃1
′)(P | (ν s)(s?(y).(y n) | s!〈V1〉.0)

τd�−→ Δ′
3 � (ν m̃1

′)(P | (V1 n)))

for some Δ′
3. Furthermore we can see that for some Δ′

4

Γ ;Δ4 � (ν m̃2)(Q | t ←↩H V2)
t?〈n〉
�	⇒ Δ′

4 � (ν m̃2
′)(Q′ | (V2 n))

and

Γ ;Δ′
3 � (ν m̃1

′)(P | (V1 n)) ≈H Δ′
4 � (ν m̃2

′)(Q′ | (V2 n))

which imply, by Part 1 of this lemma, the desired conclusion:

Γ ;Δ′
3 � (ν m̃1

′)(P | (V1 n) | (ν s)(t ′!〈s〉.0))

≈H Δ′
4 � (ν m̃2

′)(Q′ | (V2 n) | (ν s)(t ′!〈s〉.0))

ii Value V1 is a first-order value: This implies that there exist U and Δ′
3 such that

[(?(U );end)]c = λw.w?(y).(t ′!〈w〉.0 | λz. [(U ′)]z y) and
Γ ; ∅; Δ3 � (ν m̃1)(P | t ←↩H V1)

[(?(U );end)]c�−→ Δ′
3 � (ν m̃1

′)(P | (ν s)(λw. w?(y).(t ′!〈w〉.0 | λz. [(U ′)]z y) s | s!〈V1〉.0))

This case follows a similar proof structure as the previous case.

This concludes the proof of Part 3. ��
The next lemma states the equivalence between the characteristic and higher-order trigger

processes (cf. (6) and (7)).

Lemma 13 (Trigger process equivalence) Let P and Q be processes, t be a fresh name, and
let Γ ; ∅;Δ � Vi �U, i ∈ {1, 2}.
(1) If

Γ ;Δ1 � (ν m̃1)(P | t ←↩H V1) ≈H Δ2 � (ν m̃2)(Q | t ←↩H V2)

then there exist Δ′
1,Δ

′
2 such that

Γ ;Δ′
1 � (ν m̃1)(P | t ⇐C V1 :U ) ≈H Δ′

2 � (ν m̃2)(Q | t ⇐C V2 :U ).
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(2) If

Γ ;Δ1 � (ν m̃1)(P | t ⇐C V1 :U ) ≈C Δ2 � (ν m̃2)(Q | t ⇐C V2 :U )

then there exist Δ′
1,Δ

′
2 such that

Γ ;Δ′
1 � (ν m̃1)(P | t ←↩H V1) ≈C Δ′

2 � (ν m̃2)(Q | t ←↩H V2).

Proof We analyse both parts separately:

1. Consider the typed relation (for readability, we omit type information):

� = {((ν m̃1)(P | t ⇐C V1 :U ), (ν m̃2)(Q | t ⇐C V2 :U )) |
Γ ;Δ′

1 � (ν m̃1)(P | t ←↩H V1) ≈H Δ′
2 � (ν m̃2)(Q | t ←↩H V2)}

We show that� ⊆≈H. Suppose that (ν m̃1)(P | t ⇐C V1 :U )moves; we need to find a
matching move from (ν m̃2)(Q | t ⇐C V2 :U ). We distinguish three cases, depending
on the source/kind of visible action:

(a) P moves autonomously, i.e., for some Δ3 we have:

Γ ;Δ′
1 � (ν m̃1)(P | t ⇐C V1 :U )

��−→ Δ3 � (ν m̃1
′)(P ′ | t ⇐C V1 :U )

We follow the requirements of � and the freshness of t to conclude that there exists
a Δ′′

1 such that

Γ ;Δ1 � (ν m̃1)(P | t ←↩H V1)
��−→ Δ′′

1 � (ν m̃1
′)(P ′ | t ←↩H V1)

which implies, from the higher-order bisimilarity requirement of� and the freshness
of t , that there exist Q′ and Δ′′

2 such that

Γ ;Δ2 � (ν m̃2)(Q | t ←↩H V2)
�̆

�	⇒ Δ′′
2 � (ν m̃2

′)(Q′ | t ←↩H V2) (17)

and, for some Δ′′′
1 and Δ′′′

2 , that

Γ ;Δ′′′
1 � (ν m̃1

′′)(P ′ | t ←↩H V1 | C1) ≈H Δ′′′
2 � (ν m̃2

′′)(Q′ | t ←↩H V2 | C2)

(18)

where the shape ofC1,C2 depends on � and �̆: if they are output actions with objects
V ′
1 and V ′

2, respectively, then C1 = t ′ ←↩H V ′
1 and C2 = t ′ ←↩H V ′

2; otherwise,
C1 = C2 = 0.
From (17) and the definition of � we can conclude that there exists a Δ4 such that

Γ ;Δ′
2 � (ν m̃1)(Q | t ⇐C V2 :U )

�̆
�	⇒ Δ4 � (ν m̃2

′)(Q′ | t ⇐C V2 :U )

Equation (18) then allows us to infer the required conclusion, for some Δ′
3,Δ

′
4:

Γ ;Δ′
3 � (ν m̃1

′′′)(P ′ | t ⇐C V1 :U | C1) � Δ′
4 � (ν m̃2

′′′)(Q′ | t ⇐C V2 :U | C2)

(b) t ⇐C V1 :U moves autonomously, i.e., for some Δ3 we have:

Γ ; ∅; Δ′
1 � (ν m̃1)(P | t ⇐C V1 :U )

t?〈m〉�−→ Δ3 � (ν m̃1)(P | (ν s)(s?(y).[(U )]y | s!〈V1〉.0))
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Following requirements of � and the freshness of t we can infer that there exists a
Δ′′

1 such that

Γ ; ∅; Δ1 � (ν m̃1)(P | t ←↩H V1)
t?〈[(U )]c〉�−→ Δ′′

1 � (ν m̃1)(P | (ν s)(s?(y).[(U )]y | s!〈V1〉.0))

which implies, from the higher-order bisimilarity requirement of� and the freshness
of t , that there exist Q′ and Δ′′

2 such that

Γ ; ∅;Δ2 � (ν m̃2)(Q | t ←↩H V2)
�	⇒ (ν m̃2)(Q2 | t ←↩H V2)

t?〈[(U )]c〉�−→ (ν m̃2)(Q2 | (ν s)(s?(y).[(U )]y | s!〈V2〉.0))

�	⇒ Δ′′
2 � Q′

(19)

and

Γ Δ′′
1(ν m̃1)(P | (ν s)(s?(y).[(U )]y | s!〈V1〉.0))≈H Δ′′

2(ν m̃2)Q
′ (20)

The freshness of t allows us to mimic the transitions in (19); for someΔ4 we obtain:

Γ ; ∅;Δ′
2 � (ν m̃2)(Q | t ⇐C V2 :U )

�	⇒ (ν m̃2)(Q2 | t ⇐C V2 :U )
t?〈m〉�−→ (ν m̃2)(Q2 | (ν s)(s?(y).[(U )]y | s!〈V2〉.0))

�	⇒ Δ4 � Q′

The conclusion is immediate from (20).
(c) The action comes from the interaction of P and t ←↩H V1: This case is not possible,

due to the freshness of t .

2. Consider the typed relation (for readability, we omit type information):

�′ = {((ν m̃1)(P | t ←↩H V1), (ν m̃2)(Q | t ←↩H V2)) |
Γ ;Δ′

1 � (ν m̃1)(P | t ⇐C V1 :U ) ≈C Δ′
2 � (ν m̃2)(Q | t ⇐C V2 :U )}

To prove that �′ ⊆ ≈C we first consider relation � which uses the alternative trigger in
(15) (for readability, we omit type information):

� = {((ν m̃1)(P | t ↼A V1), (ν m̃2)(Q | t ↼A V2)) |
Γ ;Δ′

1 � (ν m̃1)(P | t ⇐C V1 :U ) ≈C Δ′
2 � (ν m̃2)(Q | t ⇐C V2 :U )}

By proving that � ⊆ ≈C we can apply Lemma 12 (Part 3), to obtain that �′ ⊆ ≈C.
Suppose that (ν m̃1)(P | t ↼A V1) moves; we must exhibit a matching move from
(ν m̃2)(Q | t ↼A V2). We distinguish four cases, depending on the source/kind of
visible action:

(a) P moves autonomously, i.e., for some Δ3 we have:

Γ ;Δ′
1 � (ν m̃1)(P | t ↼A V1)

��−→ Δ3 � (ν m̃1
′)(P ′ | t ↼A V1)

Then, following the requirements of � and the freshness of t , we infer that there
exists a Δ′′

1 such that

Γ ;Δ1 � (ν m̃1)(P | t ⇐C V1 :U )
��−→ Δ′′

1 � (ν m̃1
′)(P ′ | t ⇐C V1 :U )

123



316 D. Kouzapas et al.

which implies, from the characteristic bisimilarity requirement of � and the fresh-
ness of t , that there exist Q′ and Δ′′

2 such that

Γ ;Δ2 � (ν m̃2)(Q | t ⇐C V2 :U )
�̆

�	⇒ Δ′′
2 � (ν m̃2

′)(Q′ | t ⇐C V2 :U ) (21)

and

Γ Δ′′′
1 (ν m̃1

′′)(P ′ | t ⇐C V1 :U | C1)≈CΔ′′′
2 (ν m̃2

′′)(Q′ | t ⇐C V2 :U | C2)

(22)

with C1 (resp., C2) being the characteristic trigger process in the cases where � =
(ν m̃)n!〈V ′

1〉 (resp., �̆ = (ν m̃′)n!〈V ′
2〉), and C1 = C2 = 0 otherwise. From (21) we

can infer that there exists Δ4 such that

Γ ;Δ′
2 � (ν m̃1)(Q | t ↼A V2)

�̆
�	⇒ Δ4 � (ν m̃2

′)(Q′ | t ↼A V2)

Equation (22) then allows us to obtain the desired conclusion:

Γ ;Δ′
3 � (ν m̃1

′′′)(P ′ | t ↼A V1 | C1) � Δ′
4 � (ν m̃2

′′′)(Q′ | t ↼A V2 | C2)

(b) t ↼A V1 moves autonomously due to the input of characteristic value, i.e., for some
Δ3 we have:

Γ ;Δ′
1 � (ν m̃1)(P | t ↼A V1)

t?〈[(?(U );end→
)]c〉�−→
Δ3 � (ν m̃1)(P | (ν s)([(?(U );end→
)]c s | s!〈V1〉.0))

Following requirements of � and the freshness of t , we infer that there is a Δ′′
1 such

that

Γ ; ∅;Δ1 � (ν m̃1)(P | t ⇐C V1 :U )

t?〈m〉�−→ Δ′′
1 � (ν m̃1)(P | (ν s)(s?(y).[(U )]y | s!〈V1〉.0))

τd
�	⇒ Δ′′

1 � (ν m̃1)P
′

which implies, from the characteristic bisimulation requirement of � and the fresh-
ness of t , that there exist Q′ and Δ′′

2 such that

Γ ; ∅;Δ2 � (ν m̃2)(Q | t ⇐C V2 :U )

�	⇒ (ν m̃2)(Q2 | t ⇐C V2 :U )
t?〈m〉�−→ (ν m̃2)(Q2 | (ν s)(s?(y).[(U )]y | s!〈V2〉.0))

�	⇒ Δ′′
2 � Q′

(23)

and

Γ ;Δ′′
1 � (ν m̃1)P

′ ≈C Δ′′
2 � (ν m̃2)Q

′

which in turn implies from Lemma 12 (Part 2) the following, for a fresh t ′:

Γ ;Δ′′
1 � (ν m̃1)(P

′ | (ν s)(t ′!〈s〉.0)) ≈C Δ′′
2 � (ν m̃2)(Q

′) | (ν s)(t ′!〈s〉.0) (24)
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The freshness of t allows us to mimic the transitions in (23) to infer that, for some
Δ4, we have

Γ ; ∅;Δ′
2 � (ν m̃2)(Q | t ↼A V2)

�	⇒ (ν m̃2)(Q2 | t ↼A V2)
t?〈[(?(U );end)]c〉�−→ (ν m̃2)(Q2 | (ν s)([(?(U );end)]c s | s!〈V2〉.0))

�	⇒ Δ4 � (ν m̃2
′)(Q′ | (ν s)(t ′!〈s〉.0))

and

Γ ;Δ3 � (ν m̃1)(P | (ν s)([(?(U );end)]c s | s!〈V1〉.0))
τd

�	⇒
Δ3 � (ν m̃1

′)(P ′ | (ν s)(t ′!〈s〉.0))

The conclusion is immediate from (24).
(c) t ↼A V1 moves autonomously due to the input of a trigger process, i.e., for some

Δ3 we have:

Γ ; ∅; Δ′
1 � (ν m̃1)(P | t ↼A V1)

t?〈λx . t ′?(y).(y x)〉�−→ Δ3 � (ν m̃1)(P | (ν s)((λx . t ′?(y).(y x))s | s!〈V1〉.0 ))

We show that there exist Δ4 and (ν m̃1)(Q | (ν s)((λx . t ′?(y).(y x))s | s!〈V2〉.0 ))

such that

Γ ; ∅; Δ′
2 � (ν m̃1)(Q | t ↼A V2)

t?〈λx . t ′?(y).(y x)〉
�	⇒ Δ4 � (ν m̃1)(Q | t ′ ↼A V2)

and

Γ ; ∅; Δ3 � (ν m̃1)(P | (ν s)((λx . t ′?(y).y x)s | s!〈V1〉.0 ))
τd

�	⇒ Δ3 � (ν m̃1)(P | t ′ ↼A V1)

The result

Γ ;Δ3 � (ν m̃1)(P | t ′ ↼A V1) � Δ4 � (ν m̃1)(Q | t ′ ↼A V2)

is immediate from the definition of �.
(d) The action comes from the interaction of P and t ↼A V1: This case is not possible,

due to the freshness of t . ��
Lemma 14 ≈H = ≈C.

Proof We split the proof into two parts: the direction ≈H ⊆ ≈C and the direction ≈C ⊆ ≈H.
Since the two equivalences differ only in the output case, our analysis focuses on output
actions.

1. Direction≈H ⊆≈C. Consider the typed relation (for readability, we omit type informa-
tion):

� = {(P, Q) | Γ ;Δ1 � P ≈H Δ2 � Q}
We show that� is a characteristic bisimulation. Suppose Γ ;Δ1 � P

��−→ Δ′
1 � P ′. We

need to show that Γ ; ∅;Δ2 � Q �
 can match �. The proof proceeds by a case analysis
on the transition label � = (ν m̃1)n!〈V1〉, which is the only non-trivial case.
From the definition of � we have that if:

Γ ;Δ1 � P
(ν m̃1)n!〈V1〉�−→ Δ′′

1 � P ′ (25)
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then there exist Δ′′
2, Q, and V2 such that:

Γ ;Δ2 � Q
(ν m̃2)n!〈V2〉

�	⇒ Δ′′
2 � Q′ (26)

and for a fresh t and some Δ′
1 and Δ′

2:

Γ ;Δ′
1 � (ν m̃1)(P

′ | t ←↩H V1) ≈H Δ′
2 � (ν m̃2)(Q

′ | t ←↩H V2) (27)

To show that � is a characteristic bisimulation after the fact that transition (25) implies
transition (26), we need to show that for a fresh t and for some Δ3,Δ4:

Γ ;Δ3 � (ν m̃1)(P
′ | t ⇐C V1 :U ) � Δ4 � (ν m̃2)(Q

′ | t ⇐C V2 :U ) (28)

which follows from (27), Lemma 13(1), and the definition of �.
2. Direction≈C ⊆≈H. Consider the typed relation (for readability, we omit type informa-

tion):

� = {(P, Q) | Γ ;Δ1 � P ≈C Δ2 � Q}
We show that� is a higher-order bisimulation. Suppose Γ ;Δ1 � P

��−→ Δ′
1 � P ′ with

� = (ν m̃1)n!〈V1〉. We need to show that Γ ; ∅;Δ2 � Q � 
 can match �.
From the definition of � we have that if:

Γ ;Δ1 � P
(ν m̃1)n!〈V1〉�−→ Δ′′

1 � P ′ (29)

then there exist Δ′′
2, Q, and V2 such that:

Γ ;Δ2 � Q
(ν m̃2)n!〈V2〉

�	⇒ Δ′′
2 � Q′ (30)

and for a fresh t and some Δ′
1,Δ

′
2:

Γ ;Δ′
1 � (ν m̃1)(P

′ | t ⇐C V1 :U ) ≈C Δ′
2 � (ν m̃2)(Q

′ | t ⇐C V2 :U ) (31)

To show that � is a higher-order bisimulation after the fact that transition (29) implies
transition (30), we need to show that for a fresh t and some Δ3,Δ4:

Γ ;Δ3 � (ν m̃1)(P
′ | t ←↩H V1) � Δ4 � (ν m̃2)(Q

′ | t ←↩H V2) (32)

which follows from (31), Lemma 13(2), and the definition of �. ��
We state an auxiliary lemma that captures a property of trigger processes in terms of

process equivalence.

Lemma 15 (Trigger process application) Let P and Q be processes. Also, let t be a fresh
name.

1. If n1 �= n2 with Γ ; ∅;Δ � ni �U with U �= end and

Γ ;Δ1 � (ν m̃1)(P | (λx . t?(y).(y x)) n1) ≈H Δ2 � (ν m̃2)(Q | (λx . t?(y).(y x)) n2)
then n1, n2 are session names and n1 ∈ fn(P) and n2 ∈ fn(Q).

2. If Γ ;Δ1 � (ν m̃1)(P | [(U )]c n1) ≈H Δ2 � (ν m̃2)(Q | [(U )]c n2) then for all �whenever
Γ ;Δ1 � (ν m̃1)(P | [(U )]c n1) ��−→ Δ′

1 � (ν m̃1
′)(P ′ | (λx . t?(y).(y x)) n1)

then there exist Δ′
2, (ν m̃2

′)(Q′ | (λx . t?(y).(y x)) n2) such that

Γ ;Δ2 � (ν m̃1)(Q | [(U )]c n2) �̂2
�	⇒ Δ′

2 � (ν m̃2
′)(Q′ | (λx . t?(y).(y x)) n2)

with �2 = �̆.
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3. If Γ ;Δ1 � (ν m̃1)(P | t !〈n1〉.0) ≈H Δ2 � (ν m̃2)(Q | t !〈n2〉.0) then

Γ ;Δ1 � (ν m1)(P | t?(x).(x n1)) ≈H Δ2 � (ν m2)(Q | t?(x).(x n2))
4. If n is fresh and

Γ ;Δ1 � (ν m̃1)(P{n/x} | t !〈n1〉.0) ≈H Δ2 � (ν m̃2)(Q{n/x} | t !〈m1〉.0)

then

Γ ;Δ1 � (ν m̃1)(P{n1/x}) ≈H Δ2 � (ν m̃2)(Q{m1/x})
Proof We analyse each part separately:

1. The proof for Part 1 is by contradiction. Assume that n1 /∈ fn(P) or n2 /∈ fn(Q). Then
the bisimulation requirement allows us to observe the following transition, for some
U �= end. Note that the shape of [(U )]n1 enables an observable action on n1, which
results in the process t ′!〈n1〉.0:

Γ ;Δ1 � (ν m̃1)(P | (λx . t?(y).(y x)) n1)
τd�−→ (ν m̃1)(P | t?(y).y n1)

t?〈[(U→
)]c〉�−→ (ν m̃1)(P | λx . [(U )]x n1)
τd�−→ ��−→ Δ′

1 � (ν m̃1)(P | C | t ′!〈n1〉.0)

where C = 0 if � is not an input action, and C = [(U ′)]m if � is an input action and
subj(�) = n1. Because of the characteristic process interaction, from the freshness of
t , we have:

Γ ;Δ2 � (ν m̃2)(Q | (λx . t?(y).(y x)) n2) t?〈[(U→
)]c〉
�	⇒ �̆

�	⇒ Δ′
2 � (ν m̃2)(Q

′ | C | [(U→
)]c n2)
with subj(�̆) = n2 But since (ν m̃1)(P | t ′!〈n1〉.0) has an action on t ′ not present in
(ν m̃2)(Q′ | C | [(U→
)] n2), we derive a contradiction with respect to the bisimilarity
assumption.

2. The proof for Part 2 is also by contradiction. Assume that

Γ ;Δ2 � (ν m̃1)(Q | [(U )]c n2) � �	⇒ ˆ̆
�Δ′

2 � (ν m̃2
′)(Q′ | (λx . t?(y).(y x)) n2)

From the bisimilarity requirement we can observe

Γ ;Δ2 � (ν m̃1)(Q | [(U )]c n2)
ˆ̆
�

�	⇒ Δ′
2 � (ν m̃2

′)(Q′ | [(U )]c n2)
But then we can observe an action on the fresh name t on process

Γ ; ∅;Δ′
1 � (ν m̃1

′)(P ′ | (λx . t?(y).(y x)) n1) � 

that cannot be observed by process Γ ; ∅;Δ′

2 � (ν m̃2
′)(Q′ | [(U )]c n2)—a contradiction.

3. For the proof of Part 3 we do a case analysis on the transitions for checking the bisimu-
lation requirements. The most interesting case is when, for some Δ′′

1:

Γ ;Δ1 � (ν m̃1)(P | t?(x).(x n1)) t?〈[(U )]c〉�−→ Γ ;Δ′′
1 � (ν m̃1

′′)(P | [(U )]c n1)
From the freshness of t we can derive that, for some Δ′′

2 and Q′′

Γ ;Δ2 � (ν m̃2)(Q | t?(x).(x n2)) t?〈[(U )]c〉
�	⇒ Γ ;Δ′′

2 � (ν m̃2
′′)(Q′′ | [(U )]c n2)
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From the bisimulation requirement of the hypothesis we have that

Γ ;Δ1 � (ν m̃1)(P | t !〈n1〉.0)
t !〈n1〉�−→ Δ′

1 � (ν m̃1
′)(P)

implies

Γ ;Δ2 � (ν m̃2)(Q | t !〈n2〉.0)
t !〈n2〉
�	⇒ Δ′

2 � (ν m̃2
′)(Q′)

for some Δ′
1,Δ

′
2 and

Γ ; ∅; Δ′
1 � (ν m̃1

′)(P | t?(x).(ν s)(s?(y).(x y) | s!〈n1〉.0))

≈H Δ′
2 � (ν m̃2

′)(Q′ | t?(x).(ν s)(s?(y).(x y) | s!〈n2〉.0))

Whenever

Γ ;Δ′
1 � (ν m̃1

′)(P | t?(x).(ν s)(s?(y).(x y) | s!〈n1〉.0))
t?〈[(U )]c〉�−→ Δ′′

1 � (ν m̃1
′′)(P | (ν s)(s?(y).([(U )]c y) | s!〈n1〉.0))

τd�−→ Δ′′
1 � (ν m̃1

′′)(P | [(U )]c n1)
then for some Q′′

2

Γ ;Δ′
2 � (ν m̃2

′)(Q′ | t?(x).(ν s)(s?(y).(x y) | s!〈n2〉.0))
t?〈[(U )]c〉
�	⇒ Δ′′

2 � (ν m̃2
′′)(Q′′′ | (ν s)(s?(y).([(U )]c y) | s!〈n2〉.0))

τd
�	⇒ Δ′′

2 � (ν m̃2
′′)(Q′′ | [(U )]c n2)

which concludes the case.
4. For the proof of Part 4, let � be the typed relation

� = {Γ ;Δ1 � (ν m̃1)(P{n1/x}) ≈H Δ2 � (ν m̃2)(Q{m1/x}) |
Γ ;Δ1 � (ν m̃1)(P{n/x} | t1!〈n1〉.0) ≈H Δ2 � (ν m̃2)(Q{n/x} | t1!〈m1〉.0)}

Suppose that (ν m̃1)(P{n1/x}) moves:

Γ ;Δ1 � (ν m̃1)(P{n1/x}) ��−→ Δ′
1 � (ν m̃1

′)(P ′{n1/x})
We need to show a matching action from (ν m̃2)(Q{m1/x}); we proceed to show that �
is a higher-order bisimulation by a case analysis on the subject/shape of action �. There
are three cases:

(a) If subj(�) �= n1 then the proof is straightforward from the premise of the proposi-
tion. First observe that

Γ ;Δ1 � (ν m̃1)(P{n/x}) | t !〈n1〉.0 ��−→ Δ′
1 � (ν m̃1

′)(P ′{n/x}) | t !〈n1〉.0
implies

Γ ;Δ2 � (ν m̃2)(Q{n/x}) | t !〈m2〉.0 �̆
�	⇒ Δ′

2 � (ν m̃2
′)(Q′{n/x}) | t !〈m2〉.0

for some Δ′
2 and

Γ ;Δ2 � (ν m̃1
′)(P ′{n/x}) | t !〈n1〉.0 | C1 ≈H Δ′

2 � (ν m̃2
′)(Q′{n/x}) | t !〈m1〉.0 | C2

with C1 = t ←↩H n1 and C2 = t ←↩H m1 if � and �̆ are output actions, C1 = 0 and
C2 = 0 otherwise. From here we can deduce that

Γ ;Δ2 � (ν m̃1)(Q{m1/x}) �̆
�	⇒ Δ′

2 � (ν m̃2
′)(Q′{m1/x})
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Furthermore, we can easily see that

Γ ;Δ2 � (ν m̃1
′)(P{n1/x}) | C1 � Δ′

2 � (ν m̃2
′)(Q′{m1/x}) | C2

(b) subj(�) = n1. We distinguish two sub-cases:
– n1 = m1. The case is similar to the previous case.
– n1 �= m1. From the premise and Part 1 of this lemmawe get that n1 ∈ fn(P) and

m1 ∈ fn(Q). The latter implies that this case is not possible, since no external
action � would be observed, because of the typed transition requirement.

(c) � = τ . This implies the untyped transitions:

(ν m̃1)(P{n1/x})
�′11�−→ (ν m̃11)(P1{n1/x}) (33)

(ν m̃1)(P{n1/x})
�′12�−→ (ν m̃12)(P2{n1/x}) (34)

�′11 � �′12 (35)

We distinguish two sub-cases:
– subj(�′11) �= n1. This case is similar to Case 1 of this proof.
– subj(�′11) = n1. First observe that

Γ ;Δ1 � (ν m̃1)(P{n/x} | t !〈n1〉.0)
�′′11�−→ Δ′

1 � (ν m̃1
′)(P1{n/x} | t !〈n1〉.0)

for some Δ′
1 with �′′11{n1/n} = �′11, which implies

Γ ;Δ2 � (ν m̃2)(Q{n/x} | t !〈m1〉.0)
�′′21

�	⇒ Δ′
2 � (ν m̃2

′)(Q1{n/x} | t !〈m1〉.0)

with �′′21{m1/n} = �′21, which in turn implies

(ν m̃2)(Q{m1/x}) �′22�−→ (ν m̃21)(Q1{m1/x}) (36)

Also observe that

Γ ; ∅; Δ1 � (ν m̃1)(P{n/x} | t !〈n1〉.0)
t !〈n1〉�−→ Δ′′′′

1 � (ν m̃1
′′)(P{n/x})

for some Δ′′′′
1 which implies

Γ ; ∅; Δ2 � (ν m̃2)(Q{n/x} | t !〈m1〉.0)
t !〈m1〉
�	⇒ Δ′′′′

2 � (ν m̃2
′′)(Q′{n/x})

for some Δ′′′′
2 with

Γ ; ∅; Δ′′′′
1 � (ν m̃1

′′)(P{n/x} | t ′ ←↩H n1)
≈H Δ′′′′

2 � (ν m̃2
′′)(Q′{n/x} | t ′ ←↩H m1)

From here observe that for U = Δ′′′(n1)

Γ ; ∅; Δ′′′′
1 � (ν m̃1)(P{n/x} | t ′ ←↩H n1)

t ′?〈[(U )]c〉�−→ τd
�	⇒ Δ′′

1 � (ν m̃1
′′)(P{n/x} | [(U )]x {n1/x})
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for some Δ′′
1, which implies

Γ ; ∅; Δ′′′′
2 � (ν m̃2)(Q{n/x} | t ′ ←↩H m1)

t ′?〈[(U )]c〉
�	⇒ τd

�	⇒ Δ′′
2 � (ν m̃2

′′)(Q′{n/x} | [(U )]x {m1/x})
for some Δ′′

2 with

Γ ; ∅; Δ′′
1 � (ν m̃1

′′)(P{n/x} | [(U )]x {n1/x})
≈H Δ′′

2 � (ν m̃2
′′)(Q′{n/x} | [(U )]x {m1/x})

From (34), i.e., the fact that the two parallel components of the process interact
on name n1, we can see that, for some Δ′′′

1

Γ ; ∅; Δ′′
1 � (ν m̃1

′′)(P{n/x} | [(U )]x {n1/x})
τ�−→ Δ′′′

1 � (ν m̃1
′′)(P2{n/x} | C1 | t ′!〈n1〉.0)

where C1 = 0 if the action on [(U )]x {n1/x} is not an input action and C1 = [(U ′)]a
otherwise. This in turn implies from Part 2 of this lemma

Γ ; ∅; Δ′′
2 � (ν m̃2

′′)(Q′{n/x} | [(U )]x {m1/x})
τ

�	⇒ Δ′′′
2 � (ν m̃2

′′)(Q2{n/x} | C2 | t ′!〈m1〉.0)
(37)

for some Δ′′′
2 and C2 = 0 when the action on [(U )]x {m1/x} is not an input action

and C2 = [(U ′)]b otherwise. It is then implied that

Γ ; ∅; Δ′′′
1 � (ν m̃1

′′)(P2{n/x} | C1 | t ′!〈n1〉.0)

≈H Δ′′′
2 � (ν m̃2

′′)(Q2{n/x} | C2 | t ′!〈m1〉.0)
(38)

where (37) implies the untyped transition

(ν m̃2
′′)(Q′{n/x} | [(U )]x {m1/x}) �′′22

�	⇒ (ν m̃2
′′)(Q2{n/x} | [(U )]x {m1/x})

and furthermore,

(ν m̃2
′′)(Q′{m1/x}) �′22

�	⇒ (ν m̃2
′′)(Q2{m1/x})

with �′′22{m1/n} = �′22. From the last result and (36) we get

Γ ; ∅; Δ2 � (ν m̃2)(Q{m1/x})
τ

�	⇒ Δ′
2 � (ν m̃2

′′)(Q′′{m1/x})
Furthermore, from (38) we can get that, for some Δ3,

Γ ;Δ′′′
1 � (ν m̃1

′′)(P2{n/x} | C1 | t ′!〈n1〉.0)
�′′12�−→

Δ3 � (ν m̃1
′′′)(P ′{n/x} | C1 | t ′!〈n1〉.0)

which implies

Γ ;Δ′′′
2 � (ν m̃2

′′)(Q2{n/x} | C2 | t ′!〈m1〉.0)
�′′22�−→

Δ4 � (ν m̃2
′′′)(Q′′{n/x} | C2 | t ′!〈m1〉.0)

and

Γ ;Δ3 � (ν m̃1
′′′)(P ′{n/x} | C1 | t ′!〈n1〉.0) ≈H
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Δ4 � (ν m̃2
′′′)(Q′′{n/x} | C2 | t ′!〈n1〉.0)

which in turn implies the required conclusion:

Γ ;Δ′
1 � (ν m̃1

′′′)(P ′{n1/x} | C1) � Δ′
2 � (ν m̃2

′′′)(Q′′{m1/x} | C2)

��
A process substitution lemma is useful for showing the contextuality property for higher-

order and characteristic bisimilarities.Beforewe state andprove aprocess substitution lemma,
we give an intermediate result. (This is Lemma 4 in the main text.)

Lemma 16 (Trigger substitution) Let P and Q be processes. Suppose that all ti , i ∈ I are
fresh names. If

Γ ;Δ1 � (ν m̃1)

(

P |
∏

i∈I
(λx . ti?(y).(y x)) ni

)

≈H Δ2 � (ν m̃2)

(

Q |
∏

i∈I
(λx . ti?(y).(y x))mi

)

then for all λx̃ . R there exist Δ′
1,Δ

′
2 such that

Γ ;Δ′
1 � (ν m̃1)(P | (λx̃ . R) ñ) ≈H Δ′

2 � (ν m̃2)(Q | (λx̃ . R) m̃).

Proof We prove the result up-to the application of names ni and mi to process R. Let � be
the relation

� =
{

(Γ ;Δ′
1 � (ν m̃1)(P | R{ñ/x̃})

Δ′
2 � (ν m̃2)(Q | R{m̃/x̃})) | ∀λx̃ . R, ∃Δ′

1,Δ
′
2.

Γ ;Δ1 � (ν m̃1)

(

P |
∏

i∈I
(λx . ti?(y).(y x)) ni

)

�≈H Δ2(ν m̃2)

(

Q |
∏

i∈I
(λx . ti?(y).(y x))mi

)}

We show that � is a higher-order bisimulation. The proof is done by a case analysis on
the actions that can be observed on the pairs of processes, so to check their higher-order
bisimulation requirements. There are three cases:

1. Suppose an action from P , for some Δ′′
1:

Γ ;Δ′
1 � (ν m̃1)(P | R{ñ/x̃}) ��−→ Δ′′

1 � (ν m̃1
′)(P ′ | R{ñ/x̃})

This transition implies, for some Δ′
3, the following:

Γ ;Δ3 � (ν m̃1)P
��−→ Δ′

3 � (ν m̃1
′)P ′

which in turn implies, for some Δ5:

Γ ;Δ1 � (ν m̃1)

(

P |
∏

i∈I
(λx . ti?(y).(y x)) ni

)
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��−→ Δ5 � (ν m̃1
′)

(

P ′ |
∏

i∈I
(λx . ti?(y).(y x)) ni

)

The latter implies the following, from the definition of ≈H and the freshness of ti , for
some Δ6:

Γ ;Δ2 � (ν m̃2)

(

Q |
∏

i∈I
(λx . ti?(y).(y x))mi

)

�̆
�	⇒ Δ6 � (ν m̃2

′)
(

Q′ |
∏

i∈I
(λx . ti?(y).(y x)) ni

)

and

Γ ; ∅; Δ5 � (ν m̃1
′)

(

P ′ | ∏

i∈I (λx . ti?(y).(y x)) ni | C1
)

≈H Δ6 � (ν m̃2
′)

(

Q′ | ∏

i∈I (λx . ti?(y).(y x))mi | C2
) (39)

where C1,C2 are higher-order trigger processes if �, �̆ are output actions, and C1 =
C2 = 0 otherwise. At this point we can infer, for some Δ′

4:

Γ ;Δ4 � (ν m̃2)(Q)
�̆

�	⇒ Δ′
4 � (ν m̃2

′)Q′

which in turn implies, for some Δ′′
2:

Γ ;Δ′
2 � (ν m̃2)(Q | R{m̃/x̃}) �̆

�	⇒ Δ′′
2 � (ν m̃2

′)(Q′ | R{m̃/x̃})
Equation (39) and the definition of � imply the desired conclusion for the case:

Γ ;Δ′′
1 � (ν m̃1

′)(P ′ | R{ñ/x̃} | C1) � Δ′′
2 � (ν m̃2

′)(Q′ | R{m̃/x̃} | C2)

2. Suppose an action from R:

Γ ;Δ′
1 � (ν m̃1)(P | R{ñ/x̃}) ��−→ Δ′′

1 � (ν m̃1
′)(P | R′{ñ/x̃})

for some Δ′′
1. We identify three sub-cases:

i. subj(�) �= ni , i.e. the subject of � is not in ñ. The case is similar as above.
ii. subj(�) = nk and nk = mk . From the definition of � we get that

Γ ; ∅; Δ1 � (ν m̃1)
(

P | ∏

i∈I ti?(x).(x ni )
)

tk?〈[(U→
)]c〉�−→ Δ3 � (ν m̃1)
(

P | ∏

i∈I\{k} ti?(x).(x ni ) | [(U )]c nk
)

for some Δ3. Recall that [(U→
)]c = λx . [(U )]x (cf. Fig. 6); this transition implies

Γ ; ∅; Δ2 � (ν m̃2)
(

Q | ∏

i∈I ti?(x).(x mi )
)

tk?〈[(U→
)]c〉
�	⇒ Δ4 � (ν m̃1)

(

Q′ | ∏

i∈I\{k} ti?(x).(x mi ) | [(U )]x {mk/x}
)

and from bisimilarity up-to deterministic transition (Lemma 1):

Γ ;Δ3 � (ν m̃1)

⎛

⎝P |
∏

i∈I\{k}
ti?(x).(x ni ) | [(U→
)]c nk

⎞

⎠
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τβ�−→ Δ3 � (ν m̃1)

⎛

⎝P |
∏

i∈I\{k}
ti?(x).(x ni ) | [(U )]x {nk/x}

⎞

⎠

≈H Δ4 � (ν m̃1)

⎛

⎝Q′ |
∏

i∈I\{k}
ti?(x).(x mi ) | [(U )]x {mk/x}

⎞

⎠

for some Δ4. From the shape of [(U )]x we can observe

Γ ; ∅; Δ3 � (ν m̃1)
(

P | ∏

i∈I\{k} ti?(x).(x ni ) | [(U )]x {nk/x}
)

��−→ Δ′
3 � (ν m̃1

′)
(

P | ∏

i∈I\{k} ti?(x).(x ni ) | t ′!〈nk〉.0
)

implies, for some Δ′
4:

Γ ; ∅; Δ4 � (ν m̃2)
(

Q′ | ∏

i∈I\{k} ti?(x).(x mi ) | [(U )]x {mk/x}
)

�
�	⇒ . . . Δ′

4 � (ν m̃2
′)

(

Q′′ | ∏

i∈I\{k} ti?(x).(x mi ) | t ′!〈mk〉.0
)

and furthermore, from Part 3 of Lemma 15

Γ ; ∅; Δ′
3 � (ν m̃1

′)
(

P | ∏

i∈I\{k} ti?(x).(x ni ) | t ′?(y).(y nk)
)

≈H Δ′
4 � (ν m̃2

′)
(

Q′′ | ∏

i∈I\{k} ti?(x).(x mi ) | t ′?(y).(y mk)
)

that implies from the definition of � that for all R such that {̃x} ⊆ fv(R)

Γ ;Δ′
3 � (ν m̃1

′)(P | R{ñ/x̃}) � Δ′
4 � (ν m̃2

′)(Q′′ | R{m̃/x̃})
The case concludes when we verify that, for some Δ′′

2, we have:

Γ ;Δ′
2 � (ν m̃2)(Q | R{m̃/x}) �

�	⇒ Δ′′
2 � (ν m̃1

′)(Q′′ | R′{m̃/x})
iii. subj(�) = nk and nk �= mk . This case is not possible. Lemma 15 implies that nk is

a session and nk ∈ fn(P). From the definition of typed transition (Definition 5) we
get that we cannot observe � on R{ñ/x̃}, because nk ∈ fn(P) and (Γ ; ∅;Δ) � �−→ �.

3. Suppose the interaction of P and R, for some Δ′
1:

Γ ;Δ′
1 � (ν m̃1)(P | R{ñ/x̃}) τ�−→ Δ′′

1 � (ν m̃1
′)(P ′ | R′{ñ/x̃})

From the typed reduction definition (Definition 5) we get that

Γ ;Δ3 � (ν m̃1)P
�1�−→ ΔR � (ν m̃1)P

′ (40)

Γ ;Δ′
1 � R{ñ/x̃} �2�−→ Δ′

R � R′{ñ/x̃}
�1 ( �2 (41)

We distinguish several subcases:

i. �1 = nk?〈V 〉 and �2 = (ν m̃)(nk !〈V 〉). From the requirement of � we get that there
exists U→
 such that, for some Δ3:

Γ ; ∅; Δ1 � (ν m̃1)
(

P | ∏

i∈I ti?(x).(x ni )
)

tk?〈[(U→
)]c〉�−→ τd
�	⇒ Δ3 � (ν m̃1

′)
(

P | ∏

i∈I\{k} ti?(x).(x ni ) | [(U )]x {nk/x}
)
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which in turn implies, for some Δ4, that

Γ ; ∅; Δ2 � (ν m̃2)
(

Q | ∏

i∈I ti?(x).(x mi )
)

tk?〈[(U→
)]c〉
�	⇒ τd

�	⇒ Δ4 � (ν m̃2
′)

(

Q′ | ∏

i∈I\{k} ti?(x).(x mi ) | [(U )]x {mk/x}
)

and

Γ ; ∅; Δ3 � (ν m̃1
′)

(

P | ∏

i∈I\{k} ti?(x).(x ni ) | [(U )]x {nk/x}
)

≈H Δ4 � (ν m̃2
′)

(

Q′ | ∏

i∈I\{k} ti?(x).(x mi ) | [(U )]x {mk/x}
)

From the shape of [(U )]x we can observe the interaction between [(U )]x and P to
obtain that if, for some Δ′

3 and some [(U ′)]c (cf. Definition 13), we have

Γ ; ∅; Δ3 � (ν m̃1
′)

(

P | ∏

i∈I\{k} ti?(x).(x ni ) | [(U )]x {nk/x}
)

τ�−→ Δ′
3 � (ν m̃1

′′)
(

P ′{[(U ′)]c/x} | ∏

i∈I\{k} ti?(x).(x ni ) | t ′k !〈nk〉.0
)

then

Γ ; ∅; Δ4 � (ν m̃2
′)

(

Q′ | ∏

i∈I\{k} ti?(x).(x mi ) | [(U )]x {mk/x}
)

τ
�	⇒ Δ′

4 � (ν m̃2
′′)

(

Q′′{[(U ′)]c/x} | ∏

i∈I\{k} ti?(x).(x mi ) | t ′k !〈mk〉.0
)

and

Γ ; ∅; Δ′
3 � (ν m̃1

′′)
(

P ′{[(U ′)]c/x} | ∏

i∈I\{k} ti?(x).(x ni ) | t ′k !〈nk〉.0
)

≈H Δ′
4 � (ν m̃2

′′)
(

Q′′{[(U ′)]c/x} | ∏

i∈I\{k} ti?(x).(x mi ) | t ′k !〈mk〉.0
) (42)

for some Δ′
4. From Lemma 15(3) we obtain

Γ ; ∅; Δ′′
3 � (ν m̃1

′′)
(

P ′{[(U ′)]c/x} | ∏

i∈I\{k} ti?(x).(x ni ) | t ′k?(x).(x nk)
)

≈H Δ′′
4 � (ν m̃2

′′)
(

Q′′{[(U ′)]c/x} | ∏

i∈I\{k} ti?(x).(x mi ) | t ′k?(x).(x mk)
) (43)

From the definition of � we get that

Γ ; ∅; Δ′′
3 � (ν m̃1

′′)(P ′{[(U ′)]c/x} | R′{ñ/x̃})
� Δ′′

4 � (ν m̃2
′′)(Q′′{[(U ′)]c/x} | R′{m̃/x̃})

From the above result we can match actions in (40) and (41):

(ν m̃2
′′)

⎛

⎝Q′ |
∏

i∈I\{k}
ti?(x).(x mi )

⎞

⎠

mk?〈V 〉
�	⇒ (ν m̃4)

⎛

⎝Q′′{V/x} |
∏

i∈I\{k}
ti?(x).(x mi )

⎞

⎠

R{m̃/x̃} mk !〈V 〉�−→ R′{ñ/x̃} mk ∈ m̃

to obtain, for some Δ′′
2, that

Γ ;Δ′
2 � (ν m̃2)(Q | R{ñ/x̃}) �	⇒ Δ′′

2 � (ν m̃2
′)(Q′′{V/x} | R′{m̃/x̃})

Furthermore the definition of � and (42) allow us to conclude the case:

Γ ;Δ′′
1 � (ν m̃1

′)(P ′{V/x} | R′{ñ/x̃}) � Δ′′
2 � (ν m̃2

′)(Q′′{V/x} | R′{m̃/x̃})
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ii. An important sub-case is when �1 = n?〈nk〉 and �2 = n!〈nk〉. From the definition
of � we have that

Γ ;Δ1 � (ν m̃1)

(

P |
∏

i∈I
ti?(x).(x ni )

)

n?〈m〉�−→ Δ3 � (ν m̃1)

(

P ′{m/x} |
∏

i∈I
ti?(x).(x ni )

)

for some Δ3. This transition implies, for some Δ4, that

Γ ; ∅; Δ2 � (ν m̃2)
(

Q | ∏

i∈I ti?(x).(x mi )
)

n?〈m〉
�	⇒ Δ4 � (ν m̃2)

(

Q′{m/x} | ∏

i∈I ti?(x).(x mi )
) (44)

and

Γ ;Δ3 � (ν m̃1)

(

P ′{m/x} |
∏

i∈I
ti?(x).(x ni )

)

≈H Δ4 � (ν m̃2)

(

Q′{m/x} |
∏

i∈I
ti?(x).(x mi )

)

We infer from Lemma 15(4) that

Γ ; ∅; Δ′
3 � (ν m̃1)

(

P ′{nk/x} | ∏

i∈I\{k} ti?(x).(x ni )
)

≈H Δ′
4 � (ν m̃2)

(

Q′{mk/x} | ∏

i∈I\{k} ti?(x).(x mi )
)

which implies from the definition of � that

Γ ; ∅; Δ′
1 � (ν m̃1)(P ′{nk/x} | R{ñ/x̃})

� Δ′
2 � (ν m̃2)(Q′{mk/x} | R′{m̃/x̃})

From (44) and (41) we obtain, for some Δ′′
2, the following

Γ ;Δ′
2 � (ν m̃2)(Q | R{m̃/x̃}) �	⇒ Δ′′

2 � (ν m̃2)(Q
′{mk/x} | R′{m̃/x̃})

which concludes the case.
iii. The sub-case �1 = nk?〈nl〉 and �2 = nk !〈nl〉. The proof is a consequence of the

previous two sub-cases.
iv. The rest of the sub-cases are similar (or easier) to the above cases. ��

We can now state a process substitution lemma (Lemma 3 in the main text). Given a
higher-order bisimulation under a trigger value substitution, we can generalise for any value
substitution.

Lemma 17 (Process substitution) Let P1 and P2 be processes, with z ∈ fv(P1) and z ∈
fv(P2). Also, let t be a fresh name. If

Γ ;Δ1 � (ν m̃1)(P1{λx . t?(y).(y x)/z}) ≈H Δ2 � (ν m̃2)(P2{λx . t?(y).(y x)/z})
then for all λx . R there exist Δ′

1 and Δ′
2 such that

Γ ;Δ′
1 � (ν m̃1)(P1{λx . R/z}) ≈H Δ′

2 � (ν m̃2)(P2{λx . R/z})
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Proof Consider the typed relation (for readability, we omit type information):

� = {(Γ ;Δ′
1 � (ν m̃1)(P1{λx . R/z}),Δ′

2 � (ν m̃2)(P2{λx . R/z})) |
Γ ;Δ1 � (ν m̃1)(P1{λx . t?(y).(y x)/z}) ≈H Δ2 � (ν m̃2)(P2{λx . t?(y).(y x)/z})}

We show that � is a higher-order bisimulation. Suppose that

Γ ;Δ′
1 � (ν m̃1)(P1{λx . R/z}) ��−→ Δ3 � (ν m̃1)(P

′
1{λx . R/z}) (45)

for some Δ3. We should exhibit an appropriate matching action from (ν m̃2)(P2{λx . R/z}).
Our analysis distinguishes two cases, depending on whether the substitution {λx . R/z} has an
effect on the action denoted by �:

1. Case P1 �≡ Q | z n: That is, the substitution does not affect top-level processes. In other
words, we can infer from the freshness of t that subj(�) �= t . Furthermore, from the
requirements of � we get that there exist Δ′′

1 and P ′1 such that

Γ ;Δ1 � (ν m̃1)(P1{λx . t?(y).(y x)/z}) ��−→ Δ′′
1 � (ν m̃1)(P

′
1{λx . t?(y).(y x)/z})

which, in turn, implies that there exist Δ′′
2 and P ′2 such that

Γ ;Δ2 � (ν m̃2
′)(P2{λx . t?(y).(y x)/z}) �̆

�	⇒ Δ′′
2 � (ν m̃2

′)(P ′2{λx . t?(y).(y x)/z}) (46)

and

Γ ;Δ1 � (ν m̃1
′′)(P ′1{λx . t?(y).(y x)/z} | C1) ≈H Δ2 � (ν m̃2

′′)(P ′2{λx . t?(y).(y x)/z} | C2)

with C1 (resp., C2) being the higher-order trigger process in the cases where � =
(ν m̃)n!〈V1〉 (resp., �̆ = (ν m̃′)n!〈V2〉), and C1 = C2 = 0 otherwise. Because C1

and C2 are closed terms we can rewrite the substitution as:

Γ ;Δ1 � (ν m̃1
′′)((P ′1 | C1){λx . t?(y).(y x)/z}) ≈H Δ2 � (ν m̃2

′′)((P ′2 | C2){λx . t?(y).(y x)/z})
Since �, �̆ do not act on the substitution, we can consider the same transition with any
λx . R instead of λx . t?(y).(y x). Thus, from the definition of �, we further deduce that

Γ ;Δ′
3 � (ν m̃1

′′)((P ′1 | C1){λx . R/z}) � Δ′
4 � (ν m̃2

′′)((P ′2 | C2){λx . R/z}) (47)

Note that C1 and C2 are used to meet the bisimulation requirements for the output case.
From (46) we can derive the transition

Γ ;Δ′
2 � (ν m̃2)(P2{λx . R/z}) �̆

�	⇒ Δ4 � (ν m̃2
′)(P ′2{λx . R/z})

Equation (47) concludes the case.
2. Case P1 ≡ P | ∏

i∈I z ni | z n1, such that P �≡ P ′ | z n′. This is the case where action
� might happen on the process that is being substituted (note that a substituted process
needs to be applied first).
We identify two sub-cases, depending on the source of the action �:

(a) Consider the following transition, for some Δ3:

Γ ; ∅; Δ′
1 � (ν m̃1)

(

(P | ∏

i∈I z ni | z n1){λx . R/z}
)

��−→ Δ3 � (ν m̃1)
(

(P ′ | ∏

i∈I z ni | z n1){λx . R/z}
)

This sub-case is similar to the previous case.
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(b) Consider the following transition, for some Δ3, and assuming that Q =
P | ∏

i∈I z ni :

Γ ;Δ′
1 � (ν m̃1)((Q | z n1){λx . R/z}) τ�−→ Δ3 � (ν m̃1)(Q{λz. R/z} | R{n1/z})

(48)

which is the application of name n1 on abstraction λx . R.
From the requirements of � we infer that

Γ ; ∅; Δ1 � (ν m̃1)((Q | z n1){λx . t?(y).(y x)/z})
τ�−→ Δ′′

1 � (ν m̃1)(Q{λx . t?(y).(y x)/z} | t?(y).(y n1))
for some Δ′′

1. This implies that there exist P ′2 and Δ′′
2 such that

Γ Δ2(ν m̃2)(P2{λx . t?(y).(y x)/z})�	⇒Δ′′
2(ν m̃2)(P

′
2{λx . t?(y).(y x)/z}) (49)

and

Γ ; ∅; Δ′′
1 � (ν m̃1)(Q{λx . t?(y).(y x)/z} | t?(y).(y n1))

≈H Δ′′
2 � (ν m̃2)(P ′2{λx . t?(y).(y x)/z})

From the last pair we can see that for a fresh t ′ if

Γ ; ∅; Δ′′
1 � (ν m̃1)(Q{λx . t?(y).(y x)/z} | t?(y).(y n1))

t?〈λx . t ′?(y).(y x)〉�−→ Δ′′′
1 � (ν m̃2)(Q{λx . t?(y).(y x)/z} | (λx . t ′?(y).(y x)) n1)

then from the freshness of t , there exist P ′′2 ,Δ′′′
2 such that

Γ ; ∅;Δ′′
2 � (ν m̃2)(P ′2{λx . t?(y).(y x)/z})

�	⇒ (ν m2)((P3 | z n2){λx . t?(y).(y x)/z})
τβ�−→ t?〈λx . t ′?(y).(y x)〉�−→ (ν m2)(P3{λx . t?(y).(y x)/z} | (λx . t ′?(y).(y x)) n2)

�	⇒ Δ′′′
2 � (ν m̃2)(P ′′2 {λx . t?(y).(y x)/z} | (λx . t ′?(y).(y x)) n2)

(50)

and

Γ ; ∅; Δ′′′
1 � (ν m̃1)(Q{λx . t?(y).(y x)/z} | (λx . t ′?(y).(y x)) n1)

≈H Δ′′′
2 � (ν m̃2)(P ′′2 {λx . t?(y).(y x)/z} | (λx . t ′?(y).(y x)) n2)

From Lemma 16 we can deduce that, for all λx . R, there exist Δ5 and Δ6 such that

Γ ; ∅; Δ5 � (ν m̃1)(Q{λx . t?(y).(y x)/z} | (λx . R) n1)
≈H Δ6 � (ν m̃2)(P ′′2 {λx . t?(y).(y x)/z} | (λx . R) n2)

from the definition of � we have that for all λx . R, if there exist Δ3 and Δ4

Γ Δ3(ν m̃1)(Q{(λx . R)/z} | (λx . R) n1) � Δ4(ν m̃2)(P
′′
2 {(λx . R)/z} | (λx . R) n2)

(51)

We show that we can mimic first the transition in (49) and then the silent part of
transitions (50) to get:

Γ ; ∅;Δ′
2 � (ν m̃2)(P2{(λx . R)/z})

�	⇒ Δ′
2 � (ν m̃2)(P ′2{(λx . R)/z})

�	⇒ Δ4 � (ν m2)(P ′′2 {(λx . R)/z} | (λx . R) n2)
(52)
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We showed that if (48) then (52) and (51) as required to show that� is a higher-order
bisimulation. ��

Lemma 18 ≈H ⊆ ≈.

Proof Let � be the typed relation (for readability, we omit typing information):

� = {(P1, Q1) | Γ ;Δ1 � P1 ≈H Δ2 � Q1}
We show that � is a context bisimulation (cf. Definition 12). Suppose that

Γ ;Δ1 � P1
��−→ Δ′

1 � P2 (53)

We need to infer an appropriate matching transition from Q1. The proof proceeds by a case
analysis on �. We distinguish four cases: � is not an output or a higher-order input action; �
is a higher-order input action; � is an higher-order output; � is a first-order output.

1. Case � /∈ {(ν m̃1)n!〈λx̃ . P〉, (ν m̃1
′)n!〈m̃1〉, n?〈λx̃ . P〉}: We first notice that in this case

the definition of ≈ and ≈H coincide, so we have to show the existence of Q2 and Δ′
2

such that:

Γ ;Δ2 � Q1
�

�	⇒ Δ′
2 � Q2

and

Γ ;Δ′
1 � P2 �Δ′

2 � Q2.

This is immediate from transition (53) and the definition of ≈H (cf. Definition 17).
2. Case � = n?〈λx̃ . P〉: In this case, the transition (53) can be written as

Γ ;Δ1 � P1
n?〈λ̃z. t?(y).(y z̃)〉�−→ Δ′′

1 � P2{λ̃z. t?(y).(y z̃)/x}
for some Δ′′

1. In turn, the above transition and� imply the existence of Q2 and Δ′′
2 such

that:

Γ ;Δ2 � Q1
n?〈λ̃z. t?(y).(y z̃)〉

�	⇒ Δ′′
2 � Q2{λ̃z. t?(y).(y z̃)/x}

and

Γ ;Δ′′
1 � P2{λ̃z. t?(y).(y z̃)/x} ≈H Δ′′

2 � Q2{λ̃z. t?(y).(y z̃)/x}.
Then, by using the previous equality and Lemma 17, we may conclude that

Γ ;Δ′
1 � P2{λx̃ . P/x} ≈H Δ′

2 � Q2{λx̃ . P/x}
for some Δ′

1, Δ
′
2, for all P with fv(P) = {̃x}, as required.

3. Case � = (ν m̃1
′)n!〈m̃1〉: In this case, transition (53) and � imply the existence of Δ′

2,
a process Q2, and name m2 such that

Γ ;Δ2 � Q1
(ν m̃2

′)n!〈m2〉
�	⇒ Δ′

2 � Q2

and

Γ ;Δ′
1 � (ν m̃1

′)(P2 | t ←↩H m1) ≈H Δ′
2 � (ν m̃2

′)(Q2 | t ←↩H m2)
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for some fresh t . From Case 2 of this proof (higher-order input) we can conclude that
for all R with fv(R) = {x} and for some Δ′′

1, Δ
′′
2:

Γ ; ∅;Δ′
1 � (ν m̃1

′)(P2 | t ←↩H m1)
t?〈λz. z?(x).R〉−−−−−−−−→ (ν m̃1

′)(P2 | (ν s)(s?(x).R | s!〈m1〉.0))
τd−→ Δ′′

1 � (ν m̃1
′)(P2 | R{m1/x})

and

Γ ; ∅;Δ′
2 � (ν m̃2

′)(Q2 | t ←↩H m2)
t?〈λz. z?(x).R〉−−−−−−−−→ (ν m̃2

′)(Q2 | (ν s)(s?(x).R | s!〈m2〉.0))
τd−→ Δ′′

2 � (ν m̃2
′)(Q2 | R{m2/x})

where, due to the deterministic internal transitions (cf. Definition 19), it is easy to see
that

Γ ;Δ′′
1 � (ν m̃1

′)(P2 | R{m1/x}) ≈H Δ′′
2 � (ν m̃2

′)(Q2 | R{m2/x})
for all R with fv(R) = {x}, as required by the definition of ≈ ((Definition 12).

4. Case � = (ν m̃1
′)n!〈λx̃ . P〉: This case is similar to the previous case but makes use of

the alternative trigger, t ↼A V (cf. (15)). The definition of � and transition (53) allow
us to infer the existence of some Δ′

2, Q, and Q2 such that

Γ ;Δ2 � Q1
(ν m̃2

′)n!〈λx̃ . Q〉
�	⇒ Δ′

2 � Q2

and

Γ ;Δ′
1 � (ν m̃1

′)(P2 | t ←↩H λx̃ . P) ≈H Δ′
2 � (ν m̃2

′)(Q2 | t ←↩H λx̃ . Q)

for some fresh t . Using Lemma 12, we above equality implies that

Γ ;Δ′
1 � (ν m̃1

′)(P2 | t ↼A λx̃ . P) ≈H Δ′
2 � (ν m̃2

′)(Q2 | t ↼A λx̃ . Q)

which in turn implies

Γ ; ∅; Δ′
1 � (ν m̃1

′)(P2 | t ↼A λx̃ . P)
t?〈λy. t ′?(x).(x y)〉�−→ Δ′′

1 � (ν m̃1
′)(P2 | (ν s)((λy. t ′?(x).(x y))s | s!〈λx̃ . P〉.0))

for some Δ′′
1 and

Γ ; ∅; Δ′
2 � (ν m̃2

′)(Q2 | t ↼A λx̃ . Q)
t?〈λy. t ′?(x).(x y)〉

�	⇒ Δ′′
2 � (ν m̃1

′)(Q′
2 | (ν s)((λy. t ′?(x).(x y))s | s!〈λx̃ . Q〉.0))

for some Δ′′
2, and

Γ ; ∅; Δ′′
1 � (ν m̃1

′)(P2 | (ν s)((λy. t ′?(x).(x y))s | s!〈λx̃ . P〉.0))

≈H Δ′′
2 � (ν m̃1

′)(Q′
2 | (ν s)((λy. t ′?(x).(x y))s | s!〈λx̃ . Q〉.0))

.

From the Case 2 of this proof (higher-order input), we have

Γ ; ∅; Δ′′
1 � (ν m̃1

′)(P2 | (ν s)((λy. y?(x).R) s | s!〈λx̃ . P〉.0))

≈H Δ′′
2 � (ν m̃1

′)(Q′
2 | (ν s)((λy. y?(x).R )s | s!〈λx̃ . Q〉.0))

for all R with fv(R) = {x}. Now, using deterministic transitions (cf. Definition 19) is
easy to see that

Γ ;Δ′′
1 � (ν m̃1)(P2 | R{λx̃ . P/y}) ≈H Δ′′

2 � (ν m̃2)(Q2 | R{λx̃ . Q/y})
for all R with fv(R) = {x}, as required by the definition of ≈ (cf. Definition 12). ��
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Lemma 19 ≈ ⊆ ∼=.

Proof We prove that≈ (cf. Definition 12) satisfies the three defining properties of∼=: reduc-
tion closure, barb preservation, and congruence (cf. Definition 11).

I. Reduction-closed Let Γ ;Δ1 � P1 ≈ Δ2 � P2. The reduction

Γ ;Δ1 � P1 −→ Δ′
1 � P ′1

implies that there exist Δ′
2 and P ′2 such that

Γ ;Δ2 � P2 	⇒ Δ′
2 � P ′2 and Γ ;Δ1 � P ′1 ≈ Δ′

2 � P ′2
The same arguments hold for the symmetric case, thus ≈ is reduction-closed.

II. Barb preservation Following Definition 9, we have that Γ ; ∅;Δ1 � P1 ↓n implies

P ∼= (ν m̃)(n!〈V1〉.P3 | P4)
with n /∈ Δ1. From the definition of ≈ we infer that

Γ ;Δ1 � (ν m̃)(n!〈V1〉.P3 | P4) (ν s1)n!〈V1〉−−−−−−→ Δ′
1 � (ν ˜m′)(P3 | P4)

implies the existence of Δ′
2, V2, and P ′2 such that

Γ ;Δ2 � P2
(ν m2)n!〈V2〉	⇒ Δ′

2 � P ′2
Therefore, we infer that Γ ; ∅;Δ2 � P2 ⇓n , as desired.

III. CongruenceWehave to show that≈ is preserved under any context. Themost interesting
context case is parallel composition. Input congruence, which is the case that generates
substitution, is straightforward, since we are dealing with closed terms.
To show the congruence of the parallel compositionwe construct a typed relation defined
as

S = {(Γ ; ∅;Δ1 ·Δ3 � (ν ñ1)(P1 | R) � 
, Γ ; ∅;Δ2 ·Δ3 � (ν ñ2)(P2 | R) � 
) |
Γ ;Δ1 � P1 ≈ Δ2 � P2,∀Γ ; ∅;Δ3 � R � 
}

We show that S is a context bisimulation. Suppose that

Γ ;Δ1 ·Δ3 � (ν ñ1)(P1 | R)
�−→ Δ′

1 ·Δ3 � P ′

for some Δ′
1. We must show an appropriate matching action from (ν ñ2)(P2 | R). We

proceed by a case analysis on the “source” of action � (i.e., P1, R, an interaction between
P1 and R). There are three cases:

1. Suppose that � originates in P1:

Γ ;Δ1 ·Δ3 � (ν ñ1)(P1 | R)
�−→ Δ′

1 ·Δ3 � (ν ˜n′1)(P
′
1 | R)

The case is divided into three sub-cases, depending on the shape of �:
i. Sub-case � /∈ {(ν m̃)n!〈λx̃ . Q〉, (ν m̃m̃1)n!〈m̃1〉}: Then from the definition of

typed transition we infer:

Γ ;Δ1 � P1
�−→ Δ′

1 � P ′1
which implies the existence of P ′2 and Δ′

2 such that

Γ ;Δ1 � P2
�	⇒ Δ′

2 � P ′2 (54)
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Γ ;Δ′
1 � P ′1 ≈ Δ′

2 � P ′2. (55)

From transition (54) we may infer that

Γ ;Δ2 ·Δ3 � (ν ñ2)(P2 | R)
�	⇒ Δ′

2 ·Δ3 � (ν ñ2
′)(P ′2 | R)

Furthermore, from (55) and the definition of S we infer the desired conclusion:

Γ ;Δ′
1 ·Δ3 � (ν ñ1

′)(P ′1 | R) S Δ′
2 ·Δ3 � (ν ñ2

′)(P ′2 | R)

ii. Sub-case � = (ν m̃1)n!〈λx̃ . Q1〉: Then we infer the typed transition

Γ ;Δ1 � P1
(ν m̃1)n!〈λx̃ . Q1〉−−−−−−−−−→ Δ′

1 � P ′1
which implies the existence of P ′2, Δ′

2, Δ
′′
1, and Δ′′

2 such that

Γ ;Δ1 � P2
(ν m̃2)n!〈λx̃ . Q2〉	⇒ Δ′

2 � P ′2 (56)

and

Γ ;Δ′′
1 � (ν ñ1

′′)(P ′1 | Q{λx̃ . Q1/x}) ≈ Δ′′
2 � (ν ñ2

′′)(P ′2 | Q{λx̃ . Q2/x})
(57)

for all Q with x ∈ fv(Q). From transition (56), we infer that

Γ ;Δ2 ·Δ3 � (ν ñ2)(P2 | R)
(ν m̃2)n!〈λx̃ . Q2〉	⇒ Δ′

2 ·Δ3 � (ν ñ2
′)(P ′2 | R)

Furthermore, from (57) we conclude that

Γ ;Δ′′
1 ·Δ3 � (ν ñ1

′′)(P ′1 | Q{λx̃ . Q1/x} | R) S
� Δ′′

2 ·Δ3(ν ñ2
′′)(P ′2 | Q{λx̃ . Q2/x} | R)

for all Q, with x ∈ fv(Q), as desired.
iii. Sub-case � = (ν m̃m̃1)n!〈m̃1〉: From the definition of typed transition we infer

that

Γ ;Δ1 � P1
(ν m̃m̃1)n!〈m̃1〉−−−−−−−−→ Δ′

1 � P ′1
which, in turn, implies that there exist Δ′

2, P
′
2, and m2 such that

Γ ;Δ1 � P2
(ν m̃m̃2)n!〈m̃2〉	⇒ Δ′

2 � P ′2 (58)

and

Γ ;Δ′′
1 � (ν ñ1)(P

′
1 | Q{m̃1/x̃}) ≈ Δ′′

2 � (ν ñ2)(P
′
2 | Q{m̃2/x̃}) (59)

for some Δ′′
1 and Δ′′

2, for all Q with {x} = fv(Q). From transition (58) we
infer that

Γ ;Δ2 ·Δ3 � (ν ñ2
′)(P2 | R)

(ν m̃m̃2)n!〈m̃2〉	⇒ Δ′
2 ·Δ3 � (ν ñ2

′′′)(P ′2 | R)

Furthermore, from (59) we conclude that

Γ ;Δ′′
1 ·Δ3 � (ν ñ1

′′)(P ′1 | Q{m̃1/x̃} | R) S Δ′′
2 ·Δ3 � (ν ñ2

′′)(P ′2 | Q{m̃2/x̃} | R)

for all Q with x ∈ fv(Q), as desired.
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2. Suppose that � originates in R:

Γ ;Δ1 ·Δ3 � (ν m̃1)(P1 | R)
�−→ Δ1 ·Δ′

3 � (ν m̃1
′)(P1 | R′)

This case is also divided into three sub-cases:
i. Sub-case � /∈ {(ν m̃)n!〈λx̃ . Q〉, (ν m̃m̃1)n!〈m̃1〉}: From the LTS we infer that

Γ ;Δ3 � R
�−→ Δ′

3 � R′

for some Δ′
3, which in turn implies

Γ ;Δ2 ·Δ3 � (ν m̃2)(P2 | R)
�−→ Δ2 ·Δ′

3 � (ν m̃2
′)(P2 | R′)

Now, from the definition of S we may obtain the desired conclusion:

Γ ;Δ1 ·Δ′
3 � (ν m̃1

′)(P1 | R′) S Δ2 ·Δ′
3 � (ν m̃2

′)(P2 | R′)
ii. Sub-case � = (ν m̃1)n!〈λx̃ . Q〉: From the LTS we infer that:

Γ ;Δ3 � R
�−→ Δ′

3 � R′ (60)

for some Δ′
3. We then have that

Γ ; ∅;Δ′′
3 � (ν m̃′)(R′ | R1{λx̃ . Q/x}) � 
 (61)

for some Δ′′
3 and for all R1 with {x} = fv(R1). Now, from (60) we obtain that

Γ ;Δ2 ·Δ3 � (ν m̃2
′)(P2 | R)

�−→ Δ2 ·Δ′
3 � (ν m̃2)(P2 | R′)

Then, from (61) and the definition of S we obtain that

Γ ; ∅; Δ1 ·Δ′′
3 � (ν m̃1)(P1 | (ν m̃′)(R′ | R1{λx̃ . Q/x}))

S Δ2 ·Δ′′
3 � (ν m̃2)(P2 | (ν m̃′)(R′ | R1{λx̃ . Q/x}))

for all R1 with x ∈ fv(R1), as desired.
iii. Sub-case � = (ν m̃m̃1)n!〈m̃〉: Similarly as above, from the typed LTS we infer

that:

Γ ;Δ3 � R
�−→ Δ′

3 � R′ (62)

for some Δ′
3. We then have that

Γ ; ∅;Δ′′
3 � (ν m̃′)(R′ | R1{m̃/x̃}) � 
 (63)

for all R1 with {̃x} = fv(R1), for some Δ′′
3. Now, from (62), we obtain that

Γ ;Δ2 ·Δ3 � (ν m̃2)(P2 | R)
�−→ Δ2 ·Δ′

3 � (ν m̃2)(P2 | R′)
Then, from (63) and the definition of S we obtain the desired conclusion:

Γ ; ∅; Δ1 ·Δ′′
3 � (ν m̃1)(P1 | (ν m̃′)(R′ | R1{m̃/x̃}))

S Δ2 ·Δ′′
3 � (ν m̃2)(P2 | (ν m̃′)(R′ | R1{m̃/x̃}))
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3. We finally suppose that � originates from the interaction between P1 and R:

Γ ;Δ1 ·Δ3 � (ν m̃1)(P1 | R)
τ−→ Δ′

1 ·Δ′
3 � (ν m̃1

′)(P ′1 | R′)
for some Δ′

1,Δ
′
3. We then have that

Γ ;Δ1 � P1
�1−→ Δ′

1 � P ′1
and

Γ ;Δ3 � R
�2−→ Δ3 � R′ (64)

with �1 � �2 (cf. Definition 3). This case is divided into two sub-cases:
i. �1 /∈ {(ν m̃)n!〈λx̃ . Q〉, (ν m̃m̃1)n!〈m̃1〉}: Then the transition from P1 implies

Γ ;Δ2 � P2
�̂1	⇒ Δ′

2 � P ′2 (65)

Γ ;Δ′
1 � P ′1 ≈ Δ′

2 � P ′2 (66)

for some Δ′
2. From (64) and (65) we obtain

Γ ;Δ2 ·Δ3 � (ν m̃2)(P2 | R) 	⇒ Δ′
2 ·Δ′

3 � (ν m̃2
′)(P ′2 | R′)

Then, from (66) and the definition of S we obtain the desired conclusion:

Γ ;Δ′
1 ·Δ′

3 � (ν m̃1
′)(P ′1 | R′) S Δ′

2 ·Δ′
3 � (ν m̃2

′)(P ′2 | R′)
ii. �1 = (ν m̃1)n!〈V1〉: Then we have the transition

Γ ;Δ1 � P1
(ν m̃1)n!〈V1〉−−−−−−−→ Δ′

1 � P ′1
for some Δ′

1, which implies

Γ ;Δ3 � R
n?〈V1〉−−−→ Δ′

3 � R′{V1/x} (67)

Γ ;Δ1 ·Δ3 � (ν m̃1)(P1 | R)
τ−→ Δ′

1 ·Δ′
3 � (ν m̃1

′′)(P ′1 | R′{V1/x}) (68)
for someΔ′

1 andΔ′
3. In turn, the output transition from P1 implies the existence

of Δ′
2, Q2, P ′2 such that

Γ ;Δ2 � P2
(ν m̃2)n!〈V2〉	⇒ Δ′

2 � P ′2 (69)

2Γ ;Δ′′
1 � (ν m̃1

′)(P ′1 | R′{V1/x}) ≈ Δ′′
2 � (ν m̃2

′)(P ′2 | R′{V2/x}) (70)

for all R′ with {x} = fv(Q), and for some Δ′′
1 and Δ′′

2. From (67) we obtain

Γ ;Δ3 � R
n?〈V2〉−−−→ Δ′′

3 � R′{V2/x}
for some Δ′′

3, which may be combined with (69) to obtain

Γ ;Δ2 ·Δ3 � (ν m̃2)(P2 | R) 	⇒ Δ′
2 ·Δ′′

3 � (ν m̃2
′′)(P ′2 | R′{V2/x})

From (70) and the definition of S we can then get:

Γ ;Δ′′
1 � (ν m̃1

′)(P ′1 | R′{V1/x}) S Δ′′
2 � (ν m̃2

′)(P ′2 | R′{V2/x}).
as required. ��
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In order to prove Lemma 7 (i.e., ∼= ⊆ ≈H), below we follow the technique developed in
[8] and refined for session types in [18,19].

Definition 25 (Definability) Let Γ ; ∅;Δ1 � P �
. A visible action � is definablewhenever,
given a fresh name succ, there exists a (testing) process Γ ; ∅;Δ2 � T 〈�, succ〉�
 such that:
1. If Γ ;Δ1 � P

��−→ Δ′
1 � P ′ then, for some Δ′

2, either

(a) � �= (ν m̃)n!〈V 〉 and P | T 〈�, succ〉 −→ P ′ | succ!〈n〉.0 and
Γ ; ∅;Δ′

1 ·Δ′
2 � P ′ | succ!〈n〉.0 � 


(b) � = (ν m̃)n!〈V 〉 and P | T 〈�, succ〉 −→ (ν m̃)(P ′ | t ←↩H V | succ!〈n, V 〉.0) and
Γ ; ∅;Δ′

1 ·Δ′
2 � (ν m̃)(P ′ | t ←↩H V | succ!〈n, V 〉.0) � 
, for some fresh t .

2. If P | T 〈�, succ〉 −→ Q with Γ ; ∅;Δ � Q ↓succ then there exists a P ′ such that

Γ ;Δ1 � P
�

�	⇒ Δ′
1 � P ′ and one of the following holds:

(a) � �= (ν m̃)n!〈V 〉 and Q ≡ P ′ | succ!〈n〉.0.
(b) � = (ν m̃)n!〈V 〉 and Q ≡ (ν m̃)(P ′ | t ←↩H V | succ!〈n, V 〉.0), for some fresh t .

We first show that every visible action � is definable.

Lemma 20 (Definability) Every visible action � is definable.

Proof Let succ be a fresh name. We define:

T 〈�, succ〉 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n!〈V 〉.succ!〈n〉.0 if � = n?〈V 〉
n � l.succ!〈n〉.0 if � = n& l

n?(y).(t ←↩H y | succ!〈n, y〉.0) if � = (ν m̃)n!〈V 〉
n � {l : succ!〈n〉.0), li : (ν a)(a?(y).succ!〈n〉.0)}i∈I if � = n ⊕ l

Consider the process

Γ ; ∅;Δ � P � 

It is straightforward to do a case analysis on all actions � such that

Γ ; ∅;Δ � P
��−→ Δ′ � P ′

to show that � is definable. ��
We rely on the following auxiliary result:

Lemma 21 (Extrusion) Let P and Q be processes, and let succ be a fresh name. If

Γ ;Δ′
1 � (ν m̃1)(P | succ!〈n, V1〉.0) ∼= Δ2 � (ν m̃2)(Q | succ!〈n, V2〉.0)

with {m̃1} = fn(V1) and {m̃2} = fn(V2) then there exist Δ1 and Δ2 such that

Γ ;Δ1 � P ∼= Δ2 � Q.

Proof Let S be a relation defined as:

S = {(Γ ; ∅;Δ1 � P � 
 , Γ ; ∅;Δ2 � Q � 
) |
Γ ;Δ′

1 � (ν m̃1)(P | succ!〈n, V1〉.0) ∼= Δ′
2 � (ν m̃2)(Q | succ!〈n, V2〉.0),

∧ m1 ∈ fn(V1) ∧ m2 ∈ fn(V2)}
We show that S is a reduction-closed, barbed congruence.
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I. Reduction-closed The reduction P −→ P ′ implies

(ν m̃1)(P | succ!〈n, V1〉.0) −→ (ν m̃1)(P
′ | succ!〈n, V1〉.0)

which, due to freshness of succ, in turn implies

(ν m̃1)(Q | succ!〈n, V2〉.0) −→∗ (ν m̃1)(Q
′ | succ!〈n, V2〉.0)

Therefore, Q −→∗ Q′. Furthermore,

(ν m̃1)(P
′ | succ!〈n, V1〉.0) ∼= (ν m̃1)(Q

′ | succ!〈n, V2〉.0)

that implies

Γ ;Δ′′
1 � P ′ S Δ′′

2 � Q′

as required.
II. Barb preserving Suppose Γ ; ∅;Δ1 � P ↓m . We analyse three cases, depending on the

nature of m:

1. Case m �= s (m is not a session name): Then from Γ ; ∅;Δ1 � P ↓m we infer

Γ ; ∅;Δ′
1 � (ν m̃1)(P | succ!〈n, V1〉.0) ↓m

for some Δ′
1, which implies

Γ ; ∅;Δ′
2 � (ν m̃2)(Q | succ!〈n, V2〉.0) ⇓m .

for some Δ′
2. Then, from the freshness of succ, we obtain Γ ; ∅;Δ2 � Q ⇓m , as

required.
2. Case:m = s (m is a session name) andm �= n. The proof follows a similar reasoning

as in the previous case.
3. Case: m = s (m is a session name) and m = n and Γ ; ∅;Δ1 � P ↓n . In this case,

the fact that n is a session name implies that n, n ∈ dom(Δ′
1). Therefore, from the

definition of barbs (Definition 9) we can infer that

Γ ; ∅;Δ′
1 � (ν m̃1)(P | succ!〈n, V1〉.0) �↓ n

because both endpoints of session n are present in Δ′
1.

To observe the desired barb we exploit an additional test process, with an extra fresh
name succ′. We compose Γ ; ∅;Δ1 � P � 
 with succ?(x, y).T 〈�, succ′〉 where
subj(�) = x . We then have

Γ ; ∅;Δ′
1 � (ν m̃1)(P | succ!〈n, V1〉.0) | succ?(x, y).T 〈�, succ′〉 � 


The definition of definability and the fact that Γ ; ∅;Δ1 � P ↓n imply that

(ν m̃1)(P | succ!〈n, V1〉.0) | succ?(x, y).T 〈�, succ′〉
−→∗ (ν m̃1)(P

′ | succ′!〈n, V ′
1〉.0)

and furthermore

(ν m̃2)(Q | succ!〈n, V2〉.0) | succ?(x, y).T 〈�, succ′〉
−→∗ (ν m̃2)(Q

′ | succ′!〈n, V ′
2〉.0)

The last sequence of reductions implies that Γ ; ∅;Δ2 � Q ⇓n , as required.
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III. Congruence The key case is congruence with respect to parallel composition. The other
cases are easier due to the fact that we are working with closed process terms (i.e. input
congruence is straightforward on closed process terms). Let us define relation C as

C = {(Γ ; ∅;Δ1 ·Δ3 � P | R � 
, Γ ; ∅;Δ2 ·Δ3 � Q | R � 
) |
∀R such that ∃Δ3, Γ ; ∅;Δ3 � R � 
 ∧
Γ ;Δ′

1 � (ν m̃1)(P | succ!〈n, V1〉.0) ∼= Δ′
2 � (ν m̃2)(Q | succ!〈n, V2〉.0)}

We want to show that C ⊆ S. To this end, we show that C is a congruence with respect
to parallel composition. We distinguish two cases:

(i) Case (n ∪ fn(V1) ∪ fn(V2)) ∩ fn(R) = ∅: Then from the contextual definition of
∼= we can deduce that for all Γ ; ∅;Δ3 � R � 
:

Γ ;Δ′
1 ·Δ3 � (ν m̃1)(P | succ!〈n, V1〉.0) | R ∼=

� Δ′
2 ·Δ3(ν m̃2)(Q | succ!〈n, V2〉.0) | R

Because of the requirement (n ∪ fn(V1) ∪ fn(V2)) ∩ fn(R) = ∅ the above is
structurally congruent to

Γ ;Δ′
1 ·Δ3 � (ν m̃1)(P | succ!〈n, V1〉.0 | R)

∼= Δ′
2 ·Δ3 � (ν m̃2)(Q | succ!〈n, V2〉.0 | R)

The desired conclusion is then immediate from the definition of C.
(ii) Case s̃ = {n, m̃1} ∪ {n, m̃2} ∩ fn(R): Let Rỹ be such that R = Rỹ{s̃/ỹ}.

From the contextual definition of ∼=, given a fresh name succ′, we can deduce that
for all Γ ; ∅;Δ′

3 � succ?(ỹ).(Rỹ | succ′!〈ỹ〉.0) � 
:
Γ ; ∅; Δ′′

1 � (ν m̃1)(P | succ!〈n, V1〉.0) | succ?(ỹ).(Rỹ | succ′!〈ỹ〉.0)
∼= Δ′′

2 � (ν m̃2)(Q | succ!〈n, V2〉.0) | succ?(ỹ).(Rỹ | succ′!〈ỹ〉.0)

for some Δ′′
1,Δ

′′
2. Applying reduction closeness to the above pair we infer:

Γ ;Δ′′
1 � (ν m̃1)(P | R | succ′!〈n, V1〉.0) ∼= Δ′′

2 � (ν m̃2)(Q | R | succ′!〈n, V2〉.0)

The conclusion then follows from the definition of C. ��
We can finally prove Lemma 7:

Lemma 22 ∼= ⊆ ≈H.

Proof Let � be the typed relation (we omit the typing information in the definition):

� = {(P1, P2) | Γ ;Δ1 � P1 ∼= Δ2 � P2}
We prove that � is a higher-order bisimulation. Suppose that Γ ;Δ1 � P1

�−→ Δ′
1 � P ′1;

we must find a matching action from P2. We distinguish two cases:

1. Suppose � = τ . Then we have

Γ ;Δ1 � P1
τ−→ Δ′

1 � P ′1
The result follows the reduction closeness property of ∼= since

Γ ;Δ2 � P2
τ	⇒ Δ′

2 � P ′2
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for some Δ′
2, and

Γ ;Δ′
1 � P ′1 ∼= Δ′

2 � P ′2 implies Γ ;Δ′
1 � P ′1 � Δ′

2 � P ′2.

2. Suppose � �= τ . Then we choose test T 〈�, succ〉 to obtain

Γ ;Δ1 ·Δ3 � P1 | T 〈�, succ〉 ∼= Δ2 ·Δ3 � P2 | T 〈�, succ〉 (71)

for some Δ3. From this point on we distinguish two sub-cases:

i. Sub-case � ∈ {n?〈V1〉, n ⊕ l, n& l}: We then obtain

P1 | T 〈�, succ〉 −→ P ′1 | succ!〈n〉.0
Γ ; ∅;Δ′

1 ·Δ′
3 � P ′1 | succ!〈n〉.0 ↓succ

for some Δ′
3. From (71) we may now infer:

Γ ; ∅;Δ2 ·Δ3 � P2 | T 〈�, succ〉 ⇓succ

which, using Lemma 20, implies

Γ Δ2P2
�	⇒ Δ′

2P
′
2

P2 | T 〈�, succ〉 −→∗ P ′2 | succ!〈n〉.0
and

Γ ;Δ′
1 ·Δ′

3 � P ′1 | succ!〈n〉.0 ∼= Δ′
2 ·Δ′

3 � P ′2 | succ!〈n〉.0
We then apply Lemma 21 to obtain the required result:

Γ ;Δ′
1 � P ′1 ∼= Δ′

2 � P ′2 implies Γ ;Δ′
1 � P ′1 � Δ′

2 � P ′2.

ii. Sub-case � = (ν m̃1)n!〈V1〉: Note that T 〈(ν m̃1)n!〈V1〉, succ〉 = T 〈(ν m̃2)n!〈V2〉,
succ〉. The transition from P1 can be then written as

Γ ;Δ1 � P1
(ν m̃1)n!〈V1〉−−−−−−−→ Δ′

1 � P ′1 (72)

for someΔ′
1. If we use the test process T 〈(ν m̃1)n!〈V1〉, succ〉, then we may obtain:

P1 | T 〈(ν m̃1)n!〈V1〉, succ〉 −→ (ν m̃1)(P
′
1 | t ←↩H V1) | succ!〈n, V1〉.0

Γ ; ∅;Δ′
1 ·Δ′

3 � (ν m̃1)(P
′
1 | t ←↩H V1) | succ!〈n, V1〉.0 ↓succ

for some Δ′
3. Using (71) we may then infer

Γ ; ∅;Δ2 ·Δ3 � P2 | T 〈(ν m̃2)n!〈V2〉, succ〉 ⇓succ

which, using Lemma 20, implies

Γ ;Δ2 � P2
(ν m̃2)n!〈V2〉	⇒ Δ′

2 � P ′2
P2 | T 〈�, succ〉 −→∗ (ν m̃2)(P

′
2 | t ←↩H V2) | succ!〈n, V2〉.0 (73)

for some Δ′
2, and

Γ ; ∅; Δ′
1 ·Δ′

3 � (ν m̃1)(P ′1 | t ←↩H λx̃ . Q1) | succ!〈n, V1〉.0∼= Δ′
2 ·Δ′

3 � (ν m̃2)(P ′2 | t ←↩H λx̃ . Q2) | succ!〈n, V2〉.0
We then apply Lemma 21 to obtain:

Γ ;Δ′
1 � (ν m̃1)(P

′
1 | t ←↩H V1) ∼= Δ′

2 � (ν m̃2)(P
′
2 | t ←↩H V2)
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From the above result and the definition of � we finally obtain:

Γ ; ∅; Δ′
1 � (ν m̃1)(P ′1 | t ←↩H V1)

� Δ′
2 � (ν m̃2)(P ′2 | t ←↩H V2)

as required. ��
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