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Abstract
Purpose  This study aimed to compare assessments by radiologists, artificial intelligence (AI), and quantitative measure-
ment using synthetic MRI (SyMRI) for differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, 
and IDH-mutant and 1p/19q-codeleted and to identify the superior method.
Methods  Thirty-three cases (men, 14; women, 19) comprising 19 astrocytomas and 14 oligodendrogliomas were evalu-
ated. Four radiologists independently evaluated the presence of the T2-FLAIR mismatch sign. A 3D convolutional neural 
network (CNN) model was trained using 50 patients outside the test group (28 astrocytomas and 22 oligodendrogliomas) 
and transferred to evaluate the T2-FLAIR mismatch lesions in the test group. If the CNN labeled more than 50% of the 
T2-prolonged lesion area, the result was considered positive. The T1/T2-relaxation times and proton density (PD) derived 
from SyMRI were measured in both gliomas. Each quantitative parameter (T1, T2, and PD) was compared between gliomas 
using the Mann–Whitney U-test. Receiver-operating characteristic analysis was used to evaluate the diagnostic performance.
Results  The mean sensitivity, specificity, and area under the curve (AUC) of radiologists vs. AI were 76.3% vs. 94.7%; 100% 
vs. 92.9%; and 0.880 vs. 0.938, respectively. The two types of diffuse gliomas could be differentiated using a cutoff value 
of 2290/128 ms for a combined 90th percentile of T1 and 10th percentile of T2 relaxation times with 94.4/100% sensitivity/
specificity with an AUC of 0.981.
Conclusion  Compared to the radiologists’ assessment using the T2-FLAIR mismatch sign, the AI and the SyMRI assess-
ments increased both sensitivity and objectivity, resulting in improved diagnostic performance in differentiating gliomas.
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Introduction

Isocitrate dehydrogenase (IDH) enzymes play a key role 
in glioma tumorigenesis [1]. A previous study revealed 
that IDH mutations were more frequently observed in dif-
fuse low-grade gliomas, including astrocytomas and oli-
godendrogliomas [2]. The two types of gliomas share the 
same IDH mutation status, but their prognoses differ [3]. 
Oligodendrogliomas, IDH-mutant and 1p/19q-codeleted 
have a better prognosis and respond better to chemo-
therapy or radiotherapy than astrocytomas, IDH-mutant 
[4], while astrocytomas require more intensive treatment. 
Therefore, an accurate diagnosis is essential for effective 
patient management [5]. In 2017, Patel et al. [3] reported 
that astrocytoma, IDH-mutant exhibited the T2-FLAIR 
mismatch sign. Subsequently, numerous studies on the 
T2-FLAIR mismatch sign have been published [5–8]. The 
T2-FLAIR mismatch sign has a high specificity of 100% 
but a low sensitivity ranging from 12 to 51% in the diag-
nosis of astrocytoma, IDH-mutant [3, 7]. This is due to 
the strict criteria used to maintain high specificity and the 
wide range of the interobserver agreement, which makes it 
dependent on observer subjectivity, leading to significant 
interobserver variability [6].

Potential solutions to this problem include artificial 
intelligence (AI) modalities such as deep learning and 
quantitative approaches based on relaxation time meas-
urements. In recent years, there has been considerable 
research regarding AI as an adjunct to imaging diagnos-
tics, with some studies suggesting that it can outperform 
radiologists in certain diagnostic tasks [9–12]. Moreo-
ver, there are reports that the combination of AI-detected 
lesions and human assessment can lead to an even higher 
diagnostic accuracy [13, 14]. By eliminating subjective 
judgments and highlighting areas of T2-FLAIR mismatch, 
it is proposed that AI could be a valuable asset in this 
context. To the best of our knowledge, no previous studies 
on AI assessments of the T2-FLAIR mismatch sign have 
been reported.

Another solution might be a quantitative method that 
offers inherent objectivity. In addition to ensuring consist-
ency, the capacity to make numerical judgments eliminates 
much of the subjectivity that can occasionally result in 
biases or errors in the interpretation of data. Previous stud-
ies have reported that measurement of relaxation time can 
improve sensitivity in T2-FLAIR mismatch lesions [5, 15].

Therefore, this study aimed to compare assessments by 
radiologists, artificial intelligence (AI), and quantitative 
measurement using synthetic MRI (SyMRI) for differential 
diagnosis between astrocytoma, IDH-mutant and oligoden-
droglioma, and IDH-mutant and 1p/19q-codeleted and to 
identify the superior method.

Materials and methods

The institutional review board of our hospital approved this 
retrospective study, and the requirement for informed con-
sent was waived. All methods were performed in accordance 
with the relevant guidelines and regulations.

Patients

From June 2019 to December 2021, all patients at our insti-
tution who received a glioma diagnosis in a timely man-
ner were eligible for this study. Inclusion criteria were (1) 
a diagnosis of IDH-mutant and/or 1p/19q-codeleted glioma 
based on the WHO 2021 classifications [1], (2) MRI scans 
performed within 2 weeks preceding surgery, and (3) avail-
able SyMRI evaluations. The exclusion criterion was image 
distortion, such as motion artifacts or noise. A total of 33 
patients (men, 14; women, 19; age, 29–79 [median, 44] 
years) including 19 astrocytomas, IDH-mutant (men, 6; 
women, 13; age, 29–60 [median, 43] years; Grade 2, n = 12; 
Grade 3, n = 5; Grade 4, n = 2), and 14 oligodendrogliomas, 
IDH-mutant and 1p/19q-codeleted (men, 8; women, 6; age, 
37–63 [median, 48] years; Grade 2, n = 10; Grade 3, n = 4) 
were included in the study.

For the machine learning training data, 50 patients other 
than those included in the study, treated at our hospital 
from June 2002 to December 2014, were selected. These 
comprised 28 astrocytomas, IDH-mutant (men, 20; women, 
8; age, 20–52 [median, 33] years; Grade 2, n = 18; Grade 
3, n = 10), and 22 oligodendrogliomas, IDH-mutant and 
1p/19q-codeleted (men, 10; women, 12; age, 20–73 [median, 
46] years; Grade 2, n = 13; Grade 3, n = 9).

MR imaging

MR sequences used in this study were previously described 
[5]. All examinations were performed using a 3 T MR scan-
ner (Ingenia 3.0 T CX; Philips Healthcare, Best, Nether-
lands) with a 15-channel head coil. Quantitative MRI was 
performed using the two-dimensional axial quantification 
of relaxation times and proton densities by the multi-echo 
acquisition of a saturation recovery using a turbo spin-echo 
readout (QRAPMASTER) pulse sequence with two echo 
times (TEs; 13 and 100 ms) and four delay times to gener-
ate eight real images and eight imaginary images [16]. The 
other parameters included repetition time (TR), 4831 ms; 
flip angle (FA), 90°; number of excitations (NEX), 1; sensi-
tivity-encoding factor, 2.2; field of view (FOV), 230 × 189 
(recon. 230 × 230) mm2; matrix, 512 × 512; echo-train 
length, 10; thickness/gap, 4.0/1.0 mm; 30 slices; and scan 
time 6 min 36 s. Quantification map acquisition was per-
formed using SyMRI software (Version 19.0; SyMRI, 
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Linköping, Sweden, https://​synth​eticmr.​com/) [16]. Stand-
ard MR sequences (T1-weighted imaging [T1WI], T2WI, 
FLAIR, and contrast-enhanced T1WI) were also obtained. 
The sequence parameters of the two-dimensional axial T2WI 
and FLAIR sequences were as follows: T2WI—TR/TE, 
3000/80 ms; FA, 90°; NEX, 1; FOV, 230 × 230 mm2; matrix, 
512 × 375 (recon. 512 × 512); echo-training length, 15; thick-
ness/gap, 5.0/1.0 mm; 22 slices; and scan time, 2 min 36 s, 
and FLAIR—TR/TE/TI, 10,000/120/2700 ms; FA, 180°; 
NEX, 1; FOV, 230 × 207 (recon. 230 × 230) mm2; matrix, 
320 × 228 (recon. 512 × 512); echo-training length, 27; thick-
ness/gap, 5.0/1.0 mm; 22 slices; and scan time, 3 min.

Convolutional neural network model architecture

U-net and DeepMedic are widely used as convolutional 
neural networks (CNNs) in AI research. As for this study, 
DeepMedic was chosen because it has been reported to out-
perform U-net in intracranial atherosclerotic diseases [17]. 
We applied the DeepMedic network developed by Kamnit-
sas et al. [18], which is a multi-scale 3D CNN, to assess 
the T2-FLAIR mismatch lesion. In order to create a large 
receptive field for the final classification while retaining 
a low computational cost, this design comprises 11 layers 
and 2 parallel convolutional pathways that process the input 
at various scales. This architecture uses 33 kernels, which 
are fewer than the usual 53 kernels, to convolve quickly and 
minimize the weight. With these small kernels, deep net-
work variants can be designed efficiently by reducing the 
number of multiplications and trainable parameters for each 

element. To incorporate both local and more general contex-
tual information into the 3D CNN, a down-sampled second 
pathway was introduced. In the first pathway, the structure’s 
specific local appearance is recorded, whereas, in the second 
pathway, higher-level information like the structure’s loca-
tion in the brain is learned [18]. The identification of the 
T2-FLAIR mismatch lesion as ground truth was manually 
determined by a certificated radiologist (K.K., with 16 years 
of experience in diagnostic radiology) who knew the patho-
logical information of patients with diffuse glioma. Figure 1 
shows the preprocessing pipeline using IntelliSpace Discov-
ery (version 3, Philips Healthcare, Best, Netherlands). Both 
images of T2WI and FLAIR were bias-field-corrected. Then, 
in the second step, the corrected FLAIR images were coreg-
istered to the reference space defined by the T2WI. Third, 
a brain mask was computed and applied to obtain skull-
stripped images. Finally, labels were drawn using the semi-
automated contouring tool. For detecting the T2-FLAIR 
mismatch lesion, the deep learning model (DeepMedic) was 
applied to the preprocessed data.

T2‑FLAIR mismatch evaluation and statistical 
analysis

Radiologist assessment

Four board-certified neuroradiologists (with 23, 21, 10, 
and 8 years of experience) were blinded to the patient 
information of the evaluated T2-FLAIR mismatch sign. 
The T2-FLAIR mismatch sign was defined by the presence 

Fig. 1   Image-preprocessing pipeline. (1) Bias field correction was 
applied to T2WI and FLAIR images, (2) FLAIR images were coreg-
istered with T2WI images, (3) brain masking was created on T2WI 

images and propagated to the registered FLAIR images, and (4) 
labels were drawn using the semi-automated contouring tool

https://syntheticmr.com/
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of two distinct MRI features as follows [3, 6]: (1) The 
tumor displayed a complete or nearly complete and nearly 
homogeneous hyperintense signal on T2WI and (2) the 
tumor displayed a relatively hypointense signal on the 
FLAIR sequence except for a hyperintense peripheral rim. 
Further, Jain et al. [6] introduced additional imaging fea-
tures aiding in the accurate identification of the T2-FLAIR 
mismatch sign: (3) Necrotic cavities do not represent the 
T2-FLAIR mismatch sign; small cysts do not meet the cri-
teria for the T2-FLAIR mismatch sign. (4) The T2-FLAIR 
mismatch lesion is typically accompanied by little or no 
contrast enhancement. (5) The degree of FLAIR signal 
suppression could be inhomogeneous within the tumor. 
(6) Common imaging correlates include homogeneous 
hypointensity on non-contrast T1WI, markedly elevated 
apparent diffusion coefficient values, low blood volume 
on perfusion maps, and diffuse hypodensity on CT. After 
independent data collection, the interreader agreement 
was calculated. Four radiologists read both the T2WI and 
FLAIR images based on whether the T2-FLAIR mismatch 
sign was present or absent. The sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), and accuracy were calculated. In the radiologist’s 
evaluation, the interrater agreement for the T2-FLAIR 
mismatch sign among the four observers was evaluated 
using Fleiss’s kappa coefficient [19]. The kappa value 
was interpreted as follows: almost perfect agreement, 
1.00–0.81; substantial agreement, 0.80–0.61; moderate 
agreement, 0.60–0.41; fair agreement, 0.40–0.21; slight 
agreement, 0.20–0.01; and poor agreement, < 0 [20].

Artificial intelligence assessment based 
on the convolutional neural network

If the CNN labeled more than 50% of the T2-prolonged 
lesion area, it was considered positive, defining the pres-
ence of the T2-FLAIR mismatch sign. While there is a 
method using the Dice coefficient, this study is binary 

in nature; therefore, we simply determined it based on 
appearance.

Quantitative assessment using synthetic MRI

The DICOM data of the T1 and T2 relaxation times and pro-
ton density map were extracted by SyMRI software (version 
19.0; SyMRI, Linköping, Sweden, https://​synth​eticmr.​com/) 
[16]. We used a single maximum section of each tumor for 
the regions of interest (ROI) analysis on the T2-prolonged 
region in the tumor using an ImageJ plugin (ImageJ/Fiji; 
version 2.0.0-rc-59/1.51 k, National Institutes of Health, 
Bethesda, MD). The maximum section of the tumor was 
visually determined as the largest orthogonal cross-product 
of the tumor on the axial T2WI/FLAIR [5]. Using the ROI 
manager tool of ImageJ/Fiji, the ROI mask from the T2-pro-
longed region on conventional T2WI scans was copied and 
placed on each parameter map (T1 and T2 relaxations and 
proton density maps) to obtain pixel-by-pixel values for the 
histogram analyses. The 10th, 25th, 50th, 75th, and 90th 
percentiles and the mean, skewness, and kurtosis of each 
parameter were recorded from the histograms. Each param-
eter (i.e., T1 and T2 relaxation times and proton density) 
was compared between astrocytomas, IDH-mutant and oli-
godendrogliomas, IDH-mutant and 1p/19q-codeleted using 
the Mann–Whitney U-test. The diagnostic performance of 
each parameter was evaluated using a receiver-operating 
characteristic curve analysis.

All statistical analyses were performed using commer-
cial software programs (JMP, version 15.0.0; SAS Institute, 
Cary, NC, USA; Prism 7.0, GraphPad Software, La Jolla, 
CA, USA). P < 0.05 was considered statistically significant.

Results

Radiologist and artificial intelligence assessments

Table 1 shows the results from the four radiologists and AI. 
The mean sensitivity, specificity, accuracy, PPV, NPV, and 

Table 1   Radiologist and 
artificial intelligence assessment 
of T2-FLAIR mismatch sign

AI artificial intelligence, AUC​ area under the curve, NPV negative predictive value, PPV positive predictive 
value
* The kappa coefficient among four radiologists was 0.88

Reader 1 Reader 2 Reader 3 Reader 4 Average* AI

Sensitivity (%) 68.4 73.7 84.2 79.0 76.3 94.7
Specificity (%) 100.0 100.0 100.0 100.0 100.0 92.9
Accuracy (%) 81.8 84.9 90.9 87.9 86.4 93.9
PPV (%) 100.0 100.0 100.0 100.0 100.0 94.7
NPV (%) 70.0 73.7 82.4 77.8 76.0 92.9
AUC​ 0.850 0.868 0.912 0.889 0.880 0.938

https://syntheticmr.com/
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the area under the curve (AUC) of radiologists vs. AI were 
76.3% vs. 94.7%, 100% vs. 92.9%, 86.4% vs. 93.9%, 100% 
vs. 94.7%, 76.0% vs. 92.9%, and 0.880 vs. 0.938, respec-
tively. An almost perfect interrater agreement was observed 
(kappa coefficient = 0.88).

Quantitative assessment using synthetic MRI

Figure 2 and Supplementary Table S1 show the histograms 
of each parameter over all the pixels in the tumor ROIs. 
T1 and T2 relaxation times and proton densities from the 
astrocytomas all exhibited a slight rightward shift relative 
to those from the oligodendrogliomas. T1 and T2 relaxa-
tion times and proton densities were larger for astrocyto-
mas than for oligodendrogliomas (median values, 95% 
confidence intervals, and p-values—2503 (1967–2891) 
vs. 1385 (1119–1783) ms, p < 0.0001 for mean T1 relaxa-
tion time; 259 (214–343) vs. 121 (94–143) ms, p < 0.0001 
for mean T2 relaxation time; and 94.9% (89.2–96.7%) vs. 
85.2% (76.8–88.3%), p < 0.0001 for mean proton density, 
respectively). There were also significant differences in 
the 10–90th percentiles for T1 and T2 relaxation times and 
proton densities (all p < 0.05). Table 2 and Supplementary 

Table S2 show the diagnostic performance in differentiat-
ing the two glioma groups; the most useful values of each 
parameter are shown in Table 2. The two types of diffuse 
gliomas could be differentiated using a cutoff value of 
2290/128 ms for a combined 90th percentile of T1 and 10th 
percentile of T2 relaxation times with 94.4% sensitivity, 
100% specificity, 96.9% accuracy, 100% PPV, and 93.3% 
NPV, with an AUC of 0.981.

Figures 3 and 4 show representative images of patients 
with astrocytoma and oligodendroglioma, respectively.

Discussion

We found that both AI and SyMRI improved the sensitivity 
of T2-FLAIR mismatch lesions as well as the diagnostic 
performance in the differential diagnosis between astrocy-
toma, IDH-mutant and oligodendroglioma, and IDH-mutant 
and 1p/19q-codeleted compared to radiologists in this study. 
The determination of the T2-FLAIR mismatch sign is sub-
jective, resulting in variability. This study showed that by 
eliminating subjectivity, sensitivity was improved. The use 
of AI offers a distinct advantage regarding versatility; once 
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Fig. 2   Histograms of T1 and T2 relaxation times and proton density 
(PD) between astrocytomas, IDH-mutant and oligodendrogliomas, 
IDH-mutant and 1p/19q-codeleted. All parameters (T1 and T2 relaxa-

tion times and PD) in astrocytomas exhibit a slight rightward shift 
relative to those in oligodendrogliomas

Table 2   Diagnostic performance of parameters in differentiating between astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant 
and 1p/19q-codeleted

Parameters Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) Cutoff AUC​

T1 [ms]
  75th percentile 84.2 100.0 90.9 100.0 82.4 2107 0.966
  90th percentile 89.5 92.9 90.9 94.4 86.7 2290 0.966

T2 [ms]
  10th percentile 100.0 85.7 93.9 90.5 100.0 99 0.977
  PD [%]

10th percentile 79.0 100.0 87.9 100.0 77.8 83.4 0.917
  Combined 90th T1 

and 10th T2
94.4 100.0 96.9 100.0 93.3 2290/128 0.981

AUC​ area under the curve, IDH isocitrate dehydrogenase, NPV negative predictive value, PD proton density, PPV positive predictive value
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Fig. 3   Images from a 39-year-
old man with astrocytoma, 
IDH-mutant (WHO Grade 2). 
a T2WI shows a homogene-
ous T2-prolonged mass in the 
right insula (arrow). b FLAIR 
shows partial signal suppres-
sion, indicating a T2-FLAIR 
mismatch sign (arrowheads). 
c Our artificial intelligence 
correctly detects this T2-FLAIR 
mismatch lesion (arrow). T1 
(d), T2 (e), and relaxation time 
and proton density (f) maps 
derived from SyMRI show T1 
(2891 ms*) and T2 (375 ms*) 
relaxation time prolongations 
and increased PD (96.1%*) 
(arrows) in the tumor Asterisks 
(*) beside the values in the cap-
tion indicates that each value is 
expressed as the mean

Fig. 4   Images from a 54-year-
old man with oligodendro-
glioma, IDH-mutant and 
1p/19q-codeleted (WHO Grade 
2). a T2WI shows a heteroge-
neous, poorly circumscribed 
mass in the bilateral frontal 
lobes (arrow). b FLAIR shows 
no signal suppression in the 
tumor, indicating no T2-FLAIR 
mismatch sign (arrow). c Our 
artificial intelligence does not 
correctly show this T2-FLAIR 
mismatch lesion. T1 (d), T2 
(e), and relaxation time and 
proton density (f) maps derived 
from SyMRI show mild T1 
(1783 ms*) and T2 (121 ms*) 
relaxation time prolonga-
tions and mildly increased PD 
(81.7%*) (arrows) in the tumor. 
Asterisks (*) beside the values 
in the caption indicate that each 
value is expressed as the mean

a model is refined and completed, it can be deployed across 
different institutions or settings, ensuring widespread appli-
cability. This universal adaptability is a compelling strength 
of AI-driven solutions. On the other hand, the quantitative 
assessment by SyMRI has unique advantages. The ability to 

evaluate data numerically provides inherent objectivity. This 
ability to provide numerical assessments not only ensures 
consistency but also removes much of the human subjectiv-
ity that can sometimes lead to inconsistencies or biases in 
data interpretation. Therefore, while AI offers flexibility and 
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adaptability, tools like SyMRI offer rigorous, objective anal-
ysis. The present study method is expected to increase the 
accuracy of preoperative brain tumor diagnosis. Because the 
AI model can be used for transfer learning, PACS equipped 
with AI applications could find widespread use. On the other 
hand, relaxation time can also be measured with conven-
tional MRI using the multi-echo method instead of SyMRI.

Previous studies have provided valuable insight into 
radiologists’ assessment of the T2-FLAIR mismatch sign. 
Sensitivity in these studies has been found to range from 22 
to 57% [3, 7]. The interrater agreement among radiologists 
has also shown a considerable range, with κ (kappa coef-
ficient) values ranging from 0.38 to 0.88 [8]. Notably, Jain 
et al. emphasized the importance of applying strict criteria 
to maintain a high level of specificity, even though this is 
often at the expense of reduced sensitivity [6]. Our research 
findings are consistent with the trends observed in these ear-
lier studies. The relatively low interrater agreement among 
radiologists is likely due to the binary scoring system that 
is commonly used. This system may not adequately cap-
ture the nuances of the T2-FLAIR mismatch sign, as subtle 
variations in imaging characteristics may lead to different 
interpretations by different readers [5, 8].

The high sensitivity of AI in detecting T2-FLAIR mis-
match lesions is believed to be due to its retrospective learn-
ing approach, where it learns to identify these lesions after 
having access to pathology results. In other words, it operates 
in a “cheat mode” that enables it to achieve greater sensitiv-
ity. To our knowledge, there are no previous studies that have 
attempted to detect T2-FLAIR mismatch lesions using AI. We 
used the DeepMedic network proposed by Kamnitsas et al. 
[18], which is efficient in learning even with a small dataset. 
Because this model employs a multi-scale approach to capture 
information at different levels of detail, it can still extract useful 
features from the data even when the dataset is small, thereby 
optimizing the available information. Kikuchi et al. reported that 
they used DeepMedic trained on 50 patients with 165 lesions 
to detect brain metastases [9]. Although the amount of train-
ing data is smaller than in previous studies (number of train-
ing cases/lesions = 188–469/917–1149) [11, 12], DeepMedic 
demonstrates a detection sensitivity for brain metastases that 
is comparable with that of radiologists [9]. This suggests that 
DeepMedic can effectively learn from a limited number of cases.

SyMRI has been shown to be valuable in increasing the 
sensitivity for differential diagnosis between astrocytoma, 
IDH-mutant and oligodendroglioma, IDH-mutant and 
1p/19q-codeleted. Previous studies have also highlighted the 
benefits of using quantitative relaxation time assessments 
in the context of T2-FLAIR mismatch lesions, which have 
consistently resulted in increased sensitivity [5, 15]. The 
results of the present study are consistent with these previous 
research findings and underscore the utility of such quanti-
tative assessments. In this study, an increase in sensitivity 

was observed in the measurement of relaxation time; how-
ever, the specificity of the single parameter decreased 
slightly. Previous research on the pathologic evaluation of 
the T2-FLAIR mismatch sign has shown that regions with 
T2-FLAIR mismatch have microcystic changes, leading to 
prolongation of relaxation time due to increased fluid com-
ponents [21]. Differential diagnosis is difficult when astro-
cytoma, IDH-mutant presents without microcystic change 
because of the lack of prolonged relaxation time. Neverthe-
less, the combination with the relaxation parameters of T1 
and T2 exhibited improved diagnostic performance. Based 
on this result, it can be concluded that the combination of T1 
and T2 relaxation times provides a better understanding of 
the tissue structure within the T2-FLAIR mismatch lesions.

This study has several limitations. First, our study 
comprised postoperative cases and had a small sample 
size since IDH-mutant-type gliomas are relatively rare 
and there are limitations to collecting cases at a single 
center. Because an AI-based classification study requires 
a large sample size, this may raise concerns about the 
reliability of the results; therefore, further studies may 
require multicenter validation. Second, we did not assess 
IDH-wild-type astrocytomas in our investigation. A fol-
low-up study with patients with IDH-wild-type astrocy-
tomas would be useful. Third, we did not include the 
whole tumor volume for the histogram analysis in the 
quantitative evaluation. Instead, we used the maximum 
section of the tumor, with its boundary defined by the 
hyperintensity on T2WI. However, only the largest 
region of the tumor was used in the previous research on 
the T2-FLAIR mismatch sign; whole-volume histogram 
analysis was not conducted. Since the T2-FLAIR mis-
match sign criteria are designed to retain high specificity 
rather than boost sensitivity, by using these tight criteria, 
a simple evaluation based on the maximum-sized slice 
of the tumor may be sufficient. Although a quantitative 
whole-tumor analysis would probably yield results that 
differ from those currently presented, it is likely that 
astrocytomas, IDH-mutant would have exhibited longer 
T1 and T2 values than oligodendrogliomas, IDH-mutant 
and 1p/19q-codeleted.

In conclusion, compared to radiologists’ assessments 
using the T2-FLAIR mismatch sign, the AI and the SyMRI 
assessments increased both sensitivity and objectivity, 
resulting in improved diagnostic performance in differenti-
ating astrocytomas, IDH-mutant from oligodendrogliomas, 
IDH-mutant and 1p/19q-codeleted.
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