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Abstract
Autoimmune encephalitis is a relatively novel nosological entity characterized by an immune-mediated damage of the central 
nervous system. While originally described as a paraneoplastic inflammatory phenomenon affecting limbic structures, numer-
ous instances of non-paraneoplastic pathogenesis, as well as extra-limbic involvement, have been characterized. Given the 
wide spectrum of insidious clinical presentations ranging from cognitive impairment to psychiatric symptoms or seizures, 
it is crucial to raise awareness about this disease category. In fact, an early diagnosis can be dramatically beneficial for the 
prognosis both to achieve an early therapeutic intervention and to detect a potential underlying malignancy. In this scenario, 
the radiologist can be the first to pose the hypothesis of autoimmune encephalitis and refer the patient to a comprehensive 
diagnostic work-up – including clinical, serological, and neurophysiological assessments.
In this article, we illustrate the main radiological characteristics of autoimmune encephalitis and its subtypes, including the 
typical limbic presentation, the features of extra-limbic involvement, and also peculiar imaging findings. In addition, we 
review the most relevant alternative diagnoses that should be considered, ranging from other encephalitides to neoplasms, 
vascular conditions, and post-seizure alterations. Finally, we discuss the most appropriate imaging diagnostic work-up, also 
proposing a suggested MRI protocol.

Keywords Magnetic resonance imaging · Encephalitis · Limbic encephalitis · Autoimmune encephalitis · Autoimmune 
diseases of the nervous system
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VGCC   Voltage gated calcium channel

Introduction

Autoimmune encephalitis (AE) refers to a spectrum of dis-
orders characterized by inflammatory processes affecting 
the brain tissue and originating from an immune-mediated 
pathophysiological mechanism targeting neurons [1, 2]. 
The reported incidence ranges from 3/million to 8/million 
person-years in epidemiologic studies in the western world 
[3, 4], but many authors argue that this disease category is 
still under-diagnosed and misdiagnosed [5, 6].

AE was originally described as a paraneoplastic phe-
nomenon affecting limbic structures, and causing subacute 
onset of behavior and memory disturbances, along with sei-
zures, in the presence of an underlying neoplasms [7–9]. 
Subsequent evidence led to the detection of autoantibodies 
linked with AE [10, 11], and contributed to the recogni-
tion that non-paraneoplastic instances are relatively com-
mon [2]. Currently, AE includes a number of subtypes, that 
can be classified based on the associated autoantibody (Ab) 
found in the serum and/or CSF. AE Ab target either intra-
cellular (Group I – such as anti-Hu, anti-Ma/Ta, anti-GAD, 
anti-Yo, and anti-CV2/CRMP5), or cell surface neuronal 
antigens (Group II – including anti-LGI1, anti-CASPR2, 
anti-GABAAR, anti-GABABR, anti-NMDAR, and anti-
AMPAR). This distinction bears significant clinical, prog-
nostic, and pathophysiological implications, a general rule 
being that Group I AE are associated with a worse progno-
sis than Group II AE [1, 12]. Group I AE are more likely 
associated with an underlying malignancy (Group I Ab 
are also referred to as ‘onconeural antibodies’) [13]. For 
instance, anti-Hu AE – the most common paraneoplastic 
AE with a reported incidence of 0.4/million person-years 
[4] – is associated with tumors in 75–80% of cases (mainly 
small cell lung carcinoma, SCLC) [14, 15]. On the other 
hand, Group II AE are more commonly non-paraneoplastic 
conditions that can affect patients belonging to a wide age 
range, including younger and sometimes pediatric patients 
[2, 14]. Anti-NMDAR (N-methyl D-aspartate receptor) AE 
and anti-LGI1 (leucine-rich glioma inactivated) AE – the 

most common Group II AE, with a reported incidence of 
0.5/million and 0.4/million person-years, respectively [4] 
– show an association with neoplasms in 30%-40% and in 
10% of cases, respectively [14, 16]. Despite the abovemen-
tioned rule of thumb for neoplastic associations is overall 
valid, some AE subtypes represent notable exceptions. For 
instance,  GABABR (gamma-amino butyric acid B receptor) 
antibodies (group II) are frequently associated with SCLC, 
while GAD (glutamic acid decarboxylase) antibodies (tar-
geting intracellular antigens) are typically associated with 
non-paraneoplastic AE, and they are more often associated 
with systemic autoimmune conditions (e.g. type 1 diabetes 
mellitus) rather than with neoplasms (< 10% of cases) [14]. 
More in general, different antibodies have a different likeli-
hood of tumor associations, and the updated 2021 diagnostic 
criteria for AE [17] propose to stratify AE-related antibodies 
in low-, intermediate- and high-risk, based on the likelihood 
of tumor associations. In addition to a worse prognosis due 
to the underlying malignancies, Group I AE are generally 
characterized by a worse treatment response and are more 
likely to induce irreversible tissue damage [1]. Such dif-
ferences are related to the underpinning pathophysiologi-
cal mechanisms. While in Group II the autoantibodies are 
believed to serve a pathogenetic function, in Group I the 
immune-mediated damage is sustained by CD8 + T-cells 
and the extent of the antibody contribution to the neural 
damage is still being evaluated [13]. As a general rule, in 
Group I antitumoral immune response cross-reacts with neu-
ral antigens causing lymphocyte-mediated neuronal killing. 
Conversely, in Group II autoantibodies bind to cell-surface 
epitopes, typically belonging to ion-channels, and result in 
disease-causing synaptic function interference [1, 2, 16]. 
Therefore, in Group II AE antibody-depleting therapies 
(such as IVIG or plasma exchange/immunoadsorption) [16] 
are usually more effective and immune-mediated insults are 
more often reversible.

From a clinical perspective, most AE patients present 
with a subacute onset and progression (< 3 months) of vari-
ous symptoms, mainly related to limbic disfunction, includ-
ing memory deficits, psychiatric symptoms, seizures, and 
altered mental status – as reported in the diagnostic criteria 
for ‘possible AE’ [18]. When AE involves extratemporal 
structures presentations may also include movement dis-
orders, ataxia, autonomic or sleep disorders, for instance. 
Although limbic encephalitis (LE) is one of the most com-
mon forms of AE, different AE subtypes are related to 
peculiar clinical findings. Anti-Hu AE often causes a sen-
sory neuropathy and a cerebellar syndrome, in addition to 
or independently from the classic limbic involvement [15, 
17]. While anti-GAD AE is usually a typical LE featuring 
prominent seizures, anti-Ma/Ta AE patients exhibit pure LE 
symptoms in a minority of cases, but often shows additional 
diencephalic or brainstem disfunction – e.g., gaze palsy [12, 
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19]. Anti-NMDAR AE causes the most defined clinical 
syndrome – leading to the proposal of specific and unique 
diagnostic criteria [18] – with a typical progression from 
viral-like prodromes to prominent psychiatric/behavioral 
symptoms, rapidly followed by memory deficits, language 
impairment, seizures, dyskinesias, altered state of conscious-
ness and finally autonomic disfunction or central hypoventi-
lation [16]. Anti-LGI1 AE also presents characteristic clini-
cal features, such as faciobrachial dystonic seizures (FBDS), 
hyponatremia, and sleep disturbance [14, 20]. FBDS are 
briefs jerks involving in most cases the facial muscles asso-
ciated with elevation and dystonic posturing of the ipsilat-
eral upper limb (and more rarely the lower limb). These 
events can involve both sides and occur at a high frequency 
(even > 200 episodes/day). Anti-CASPR2 AE may have a 
wide clinical presentation, from pure limbic encephalitis, 
cerebellar dysfunction or peripheral nerve hyperexcitabil-
ity to the well-defined Morvan syndrome where peripheral 
nerve hyperexcitability coexists with i) cognitive symptoms 
or seizures and ii) central autonomic disfunction or insomnia 
[14, 16, 21]. Anti-AMPAR (α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor) AE often shows a psy-
chiatric syndrome in the context of a limbic encephalitis 
[12, 22]. When paraneoplastic, tumor types that are most 
commonly associated with AE include: SCLC (anti-Hu and 
multiple other Group I AE), ovarian tumors (anti-NMDAR 
and anti-Yo), testicular tumors (anti-Ma/Ta), Hodgkin lym-
phoma (Tr/DNER and multiple other Group II AE) [14, 16]. 
A more extensive overview of clinical syndromes and tumor 
types related to AE subtypes are provided in some recent 
articles [14, 16].

The Graus criteria [18] also allow for the diagnosis of AE 
in the absence of neuronal antibodies. Antibody-negative 
AE mostly presents with a limbic phenotype (seronegative 
definite LE) [23]. In addition, patients not fulfilling crite-
ria for LE can be diagnosed in a specific subgroup named 
“antibody-negative but probable AE” (ANPRA), which 
remains heterogeneous and poorly defined [23]. Finally, a 
category named “possible AE” exists in the Graus criteria, 
but it should be intended as a “work-in-progress” category 
identifying patients that should undergo a thorough work-up 
for a definite diagnosis, including CSF testing. Overall, the 
existence of seronegative AE cases is due to a number of rea-
sons, including some Ab not being detected by commercial 
assays (but exclusively by means of in-house assays in refer-
ence centers) [5], new AE-associated Ab being constantly 
discovered, and some cell-mediated AE potential lacking 
associated Ab [14, 24]. Challenges in diagnosis of antibody 
negative AE have been recently reviewed [25].

In this complex and constantly evolving scenario where 
the clinical onset may be insidious and the Ab detection is 
not always a decisive diagnostic tool, radiologists should be 
capable of recognizing the typical imaging features of limbic 

encephalitis (Section “Typical Limbic Encephalitis, imaging 
findings”) in order to pose the suspicion of AE in patients 
presenting with seizures, cognitive or psychiatric symptoms, 
and altered state of consciousness. In addition, the radiolo-
gist should be aware that AE may also present with peculiar 
features and/or extra-limbic involvement (Section “Imaging 
patterns of extra-limbic involvements”). The recognition of 
a potential AE is crucial, as it initiates a multidisciplinary 
effort – including accurate neurological evaluation, elec-
trophysiological assessment, CSF and serum examination 
– aimed at a timely diagnosis. This is pivotal for prognosis, 
as it allows an early initiation of therapy and an immediate 
screening for potential underlying malignancies.

Furthermore, we provide an overview of the alternative 
diagnostic hypotheses (Section “Differential diagnosis”) 
– including infectious conditions, neoplasms, vascular and 
post-seizure alterations – that should be carefully ruled out 
since they require a different diagnostic and therapeuti-
cal management. Finally, in the light of the latest findings 
regarding AE radiological features, we suggest a dedicated 
imaging protocol for the diagnosis (Section “Suggested 
imaging diagnostic work-up”).

There are different approaches that can be used to classify 
AE [26]. These include a serological classification based on 
the type of antibodies, an etiological classification that dis-
tinguishes idiopathic AE, paraneoplastic AE, post infectious 
AE, and iatrogenic AE (associated for instance with immu-
nomodulatory/suppressive drugs and immune check points 
inhibitors). Among the possible classification concepts, this 
review adopts an anatomical classification, the most useful 
for the radiologist. As a complementary approach, Tables 1 
and 2 present a synopsis of clinical and radiologic findings 
associated with the main antibodies, also providing a brief 
overview of antibodies not discussed in detail in the text, 
along with the corresponding references. We purposefully 
did not include in this review MOG-IgG associated disor-
der (MOGAD) as, even though some of these patients can 
present with encephalitic manifestations, such as ADEM or 
cortical encephalitis, most patients present a demyelinating 
phenotype. Recently, radiological features of MOGAD have 
been reviewed elsewhere [27].

Typical Limbic Encephalitis, imaging 
findings

Limbic encephalitis (LE) represents the typical presentation 
of AE, and was first described in the 1960s as a clinico-
pathological entity [7, 82] with medial temporal lobe (MTL) 
symptoms caused by an inflammatory process involving 
structures of the limbic system, including the hippocampus, 
amygdala, hypothalamus, cingulate gyrus and limbic cortex. 
Reports on the MRI correlates of this neuropathology were 
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published at the end of the 1980s [83]. Although imaging 
findings are often not confined to these areas, the identifica-
tion of bilateral involvement of the MTL on T2-weighted 
MRI is a key diagnostic feature in the typical pattern of LE 
and this MRI pattern is one of the four diagnostic criteria 
which are necessary for a diagnosis of definite LE according 
to Graus et al. [18]. Importantly, this MRI finding enables 
a diagnosis of definite AE in the pertinent clinical scenario 
even in the absence of neuronal antibodies. Conversely, in 
the presence of a negative MRI, unilateral medial temporal 
lobe anomalies or other MRI patterns (cortical/subcortical, 
striatal, diencephalic, brainstem, encephalomyelitis, and 
meningoencephalitis) only a diagnosis of possible or prob-
able AE can be formulated unless there is evidence of neu-
ronal antibodies. The role of MRI is obviously also to rule 
out other non-immune disorders that may have unilateral 
involvement such as seizures, herpes simplex virus encepha-
litis or gliomas. FDG-PET can be useful in identifying meta-
bolic alterations in temporo-medial regions when the MRI 
is negative and thus serves as a substitute of the MRI abnor-
malities to fulfill diagnostic criteria for definite LE [18].

AE subtypes

The MRI pattern of anatomical involvement of the limbic 
lobe has been associated with numerous auto-antibodies, 
and, despite a certain variability across-studies, some AE 
subtypes seem to more likely present with LE. Anti-LGI1 
AE, among the most frequent types of AE overall, is also 
considered one the most frequent cause of non-parane-
oplastic LE [84, 85] – although a non-negligible portion 
of anti-LGI1 AE cases is paraneoplastic, and specifically 
associated with thymomas [86]. Across studies, anti-LGI1 
AE is reported to show the typical LE pattern in 73–83% 
of the cases [63, 87]. For instance, in the cohort described 
by van Sonderen and colleagues [88], LE was present in 34 
out of 38 patients, and the typical hippocampal T2-hyper-
intensity was observed in 79% of the patients. In another 
study on 76 patients with anti-LGI1 associated cognitive 
impairment, Ariño et al. [63] found a typical LE pattern 
in 83% of cases, while the remaining cases showed either 
non-LE (4%) or encephalopathy (13%, with no MRI and 
CSF anomalies). Along with anti-LGI1, anti-CASPR2 (con-
tactin-associated protein-like 2) antibodies are part of the 
voltage-gated potassium channel-complex (VGKC) antibod-
ies. For anti-CASPR2 AE, despite LE is considered a com-
mon presentation [89], typical MRI findings are reported 
to be less frequent. In a cohort of 33 patients van Sonderen 
et al. [21] reported medial temporal lobe T2-hyperintensity 
in only 8 subjects (24%) – bilateral in all cases. Binks and 
colleagues [90] reported up to 50% of cases of anti-LGI1 
and anti-CASPR2 being MRI-negative, therefore a potential 

diagnosis of these AE subtypes should not be ruled out in the 
absence of suspicious MRI findings. Other AE subtypes con-
sistently associated with typical medial temporal lobe MRI 
alterations include anti-GABABR AE (ranging ~ 50–60% of 
cases across studies) [68, 91] and anti-AMPAR AE (~ 55% 
of cases) [22]. Anti-GAD antibodies, too, tend to present 
as a typical LE when causing encephalitis (reportedly, in 
59% of cases) [92]. Other AE subtypes, such as anti-Hu and 
anti-Ma/Ta are not exclusively associated with LE findings 
[12], while anti-CV2/CRMP5 (collapsin response media-
tor protein 5) AE are classically extra-limbic and present as 
striatal encephalitis (see Section “Imaging patterns of extra-
limbic involvement”), rarely showing temporal involvement 
[85]. Finally, it is worth remembering that MRI can be unre-
markable in patients with clinical features of LE. Among 
MRI-negative AE, it is worth mentioning anti-NMDAR AE. 
While not strictly considered LE, NMDAR can also present 
with limbic symptoms, and very frequently MRI negative 
(in ~ 70–90% of cases across studies) [61, 93, 94]. Indeed, 
for the dedicated 2016 diagnostic criteria for NMDAR-AE 
[18], MRI findings are not taken into consideration.

T2/FLAIR findings

LE is characterized by a typical MTL involvement that 
can be evaluated on T2-weighted and T2-weighted FLAIR 
images. For brevity, T2-weighted images will be referred to 
as “T2” and T2-weighted FLAIR images will be referred 
to as “FLAIR”, while “T2/FLAIR” will refer to findings 
that are appreciable on T2 and/or FLAIR. The hallmarks of 
MTL AE are T2/FLAIR hyperintensity and swelling of the 
hippocampi and amygdalae. In 2006, based on MRI findings 
from a historic case series, Urbach et al. [95] summarized 
the typical essential features and progression pattern of LE 
as follows: unilateral or bilateral hyperintensity and swelling 
of MTL structures within ~ 3 months from the clinical onset, 
regression of the swelling within ~ 9 months, and gradual 
volume loss (i.e. atrophy) starting within ~ 1 year. However, 
it is to note that, even in their cohort, the timing of these 
findings was highly variable across patients, with some cases 
of absent swelling, swelling persisting for over one year, 
or atrophy appearing within few months. In a more recent 
study enrolling patients with LE [96], quantitative volu-
metric analyses of MTL demonstrated a bilateral volume 
increase in amygdala at baseline, followed by a regression of 
the swelling at the follow-up scan (~ 6 months), and by a vol-
ume loss due to atrophy at the third scan (~ 1 year). Notably, 
as opposed to anti-GAD AE, in anti-VGKC AE the volume 
alterations also involved the hippocampus, and were more 
pronounced. Overall, MTL swelling is reported to occur 
in 63–78% of anti-VGKC AE [97, 98]. Further evidence 
demonstrated that the volume increase of MTL structures is 
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more prominent in the early phases of the disease, that may 
be asymmetric, and that different AE subtypes may present 
specific volumetric alteration patterns [99].

Even though LE is unilateral in a number of cases (up 
to ~ 50%, according to a recent case series [98], many authors 
agree that the typical presentation is with a bilateral involve-
ment of MTL, sometimes asymmetric [100]. Conversely, in 
the presence of unilateral MTL alterations, the hypothesis 
of Herpes Simplex Encephalitis (HSE) should be carefully 
taken into consideration [100]. Consistently, according to the 
2016 criteria, in the absence of positive neuronal antibodies 
bilateral MTL involvement is a necessary finding for the 
diagnosis of “definite” LE [18].

Regarding T2/FLAIR alterations, it is worth mentioning that 
the identification of subtle signal and volume changes in MTL 
structures may be challenging and reader-dependent, especially 

in patients with a mild disease. Figure 1a–d shows two cases 
of LE with subtle radiologic findings. For instance, in a recent 
study by Schievelkamp and colleagues [101], the authors 
reported an unsatisfactory diagnostic accuracy of the readers in 
distinguishing LE patients from age-matched healthy controls 
(accuracy: 64–74%), and a rather low inter-reader agreement 
for the identification of MTL signal and volume abnormali-
ties. To address this issue, some authors proposed automated 
quantitative approaches to objectively identify MTL T2-signal 
alterations and aid the diagnosis of LE [102].

In association with MTL involvement, the typical LE pat-
tern sometimes shows a more wide-spread limbic involve-
ment, with a T2-signal abnormality and grey matter swelling 
also in the insula, in the lateral aspects of the temporal lobe, 
in the basal aspects of the frontal lobe, and in the cingulate 
gyrus; in addition, basal ganglia and thalamus involvement is 

Fig. 1  Limbic encephalitis. 
Limbic encephalitis (LE) can 
present with subtle radiologic 
findings, such as a swelling of 
the amygdala, with associated 
subtle signal hyperintensity, 
as visible (arrowheads) on 
coronal T2-weighted (a, c) 
and T2-weighted FLAIR (b, 
d) in two distinct cases of 
anti-NMDAR AE (a, b) and 
anti-LGI1 AE (c, d). Other 
patients may demonstrate more 
extensive alterations of the 
limbic structures. In this case 
(e–h), LE extensively involved 
the right limbic system, includ-
ing amygdala (e), head of the 
hippocampus (e), body and tail 
of the hippocampus (e, f, g), 
insular cortex (f), thalamus/
pulvinar (f), basal frontal gyri 
(f, h), and cingulate gyrus (h). 
White matter alterations are also 
noted, involving the external 
and extreme capsule (f). Follow-
ing a thorough diagnostic work-
up, a diagnosis of seronegative 
AE was posed
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not infrequent [100, 103]. Figure 1e–h displays a case of LE 
with extensive involvement of the limbic system structures.

Hypointense foci on T2*-weighted images, consistent 
with the presence of blood degradation products, are rare 
in AE [104].

Contrast Enhancement (CE) and Diffusion Weighted 
Imaging (DWI)

CE and/or DWI restriction in the involved brain regions can 
occur in some cases, but is not considered typical of LE 
[18, 105]. On the contrary, prominent CE and a clear DWI 
restriction are often considered hallmarks of HSE [105, 
106].

In a recent case series, Kotsenas and colleagues [98] 
described a mild MTL CE in 28% of cases, and MTL 
DWI restriction in 43% of cases. Notably, in this cohort, 
CE and DWI restriction were significantly associated with 
the development of mesial temporal sclerosis (MTS) in the 
follow-up scans. Since CE was also previously reported in 
15–25% of cases of LE [107], the presence of mild, patchy 

or poorly-delimited enhancing areas can be considered as 
a possible finding in a minority of LE cases. A peculiar 
instance is represented by anti-Ma AE, for which CE is 
reportedly more frequent (up to ~ 38%) [19]. Figure 2 shows 
two cases of LE with contrast-enhancement, both with bilat-
eral yet asymmetric findings.

Conversely, the occurrence of DWI restriction is more 
controversial. In other cohorts of LE, MTL lesions showed 
either subtle DWI changes only in few cases [108], or no 
DWI changes in any cases [109]. In addition, many arti-
cles reporting DWI changes [98, 100] did not evaluate ADC 
maps, and a recent study demonstrated that anti-LGI1 AE is 
characterized by DWI hyperintensity without ADC decrease 
[103]. Therefore, in many cases DWI changes may be ascrib-
able to the “shine-through” effect, which was extensively 
described for AE [12, 110]. In fact, in a recent paper, only 
9% of patients with LE showed reduced ADC values dem-
onstrating an actual DWI restriction [111]. Overall, we can 
state that in AE cortical involvement with restricted diffu-
sion on DWI is uncommon unless related to cytotoxic edema 
associated with epileptic activity. Outside this instance, 

Fig. 2  Limbic encephalitis with 
contrast-enhancement. Both 
cases presented with an enceph-
alitic bilateral involvement of 
the medial temporal lobe (MTL) 
structures, and unilateral areas 
of contrast-enhancement in the 
right amygdala (arrows). The 
arrowheads show the bilateral 
areas of T2/FLAIR hyperinten-
sity in the MTL. The anti-LGI1 
AE case shows more symmetric 
involvement of the amygdalae 
and hippocampi on T2/FLAIR. 
The anti-Hu AE case shows 
an asymmetric pattern, with 
a more predominant swelling 
and hyperintensity of the right 
amygdala (asterisk in e) and 
hyperintensity of the right body 
of the hippocampus (arrow-
heads in f). These alterations 
are associated with MTL grey 
and white matter hyperintensity, 
including edema with finger-
like appearance
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cortical involvement with restricted diffusion should lead to 
consider other pathological entities in the differential diag-
nosis, for instance prion diseases as described in the section 
of the differential diagnosis. However, diffusion restriction 
can be seen in AE, and Fig. 3 represents an example of LE 
with symmetric and bilateral diffusion restriction.

Atrophy and Mesial Temporal Sclerosis (MTS)

As already mentioned, LE may result in MTL volume loss 
due to atrophy in follow-up scans ~ 1 year after the disease 
onset, even though atrophy appears earlier in some cases 
[95, 96]. In a subset of patients, such atrophy displays the 
characteristic imaging features of MTS. MTS, also referred 
to as hippocampal sclerosis, consists in chronic gliosis and 
neural loss. On T2/FLAIR images, MTS can be identified as 
a signal increase and volume loss of hippocampus [112]. The 
degree of atrophy can be assessed on coronal reconstructions 
of 3D T1-weighted imaging that highlight a reduction in vol-
ume of the hippocampus and amygdala with relative dimen-
sional increase of the temporal horn of the lateral ventricle 
and choroidal fissure. The hyperintensity is usually easier to 
visualize on T2/FLAIR images, but needs to be confirmed 
with T2 weighted images, that are considered more reliable 
and less prone to false positive findings [112]. While his-
torically considered as both a cause and a consequence of 
temporal lobe epilepsy [113], the radiological appearance of 
MTS has been more recently identified as a possible sequela 
of encephalitis [12, 114, 115]. The prevalence of MTS as a 
sequela of LE is reported to be ~ 43–50% in anti-LGI1 AE 
cases across series [88, 98, 103], and ~ 33% in anti-GAD AE 
[36]. Notably, in a series including anti-VGKC AE patients, 
anti-LGI1 but not anti-CASPR AE evolved in MTS and DWI 
changes and CE at baseline predicted MTS [98].

Interestingly, evidence from the literature suggests that 
hippocampal volumetric and morphological anomalies after 
AE may be characterized by peculiar features. A recent arti-
cle [36] applied advanced volumetric and shape analyses 
and demonstrated that chronic alterations in anti-GAD AE 
consist in subtle shape abnormalities of selected areas in the 
hippocampus head, rather than a clear hippocampal atrophy, 
while other areas (including CA3 and hippocampal fissure) 
seem to be spared by the atrophy. Conversely, a cohort of 
patients with non-immune temporal lobe epilepsy presented 
a more widespread volume loss and deformation of the hip-
pocampi, as well as a higher occurrence of hippocampal 
sclerosis. Figure 4 features images of a LE which resulted 
in mesial temporal sclerosis.

Imaging patterns of extra‑limbic 
involvement

Aside from the typical limbic pattern, AE can involve dif-
ferent extra-limbic anatomical structures. For the purpose 
of this review, we have grouped AE which may present 
with extra-limbic involvement in: cortical AE, perivascular 
involvement, striatal AE, diencephalic AE, AE with involve-
ment of the rhombencephalon (brainstem and/or cerebel-
lum). Combined involvement of different structures can be 
seen, including combined limbic and extra-limbic patterns. 
Of note, extra-limbic PET alterations both in terms of hypo- 
and hypermetabolism have been reported for AE [116].

Cortical involvement

Anatomical involvement of cortex can be seen mainly in 
anti-NMDAR, anti-MOG (myelin oligodendrocyte gly-
coprotein), and anti-GABAAR AE. In anti-NMDAR AE 

Fig. 3  Limbic encephalitis with diffusion restriction. In this seron-
egative case, T2-weighted FLAIR images (a) showed a marked sym-
metric swelling and hyperintensity of the amygdala and head of the 
hippocampus. DWI (b) and ADC (c) revealed a gyriform diffusion 

restriction in the hippocampus (arrows), with ADC values as low as 
0.58 ×  103  mm2/s (right) and 0.72 ×  103  mm2/s (left). After a diagnos-
tic work-up, a diagnosis of seronegative AE was posed
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Zhan et al. found MRI abnormalities in 49% of patients, 
72% of which showed involvement of cortex of different 
lobes, with or without a combined hippocampal involve-
ment [117]. Antibodies to the glial protein MOG can be 
associated with acute disseminated encephalomyelitis (more 
frequent in the pediatric population) and cerebral cortical 
encephalitis (more frequent in adults), and, as such, have 
been included into the spectrum of AE [17]. The cortical 
encephalitis is characterized by a unilateral [118] or bilateral 
frontal cortex involvement [119]. In these patients, who typi-
cally present with focal seizures, often evolving to bilateral 
tonic–clonic seizures, brain MRI demonstrates unilateral 
or bilateral cerebral cortical hyperintensities on T2/FLAIR 
sequences, with swelling of the cortex. Anti  GABAAR AE 
affects mostly children and young adults, presenting most 
commonly with seizures (88%), cognitive impairment 
(67%), behavioral changes (46%), alterations of conscious-
ness (42%), or abnormal movements (35%). T2/FLAIR MRI 
can demonstrate multifocal bilateral or unilateral cortical 
and subcortical areas of hyperintensity predominantly occur-
ring in the temporal and frontal lobes, and less frequently in 
the parietal or occipital lobes. Basal ganglia and cerebellum 
can also be involved [66]. Interestingly, these multifocal T2/
FLAIR changes can be asynchronous, with some appearing 
while others are disappearing along the disease course. On 
post-contrast T1-weighted images these lesions do not show 
enhancement although cases with gyriform leptomeningeal 
enhancement have been described. Typically, lesions are not 
characterized by restricted diffusion on DWI.

Perivascular involvement

A very peculiar case is represented by anti-GFAP (glial 
fibrillary acidic protein) AE. The most distinctive finding is 

a perivascular radial contrast-enhancement in the centrum 
semiovale, perpendicular to the lateral ventricles, which 
can be found in ~ 50% of the cases, and can co-localize with 
white matter T2/FLAIR hyperintense areas [55]. These 
findings are clearly displayed in the representative case in 
Fig. 5. Alternatively, this radial pattern can be seen in the 
cerebellum in a minority of cases. Other MRI abnormali-
ties include leptomeningeal or ependymal enhancement, ser-
pentine enhancement, and/or accompanying long-segment 
spinal cord alterations [55, 120]. Given the characteristic 
radiologic appearance of radial contrast-enhancement in 
anti-GFAP AE, the radiologist is sometimes the first physi-
cian to pose the suspicion of this type of encephalitis.

Basal ganglia involvement

Anatomical involvement of basal ganglia can be seen in 
AE with anti-CV2/CRMP5, anti-D2R (dopamine recep-
tor 2), anti-NMDAR, and sometimes anti-LGI1 Ab. Anti-
CV2/CRMP5 IgG target an intracellular antigen (collapsin 
response mediator protein) and have been reported in the set-
ting of various paraneoplastic syndromes, including periph-
eral neuropathy, cranial neuropathy, gastroparesis, enceph-
alitis, cerebellar ataxia, myelopathy, and chorea. Patients 
with anti-CV2/CRMP5 present with chorea or involuntary 
movements, and striatal involvement on MRI T2-weighted 
sequences, without diffusion restriction. Striatal involve-
ment associated with spinal cord signal alterations has been 
reported [31]. Anti-CV2/CRMP5 has a strong cancer asso-
ciation, in particular with small-cell lung cancer or thymoma 
[121]. Another antibody recently described in patients with 
renal cancer and lung cancer is phosphodiesterase 10A IgG 
(PDE10A). Half of the patients described by Zekeridou et al. 
[46] had chorea or ballismus. It is interesting to note that 

Fig. 4  Medial temporal sclerosis as a sequela of limbic encepha-
litis. In this case of anti-NMDAR AE, T2-weighted FLAIR images 
(a) exhibited signal hyperintensity in the right MTL structures and 
insular cortex. The encephalitic insult evolved with atrophic changes 
over time. After three years, T2-weighted FLAIR images (b) showed 

medial temporal sclerosis, with volume loss of amygdala and hip-
pocampus (arrowhead), as well as atrophy of the parahippocampus 
and insular cortex (asterisks), associated with an enlargement of the 
temporal horn of the lateral ventricle and choroidal fissure (arrow)
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in two of these patients the onset of movement disorders 
was described after the use of immune checkpoint inhibi-
tor. MRI showed T2/FLAIR hyperintensities in the basal 
ganglia [46]. Differential diagnosis should include more 
common toxic and metabolic disorders with basal ganglia 
involvement and lack of restricted diffusion is helpful in the 
differential diagnosis with Creutzfeldt-Jakob disease (CJD). 
There are sporadic cases of anti-NMDAR AE with basal 
ganglia involvement. In some reported pediatric cases, basal 
ganglia involvement was characterized by restricted diffu-
sion on DWI [122, 123] and, exceptionally, also a thalamic 
involvement was described [17]. In the context of anti-LGI1 
AE some patients with faciobrachial dystonic seizures may 
show T1 and/or T2 hyperintensity (alone or combined) in the 
basal ganglia, with T1 hyperintensities persisting longer than 
the T2 hyperintensities (median 11 weeks vs 1 week) [124].

Diencephalic involvement

In AE diencephalic-hypothalamic dysfunction can present 
with endocrine abnormalities, hyperthermia, hyperphagia, 
somnolence but also other severe dysautonomia symp-
toms. MRI T2/FLAIR hyperintensities can be detected in 
thalamus, geniculate bodies, hypothalamus and subtha-
lamic nuclei, usually with bilateral and relatively symmetric 
involvement. In anti-Ma2 AE diencephalic involvement is 
usually seen in combination with abnormalities in the limbic 
system, although isolated diencephalic involvement has been 
reported [34]. Enhancement can be seen in approximately 

half of the patients in at least one of the areas abnormal on 
T2/FLAIR [19].

Brainstem involvement

In rhombencephalitis the inflammatory process involves 
the brainstem with variable involvement of the cerebellum. 
In the acute phase MRI may be unremarkable or demon-
strate T2/FLAIR hyperintensity within the brainstem, with 
or without cerebellar abnormalities. In the chronic phase 
parenchymal volume loss may ensue. Various antibodies are 
associated with brainstem involvement, the most common 
being anti-Ma2, anti-Ri, and anti-KLHL11 (Kelch-like pro-
tein 11). Patients with anti-Ma2 AE and brainstem encepha-
litis most often have ophthalmoplegia [19]. In anti-Ma2 AE 
encephalitis MRI is abnormal in up to 74% of cases. Lim-
bic encephalitis is the most common pattern, but this AE 
may present with different combinations of limbic, dience-
phalic, or brain stem encephalitis. Brainstem encephalitis at 
MRI is more often associated with lesions in the midbrain 
and less commonly in the pons and/or medulla oblungata. 
Anti-Ri AE was initially described in association with opso-
clonus–myoclonus syndrome and cerebellar ataxia in women 
with breast cancer but it can present with a wider spectrum 
of neurologic involvement, the cerebellum and the brain-
stem being most commonly affected. Brain MRI has been 
reported as pathological in 18% of cases, most commonly 
with T2 signal changes in the brainstem [37]. In anti-Hu 
AE Dalmau et al. [28] reported occurrence of symptoms 

Fig. 5  Perivascular enhance-
ment in the centrum semiovale. 
T2-weighted FLAIR images 
(a) showed widespread signal 
alterations in the bi-hemispheric 
white matter. Post-contrast 
T1-weighted images (b) showed 
numerous spots of perivascular 
enhancement in the centrum 
semiovale, which can be 
more easily appreciated with 
maximum intensity projection 
(MIPs) images (c, d). Anti-
GFAP autoantibodies were 
positive in CSF and serum
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associated with brainstem dysfunction in 31%. MR imaging 
findings usually correlate with clinical features and typi-
cally include T2/FLAIR hyperintense lesions in the medial 
temporal lobes with variable involvement of the cerebellum 
and brain stem. It is noteworthy that MRI detectable lesions 
reflecting clinical features in brainstem syndromes are fre-
quently absent. In a series of 14 patients with anti-Hu associ-
ated brainstem encephalitis MRI was always normal [125]. 
Anti-KLHL11 encephalitis is a relatively recent pathological 
entity, most commonly presenting with a rhombencephalitis 
phenotype with ataxia, diplopia, dysarthria, vertigo, hearing 
loss, and tinnitus. A recent study described a strong associa-
tion with testicular tumors [126]. In this cohort [126], MRI 
has been reported as abnormal in 76% (n = 28), showing T2/
FLAIR hyperintensity, which were most commonly seen in 
the temporal lobe (n = 12), followed by cerebellum (n = 9), 
and more rarely in the brainstem (n = 3) and diencephalon 
(n = 3). In one patient there was also spinal cord central gray 
matter involvement. In a few instances there was associated 
enhancement (n = 3) and in single case leptomeningeal and 
cranial nerve V enhancement. At follow-up, cerebellar atro-
phy or medial temporal lobe atrophy was reported. Interest-
ingly, three patients had hypertrophic olivary degeneration.

Cerebellar involvement

Cerebellar ataxia has been described as a typical feature 
in the setting of paraneoplastic syndromes, and onconeu-
ral Ab positivity has been reported in a large number of 
patients with paraneoplastic cerebellar degeneration. Some 
of the antibodies most commonly associated with cerebellar 
involvement are anti-Yo/PCA11 (38%) and anti-Hu/ANNA-1 
(32%) [28]. The ataxic syndrome associated with anti‐Yo 
antibody, or anti-PCA1 (Purkinje cell cytoplasmic antibody 
type 1), is the most common among the forms of paraneo-
plastic cerebellar degeneration (PCD). It typically presents 
with subacute development of pancerebellar deficits reach-
ing clinical plateau within 6 months. The majority of cases 
have been reported in women in association with pelvic or 
breast tumors. There can be clinical manifestations of cer-
ebellar dysfunction also in anti-Ma and anti-CV2/CRMP5 
AE, and in anti-NMDAR AE cerebellar symptoms have been 
described in the pediatric population, while rare in adults 
[127–129]. In these cases of autoimmune cerebellitis, MRI is 
often unremarkable at presentation, even though T2/FLAIR 
hyperintensity of cerebellar hemispheres can be seen, while 
a more typical imaging finding is paraneoplastic cerebel-
lar degeneration (PCD), consisting in cerebellar atrophy at 
follow-up, manifesting months to years later [29]. Finally, it 
is worth mentioning anti-GluK2 (glutamate kainate receptor 
subunit 2) AE, which can cause cerebellitis and can acknowl-
edge obstructive hydrocephalus as a complication [80].

Differential Diagnosis

Depending on anatomical sites involved and MRI signal 
features, AE can present with radiological characteristics 
resembling other diseases, including other encephalitides, 
neoplasms, vascular conditions, and post-seizure altera-
tions. A correct differential diagnosis is crucial for patient 
management, in particular to promptly initiate an effective 
therapeutic strategy.

Herpes Simplex Encephalitis (HSE)

HSE is the most important alternative diagnosis to con-
sider when suspecting limbic encephalitis, since both 
entities tend to involve the mesial temporal structures 
and HSE is rather common, accounting for ~ 20% of lim-
bic encephalitides overall [85]. Both clinical and imaging 
presentations can aid distinguishing between these two 
conditions.

From a clinical standpoint, HSE is more prone to 
present abruptly and with fever [85, 130], and is more 
typically associated with abnormal CSF findings [85]. 
Conversely, psychiatric manifestations point towards AE 
[131]. For instance, in a study comparing HSE and AE 
patients, psychiatric symptoms were exclusively seen in 
AE [100]. Additional clinical features more frequent in 
AE include memory deficits, seizures, and involuntary 
movements [132].

The limbic system involvement on MRI is more typi-
cally bilateral in AE, whereas in HSE is generally unilat-
eral (or bilateral and asymmetric in some cases) [100]. In 
addition, the presence of striatal or thalamic MRI abnor-
malities advocates for a diagnosis of AE [85, 132]. In 
a recent study enrolling 95 patients with infectious or 
autoimmune encephalitis [132], the hippocampal involve-
ment was significantly more frequent in AE (42% vs 22% 
of cases), and thalamic and basal ganglia anomalies were 
also slightly more frequent. However, it must be pointed 
out that HSE accounted for only ~ 14% of the infectious 
cohort in this study. Basal ganglia involvement was also 
reported as a key diagnostic clue by Oyanguren et al. 
[100], as this sign alone had sensitivity/specificity 0.82/1 
in distinguishing AE from HSE in their cohort. In addi-
tion, in their cohort insular involvement was more com-
mon in HSE. Another study [130] on 251 cases focused 
on distinguishing temporal lobe HSE from its mimics, 
including AE and other infectious/autoimmune condi-
tions. In a multivariate model, the bilateral involvement 
of MTL and the presence of extra-limbic alterations were 
associated with a lower probability of HSE (odds ratio 
0.38 and 0.37, respectively).
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As for MRI signal evaluation, HSE can present with CE 
areas and areas of DWI restriction [133], that are rather 
infrequent in AE (as previously discussed). In addition, 
hemorrhagic spots on T2*-weighted images and necrotic 
areas can be seen in HSE [131, 133]. However, it is to 
note that the traditional necrotic-hemorrhagic appearance 
of HSE is seen in the late stages of the disease, and these 
days patients are often evaluated and imaged before these 
features may reveal [133].

As emerges from these studies, distinguishing AE and 
HSE is often a challenging task, even though fever, neu-
ropsychiatric manifestations, lesion site, and lesion signal 
features may point towards one or the other. In general, if 
HSE is suspected based on one or more characteristics, anti-
viral treatment should be started immediately. Finally, it is 
worth mentioning that multiple pieces of evidence dem-
onstrated that HSE itself can be a trigger for subsequently 
developing AE, and specifically anti-NMDAR AE [85, 
134, 135]. Figure 6a–c shows a case of HSE with contrast-
enhancement and hemorrhagic foci.

Steroid‑responsive encephalopathy associated 
with autoimmune thyroiditis (SREAT)

Previously known as Hashimoto’s encephalitis (HE), SREAT 
is a condition associated with autoantibodies against thyroid 
antigens, for which the pathogenetic role is still controver-
sial [136]. SREAT can mimic AE both by presenting with 
T2/FLAIR hyperintensities in the MTL structures, and by 
causing memory deficits, psychiatric symptoms and seizures 
[12, 136]. Moreover, as seen in AE, SREAT may also be 
MRI-negative (~ 50% of the cases) [136]. However, SREAT 
is characterized by a peculiar “migratory pattern”, consisting 
in the disappearance of some signal abnormalities over time, 
while new signal alterations appear in new sites [12, 136]. 
Additionally, SREAT often presents a preferential white 
matter involvement: leukoencephalopathy with confluent 
T2/FLAIR alterations [12, 136]. These two MRI findings 
aid the distinction between SREAT and AE. In addition, 
approximately 1/3 of SREAT cases occur in patients with a 
known thyroid disfunction, according to a revision of 251 
cases [136]. It is worth noting that the definition of SREAT/

Fig. 6  Differential diagnoses 
of autoimmune encephalitis. 
Some examples of conditions 
mimicking limbic autoimmune 
encephalitis are collected here. 
In a typical case of herpes 
simplex encephalitis (HSE) 
(a–c), unilateral T2-weighted 
FLAIR hyperintensity of the 
left anterior temporal areas (a) 
is associated with post-contrast 
T1 focal enhancement, with 
a central non-enhancing and 
hypointense spot (b, arrow), 
corresponding to hemorrhagic 
foci on T2*-weighted gradient-
echo images (c, arrowhead). In 
a patient with low-grade glioma 
(LGG) (d–f), T2-weighted 
FLAIR (d, f) and T2-weighted 
TSE (e) exhibit a marked swell-
ing and hyperintensity of the 
left anterior temporal lobe and 
insula, with a widespread thick-
ening of the cortex and mass 
effect on the sulci. An example 
of focal cortical dysplasia 
(FCD) located in the tail of the 
left hippocampus is shown on 
T2-weighted FLAIR images (g). 
Finally, T2-weighted FLAIR 
images (h) obtained after an 
epileptic seizure demonstrate a 
MTL signal hyperintensity due 
to post-ictal changes
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HE is evolving. For instance, evidence from a recent study 
has challenged SREAT/HE definition, by highlighting that 
in a cohort of patients fulfilling criteria for these conditions, 
these criteria are not able to actually predict response to 
steroids [137].

Other infectious and immune‑mediated conditions

AE with a striatal involvement, especially anti-CV2/CRMP5, 
may resemble other conditions affecting the basal ganglia, 
and particularly Creutzfeldt-Jacob disease (CJD). In the sus-
picion of CJD, seeking the typical patterns of DWI restriction 
in the basal ganglia and/or in the cortex is crucial [138].

As already discussed, some Group I AE (e.g. anti-Ma/Ta, 
anti-Hu) can involve the brainstem and the cerebellum. In 
these cases, alternative causes of rhombencephalitis should 
be considered, especially Listeria encephalitis. In Listeria 
encephalitis, enhancement is frequent and supratentorial 
involvement is rare. In addition, CSF examination and CSF 
and blood cultures may aid the diagnosis [139]. It should be 
noted that AE is a relatively rare cause of rhombencephalitis, 
as other bacterial (Listeria), viral (Herpesviridae, Epstein-
Barr), and immune-mediated (Behçet) etiologies are more 
common [139].

Rarely, primary CNS vasculitis may resemble AE. In those 
cases, acquiring angiographic images to demonstrate abnor-
mal vascular structures may be helpful. In addition, DWI is 
useful in case of vasculitis-induced micro-infarctions [85].

Lesions in diencephalon can also be related to neuromy-
elitis optica spectrum disorders (NMOSD); this involvement 
is characteristic but not pathognomonic for NMOSD and is 
considered one of features in the 2015 revised diagnostic 
criteria [140]. Typically, diencephalic lesions involve the 
peri-ependymal surfaces of the midbrain adjacent to the cer-
ebral aqueduct and thalamus or hypothalamus adjacent to 
the third ventricle and the pattern of enhancement is more 
diffuse (cloud-like, ring-like, leptomeningeal) [28]. Other 
diagnostic considerations when basal ganglia are involved 
include sarcoidosis, IgG-4 disease-related syndromes, histio-
cytosis, Behçet’s Disease, Granulomatosis with Polyangiitis, 
ADEM, tuberculosis, fungal and bacterial infection [141].

As for the perivascular radial contrast-enhancement pat-
tern involving the supratentorial white matter seen in anti-
GFAP AE, it is worth remembering that a similar finding 
can be seen in neurosarcoidosis [142, 143] and sometimes in 
lymphomatoid granulomatosis (LYG) [144]. When this pres-
entation is encountered, the next step in management should 
be dosing the serological levels of anti-GFAP to confirm or 
rule out anti-GFAP AE.

Finally, even COVID-19-associated encephalitis was 
reported to involve limbic structures (hippocampus, amyg-
dala, MTL, cingulate gyrus) in some cases, and should be 

therefore be considered in the differential [145, 146], at least 
in SARS-CoV-2 positive patients.

Neoplasms

Gliomas involving MTL structures can mimic limbic 
encephalitis, especially in cases that do not present with a 
striking mass effect and CE. Most of these cases are low-
grade gliomas (LGG), with an infiltrative growth pattern. 
In these cases, typically LGG may show indistinct margins, 
mass effect, and extra-limbic extension (perhaps with white 
matter involvement), which would not be expected in AE 
[85]. In addition, LGG are classically unifocal and unilat-
eral, while bilateral alterations would point to AE. However, 
on very rare occasions also high-grade gliomas can present 
with atypical imaging features and can be mistaken for 
LE. In a recent paper on the topic [147], the authors report 
that this misdiagnosis can occur in ~ 2% of suspected AE. 
After reviewing 13 cases of glioblastoma mimicking AE, 
they argue that in these cases both clinical manifestations 
and conventional MRI may be misleading, as patients often 
had memory deficits, psychiatric symptoms, and seizures, 
and their scans showed non-enhancing T2/FLAIR limbic 
alterations, bilateral in more than half of the cases. In these 
challenging cases, the authors recommend to perform spec-
troscopy and perfusion imaging, in order to detect suspicious 
findings advocating for glioblastoma (high Cho/Cr ratio, 
elevated perfusion metrics). A case of LGG mimicking LE 
is represented in Fig. 6d–f.

Seizure‑related alterations

Seizure-induced T2/FLAIR alterations, related to post-ictal 
edematous changes, may resemble LE, too [85]. Recently, 
Budhram et al. [111] suggested that in the presence of spe-
cific hippocampal diffusion restriction patterns (gyriform 
and/or diffuse) the diagnosis of post-ictal changes should 
be favored, as opposed to AE. ADC reduction following 
seizures are considered the result of post-ictal cytotoxic 
edema. Follow-up imaging, as well as electrophysiology 
studies, may also be useful to differentiate these two condi-
tions. Figure 6h shows a case of post-ictal MTL alterations.

Suggested imaging diagnostic work‑up

When clinical history and neurological and electrophysi-
ologic (i.e. EEG) examination evoke the suspicion of AE 
an extensive workup is necessary to confirm the diagnosis 
and to exclude other pathological entities as reported in the 
previous chapters.
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Neuroimaging

Neuroimaging plays an important role in the work up. 
Brain CT is frequently the first imaging modality used, 
particularly with subacute presentations when the patients 
are admitted in the ER. It must be stressed that CT is not 
sensitive for the identification of brain abnormalities in AE 
and MRI should be always acquired whenever possible. In 
fact, brain MRI is key in identifying the presence of brain 
abnormalities in AE and to characterize the anatomical 
pattern of involvement (i.e. limbic or extra-limbic). It is 
worth noting that in the acute phase patients can be unco-
operative and MRI under sedation could be required.

MRI should be acquired with and without gadolinium-
based contrast agents and the acquisition protocol ide-
ally should include high resolution 3D-T1, T2-FLAIR, 
TSE T2, DWI, SWI and post-contrast T1 [148–150]. 3D 
T1-weighted images provide more anatomical detail to 
identify enhancing areas, and also are helpful to monitor 
atrophic changes over time. 3D turbo spin-echo (TSE) is 
superior to 3D inversion-recovery gradient-recalled echo 
(IR-GRE) in the identification of small foci of contrast-
enhancement (higher lesion conspicuity), as proven on 
brain metastasis studies [151, 152]. If IR-GRE is used, it 
may be advisable to also obtain additional 2D spin-echo 
T1 images after contrast, which may improve the detec-
tion of small enhancing foci, as already recommended for 
the identification of small brain metastases [151, 152]. As 
for T2-weighted and/or T2-weighted FLAIR images, it is 
advisable to acquire also coronal images to evaluate the 
volumes and symmetry of medial temporal lobes struc-
tures. As for DWI, classic clinical sequences with b = 1000 
and ≥ 3 directions are generally sufficient. Recent case 
series suggest the role of perfusion studies, including arte-
rial spin labeling (ASL) in the pediatric population [122].

Ideally, brain MRI should be obtained before the lumbar 
puncture to avoid difficulties in the interpretation of post con-
trast imaging, with pachymeningeal thickening and enhance-
ment, frequently detected in the setting of post lumbar puncture 
CSF hypotension. However, when encephalitis is suspected, 
guidelines recommend timely collection of CSF in order to 
assess viral etiologies and start empiric antiviral treatment. CSF 
collection in encephalitis is also crucial to test for anti-neuronal 
antibodies, that are pivotal to diagnose AE. The appropriate 
timing of brain MRI should be evaluated in each patient, care-
fully considering the likelihood of an underlying viral etiol-
ogy that would prioritize lumbar puncture over brain imaging 
[153]. Brain FDG-PET also plays an important role since it 
can provide additional information of brain involvement also 
in patients with negative MRI. Specific metabolic patterns were 
shown to correlate with antibody types – e.g., occipito-parietal 
hypometabolism axnd anti-NMDAR, MTL hypometabolism 
with anti-LGI1 and with onconeural antibodies [154].

Whole body imaging

Computed tomography (CT) of the chest, abdomen, and pel-
vis with contrast is recommended as the first screening for 
associated malignancies in those cases where a paraneoplas-
tic etiology is suspected. Importantly, the type of neuronal 
antibody detected is crucial to stratify cancer risk and to 
orient towards specific cancer subtypes. Additionally, some 
clinical phenotypes are also associated with a higher risk for 
accompanying cancer [17].

The main limitation of the CT evaluation is its low sensi-
tivity to early breast and testicular cancers; if these tumors 
are suspected a mammogram or testicular ultrasound should 
be performed [155]. Breast MRI should then be obtained 
if mammography is negative but breast cancer suspicion 
remains high. Young male patients (< 50 years) with a 
diagnosis of anti-Ma2 AE may have microscopic testicu-
lar neoplasms even in the absence of positive ultrasound 
findings [156]. In case of a negative testicular ultrasound, 
suspicious clinical signs (e.g., testicular enlargement) and 
risk factors (e.g., cryptorchidism) should be investigated, 
and these patients should be closely monitored with repeat 
ultrasound in order to identify the potential appearance of 
microcalcifications at later follow-ups [156].

Transvaginal ultrasound or pelvic MRI to assess the pres-
ence of ovarian teratoma or adenocarcinoma must be con-
sidered in female patients, especially in the case of young 
and middle-aged women with anti-NMDAR encephalitis.

Whole body FDG-PET has a higher sensitivity when 
compared to CT for the detection of occult neoplasms, and 
should be obtained if the initial screening is negative and the 
suspicion of cancer is high, or in patients with carcinoma 
unknown primary (CUP) syndrome.

In patients with paraneoplastic neurological syndromes 
(PNS) and paraneoplastic antibodies if primary screening is neg-
ative, it is recommended to repeat screening after 3–6 months 
and then screen every 6 months up till 4 years [155].

Conclusions

Autoimmune encephalitis (AE) is a challenging diagnosis, 
as it includes a variety of subtypes that differ in clinical 
presentation, radiologic appearance, and serologic find-
ings. Additionally, it is often misdiagnosed, since it can 
mimic other conditions. The radiologist should be aware of 
the main imaging findings associated with these entities, 
including limbic and extra-limbic patterns (Fig. 7), as well 
as the useful clues for differential diagnosis, and an overall 
understanding of the clinical and biological underpinnings 
of this disease. A prompt diagnosis of AE can improve the 
prognosis both by expediting immunosuppressive treatment 
and allowing for the screening for an underlying malignancy.
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