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Abstract
Purpose To investigate the effects on tractography of artificial intelligence-based prediction of motion-probing gradients 
(MPGs) in diffusion-weighted imaging (DWI).
Methods The 251 participants in this study were patients with brain tumors or epileptic seizures who underwent MRI to 
depict tractography. DWI was performed with 64 MPG directions and b = 0 s/mm2 images. The dataset was divided into a 
training set of 191 (mean age 45.7 [± 19.1] years), a validation set of 30 (mean age 41.6 [± 19.1] years), and a test set of 30 
(mean age 49.6 [± 18.3] years) patients. Supervised training of a convolutional neural network was performed using b = 0 
images and the first 32 axes of MPG images as the input data and the second 32 axes as the reference data. The trained model 
was applied to the test data, and tractography was performed using (a) input data only; (b) input plus prediction data; and 
(c) b = 0 images and the 64 MPG data (as a reference).
Results In Q-ball imaging tractography, the average dice similarity coefficient (DSC) of the input plus prediction data was 
0.715 (± 0.064), which was significantly higher than that of the input data alone (0.697 [± 0.070]) (p < 0.05). In generalized 
q-sampling imaging tractography, the average DSC of the input plus prediction data was 0.769 (± 0.091), which was also 
significantly higher than that of the input data alone (0.738 [± 0.118]) (p < 0.01).
Conclusion Diffusion tractography is improved by adding predicted MPG images generated by an artificial intelligence model.

Keywords Diffusion-weighted imaging · High angular resolution diffusion imaging · Artificial intelligence · Orientation 
distribution function · Tractography

Abbreviations
ACC   Angular correlation coefficient
ADC  Apparent diffusion coefficient
AI  Artificial intelligence
CST  Corticospinal tract
DSC  Dice similarity coefficient
DTI  Diffusion tensor imaging
DTT  Diffusion tensor tractography
EPI  Echo planar imaging
FAT  Frontal aslant tract
FOD  Fiber orientation distribution
GQI  Generalized q-sampling imaging
HARDI  High angular resolution diffusion imaging

JSD  Jensen-Shannon Divergence
MPG  Motion-probing gradient
ODF  Orientation distribution function
QBI  Q-ball imaging
ROI  Region of interest
SMS  Simultaneous multi-slice
SSIM  Structural similarity

Introduction

Diffusion-weighted imaging (DWI) is a unique type of MRI 
able to non-invasively obtain in vivo information. It is known 
for its excellent ability to detect acute cerebral infarction, 
especially when combined with apparent diffusion coeffi-
cients (ADCs), which can be acquired with DWI. Thus, it 
has become an indispensable sequence in clinical practice. 
Diffusion tensor imaging (DTI) was devised as an application 
of DWI that uses fractional anisotropy (FA) to obtain typi-
cal quantitative values [1]. It is used in various clinical and 

 * Koichiro Yasaka 
 koyasaka@gmail.com

1 Radiology Center, The University of Tokyo Hospital, Tokyo, 
Japan

2 Department of Radiology, The University of Tokyo Hospital, 
Tokyo, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s00234-024-03282-6&domain=pdf
http://orcid.org/0000-0002-0324-6562


372 Neuroradiology (2024) 66:371–387

research settings. Diffusion tensor tractography (DTT) depicts 
bundles of white matter in the brain by tracing eigenvectors. 
It is used in various clinical situations, such as preoperative 
planning for brain tumors, postoperative functional evalua-
tions, brain development evaluations, and tracking the course 
of degenerative diseases [2–6]. However, DTI and DTT 
approximate diffusion information within voxels to ellipsoids, 
making the expression of cross-fibers difficult. High-angular 
resolution diffusion imaging (HARDI) addresses this by rep-
resenting cross-fiber regions [7]. Based on this approach, 
other methods have been developed to increase the amount of 
angular information using motion-probing gradients (MPG). 
These include Q-ball imaging (QBI) [8], constrained spherical 
deconvolution (CSD) [9], and generalized q-sampling imag-
ing (GQI) [10]. Using these HARDI-based techniques has 
enabled the identification of complex white matter pathways 
at the junction of the auditory radiation and inferior longitu-
dinal fasciculus [11]. QBI tractography has been found more 
reliable than DTT in identifying the motor language cortex 
[12] and the brain origins of stroke. CSD tractography has 
been shown to have better visualization ability than DTI and 
its clinical usefulness is high [13].

In recent years, the application of machine learning and 
deep learning technologies to MRI has progressed. A vari-
ety of uses of artificial intelligence (AI) in MRI have been 
reported, including noise removal [14], brain tumor differen-
tiation [15], contrast agent reduction [16], and cerebral aneu-
rysm detection [17]. Some of these have begun to be used in 
clinical settings. Of course, the application of AI to DWI is 
also popular. Specifically, there have been reports on noise 
and artifact removal [18, 19], super-resolution [20], diffu-
sion profile evaluation [21], tractography [22], and white 
matter extraction [23]. Using AI in this way, it has become 
possible not only to improve image quality but also to sup-
port diagnoses. However, in recent years, DWI analysis and 
imaging conditions have become more complex. There has 
been an increase in analytical methods that require a single 
b-value but many MPGs [8–10] or multiple b-values, such 
as diffusion kurtosis imaging [24], neurite orientation dis-
persion and density imaging [25]. Therefore, imaging time 
using DWI tends to be longer than that for DTI. It is possible 
to shorten imaging time using multistage simultaneous exci-
tation technology such as multiband echo planar imaging 
(EPI) [26–28] and simultaneous multi-slice (SMS) [29–31] 
but there is a trade-off, with poorer image quality due to 
insufficient imaging data [32]. Therefore, the reduction of 
imaging time in DWI using these techniques is limited.

Until now, AI has primarily been used in this field to 
improve aspects of the acquired images, such as image qual-
ity, or to increase the precision with which diseases can be 
differentiated, as mentioned above. In this study, we took a 
completely different approach, with the aim of having AI 
generate predicted DW images. We investigated the extent 

to which it is possible to shorten scan time and ensure image 
quality (tractography accuracy) by generating images that 
would usually be acquired with MRI using AI. We evalu-
ate HARDI data, including AI-generated images using sev-
eral quantitative parameters, and examine the utility of this 
approach.

Materials and Methods

Participant data

Participants in this study were 251 cases that had already 
been imaged to depict QBI tractography as an in-hospital 
clinical examination before brain tumor resection, gamma 
knife surgery, or epileptic seizure surgery as retrospective 
data. These inspections were conducted from February 2016 
to March 2021.

The analysis of these images analysis was performed 
using a protocol approved by the Ethics Committee of the 
University of Tokyo. All procedures were performed in 
accordance with the tenets of the 2013 revision of the Dec-
laration of Helsinki. The informed consent requirement was 
waived by the Ethics Committee due to the retrospective 
nature of the study.

Imaging parameters and preprocessing

All MR images were acquired using a 3T clinical scan-
ner (MAGNETOM Skyra, Siemens Healthcare, Erlan-
gen, Germany; 45 mT/m max. gradient strength, 200 
mT·m−1·s−1max. slew rate) and a commercial 20-channel 
matrix head coil. The DWI parameters for single-shot EPI 
were: repetition time/echo time = 8900/89 ms, in-plane 
acceleration factor (generalized auto-calibrating partially 
parallel acquisition factor) = 2, slice thickness/gap = 2.5/0 
mm, number of slices = 60, field-of-view = 240 × 240  mm2, 
matrix = 96 × 96, voxel size = 2.5 × 2.5 × 2.5  mm3, b = 3000 
s/mm2, multiple MPG = 64 directions and a single b = 0 s/
mm2 image using phase-encoding directions along the anter-
oposterior axis, and scan time = 625 s. We also obtained b0 
s/mm2 images with reversed phase-encoding directions 
along the posteroanterior axis for the distortion correction 
process. In preprocessing, we performed noise removal 
[33–35] and ringing artifact removal [36, 37] using MRtrix3 
[38], distortion and motion correction using FSL top-up 
[39] and eddy [40], and then B1 field correction [41] using 
MRtrix3. And 3D T1-weighted image for anatomical image 
parameters were: repetition time/echo time = 1900/3.16 
ms, slice thickness = 1.25 mm, number of slices = 128, 
field-of-view = 240 × 240  mm2, matrix = 192 × 192, voxel 
size = 1.25 × 1.25 × 1.25  mm3, Inversion time; 962ms, and 
scan time = 206 s.
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Convolutional neural network

Our dataset was divided into training (n = 191), validation 
(n = 30), and test (n = 30) sets. We employed a 3D U-net 
learning model (Fig. 1) created using Python 3.9.7 (https:// 
www. python. org/) and tensorflow-gpu 2.8.0 (https:// www. 
tenso rflow. org/) on a computer equipped with a Core 
i9-12900F central processing unit, 128 GB of random access 
memory, and a GeForce RTX 3090 graphic processing unit. 
We used the b0 image and the first 32 axes of HARDI data 
as input data. The remaining 32 axes of HARDI data were 
used as the teaching data, and the MPG32 axes output was 
used as the prediction data. Table 1 shows the MPG array 
using the electrostatic repulsion method [42] in this study.

At the time of learning, we calculated the loss function 
as the mean squared error (MSE) between the teaching and 
prediction data. We used Adam as the optimizer. The hyper-
parameters were optimized using the validation data. The 
hyperparameters for the 3D U-net model were: kernel size, 
3; stride, 2; activation function, rectified linear unit. Those 
for the supervised learning process were: minibatch size, 15; 
number of epochs, 300. The trained model was applied to 
the test data to obtain the predicted data.

Image evaluations

First, the structural similarity (SSIM) of the prediction data 
was calculated for each MPG axis, with the latter half of the 
reference data as the gold standard. We calculated the SSIMs 
with the multiSSIM3 function of MATLAB 2020b. And we 
also calculated the peak signal to noise ratio (PSNR). Next, 
we calculated the orientation distribution function (ODF) and 
the similarity of the data for the first 32 MPG axes only (input 

data). The ODF of the reference data and the ODF of the input 
plus prediction data were compared. ODF calculations were 
performed using the Diffusion toolkit (https:// track vis. org/ 
dtk/), and quantitative value comparisons were performed 
using Jensen-Shannon divergences (JSDs) and angular corre-
lation coefficients (ACCs) [43]. JSDs were used to quantify the 
similarities between two fiber orientation distributions (FODs) 
or ODFs. We projected both ODFs onto 181 values distributed 
equally over a sphere. JSD was defined as:

where P(i) and Q(i) are the magnitudes of the histological 
and MRI FODs (or ODFs) along index i (i = 1 …181), and 
 DKL is the Kullback–Leibler divergence:

We calculated the correlation of functions over a sphere 
given the spherical harmonic (SH) expansions of both 
functions. Given two spherical functions and their SH 
expansions,

the ACC of the functions is calculated as:

JSD(P,Q) =
DKL(P,M) + DKL(Q,M)

2

M(i) =
P(i) + Q(i)

2

DKL(P,Q) =
∑

i
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)

U(�,�) =
∑∞

l=0

∑l

m=−l
ulmYlm(�,�)

V(�,�) =
∑∞

l=0

∑l

m=−l
vlmYlm(�,�)

Fig. 1  Pipeline depiction of our artificial intelligence imaging generation method using 3D U-net.  MPG, motion-probing gradient 

https://www.python.org/
https://www.python.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://trackvis.org/dtk/
https://trackvis.org/dtk/
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The calculation areas for the SSIM, JSD, and ACC were 
masked using the b0 image.

We performed diffusion tensor analysis and generated 
FA and color FA from the eigenvalues in our software. In 
addition, regions of interest (ROIs) were set at the cerebral 
peduncle (ROI1), posterior peduncle of the internal capsule 
(ROI2), corona radiata (ROI3), and semiovale center (ROI4) 
in the normal side on the color FA map. The subjects for 
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ROI measurement were 24 patients, excluding 6 patients 
with bilateral disease, brain stem disease, and multiple 
metastases. And the average value and standard deviation 
(SD) for FA and eigenvalue1 (E1) were calculated. The ROIs 
were manually set with the consent of one radiological tech-
nologist (17 years of MRI experience) and one radiologist 
(Fig. 2).

Red ellipsoids indicate ROIs in each axial section on the 
color FA map. ROI1 indicates the cerebral peduncle, ROI2 
indicates posterior peduncle of the internal capsule, ROI3 
indicates corona radiata and ROI4 indicates semiovale center 
in the normal side.

Finally, left and right corticospinal tract (CST) and frontal 
aslant tract (FAT) with Q-ball imaging tractography and gen-
eralized q-sampling imaging tractography were visualized, 
and dice similarity coefficients (DSCs) were calculated for 
the reference data.

QBI tractography was performed using TrackVis (https:// 
track vis. org/), and GQI tractography was performed using 
DSI Studio (https:// dsi- studio. labso lver. org/). ROIs of CST 
were automatically obtained by TractSeg [23] analysis. The 
seed ROI was the cerebral peduncle, with the primary motor 
cortex as the target point. The midsagittal section was manu-
ally set as the avoidance ROI (Fig. 3).

Yellow indicates the cerebral peduncle for seed point, 
green indicates the primary motor cortex for target point, 
and blue indicates the midsagittal section for avoidance ROI.

The ROIs for FAT was manually set with the consent 
of one radiological technologist (17 years of MRI experi-
ence) and one radiologist. T1-weighted image was registered 
to the b0 image using FMRIB's Linear Image Registration 
Tool; FLIRT (https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/ FLIRT). 
The seed point is (supplementary motor area; SMA and pre-
SMA), target point is set in the gill cover of inferior frontal 
gyrus (IFG), the triangular part of IFG, and the orbital part 
of IFG [44] (Fig. 4).

Green area indicates the SMA and pre-SMA for seed 
point, blue area indicates the gill cover of inferior frontal 
gyrus (IFG), the triangular part of IFG, and the orbital part 
of IFG.

The default conditions in each piece of software were 
used for settings such as the tracking algorithms. After vox-
elization of the corticospinal tracts, we calculated the DSC 
[45] The DSC as:

where x is a corticospinal tract voxel from the reference data, 
y is the corresponding voxel from a fiber bundle generated 
using input or input plus precision data and V is the volume 
of the relevant voxel.

DSC =
2 ∗ V(x ∩ y)

V(x) + V(y)

Table 1  The MPG array using the electrostatic repulsion method  

MPG is motion-probing gradient and MPG no.0 indicates b0 image

https://trackvis.org/
https://trackvis.org/
https://dsi-studio.labsolver.org/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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Statistics

Post hoc analysis with Freidman tests was conducted with 
a Bonferroni correction (p < 0.0167) applied to the FA and 
E1.The Wilcoxon signed-rank test (p < 0.05) was applied to 
the JSD, ACC, and DSC data.

Statistical analyses were performed using EZR version 
4.3.1 software (https:// www. jichi. ac. jp/ saita ma- sct/ Saita 
maHP. files/ downl oad. html).

Unless otherwise specified, data were presented as 
mean ± SD. Effect size [46] was also calculated for each test.

Results

Patient backgrounds

Tables 2 and 3 shows the medical conditions of the partici-
pants in each data group. The average ages (± SD) of the 
patients in the training, validation, and test sets were 45.7 
(± 19.1), 41.6 (± 19.1), and 49.6 (± 18.3), respectively.

For brain diseases, cases with only one patient in the training 
data were classified as “other.” Similarly, when there was only 
one case with a given tumor location, it was classified as “other.”

Fig. 2  ROI for measurement FA and E1

Fig. 3  ROIs for depicting CST

Fig. 4  ROIs for depicting FAT

https://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/download.html
https://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/download.html
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Tumor location and brain disease types with no relevant 
data or numerical values were marked with a hyphen (-) 
(Table 2).

Training and validation of the convolutional neural 
network

The MSE values from the training process are shown in 
Fig. 5. The values for the training and validation data after 
300 epochs were 15.935 and 18.613, respectively.

MSE, mean squared error.

DWI similarity evaluation using the test data

The average SSIM for the test data was 0.964 (± 0.010). 
The minimum and maximum SSIMs for all data were 
0.913 and 0.982. The average PSNR for the test data was 
35.41 dB (± 1.59). The minimum and maximum PSNRs 
for all data were 30.36 and 38.32 (Suppl. data). Image 
comparisons were made between the reference data and 
predicted data. For each MPG, the predicted image had 
similar anisotropic contrast to the reference image (Fig. 6).

The case shown is a 27-year-old female with an astro-
cytoma in the left thalamus.

Table 2  Patient conditions in the three groups
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For each MPG, the prediction image had the same ani-
sotropic contrast as the reference image.

MPG, motion-probing gradient.
There were no obvious outliers from the trend in the aver-

age SSIM of each MPG (Fig. 7).
The blue dots represent the average structural similarities. 

The error bars represent the standard deviations for each 
motion-probing gradient.

MPG, motion-probing gradient; SSIM, structural 
similarity.

Diffusion profile evaluation of the test data

For both the JSD and the ACC, input plus prediction data 
was significantly closer to the reference data than input 
data alone (p < 0.001); that is, the ODF were similar. For 

Table 3  Patient detail conditions in the test data

Fig. 5  Loss function results
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the JSD, the input data was 1.25*10–4 and the input plus 
prediction data was 6.75*10–5. For the ACC, the input data 
was 9.9954*10–1 and the input plus prediction data was 
9.9974*10–1. Figures 8 and 9 show the results in an exam-
ple case.

Input + predicted data had JSD closer to 0 and ACC closer 
to 1 than input data only. This showed a high degree of simi-
larity to the diffusion profile of the reference data from the 
JSD and ACC definition equations. This result was the same 
for all individual data and overall average.

The case shown is a 75-year-old man with a primary cen-
tral nervous system lymphoma in the right frontal parietal 
area. The closer the JSD is to 0, the higher the similarity to 
the reference data diffusion profile.

Overall, there was greater similarity (profile shifted to the 
left) with input plus prediction data (orange sticks) than with 
input data alone (blue sticks).

ACC is a quantitative value indicating that the closer it 
gets to 1, the higher the similarity. Overall similarity was 
better (profile shifted to the left) with input plus prediction 
data (orange sticks) than with input data alone (blue sticks).

ACC, angular correlation coefficient; JSD, Jensen-Shannon 
divergence.

The case shown is a 71-year-old man with anaplastic 
astrocytoma in the left temporal lobe. It can be seen that the 
addition of prediction data improved the quantitative values 
of the JSD and ACC. However, especially in ACC, even 
input data alone showed high similarity to reference data, so 
adding prediction data did not have a large effect.

Fig. 6  Comparison of prediction and reference images from an example case

Fig. 7  Structural similarities in 
each motion-probing gradient
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ACC, angular correlation coefficient; JSD, Jensen-Shan-
non divergence.

Tensor analysis of the test data

Example images of FA and color FA map are shown in 
Fig. 10 and Fig. 11. In each figure, the upper row is the 
images of reference data, the middle row is the images of 
only input data, and the lower row is the images of input plus 
prediction data. There was no visually obvious difference.

The case shown is a 37-year-old woman with glioblas-
toma in the right temporal lobe. The upper row is the images 
of reference data, the middle row is the images of only input 
data, and the lower row is the images of input plus prediction 
data. There was no visually obvious difference.

The case shown is a 37-year-old woman with glioblas-
toma in the right temporal lobe. The upper row is the images 
of reference data, the middle row is the images of only input 
data, and the lower row is the images of input plus prediction 
data. There was no visually obvious difference.

The average FA and SD in ROI1 was 0.552 (± 0.077) 
for the reference data, 0.562 (± 0.078) for the only input 
data, and 0.554 (± 0.080) for the input plus prediction 
data, respectively. The average FA and SD in ROI2 was 
0.521 (± 0.044) for the reference data, 0.512 (± 0.041) for 
the only input data, and 0.520 (± 0.046) for the input plus 
prediction data, respectively. The average FA and SD in 
ROI3 was 0.471 (± 0.044) for the reference data, 0.470 
(± 0.052) for the only input data, and 0.471 (± 0.048) for 
the input plus prediction data, respectively. The average 
FA and SD in ROI4 was 0.434 (± 0.049) for the reference 
data, 0.437 (± 0.050) for the only input data, and 0.437 

(± 0.051) for the input plus prediction data, respectively. 
In ROI2, there were significant differences between refer-
ence data and only input data (p < 0.001) and between only 
input data and input plus prediction data (p < 0.01).

The average E1 [µm/ms2] and SD in ROI1 was 0.664 
(± 0.11) for the reference data, 0.659 (± 0.11) for the only 
input data, and 0.655 (± 0.11) for the input plus predic-
tion data, respectively. The average E1 [µm/ms2] and SD 
in ROI2 was 0.682 (± 0.067) for the reference data, 0.680 
(± 0.066) for the only input data, and 0.680 (± 0.071) for 
the input plus prediction data, respectively. The average 
E1 [µm/ms2] and SD in ROI3 was 0.684 (± 0.051) for the 
reference data, 0.683 (± 0.048) for the only input data, and 
0.680 (± 0.049) for the input plus prediction data, respec-
tively. The average E1 [µm/ms2] and SD in ROI4 was 
0.695 (± 0.057) for the reference data, 0.694 (± 0.057) for 
the only input data, and 0.695 (± 0.059) for the input plus 
prediction data, respectively. There were no significant 
differences among comparison conditions (Suppl. data).

The effect sizes were 0.213 and 0.164 for FA in ROI2 
between Reference and Only input, and Only input and Input 
plus prediction, where there was a significant difference, respec-
tively. Effect sizes in these comparisons were "small (0.1 to 
0.3)”. Other effect sizes were less than 0.1 (Suppl data)(Fig. 12).

ROI1 indicates the cerebral peduncle, ROI2 indicates 
posterior peduncle of the internal capsule, ROI3 indicates 
corona radiata and ROI4 indicates semiovale center in the 
normal side.

In the (a) FA value comparison, significant differences 
occurred between only input and reference, only input 
and input plus prediction. In the (b) E1 value comparison, 
there was no significant difference.

(a) Jensen-Shannon divergence (b) Angular correlation coefficient

Fig. 8  JSD and ACC distributions in an example case
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Tractography evaluation of the test data

For the tractography DSCs, three bundles of CST could not 
be visualized by QBI tractography using TractVis (right side 
of subject no. 3, 22, and 30). Therefore, these three were 
excluded from our comparison, which was made using the 
remaining 57 cases. The average DSC for the input data 
alone was 0.697 (± 0.070). The average DSC for the input 
plus prediction data was 0.715 (± 0.064). The DSC was 
significantly higher with prediction data than with input 
data alone (p < 0.05). GQI tractography using DSI Studio 
also failed to visualize two bundles of CST (sub no. 3, right 
of 30). Thus, a comparison was made using 58 samples, 
excluding these two cases. The average DSC for the input 

data alone was 0.738 (± 0.118). The average DSC for the 
input plus prediction data was 0.769 (± 0.091). Again, the 
DSC was significantly higher with prediction data than with 
input data alone (p < 0.01).

The effect size was 0.263 and 0.288 for QBI and GQI, 
respectively.

The resulting image examples shown in Fig. 13 and 14 
are for the same patient. They illustrate the tendency for 
the DSC to decrease as a result of increases in mis-tracking 
and decreases in the extraction area (Figs. 13 and 14). For 
the case shown in Fig. 13, the DSCs of the left and right 
corticospinal tract with GQI were 0.693 and 0.740 for the 
input data, and 0.721 and 0.808 for the input plus prediction 
data, respectively.

Fig. 9  The image results from 
the JSD and ACC of an example 
case
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The case shown is a 34-year-old man with a glioma in the 
left frontal lobe. The values represent the DSCs in the left 
and right corticospinal tracts. The DSCs of the left and right 
corticospinal tract were 0.693 and 0.740 for input data, and 
0.721 and 0.808 for input plus prediction data, respectively.

DSC, dice similarity coefficient; L, left; R, right.

For the case shown in Fig. 14, the DSCs of the left and 
right CST with QBI were 0.676 and 0.714 for the input 
data, and 0.687 and 0.734 for the input plus prediction data, 
respectively.

The case shown is a 34-year-old man with a glioma in 
the left frontal lobe. The values represent the DSCs for the 

Fig. 10  The image results from the FA of an example case

Fig. 11  The image results from the Color FA of an example case
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left and right corticospinal tract. The DSCs of the left and 
right corticospinal tract were 0.676 and 0.714 for the input 
data, and 0.687 and 0.734 for the input plus prediction data, 
respectively.

DSC, dice similarity coefficient; L, left; R, right.

An increase in the DSC values was observed in 35/57 
bundles (61.4%) with QBI and 42/58 bundles (72.4%) 
with GQI. This indicates that the AI model produced a 
general improvement in the tractography visualization 
ability.

(a) FA value comparison                        (b) E1 value comparison 

Fig. 12  The results of ROIs measurement

(a) Reference data (b) Input data (c) Input plus prediction data 

Fig. 13  Example tractography result generated using generalized q-sampling imaging

(a) Reference data (b) Input data (c) Input plus prediction data

Fig. 14  Example of a tractography result generated using Q-ball imaging
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As for FAT, three bundles of FAT could not be visualized 
by QBI tractography using TractVis (both side of subject no. 
21, and right side of subject no. 29). Therefore, these three 
were excluded from our comparison, which was made using 
the remaining 57 cases. The average DSC for the input data 
alone was 0.502 (± 0.124). The average DSC for the input plus 
prediction data was 0.531 (± 0.128). The DSC was signifi-
cantly higher with prediction data than with input data alone 
(p < 0.001). GQI tractography using DSI Studio also failed to 
visualize two bundles of FAT (right side of subject no. 27). 
Thus, a comparison was made using 59 samples, excluding 
one case. The average DSC for the input data alone was 0.793 
(± 0.101). The average DSC for the input plus prediction data 
was 0.816 (± 0.093). Again, the DSC was significantly higher 
with prediction data than with input data alone (p < 0.001).

The effect size was 0.235 and 0.240 for QBI and GQI, 
respectively.

An increase in the DSC values was observed in 42/57 
bundles (73.7%) with QBI and 40/59 bundles (67.8%) with 
GQI. This indicates that the AI model produced a general 
improvement in the tractography visualization ability.

Discussion

In this study, we generated unimaged DWI from imaged 
DWI HARDI data. Research on image generation using AI 
has evaluated the generation of CT from MR T1-weighted 
images [47], the generation of methionine positron emission 
tomography from contrast-enhanced T1-weighted images 
[48], and the generation of fluid-attenuated inversion recov-
ery from DWI [49]. However, this is the first study to gen-
erate predicted images with the same contrast in the same 
series. We have shown that the second half of a HARDI 
dataset generated from the first half closely matches the 
imaged second-half data, with almost no bias in the results 
due to the MPG axis. Absolute similarity evaluation cannot 
be performed using SSIM alone, but previous research with 
3D U-net on image similarity using other SSIM [50–52] 
suggests that the images generated by this study have a rela-
tively high degree of similarity. However, the smoothness of 
the image may have caused the SSIM to show a high value, 
and further investigation is required. The QBI and GQI used 
in this study were HARDI-based datasets. HARDI-based 
datasets provide more information about cross-fibers than 
DTI, the imaging time is longer for requiring more MPG 
direction. While it is possible to reduce the imaging time 
using SMS, it is known that an increase in the SMS fac-
tor leads to a deterioration in image quality. Moreover, this 
type of artifact differs from classical artifacts that appear 
continuously within or along the slice, making interpretation 
challenging [31]. Our method can shorten imaging time by 
generating the second half of the imaged data from the first 

half. The generation of images in this way can reduce the 
incidence of artifacts caused by SMS.

DWI data is generally preprocessed for noise removal 
[33–35], distortion correction, and motion correction [39, 
40]. Regarding body movement, the longer the imaging 
time, the more likely it is that the body will move from its 
initial position, which will lower the correction accuracy. 
However, this was an resting-state fMRI study, and it has 
been reported that 76% of the data in such studies could be 
collected in the first 10 min of the 20-min imaging time [53]. 
On this basis, it can be inferred that the longer the scan time, 
the lower the reliability of the data from the latter half of 
the scan time. With this in mind, the method presented here 
could effectively improve the accuracy and reliability of the 
imaging data through its halving of imaging times.

SSIM was used to evaluate the similarity of the original 
image, and JSD and ACC were used to evaluate the similar-
ity of the diffusion profile. In this study, the ODF values 
generated using input plus prediction data were more similar 
to the ODF of the reference data than the ODF values calcu-
lated using input data alone. This was shown by the JSD and 
ACC values. It has been reported that 60–90% of the brain is 
chiasm fibers [54]. Furthermore, it has been established that 
MPGs of about 60 axes are required to visualize tractogra-
phy using CSD [55] and that visualization performance is 
improved when using 64-axis data rather than 30-axis data 
in DTI analyses. It has further been reported that 30 is an 
insufficient number of MPG axes [11]. Of course, it cannot 
be said that 64 axes of MPG are sufficient but the effective-
ness of adding images generated by this 64-axis MPG AI 
has been demonstrated.

We performed tensor analysis to calculate quantitative 
values and we compared FA and E1 using ROI measure-
ments. No difference was visually observed in FA or color 
FA map (Fig. 10 and 11). Regarding ROI measurements, 
there was no significant difference between input plus pre-
diction data and reference data. Although a significant dif-
ference occurred only in FA in the input data of ROI2, this 
result can be said to suggest the usefulness of this method.

We evaluated tractography visualization performance 
using QBI and GQI analysis. In both analysis algorithms, 
similar to the ODF study, adding the prediction data 
improved the value obtained using only the input data for 
reference. From the perspective of tractography depiction, 
we found that adding AI data improves the similarity of the 
predicted data to the reference data. A previous study that 
evaluated the reproducibility of QBI tractography targeting 
optic radiation found tractography DSCs using scan-rescan 
data of 0.6–0.75 [56]. The current input plus prediction data 
result (DSC = 0.715) for CST was within this range, sug-
gesting that the images may be equivalent to scan-rescans.

On the other hand, the FAT result (DSC = 0.531) was out 
of range (0.6–0.75). This may be due to the effect of the 
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arcuate fasciculus intersecting the FAT. As a result, we con-
sidered that FAT's DSC is overall lower than CST's DSC.

Regarding the difference in analysis algorithms, the DSCs pro-
duced by GQI analysis were superior to those from QBI. Although 
the DSCs were not compared, a previous study found no significant 
difference in the percentage of true fibers in the pyramidal tract but 
that the QBI calculated a superior proportion to the GQI [57]. And 
this report found a high proportion of false fiber, which caused the 
GQI's DSC to be higher than the QBI's DSC. The present authors 
assume that these results support the current study.

Regarding the improvement of CST tractography visuali-
zation ability by AI, a DSC increase of 61.4% for the QBI 
and 72.4% for the GQI was observed. When evaluated using 
the DSC classification of a previous study [54], we found 
that adding prediction data led to improved outcomes when 
the input data alone had DSC ≥ 0.6 (good or excellent), but 
no major improvement was seen (DSC of QBI increased 
by 0.013, GQI increased by 0.017). On the other hand, in 
one case, there was a decrease in the DSC in GQI when the 
DSC < 0.6, but the DSC for QBI showed an increase of 0.087 
and the DSC for GQI showed an increase of 0.264 (Fig. 15).

The DSC values decreased with the addition of prediction 
data in a GQI case but increased in all other cases. The improve-
ment in DSCs resulting from the addition of the prediction data 
was more effective when the input data DSC was lower.

DSC, dice similarity coefficient; CST, corticospinal tract; 
GQI, generalized q-sampling imaging; L, left; QBI, Q-ball 
imaging; R, right.

For the improvement of FAT tractography visualization ability 
by AI, a DSC increase of 73.7% for the QBI and 67.8% for the 
GQI was observed. Similar to the trend for CST, we found that 
adding predicted data led to improved results when the DSC of 
input data alone was 0.6 or higher (good or excellent) [53], but no 
significant improvement was observed (DSC of QBI increased 
by 0.010 and GQI increased by 0.024). On the other hand, when 
DSC < 0.6, the GQI DSC remained almost unchanged (0.307 
to 0.300) in only one case. Regarding QBI, DSC worsened in 8 
patients (average decrease of 0.07, maximum decrease of 0.172), 

and DSC improved in 30 patients (average increase of 0.07, max-
imum increase of 0.206).

This result suggests that cases with lower DSCs and lower accu-
racy due to disease may benefit from this approach, especially in 
CST. However, there were cases in which the DSC was < 0.6 even 
on the healthy side, so further verification is necessary.

Our study had some limitations. The generated images were 
only verified using one MRI machine and one type of MPG 
array. Also, the second 50% of the data was generated from the 
first 50%. Other generation ratios (e.g., generating the last 30% 
from the first 70%) were not attempted for comparison. There-
fore, the relationship between the generation rate and image 
similarity was not ascertained. For the diffusion profile, only 
the ODF was evaluated. We had planned to test another algo-
rithm using the FOD generated by CSD analysis but, because 
the test data was from brain tumor patients, it was necessary 
to focus only on the white matter as the ROI. The ROI was set 
using ss3t-CSD, which can extract white matter like even with a 
single unit of b-value data [58].The patient’s data for this study 
have many different diagnoses, it is not always the same tracts 
can be compared. The data set for this study was performed as 
part of a preoperative examination for neurosurgery, and imag-
ing time was limited. Therefore, compared to previous studies, 
the resolution in this study is poorer, so the influence of partial 
volume effects may be stronger. In addition, although the gold 
standard of this tractography was used as the reference data, it 
is unclear whether the fiber tracing results are accurate.

Conclusion

We developed an artificial intelligence model based on the 3D 
U-net architecture capable of predicting the latter 32 axes of 
HARDI data (MPG64 axes) from the initial 32 axes. The inte-
gration of predicted data into the input significantly improved 
diffusion profiles and tractography. This suggests the potential 
use of this approach to reduce MRI scan times by incorporat-
ing AI-generated predicted data alongside the scanned data.

Fig. 15  DSC improvement through the addition of prediction data in cases with DSC < 0.6 for input data alone. (a) The result in QBI. (b) The 
result in GQI
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