Skip to main content

Advertisement

Log in

Distinctive cortical morphological patterns in primary trigeminal neuralgia: a cross-sectional clinical study

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The characteristics of surface-based morphological patterns to primary trigeminal neuralgia (PTN) are still not well understood. This study aims to screen the useful cortical indices for the prediction of PTN and the quantification of pain severity.

Methods

Fifty PTN patients and 48 matched healthy subjects enrolled in the study from March 2016 to August 2021. High-resolution T1 data were performed at 3.0 Tesla scanner and were analyzed with FreeSurfer software to detect the abnormalities of cortical mean curve (CMC), cortical thickness (CT), surface area (SA), and cortical volume (CV) in PTN patients compared to healthy controls. Logistic regression analysis was conducted to determine whether certain morphological patterns could predict PTN disorder. Then, the relationships of cortical indices to the pain characteristics in patient group were examined using linear regression model.

Results

Distinctive cortical alterations were discovered through surface-based analysis, including increased temporal CMC, decreased insular CT and fusiform SA, along with decreased CV in several temporal and occipital areas. Moreover, the difference of temporal CMC was greater than other cortical parameters between the two groups, and the combination of certain morphological indices was of good value in the diagnosis for PTN. Besides, CT of left insula was negatively associated with the pain intensity in PTN patients.

Conclusion

The patients with PTN demonstrate distinctive morphological patterns in several cortical regions, which may contribute to the imaging diagnosis of this refractory disorder and be useful for the quantification of the orofacial pain.

Clinical trials

The registry name of this study in https://clinicaltrials.gov/: Magnetic Resonance Imaging Study on Patients with Trigeminal Neuralgia (MRI-TN)

https://clinicaltrials.gov/ ID: NCT02713646

A link to the full application: https://clinicaltrials.gov/ct2/results?cond=&term=NCT02713646&cntry=&state=&city=&dist=

The first patient with primary trigeminal neuralgia was recruited on November 28, 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

All relevant data are within the manuscript and no additional data are available.

References

  1. Cruccu G, Di Stefano G, Truini A (2020) Trigeminal neuralgia. N Engl J Med 383(8):754–762. https://doi.org/10.1056/NEJMra1914484

    Article  PubMed  Google Scholar 

  2. Cruccu G, Finnerup NB, Jensen TS, Scholz J, Sindou M, Svensson P et al (2016) Trigeminal neuralgia: new classification and diagnostic grading for practice and research. Neurology 87(2):220–228. https://doi.org/10.1212/wnl.0000000000002840

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bendtsen L, Zakrzewska JM, Heinskou TB, Hodaie M, Leal PRL, Nurmikko T et al (2020) Advances in diagnosis, classification, pathophysiology, and management of trigeminal neuralgia. Lancet Neurol 19(9):784–796. https://doi.org/10.1016/s1474-4422(20)30233-7

    Article  CAS  PubMed  Google Scholar 

  4. Panczykowski DM, Jani RH, Hughes MA, Sekula RF (2020) Development and evaluation of a preoperative trigeminal neuralgia scoring system to predict long-term outcome following microvascular decompression. Neurosurgery 87(1):71–79. https://doi.org/10.1093/neuros/nyz376

    Article  PubMed  Google Scholar 

  5. Adamczyk M, Bulski T, Sowińska J, Furmanek MI, Bekiesińska-Figatowska M (2007) Trigeminal nerve-artery contact in people without trigeminal neuralgia: MR study. Med Sci Monit 13(1):38–43

    PubMed  Google Scholar 

  6. Ramesh VG, Premkumar G (2009) An anatomical study of the neurovascular relationships at the trigeminal root entry zone. J Clin Neurosci 16(7):934–936. https://doi.org/10.1016/j.jocn.2008.09.011

    Article  PubMed  Google Scholar 

  7. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic pain: from mechanisms to treatment. Physiol Rev 101(1):259–301. https://doi.org/10.1152/physrev.00045.2019

    Article  CAS  PubMed  Google Scholar 

  8. Terrier LM, Hadjikhani N, Destrieux C (2022) The trigeminal pathways. J Neurol 269(7):3443–3460. https://doi.org/10.1007/s00415-022-11002-4

    Article  PubMed  Google Scholar 

  9. Wang Y, Yang Q, Cao D, Seminowicz D, Remeniuk B, Gao L et al (2019) Correlation between nerve atrophy, brain grey matter volume and pain severity in patients with primary trigeminal neuralgia. Cephalalgia 39(4):515–525. https://doi.org/10.1177/0333102418793643

    Article  PubMed  Google Scholar 

  10. Li M, Yan J, Li S, Wang T, Zhan W, Wen H et al (2017) Reduced volume of gray matter in patients with trigeminal neuralgia. Brain Imaging Behav 11(2):486–492. https://doi.org/10.1007/s11682-016-9529-2

    Article  PubMed  Google Scholar 

  11. Wang Y, Li D, Bao F, Guo C, Ma S, Zhang M (2016) Microstructural abnormalities of the trigeminal nerve correlate with pain severity and concomitant emotional dysfunctions in idiopathic trigeminal neuralgia: a randomized, prospective, double-blind study. Magn Reson Imaging 34(5):609–616

    Article  PubMed  Google Scholar 

  12. Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS et al (2013) Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. NeuroImage 74:352–358. https://doi.org/10.1016/j.neuroimage.2013.02.029

    Article  PubMed  Google Scholar 

  13. Garcia-Larrea L, Peyron R (2013) Pain matrices and neuropathic pain matrices: a review. Pain 154(Suppl 1):S29–s43. https://doi.org/10.1016/j.pain.2013.09.001

    Article  PubMed  Google Scholar 

  14. Desouza DD, Moayedi M, Chen DQ, Davis KD, Hodaie M (2013) Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory-triggered neuropathic pain. PLoS One 8(6):e66340. https://doi.org/10.1371/journal.pone.0066340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA (2011) Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci 31(16):5956–5964. https://doi.org/10.1523/jneurosci.5980-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30(1-3):24–32. https://doi.org/10.1159/000109848

    Article  CAS  PubMed  Google Scholar 

  17. Li M, Yan J, Wen H, Lin J, Liang L, Li S et al (2021) Cortical thickness, gyrification and sulcal depth in trigeminal neuralgia. Sci Rep 11(1):16322. https://doi.org/10.1038/s41598-021-95811-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mo J, Zhang J, Hu W, Luo F, Zhang K (2021) Whole-brain morphological alterations associated with trigeminal neuralgia. J Headache Pain 22(1):95. https://doi.org/10.1186/s10194-021-01308-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hung PS, Noorani A, Zhang JY, Tohyama S, Laperriere N, Davis KD et al (2021) Regional brain morphology predicts pain relief in trigeminal neuralgia. NeuroImage Clin 31:102706. https://doi.org/10.1016/j.nicl.2021.102706

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grinsvall C, Ryu HJ, Van Oudenhove L, Labus JS, Gupta A, Ljungberg M et al (2021) Association between pain sensitivity and gray matter properties in the sensorimotor network in women with irritable bowel syndrome. J Neurogastroenterol Motil 33(4):e14027. https://doi.org/10.1111/nmo.14027

    Article  Google Scholar 

  21. Labus JS, Van Horn JD, Gupta A, Alaverdyan M, Torgerson C, Ashe-McNalley C et al (2015) Multivariate morphological brain signatures predict patients with chronic abdominal pain from healthy control subjects. Pain 156(8):1545–1554. https://doi.org/10.1097/j.pain.0000000000000196

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu H, Zhang M, Wang Y (2022) Shape deformations of the basal ganglia in patients with classical trigeminal neuralgia: a cross-sectional evaluation. Neurol Sci 43(8):5007–5015. https://doi.org/10.1007/s10072-022-06091-y

    Article  PubMed  Google Scholar 

  23. Li D, Xu H, Yang Q, Zhang M, Wang Y (2022) Cerebral white matter alterations revealed by multiple diffusion metrics in cervical spondylotic patients with pain: a TBSS study. Pain med 23(5):895–901. https://doi.org/10.1093/pm/pnab227

    Article  PubMed  Google Scholar 

  24. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  25. Hedges LV, Olkin I (2014) Statistical methods for meta-analysis. Academic press

    Google Scholar 

  26. Reddan MC, Lindquist MA, Wager TD (2017) Effect size estimation in neuroimaging. JAMA Psych 74(3):207–208. https://doi.org/10.1001/jamapsychiatry.2016.3356

    Article  Google Scholar 

  27. Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage 48(2):371–380. https://doi.org/10.1016/j.neuroimage.2009.06.043

    Article  PubMed  Google Scholar 

  28. Van Essen DC (2005) A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28(3):635–662. https://doi.org/10.1016/j.neuroimage.2005.06.058

    Article  PubMed  Google Scholar 

  29. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5-6):655–667. https://doi.org/10.1007/s00429-010-0262-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu H, Seminowicz DA, Krimmel SR, Zhang M, Gao L, Wang Y (2022) Altered structural and functional connectivity of salience network in patients with classic trigeminal neuralgia. J Pain 23(8):1389–1399. https://doi.org/10.1016/j.jpain.2022.02.012

    Article  PubMed  Google Scholar 

  31. Liu H, Hou H, Li F, Zheng R, Zhang Y, Cheng J et al (2022) Structural and functional brain changes in patients with classic trigeminal neuralgia: a combination of voxel-based morphometry and resting-state functional MRI study. Front Neurosci 16:930765. https://doi.org/10.3389/fnins.2022.930765

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Zhang Y, Zhang J, Wang J, Xu J, Li J et al (2018) Structural and functional abnormalities of the insular cortex in trigeminal neuralgia: a multimodal magnetic resonance imaging analysis. Pain 159(3):507–514. https://doi.org/10.1097/j.pain.0000000000001120

    Article  PubMed  Google Scholar 

  33. Hanamori T, Kunitake T, Kato K, Kannan H (1998) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79(5):2535–2545. https://doi.org/10.1152/jn.1998.79.5.2535

    Article  CAS  PubMed  Google Scholar 

  34. Yamamura H, Iwata K, Tsuboi Y, Toda K, Kitajima K, Shimizu N et al (1996) Morphological and electrophysiological properties of ACCx nociceptive neurons in rats. Brain Res 735(1):83–92. https://doi.org/10.1016/0006-8993(96)00561-6

    Article  CAS  PubMed  Google Scholar 

  35. Brooks JC, Tracey I (2007) The insula: a multidimensional integration site for pain. Pain 128(1-2):1–2. https://doi.org/10.1016/j.pain.2006.12.025

    Article  CAS  PubMed  Google Scholar 

  36. Baliki MN, Geha PY, Apkarian AV (2009) Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol 101(2):875–887. https://doi.org/10.1152/jn.91100.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao S, Qin B, Zhang Y, Yuan J, Fu B, Xie P et al (2018) Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change. Am J Transl Res 10(1):184–199

    PubMed  PubMed Central  Google Scholar 

  38. Naegel S, Holle D, Desmarattes N, Theysohn N, Diener HC, Katsarava Z et al (2014) Cortical plasticity in episodic and chronic cluster headache. NeuroImage Clin 6:415–423. https://doi.org/10.1016/j.nicl.2014.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sundermann B, Dehghan Nayyeri M, Pfleiderer B, Stahlberg K, Jünke L, Baie L et al (2019) Subtle changes of gray matter volume in fibromyalgia reflect chronic musculoskeletal pain rather than disease-specific effects. Eur J Neurosci 50(12):3958–3967. https://doi.org/10.1111/ejn.14558

    Article  PubMed  Google Scholar 

  40. Lindenberg R, Scheef L (2007) Supramodal language comprehension: role of the left temporal lobe for listening and reading. Neuropsychologia 45(10):2407–2415. https://doi.org/10.1016/j.neuropsychologia.2007.02.008

    Article  PubMed  Google Scholar 

  41. Schmolck H, Squire LR (2001) Impaired perception of facial emotions following bilateral damage to the anterior temporal lobe. Neuropsychology 15(1):30–38

    Article  CAS  PubMed  Google Scholar 

  42. Wu M, Jiang X, Qiu J, Fu X, Niu C (2020) Gray and white matter abnormalities in primary trigeminal neuralgia with and without neurovascular compression. J Headache Pain 21(1):136. https://doi.org/10.1186/s10194-020-01205-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Cao D-y, Remeniuk B, Krimmel S, Seminowicz DA, Zhang M (2017) Altered brain structure and function associated with sensory and affective components of classic trigeminal neuralgia. PAIN 158(8):1561–1570. https://doi.org/10.1097/j.pain.0000000000000951

    Article  PubMed  Google Scholar 

  44. Catenoix H, Magnin M, Mauguière F, Ryvlin P (2011) Evoked potential study of hippocampal efferent projections in the human brain. Clin Neurophysiol 122(12):2488–2497. https://doi.org/10.1016/j.clinph.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  45. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Gaser C et al (2010) Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophr Res 123(2-3):137–144. https://doi.org/10.1016/j.schres.2010.08.033

    Article  PubMed  Google Scholar 

  46. Lei M, Zhang J (2021) Brain function state in different phases and its relationship with clinical symptoms of migraine: an fMRI study based on regional homogeneity (ReHo). Ann Transl Med 9(11):928. https://doi.org/10.21037/atm-21-2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qi R, Liu C, Ke J, Xu Q, Zhong J, Wang F et al (2016) Intrinsic brain abnormalities in irritable bowel syndrome and effect of anxiety and depression. Brain Imaging Behav 10(4):1127–1134. https://doi.org/10.1007/s11682-015-9478-1

    Article  PubMed  Google Scholar 

  48. de Leeuw R, Davis CE, Albuquerque R, Carlson CR, Andersen AH (2006) Brain activity during stimulation of the trigeminal nerve with noxious heat. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(6):750–757. https://doi.org/10.1016/j.tripleo.2005.12.018

    Article  PubMed  Google Scholar 

  49. Davies-Thompson J, Johnston S, Tashakkor Y, Pancaroglu R, Barton JJ (2016) The relationship between visual word and face processing lateralization in the fusiform gyri: a cross-sectional study. Brain Res 1644:88–97. https://doi.org/10.1016/j.brainres.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  50. Parise M, Kubo TT, Doring TM, Tukamoto G, Vincent M, Gasparetto EL (2014) Cuneus and fusiform cortices thickness is reduced in trigeminal neuralgia. J Headache Pain 15(1):17. https://doi.org/10.1186/1129-2377-15-17

    Article  PubMed  PubMed Central  Google Scholar 

  51. Veldhuijzen DS, Nemenov MI, Keaser M, Zhuo J, Gullapalli RP, Greenspan JD (2009) Differential brain activation associated with laser-evoked burning and pricking pain: an event-related fMRI study. Pain 141(1-2):104–113. https://doi.org/10.1016/j.pain.2008.10.027

    Article  PubMed  Google Scholar 

  52. Ter Minassian A, Ricalens E, Humbert S, Duc F, Aubé C, Beydon L (2013) Dissociating anticipation from perception: acute pain activates default mode network. Hum Brain Mapp 34(9):2228–2243. https://doi.org/10.1002/hbm.22062

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jing Zhang for editing the draft of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82171909) and the Key Research and Development Program of Shaanxi (No. 2021SF-091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Ethics declarations

Competing interests

The authors have no conflict of interest to declare.

Ethics statement

This study was approved and consented by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University. Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liu, Y., Zeng, Wt. et al. Distinctive cortical morphological patterns in primary trigeminal neuralgia: a cross-sectional clinical study. Neuroradiology 66, 207–216 (2024). https://doi.org/10.1007/s00234-023-03257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03257-z

Keywords

Navigation