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Abstract
Purpose This study aimed to investigate the impact of deep learning reconstruction (DLR) on acute infarct depiction com-
pared with hybrid iterative reconstruction (Hybrid IR).
Methods This retrospective study included 29 (75.8 ± 13.2 years, 20 males) and 26 (64.4 ± 12.4 years, 18 males) patients 
with and without acute infarction, respectively. Unenhanced head CT images were reconstructed with DLR and Hybrid IR. 
In qualitative analyses, three readers evaluated the conspicuity of lesions based on five regions and image quality. A radiolo-
gist placed regions of interest on the lateral ventricle, putamen, and white matter in quantitative analyses, and the standard 
deviation of CT attenuation (i.e., quantitative image noise) was recorded.
Results Conspicuity of acute infarct in DLR was superior to that in Hybrid IR, and a statistically significant difference was 
observed for two readers (p ≤ 0.038). Conspicuity of acute infarct with time from onset to CT imaging at < 24 h in DLR was 
significantly improved compared with Hybrid IR for all readers (p ≤ 0.020). Image noise in DLR was significantly reduced 
compared with Hybrid IR with both the qualitative and quantitative analyses (p < 0.001 for all).
Conclusion DLR in head CT helped improve acute infarct depiction, especially those with time from onset to CT imaging 
at < 24 h.
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Introduction

Acute infarction, which is the primary cause of mortal-
ity and disability among the elderly, is characterized by 
blood clot formation in the brain’s blood vessels or insuf-
ficient blood supply to the brain. This causes cerebral tissue 
ischemia and hypoxia, leading to apoptotic cell death [1]. 
Two acute infarction treatments have enhanced patient out-
comes: tissue plasminogen activator [2] and thrombectomy 
[3]. However, both treatments are subject to temporal con-
straints on their use, especially time from onset. CT is more 
easily accessible and procedurally convenient than MRI. 

Therefore, CT is widely used at first in routine clinical 
practice, considering the time. On the other hand, because 
brain is surrounded by bones, brain CT has been suffered 
from photon starvation. To alleviate this problem, brain CT 
examination is usually performed with higher gantry rota-
tion time, high tube current, and sequential scan. However, 
the contrast-to-noise ratio of acute infarct in CT is still 
relatively low compared with diffusion-weighted imaging 
(DWI) despite these inventions, which depict acute infarct 
as a high-intensity lesion [4].

Deep learning has been garnering significant interest in 
the field of radiology [5, 6]. It is prominently used not only 
for lesion detection [7] but also for differential diagnosis [8] 
and disease staging [9]. Recent studies have demonstrated 
that deep learning can be effectively applied to image pro-
cessing [10]. Deep learning reconstruction (DLR) is the par-
ticular algorithm. DLR exhibits the capability to improve 
lesion conspicuity [11] as well as to reduce image noise and 
enhance image quality in comparison to conventional hybrid 
iterative reconstruction (Hybrid IR) [12–14]. As for the 
brain CT, previous studies demonstrated that noise reduction 
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holds promise in enhancing the conspicuity and improving 
the diagnostic performance of acute infarcts [15, 16]. There-
fore, DLR may have a potential to improve the conspicuity 
of acute infarcts as well as overall image quality. A recent 
study revealed that DLR reduced noise and improved tissue 
differentiation [17], but no study has focused on acute infarct 
lesions with DLR.

This study aimed to compare the conspicuity of acute 
infarct lesions and image quality on unenhanced head CT 
between DLR and Hybrid IR.

Materials and methods

Our Institutional Review Board approved this retrospective 
study, and the requirement for obtaining written informed 
consent was waived.

Patients

We searched the picture archiving and communication sys-
tem for all consecutive patients who underwent CT scans 
for suspected acute infarction from April to September 2022 
and those who underwent subsequent MRI with DWI within 
10 days (Fig. 1). No patients were excluded during the analy-
sis process.

Patients who underwent unenhanced head CT and MRI 
with one or more acute infarcts were included in the acute 
infarct group. The lesions were divided into 5 regions by 
vascular territory, according to the prior study [18]. A total 
of 29 patients and 59 acute infarct regions were identified. 
Two radiologists (A and B with imaging experience of 6 
and 13 years, respectively) established the standard for acute 
infarct diagnosis with reference to MRI.

The inclusion criteria for the no-acute infarct group were 
all consecutive patients who underwent a CT scan for sus-
pected acute infarct from April to September 2022, and who 
underwent subsequent MRI with DWI within 10 days. The 
absence of acute infarct was confirmed based on MRI. Con-
sequently, 26 patients met the criterion.

Imaging parameters for DWI were the following: 
static magnetic field: 1.5–3.0  T; repetition time/echo 
time: 4400–6500/59.4–86.0  ms; slice thickness/space 
between slice: 6.0/6.0–6.5 mm; and acquisition matrix: 
128/128–192/192.

The final analyses included 55 patients (29 and 26 
patients in the acute infarct and no-acute infarct groups, 
respectively).

CT imaging

All patients underwent CT with a multi-detector row CT 
(Aquilion ONE; Canon Medical Systems, Otawara, Japan). 
CT scanning parameters were as follows: scan mode: axial; 
tube voltage: 120 kVp; tube current: automatic tube current 
modulation with standard deviation set at 2.5; and gantry 
rotation time: 1.5 s. Images were reconstructed with the 
following algorithms from the source data: DLR (AiCE 
BRAIN LCD mild, Canon Medical Systems) and Hybrid 
IR (AIDR 3D enhanced standard with the kernel of FC64, 
Canon Medical Systems). The following image reconstruc-
tion parameters were similar across all the image sets: field 
of view: 20–25 cm (adjusted to the head size) and slice 
thickness/interval: 4/4 mm.

CT images were anonymized and exported from the pic-
ture archiving and communication system in Digital Imaging 
and Communications in Medicine format.

Qualitative image analyses

Three other radiologists (readers 1, 2, and 3, with 12, 6, and 
2 years of imaging experience as radiologists, respectively 
plus 2 years of imaging experience as interns for all read-
ers) were involved in qualitative image analyses. Qualita-
tive image analyses comprised two parts: lesion depiction 
(part 1) and image quality (part 2). The three readers evalu-
ated the images using Image J (https:// imagej. nih. gov/ ij/). 
In default configuration, window center/window level was 
set at 25/50 HU, which could be adjusted freely by readers. 
All the images were randomized by radiologist A before the 

Fig. 1  Flow diagram for inclu-
sion of the study

https://imagej.nih.gov/ij/
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evaluations by the three readers. Further, the three readers 
were blinded to the image reconstruction algorithm.

Part 1: lesion depiction

This part included 29 patients with acute infarcts in 59 
regions. Referring to a previous study [18], the brain paren-
chyma was categorized into the following five regions, with 
each region further subdivided into left and right hemi-
spheres, resulting in a total of ten regions: anterior cerebral 
artery (ACA) (A1 and A2); middle cerebral artery at the 
level of the ventricles above the basal ganglia (sup-MCA) 
(M4, M5, and M6); middle cerebral artery at level basal 
ganglia (sub-MCA) (M1, M2, and M3); basal ganglia (BG) 
(caudate, lentiform nucleus, internal capsule, and insular 
cortex); and posterior circulation (PCA) (thalamus, superfi-
cial PCA, cerebellum, and brainstem).

Initially, the readers were provided with MRI showing 
the precise acute infarct localization, as indicated by an 
arrow. The evaluation was performed on the largest lesion 
in case multiple lesions were present within the same region. 
Subsequently, the readers evaluated the lesion depiction on 
CT. The three readers independently evaluated the lesions 
in terms of lesion depiction with a 5-point scale (5, clear 
depiction; 4, clearer than standard; 3, standard; 2, blurred 
than standard; and 1, very blurred).

Part 2: image quality

This part included 55 patients in the acute infarct or no-
acute infarct groups. The three readers, who were blinded 
to reconstruction algorithms, independently evaluated the 
image sets in terms of the following:

• Subjective image noise on a 5-point scale (5, almost no 
noise; 4, less than standard noise; 3, standard noise; 2, 
more than standard noise; and 1, severe noise)

• Sharpness on a 5-point scale (5, best sharpness; 4, more 
than standard sharpness; 3, standard sharpness; 2, less 
than standard sharpness; reduced image quality; and 1, 
excessive blurring, impairs diagnostic quality)

• Artifacts on a 5-point scale (5, almost no artifact; 4, less 
than standard artifact; 3, standard artifact; 2, more than 
standard artifact; and 1, severe artifact)

• Overall image quality on a 5-point scale (5, excellent; 4, 
better than standard; 3, standard; 2, worse than standard; 
1, poor)

Quantitative image analyses

Radiologist A placed regions of interest with the size of 
approximately 20  mm2 on the lateral ventricle (left ante-
rior horn at the level where the prominence of the caudate 
nucleus head was most discernible), the putamen where 
the left putamen was most visible, and white matter of the 
left convexity (Fig. 2). The apparent lesion was avoided 
in placing regions of interest on these normal structures. 
Regions of interest were also placed on acute infarct. The 
standard deviation (SD) of the CT attenuation for normal 
structures, which is an indicator of quantitative image noise, 
was recorded. The CT attenuation of white matter and acute 
infarct was also recorded, and the contrast between them 
(i.e., absolute value for the difference of them) was calcu-
lated. In addition, the contrast-to-noise ratio (CNR) was 
calculated with the contrast divided by image noise in the 
lateral ventricle. These evaluations were performed with 
Image J (https:// imagej. nih. gov/ ij/).

In addition, to evaluate the optimal window setting for 
each reconstruction algorithm, radiologist B adjusted the 
window width and window center for each image set. During 
this evaluation, window setting was concealed. After adjust-
ing window setting for all the patients, the adjusted window 
width and window center was recorded.

Fig. 2  Placing regions of inter-
est (white circles) on (a) lateral 
ventricle and putamen and (b) 
white matter

https://imagej.nih.gov/ij/
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Statistical analysis

EZR version 1.55 (https:// www. jichi. ac. jp/ saita ma- sct/ Saita 
maHP. files/ statm ed. html) [19], which is a graphical user 
interface of R version 4.1.2 (https:// www.r- proje ct. org/) (R 
Foundation for Statistical Computing, Vienna, Austria), was 
used for statistical analyses.

Fisher’s exact test and the Mann–Whitney U test were 
used to compare the demographic and clinical charac-
teristics between the acute infarct and no-acute infarct 
groups. The paired t-test and Wilcoxon signed-rank test 
compared the results for continuous variables and ordi-
nal scales between DLR and Hybrid IR, respectively. A 
p-value of < 0.05 was considered statistically significant for 
these comparisons. Subgroup analyses in terms of region, 
size (≥ 10 mm or < 10 mm), and time from onset to CT 
(< 4.5 h and < 24 h) were also performed in lesion conspi-
cuity evaluations.

Cohen’s kappa analysis evaluated interobserver agree-
ment. The kappa value of 0.00–0.20, 0.20–0.40, 0.41–0.60, 
0.61–0.80, and 0.81–1.00 indicate poor, fair, moderate, 
good, and excellent agreement, respectively.

Results

Patients

Table 1 described detailed patient background information. 
Acute infarct and no-acute infarct groups consisted of 29 
(mean age, 75.8 ± 13.2 years; 20 males) and 26 (mean age, 
64.4 ± 12.4; 18 males) patients, respectively. Statistically 
significant differences were found in age (p < 0.001) and 
the presence of hypertension (p = 0.031) between the acute 
infarct and no-acute infarct groups. No patient started treat-
ment with tissue plasminogen activator or thrombus retrieval 
therapy between CT and MRI.

The number and percentage of acute infarct positive regions 
were 0/18/5/12/24 and 0.0%/30.5%/8.5%/20.3%/40.7%, 

respectively for ACA/sup-MCA/sub-MCA/BG/PCA region 
in the acute infarct group. The number of regions with acute 
infarct diameters of < 10 mm or ≥ 10 mm was 21/38 and those 
with acute infarct time of < 4.5 h/ < 24 h from onset to CT 
were 16/46. Representative CT images are shown in Figs. 3, 
4, and 5.

Qualitative image analyses (part 1): lesion 
conspicuity

The detailed results of the qualitative image analyses are shown 
in Table 2. All lesion depictions in DLR tended to be superior 
to those in Hybrid IR for all readers, and statistically significant 
differences were observed for readers 1 and 3 (p ≤ 0.038).

DLR improved the acute infarct depiction compared with 
Hybrid IR in the PCA region for readers 1 and 2 (p ≤ 0.008), 
in sup-MCA region for reader 1 (p = 0.037), and in BG region 
for reader 3 (p = 0.040) in the subgroup analysis. DLR signifi-
cantly improved the acute infarct depiction with onset to CT 
imaging time at < 24 h compared with Hybrid IR for all read-
ers (p ≤ 0.020). Conspicuity for acute infarct with onset to CT 
imaging time at < 4.5 h in DLR tended to improve for read-
ers 2 and 3. Conspicuity of acute infarct with size ≥ 10 mm 
in DLR was superior to that in Hybrid IR, and a statisti-
cally significant difference could be observed for one reader 
(p = 0.029).

The interobserver agreement in lesion conspicuity evalu-
ations was moderate (kappa = 0.560) between reader 1 and 2, 
good (kappa = 0.784) between reader 1 and 3, and moderate 
(kappa = 0.570) between reader 2 and 3.

Qualitative image analyses (part 2): image quality

Table 3 shows the detailed results of the qualitative image 
quality analyses. All readers agreed that DLR was signifi-
cantly superior to Hybrid IR in terms of noise (p < 0.001). 
Conversely, controversial results were observed for readers 
1 and 3 in terms of sharpness; reader 1 rated Hybrid IR 
was significantly superior to DLR (p < 0.001) and reader 3 

Table 1  Patient background 
information

a  Mann–Whitney U test
b  Fisher’s exact test

Acute infarct No-acute infarct P-value

Number of patients 29 26
Age (years: mean ± standard deviation) 75.8 ± 13.2 64.4 ± 12.4  < 0.001 a

Sex (male, female) 20, 9 18, 8 1.000 b

History of cerebral infarct (positive, negative) 5, 24 2, 24 0.426 b

Hypertension (positive, negative) 18, 11 8, 18 0.031 b

Hyperlipidemia (positive, negative) 7, 22 5, 21 0.751 b

Diabetes mellitus (positive, negative) 9, 20 4, 22 0.215 b

https://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html
https://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html
https://www.r-project.org/
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rated vice versa (p = 0.004). Overall image quality in DLR 
was rated as superior to that in Hybrid IR by readers 2 and 
3 (p ≤ 0.043).

The interobserver agreement in the evaluations 
of noise, sharpness, artifact, and overall was moder-
ate (kappa = 0.418), fair (kappa = 0.354), moderate 
(kappa = 0.478), and fair (kappa = 0.381) between reader 
1 and 2, good (kappa = 0.668), poor (kappa = 0.124), fair 
(kappa = 0.356), and poor (kappa = 0. 099) between reader 1 
and 3, and moderate (kappa = 0.475), poor (kappa = 0.188), 
moderate (kappa = 0.458), and fair (kappa = 0. 343) between 
reader 2 and 3, respectively.

Quantitative image analyses

Table 4 shows detailed results for the quantitative image 
analyses. The quantitative image noises (mean ± SD) 
were statistically significantly reduced in DLR than 
those in Hybrid IR for all structures (p < 0.001 for all). 
The contrast between acute infarct and white matter 
in DLR (13.5 Hounsfield unit [HU]) was significantly 
higher than that in Hybrid IR (9.9 HU) (p < 0.001). CT 
attenuation of the lesion/white matter was 23.7/37.2 
HU and 23.3/31.8 HU in DLR and Hybrid IR, respec-
tively. There was also statistically significant difference 

Fig. 3  Unenhanced head CT (a, b) of a 37-year-old male patient with 
acute infarct in the left posterior circulation region (white arrows). 
The time interval from onset to CT examination was 5 h. The conspi-
cuity of this acute infarct was rated as 5, 3, and 1 in DLR (a) and 3, 2, 

and 2 in Hybrid IR (b) by readers 1, 2, and 3, respectively. Window 
level / width is 25 / 50 Hounsifield unit for both (a) and (b). Diffu-
sion-weighted image is also shown in (c)

Fig. 4  Unenhanced head CT (a, b) of a 65-year-old female patient 
with acute infarct in the left sup-MCA region (white arrows). The 
time interval from onset to CT examination was 9 h. The conspicuity 
of this acute infarct was rated as 5, 4, and 5 in DLR (a) and 4, 3, and 

3 in Hybrid IR (b) by readers 1, 2, and 3, respectively. Window level 
/ width is 25 / 50 Hounsifield unit for both (a) and (b). Diffusion-
weighted image is also shown in (c)
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in CNR between DLR (6.5) and Hybrid IR (3.0) 
(p < 0.001).

The optimal window width was 64.2 ± 8.2 HU and 
60.8 ± 9.5 HU for DLR and Hybrid IR, respectively. 
There was no statistically significant difference between 
them (p = 0.095). The optimal window center in DLR was 
38.8 ± 2.1 HU, which was significantly higher than that in 
Hybrid IR (32.8 ± 2.7 HU) (p < 0.001).

Discussion

Head CT is more readily accessible and is associated 
with shorter examination time compared with MRI. This 
study revealed that DLR significantly decrease image 
noise compared with Hybrid IR on unenhanced head 
CT, which improved the conspicuity of acute infarct, 

Fig. 5  Unenhanced head CT (a, b) of an 85-year-old female patient 
with acute infarct in the left basal ganglia region (white arrows). The 
time interval from onset to CT examination was 9 h. The conspicuity 
of this acute infarct was rated as 3, 3, and 4 in DLR (a) and 2, 3, and 

2 in Hybrid IR (b) by readers 1, and 2, and 3 respectively. Window 
level / width is 25 / 50 Hounsfield unit for both (a) and (b). Diffusion-
weighted image is also shown in (c)

Table 2  Depiction of acute infarct lesion

The number of patients for each score (5/4/3/2/1) is shown
ACA  anterior cerebral artery; BG basal ganglia; DLR deep learning reconstruction; Hybrid IR hybrid iterative; N/A not applicable; PCA posterior 
circulation; sub-MCA middle cerebral artery at level basal ganglia: and sup-MCA middle cerebral artery at the level of the ventricles above the 
basal ganglia
Comparisons were performed with the Wilcoxon signed-rank test

Reader 1 Reader 2 Reader 3

DLR Hybrid IR P-values DLR Hybrid IR P-values DLR Hybrid IR P-values

Area
  ACA 0/0/0/0/0 0/0/0/0/0 N/A 0/0/0/0/0 0/0/0/0/0 N/A 0/0/0/0/0 0/0/0/0/0 N/A
  Sup-MCA 5/1/2/5/5 0/6/1/4/7 0.037 0/4/3/3/8 0/2/4/4/8 0.608 6/0/3/3/6 4/0/3/4/7 0.341
  Sub-MCA 1/1/0/1/2 1/0/1/3/0 0.850 0/1/0/1/3 0/1/1/0/3 1.000 2/0/1/1/1 1/0/1/1/2 0.371
  BG 1/1/2/3/5 1/1/1/5/4 1.000 0/1/1/3/7 0/1/3/2/6 0.345 1/3/2/5/1 1/1/2/3/5 0.040
  PCA 6/2/5/4/7 2/3/4/7/8 0.006 0/5/5/9/5 0/3/5/5/11 0.008 6/1/2/3/12 4/2/2/6/10 0.718

Size
   < 10 mm 2/1/2/6/10 0/1/2/7/11 0.080 0/2/0/5/14 0/0/2/4/15 0.233 4/2/4/1/10 2/0/3/6/10 0.140
   ≥ 10 mm 11/4/7/7/9 4/9/5/12/8 0.029 0/9/9/11/9 0/7/11/7/13 0.318 11/2/4/11/10 8/3/5/8/14 0.108

Time
   < 4.5 h 2/0/2/3/9 1/0/3/6/6 0.824 0/0/1/7/8 0/0/1/2/13 0.073 2/1/0/6/7 0/1/3/3/9 0.392
   < 24 h 9/1/8/9/19 1/6/6/17/16 0.020 0/8/7/14/17 0/2/11/8/25 0.004 9/3/5/12/17 3/2/8/10/23 0.014

All 13/5/9/13/19 4/10/7/19/19 0.005 0/11/9/16/23 0/7/13/11/28 0.157 15/4/8/12/20 10/3/8/14/24 0.038
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especially for those with time from onset to CT exami-
nation of < 24 h.

Several studies reported that DLR helps improve 
image quality compared with Hybrid IR in head CT [17, 
20, 21]. The association between the degree of image 
noise vs. the visibility and diagnostic performance of 
acute infarction on CT has been indicated by previous 
studies which used image filters or iterative reconstruc-
tion [15, 16]. However, no study has directly investigated 
DLR’s potential in improving image quality results in 
superior lesion depiction. Our study revealed that DLR 
effectively reduced image noise in both the qualita-
tive and quantitative image analyses (p < 0.001 for all). 
This would have been resulted in improved CNR for the 
acute infarct when compared to Hybrid IR in head CT 
(p < 0.001). The acute infarct conspicuity in DLR also 
tended to be superior to that in Hybrid IR for all readers 
and statistically significant difference could be observed 
for two readers (p ≤ 0.038).

Our study is unique because we evaluated the effects of 
DLR on acute infarct depiction based on region, size, and time 
from onset to CT. This study revealed that DLR improved 
acute infarct depiction in the PCA region for two readers 

and the sup-MCA and BG regions in one reader. Further, the 
incidence of acute infarct in these regions is relatively high 
(30.5%/40.7% for sup-MCA/PCA), which is compatible with 
a previous study (29.9%/27.4% for sup-MCA/PCA) [18]. 
Hence, DLR might have a potential to improve acute infarct 
depiction in frequent sites. Additionally, our study revealed 
that acute infarct depiction with ≥ 10 mm was improved for 
one reader. Notably, acute infarct conspicuity with time from 
onset to CT imaging of < 24 h, which is a candidate for throm-
bus retrieval therapy [3], was significantly improved. DLR 
may help compare and interpret the follow-up CT examination 
with the initial CT for these patients.

However, DLR-associated drawback was observed. 
In general, sharpness is known to have negatively asso-
ciated with the degree of noise [22]. Our study judged 
image sharpness in DLR as significantly deteriorated by 
one reader (p < 0.001). On the other hand, overall image 
quality was evaluated by considering not only image noise 
but also sharpness and artifacts. Therefore, while image 
noise in DLR was judged as significantly superior to that 
in Hybrid IR, significant superiority of overall image qual-
ity in DLR as compared to Hybrid IR was observed only 
for two readers. How this affects the depiction of brain 
diseases other than acute infarct needs to be investigated 
in future research.

Contrast between lesion to white matter in DLR was 
found to be significantly higher than that in Hybrid IR. As 
for the CT attenuation of structures in various reconstruction 
algorithms, there have been mixed results. According to a 
systematic review, CT attenuation of abdominal CT images 
was similar between DLR, Hybrid IR, and filtered back pro-
jection [14]. However, there also exist reports which reported 
the difference of CT attenuation of the liver between model-
based iterative reconstruction and filtered back projection 
[23, 24]. In addition, Yamakuni, et al. recently reported that 
the CT attenuation of the cerebral venous sinus in DLR was 
significantly higher than that in Hybrid IR [25]; our results 
would be in line with their article.

This study has some limitations. First, a lesion detection 
test was not performed in this study because a comparison 

Table 3  Results for qualitative image analyses

The numbers of patients for each score (5/4/3/2/1) are shown
DLR deep learning reconstruction; Hybrid IR hybrid iterative reconstruction
Comparisons were performed with the Wilcoxon signed-rank test

Reader 1 Reader 2 Reader 3

DLR Hybrid IR P-values DLR Hybrid IR P-values DLR Hybrid IR P-values

Noise 2/37/16/0/0 0/3/25/26/1  < 0.001 0/21/30/4/0 0/5/38/12/0  < 0.001 3/44/6/2/0 0/2/23/29/1  < 0.001
Sharpness 0/0/33/22/0 0/0/53/2/0  < 0.001 0/13/40/2/0 0/16/36/3/0 0.694 0/22/16/17/0 0/4/29/22/0 0.004
Artifact 0/12/33/10/0 0/16/25/13/1 0.848 0/13/37/5/0 0/6/41/8/0 0.008 1/23/26/5/0 0/3/39/12/1  < 0.001
Overall 0/1/43/11/0 0/0/51/4/0 0.117 0/22/30/3/0 0/15/32/8/0 0.043 0/31/12/12/0 0/2/28/24/1  < 0.001

Table 4  Results for quantitative image analyses

CNR contrast-to-noise ratio; DLR deep learning reconstruction; 
Hybrid IR hybrid iterative reconstruction
Contrast was the difference of the CT attenuation between lesion and 
white matter
Contrast-to-noise ratio was calculated with contrast divided by image 
noise in lateral ventricle
Comparisons were performed with the paired t-test

DLR Hybrid IR P-values

Image noise Lateral ventricle 2.76 ± 0.49 3.15 ± 0.52  < 0.001
Putamen 2.45 ± 0.76 3.34 ± 0.88  < 0.001
White matter 2.23 ± 0.49 3.38 ± 0.61  < 0.001

Contrast 13.5 ± 7.3 9.9 ± 5.0  < 0.001
CNR 6.5 ± 3.6 3.0 ± 1.8  < 0.001
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with previous CT examinations would be necessary for 
diagnosing acute infarcts in some patients with chronic 
ischemic change or old infarcts. Instead, we aimed to show 
the superiority of DLR in terms of acute infarct conspicu-
ity. Second, this study included a relatively small number 
of participants, which would have caused various statisti-
cal test results across readers in the subgroup analyses. 
Further studies that include a larger number of patients 
would be warranted while statistically significant differ-
ences in lesion depiction could be observed between DLR 
and Hybrid IR for some readers. Third, the results for the 
depiction of acute infarction lesion, sharpness, artifact, 
and overall were different between the readers, because the 
readers exhibit varying levels of experience and familiar-
ity with the images, possibly stemming from differences 
in their years of experience. Furthermore, as mentioned 
in the limitations, small number of the lesions may also 
be a contributing factor. Fourth, window setting used in 
the qualitative image analyses was not recorded. Instead, 
we evaluated the optimal window in the quantitative 
image analyses and significant difference was observed 
for optimal window center between DLR and Hybrid IR. 
However, we assume the readers evaluated images with 
appropriate window setting because they were allowed 
to adjust window center and window width in evaluat-
ing images. Fifth, there were multiple lesions for some 
patients. Instead of selecting one lesion for each patient, 
which could lead to bias, we selected to analyze the con-
spicuity of lesions for ten territories based on a previous 
article by van Ommen, et al. [18]. Sixth, there were some 
patients with a relatively long period between CT and MRI 
examinations, up to 10 days. Thereby, there could be some 
degree of changes in images. Finally, each manufacturer’s 
DLR has subtle differences in algorithms; thus, the study 
results are not necessarily applicable to the DLR of other 
manufacturers.

In conclusion, DLR significantly reduced image noise 
compared with Hybrid IR, thereby improving acute infarct 
depiction, especially for those with time from onset to CT 
examination of < 24 h.
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