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Abstract
Purpose  This prospective cross-sectional study investigated the influence of regular cannabis use on brain metabolism in 
young cannabis users by using combined proton and phosphorus magnetic resonance spectroscopy.
Methods  The study was performed in 45 young cannabis users aged 18–30, who had been using cannabis on a regular basis 
over a period of at least 2 years and in 47 age-matched controls. We acquired 31P MRS data in different brain regions at 3T 
with a double-resonant 1H/31P head coil, anatomic images, and 1H MRS data with a standard 20-channel 1H head coil. 
Absolute concentration values of proton metabolites were obtained via calibration from tissue water as an internal refer-
ence, whereas a standard solution of 75 mmol/l KH2PO4 was used as an external reference for the calibration of phosphorus 
signals.
Results  We found an overall but not statistically significant lower concentration level of several proton and phosphorus 
metabolites in cannabis users compared to non-users. In particular, energy-related phosphates such as adenosine triphosphate 
(ATP) and inorganic phosphate (Pi) were reduced in all regions under investigation. Phosphocreatine (PCr) showed lowered 
values mainly in the left basal ganglia and the left frontal white matter.
Conclusion  The results suggest that the increased risk of functional brain disorders observed in long-term cannabis users 
could be caused by an impairment of the energy metabolism of the brain, but this needs to be verified in future studies.
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fC	� Female cannabis users
FGM	� Frontal gray matter
FID	� Free-induction-decay
fN	� Female cannabis non-users
FWM	� Frontal white matter
M	� Gray matter
GPC	� Glycerol-phosphocholine
GPE	� glycerol-phosphoethanolamine
jMRUI	� Java-based graphical user interface for the 

magnetic resonance user interface (MRUI)
l_BG	� Left basal ganglia
l_FWM	� Left frontal WM
l_TH	� Left thalamus
l_TL	� Left temporal lobe
mC	� Male cannabis users
mN	� Male cannabis non-users
MPRAGE	� Magnetization prepared-rapid gradient echo
MRS	� Magnetic resonance spectroscopy
NAA	� N-acetyl-aspartate
NAD	� Nicotinamide adenine dinucleotide
NC	� Cannabis non-users
PCr	� Phosphocreatine
PDE	� Phosphodiester
PE	� Phosphatidylethanolamine
Pi	� Inorganic phosphate
PME	� Phosphomonoesters
ppm	� Parts per million
r_BG	� Right basal ganglia
r_FWM	� Right frontal WM
r_TH	� Right thalamus
r_TL	� Right temporal lobe
ROI	� Region of interest
SD	� Standard deviation
tCho	� Total choline
tCr	� Total creatine
TE	� Echo time
TH	� Thalamus
TL	� Temporal lobe
tNAA	� Total n-acetyl-aspartate
TR	� Repetition time
VOI	� Volume of interest
WM	� White matter

Introduction

Cannabis is one of the most widely used recreational drugs 
in the world [1]. Even though there has been a concern over 
decades about the use of cannabis as a cause of psychiatric 
illness, cannabis-related disorders have been rising among 
the past years [2]. Partial legalization can be associated with 
the increasing usage and the reduction in the perception of 
harm [3]. Due to this development, more scientific evidence 

is needed to determine the degree of harmfulness to the 
human body, especially with respect to brain metabolism 
and the whole nervous system.

Delta-9-tetrahydrocannabinol (∆9-THC) is the main 
psychoactive component of cannabis, acting on cannabi-
noid (CB1) receptors which can be densely found within 
brain networks critical for learning, attention, memory, 
cognitive processing, and motor control [4]. Moderate 
to high concentrations of CB1-binding sites have been 
detected in the thalamus, cerebellum, amygdala, basal 
ganglia, occipito-temporal gyrus, inferior temporal gyrus, 
frontal cortex, and hippocampus [4–6].

Several studies have shown that long-term cannabis 
use negatively affects memory, motor skills, executive 
function, emotional processing, and attention in adoles-
cents [7–9] and adults [10–14]. In neuroimaging studies, 
long-term cannabis users exhibited abnormal brain acti-
vation during performance of functional tasks, including 
decision-making, verbal list learning, visual attention, and 
response inhibition [15–18].

Proton MRS is a non-invasive technique that has been 
widely applied to detect and quantify important neurome-
tabolites [19]. Using single-voxel or multi-voxel acqui-
sition schemes, cerebral metabolites including NAA 
(N-acetyl-aspartate), Cr (creatine), and cytosolic choline 
(Cho) can be assessed. NAA plays a role as a biomarker 
indicating neuronal viability [20]. Total Cr (tCr, creatine 
plus phosphocreatine) is involved in the energy metabo-
lism, acting as an energy buffer by distributing energy 
within the brain and by maintaining constant brain adeno-
sine triphosphate (ATP) levels through the creatine kinase 
reaction [21, 22]. The Cho signal is associated with cel-
lular membrane synthesis and degradation.

Phosphorus MRS in addition allows in vivo evalua-
tion of compounds directly related to the energy metabo-
lism and the composition of cell membranes. Adenosine 
triphosphate (ATP), phosphocreatine (PCr), and inorganic 
phosphate (Pi) are linked to brain bioenergetics through 
biochemical energy production (i.e., ATP synthesis) 
and energy use (i.e., ATP utilization). The phosphomo-
noesters (PME) play an important role in the synthesis 
of membrane lipids such as phosphatidylcholine and 
phosphatidylethanolamine. The main PME constitu-
ents, phosphoethanolamine (PE) and phosphocholine 
(PC), are precursors of the corresponding phospholipids. 
Membrane breakdown, in turn, is indicated by the phos-
phodiester (PDE) and catabolic products of phospholipid 
metabolism, glycerol-phosphoethanolamine (GPE), and 
glycerol-phosphocholine (GPC). Decreased membrane 
turnover has been associated with elevated PDE levels 
[23]. PME reduction refers to altered membrane turno-
ver rates. In bipolar depression, e.g., studies have shown 
significantly altered frontal lobe PME [24]. Furthermore, 
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31P MRS can detect nicotinamide adenine dinucleotide 
phosphate (NADP), which is involved in oxidative chains 
and in membrane phospholipid metabolism [25]. Finally, 
it is possible to obtain the value of intracellular pH as 
well as the concentration of magnesium (Mg2+) from the 
spectrum [26, 27].

To the best of our knowledge, no literature is available on 
brain metabolic changes using 31P-MRS related to cannabis 
use. In this study, we used both single-voxel-1H MRS and 
multi-voxel-31P MRS at a 3 T scanner to determine abso-
lute metabolite concentration values from five brain areas 
that are suspected to be affected by cannabis [28] includ-
ing frontal gray (FGM) and frontal white matter (FWM), 
thalamus (TH), basal ganglia (BG), and temporal lobe (TL). 
With 31P MRS, all regions except FGM were evaluated in 
both hemispheres separately. 1H MRS voxels other than 
FGM were restricted to the right hemisphere. Comparing 
concentration data between long-term cannabis users and 
non-users, we detected considerable though not statistically 
significant differences which might help to better under-
stand the impact of cannabis use on brain metabolism. In 
addition, sex-related differences in non-users were found.

Methods

Study subjects

The subjects were recruited through local drug counseling 
centers. None of the participants received treatment for sub-
stance-use disorder. Control subjects were recruited through 
advertisement (poster, flyer) at the hospital. Recruitment of 
both subject groups took place simultaneously. All subjects 
were interviewed by an experienced psychologists or psy-
chiatrist to assess extent and history of their cannabis use 
and underwent a complex psychometric assessment (supple-
mentary_Demographics: suppl_table 1) to ensure inclusion 
criteria as seen below [29].

Only right-handed study subjects and controls between 18 
and 30 years without neurological, psychiatric, and systemic 
diseases and without further drug addictions were included. 
This restriction was meant to exclude the effects of handed-
ness and medical conditions on brain metabolism.

We investigated 21 female non-users (fN) (age 23 ± 2) 
and 26 male non-users (mN) (age 25 ± 4), who had never 
been using cannabis before or less than 10 times in total (= 
lifetime consume).

In the consumer group, 5 female cannabis-users (fC) (age 
24 ± 4) and 40 male cannabis-users (mC) (age 24 ± 3) were 
examined. All users had been using cannabis on a regular 
basis at least 1 day per month in the last 24 months.

The fC group was excluded from further evaluation 
because not sufficient subjects could be found during the 
study.

Before MRI scan, study participants had to remove all 
metal objects. The subjects were instructed to move as little 
as possible during the MR examination which lasted about 
1.5 h. Smoking was prohibited on examination day.

In this study, we used the STROBE cross-sectional 
reporting guidelines [30].

Data acquisition

Data acquisition of the brain was performed on a 3T whole 
body system (Magnetom Skyra, Siemens Healthcare, Erlan-
gen, Germany). For anatomic images and 1H MRS, the 
standard 20-channel 1H (receive-only) head coil was used 
due to quality reasons. 31P spectra were acquired using 
a double-resonant 1H/31P (transmit/receive) head coil 
(RAPID Biomedical GmbH, Rimpar, Germany).

Anatomical data included three orthogonal T2-weighted 
localizers and a sagittal 3D T1-weighted data set (resolution 
0.9 mm × 0.9 mm × 0.9 mm) of the whole brain (MPRAGE) 
which allowed segmentation of the brain tissue to obtain 
compartment maps of gray matter, white matter, and CSF. 
Segmentation was obtained using the SPM software (SPM 
8, statistical parametric mapping, The Wellcome Trust Cen-
tre for Neuroimaging, University College London). For all 
spectroscopic volumes of interest, volume fractions of the 
three compartments were calculated from the maps.

Single-voxel proton spectra were obtained from 4 differ-
ent brain regions: frontal gray matter (FGM), right frontal 
white matter (r_FWM), right thalamus (r_TH), and right 
temporal region (r_TL). Because of time restrictions, no 
spectra were acquired from the left hemisphere. Mean 
voxel size was 15 ml, 12 ml, 10 ml, and 8 ml respectively. 
Depending on brain size, voxel size was individually slightly 
adjusted to ensure accurate coverage of the anatomical target 
region. We used a PRESS sequence with TR = 1500 ms, TE 
= 135 ms, 80 acquisitions, bandwidth = 1200 Hz, and vector 
size = 1024. Shim adjustment was corrected manually to 
achieve minimal line width. As tissue water was used as an 
internal reference for absolute quantification of metabolites, 
additional spectra without water suppression were acquired 
from each voxel.

After coil change and repositioning of the patient phos-
phorus spectra were recorded using a 3D-chemical-shift-
imaging (CSI) free-induction-decay (FID) sequence (TR = 
1200 ms, TE = 2.3 ms, 15 acquisitions, bandwidth = 2000 
Hz, vector size = 1024). Elliptical phase encoding with a 
weighted acquisition scheme was employed. Matrix size was 
8 × 8 × 8, FOV = 200 × 200 mm2 resulting in 25 × 25 × 
25 mm3 voxels. Optimized signal intensity was achieved by 



1634	 Neuroradiology (2023) 65:1631–1648

1 3

applying proton decoupling using the WALTZ-4 scheme and 
by a reduced flip angle of 60°. Careful manual shimming of 
the 3D volume was applied yielding line widths lower than 
30 Hz. Acquisition time was 8:42 min. For absolute quanti-
fication of phosphorus metabolites, a phosphorus phantom 
with 75 mmol/l KH2PO4 was used as an external reference. 
The phantom was placed in the headcoil close to the left 
fronto-parietal part of the head.

Further information concerning data quality of 31P MRS 
and 1H MRS spectra can be found in supplementary_P_
DataQuality and supplementary_H_DataQuality, 
respectively.

Data processing

Evaluation of proton spectra was done using the commercial 
software tool LCModel [31] (http://s-​prove​ncher.​com/​lcmod​el.​
shtml). The signal-to-noise ratio (SNR) and the value of Cramer-
Rao lower bound (%SD) were used to discard low quality data. 
Only spectra with SNR higher than 3 and %SD lower than 20% 
both for Cr and Cho were included for further analysis. To obtain 
absolute metabolite concentration values, the LCModel output 
data were corrected for longitudinal and transversal relaxation 
of both metabolites and brain tissue water taking into account 
the fractions of GM, WM, and CSF determined separately for 
each voxel from the segmentation maps. Relative tissue water 
content of 78%, 65%, and 97% was assumed for GM, WM, and 
CSF, respectively [32]. Relaxation factors (RH) were calcu-
lated according to the following equation for double-spin-echo 
sequences [33]:
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SH and SH0 represent the measured proton peak intensity 
and the peak intensity corrected for T1 and T2 relaxation, 
respectively. T1 and T2 values were chosen as mean values 
(supplementary_H_Results: suppl_table 6) from the litera-
ture [34–47]. Finally, concentrations in units of milli-mole 
(mMol) per kg of brain tissue were calculated by correcting 
all metabolite values for the CSF fraction of each spectro-
scopic voxel determined from the compartment maps.

Phosphorus CSI data were transferred to a Leonardo 
workstation (Siemens Healthcare GmbH, Erlangen, Ger-
many) and interpolated to a 32 × 32 × 8 grid resulting in a 
stack of 8 axial slices with 25 mm thickness (voxel size 6.3 
× 6.3 × 25 mm3 ≈ 1 ml) which were superimposed on axial 
T2-weighted slices (Fig. 1). Anatomical volumes of interest 

(VOI) for spectral evaluation were identified by manually 
(M.F., M.B., and S.B.) selecting appropriate voxels in the 
grid. Grid shift in-plane as well as in head-feet direction 
was applied to optimally enclose the respective anatomical 
region of interest. Nine different VOIs were delineated for 
each subject in FGM, l_FWM, r_FWM, l_TH, r_TH, l_BG, 
r_BG, l_TL, and r_TL. VOI size ranged from 7 to 18 ml.

Quantitative analysis of the 31P spectra was performed 
with the jMRUI software tool (version 5.1) employing the 
AMARES algorithm [48]. The model function was composed 
of 14 resonances including PE, PC, Pi, GPE, GPC, PCr, ATP, 
and one macromolecular component to account for the broad 
signal baseline (Fig. 1). ATP was represented by a total of 7 
peaks: a doublet γ-ATP, a doublet α-ATP, and a triplet β-ATP. 
Constraints for frequency, damping, coupling constants, and 
amplitude ratios (prior knowledge) were defined for the com-
pounds to be estimated by the algorithm. The resulting ampli-
tude values are proportional to the corresponding metabolite 
concentration. The concentration of ATP was calculated from 
the γ-ATP resonance. Only spectra with SNR higher than 3 
were included for further analysis.

The AMARES algorithm provides Cramer-Rao lower 
bound (sd.amp.) values as an error estimate for all peaks 
in each spectrum. Whereas PCr signals always had rela-
tive error values lower than 20%, weak signals, e.g., NAD 
and PC, suffer from low intensities and high errors. Peaks 
with relative error values > 1 were excluded from further 
analysis.

Several postprocessing steps are required to obtain abso-
lute quantification of metabolites: first, the signal ampli-
tudes were corrected for the reduced flip angle and for T1 
relaxation. Correction factors (RP) were calculated using 
the following equation:

with

SP and SP0 represent the measured phosphorus peak inten-
sity and the peak intensity corrected for T1 relaxation and flip 
angle, respectively (supplementary_P_Results, suppl_table 4).

Varying coil loading due to different head sizes of sub-
jects was taken into account based on the radiofrequency 
transmitter amplitude required for a 90° pulse. Calibration 
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of signal intensities was done with the phantom replace-
ment method [49]. Finally, the calculated metabolic con-
centrations were corrected for partial CSF volume of each 
VOI to obtain concentration values in units of mMol per 
kg of brain tissue.

Calculated parameters

Intracellular pH was calculated from the chemical shift differ-
ence δ between the peak of inorganic phosphate (Pi) and the 
PCr peak [50–52] according to the equation:

Free cytosolic Mg2+ was estimated from the chemical 
shift difference δβ between the peak of β-ATP and the PCr 
peak according to the formula:

pH = 6.75 + log10

[
3.27 − δ

δ − 5.63

]

pMg = 4.24 − log10

⎡
⎢⎢⎣

�
�β + 18.58

�0.42
�
−15.74 − �β

�0.84
⎤⎥⎥⎦

Fig. 1   Selection of the anatomi-
cal region of interest for 31P 
spectroscopic evaluation with 
the scanner software (Siemens 
Leonardo workstation) and final 
jMRUI results after processing 
AMARES algorithm
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The relation between the concentration of Mg2+ (in mol/l) 
and the value of pMg is given by: [Mg2+] =  − log10(pMg).

Concentration ratios of PCr and Cr were estimated for 
those ROIs, where both phosphorus and proton spectra 
were acquired: FWM, r_TH, r_TL, and r_FWM. Cr values 
were calculated as [Cr] = [tCr] − [PCr].

Statistical methods

All statistical evaluations were performed using IBM 
SPSS Statistics (Version 27). Mean values for each 
metabolite concentration as well as for pH and Mg were 
calculated for every VOI separately. Concentration differ-
ences between groups were determined as relative values 
in percent according to:

The statistical analysis was based on the General 
Linear Model using multivariate analysis of variance 
(MANOVA).

For P MRS, the metabolite values of PME, Pi, PDE, 
PCr, ATP, pH, and Mg were set as dependent variables, 
while membership to one of the three groups (fN, mN, and 
mC) was set as a fixed factor. NAD was excluded from the 
analysis because of too many low-quality data. To investi-
gate the overall effect of the groups on all seven metabolite 
values, a multivariate Wilks-Lambda test was used. Paired 
comparisons were performed by post hoc Scheffé test. The 
level of significance was corrected for multiple tests using 
the Bonferroni approach. We analyzed nine regions simul-
taneously, so a p < 0.0056 was chosen as the criterion for 
significance.

Side related differences in metabolite values were calcu-
lated as relative values in percent according to:

For statistical evaluation, multivariate analysis of vari-
ance with repeated measurements (RM MANOVA) was 
used in four regions: TH, BG, TL, and FWM. To investi-
gate overall hemispheric effects, the metabolite values from 
the left and right hemisphere were set as within-subject 
factors, membership to the groups was set as a between-
subjects factor. As we made four bilateral comparisons, the 
level of significance was chosen as p < 0.0125 according to 
the Bonferroni approach. In order to compare side related 
effects between the groups, additional RM ANOVAs were 
performed for each group separately. Hemispheric differ-
ences for individual metabolite values were evaluated with 
paired t test.

Δmf =
(mN − fN)

fN
,ΔCN =

(mC − mN)

mN

Δrl =
(right − lef t)

lef t
.

For H MRS, the metabolic values of tNAA, tCr, and tCho 
were set as dependent variables in the MANOVA. To inves-
tigate the overall effect of the groups on all three metabolite 
values, a multivariate Wilks-Lambda test was used. Paired 
comparisons were performed by post hoc Scheffé test. The 
level of significance was corrected for multiple tests using 
the Bonferroni approach. We measured four regions, so a p 
< 0.0125 was chosen as the criterion for significance.

Results

31P MRS results are shown in Tables 1 and 2 and Figs. 2, 3, 
and 4; more detailed data can be found in supplementary_P_
results (suppl_table 5 and suppl_figs. 9a–d). 1H MRS results 
are shown in Table 3 and Fig. 5; more detailed data are given 
in supplementary_H_results (suppl_table 7, suppl_table 8 and 
suppl_figs.10a–b).

Phosphorus MRS results

Statistical analysis with MANOVA showed overall signifi-
cant group differences of metabolic values only in the r_TH 
(p=0.014) and r_TL (p = 0.034) (Table 1). These results were 
no longer significant after Bonferroni correction. For some 
individual metabolites, concentration differences were found 
by post hoc tests comparing mN with fN and mN with mC, 
respectively.

Differences between male non‑users (mN) and female 
non‑users (fN): Δmf

ATP levels in male non-users tended to be lower than in 
females in nearly all regions, most noticeable in the thalamus 
(Δmf = − 11% in r_TH and − 10% in l_TH) (Fig. 2) where 
Δmf was negative for all other metabolites, too. MANOVA 
revealed significant differences for PME (p = 0.014) and PCr 
(p = 0.018) in the right thalamus, although this result did not 
survive Bonferroni correction.

Males tended to have lower PME mainly in the thalamus 
but higher PDE values in most regions. Pi was lower in the 
frontal lobe; pH tended to be slightly higher in males, particu-
larly in the right thalamus and the right FWM. The higher PCr 
value for males (Δmf = + 12%) in the l_FWM (p = 0.018) was 
no longer significant after Bonferroni correction.

Differences between male cannabis users (mC) and male 
non‑users (mN): ΔCN

Cannabis users had consistently lower ATP and Pi levels in all 
regions (Fig. 3). PDE values tended to be lower in mC except 
for the thalamus. pH levels were slightly reduced in most 
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Table 1   Results of 31P MRS, comparison between groups

FGM MANOVA: Wilks-Lambda: p = 0.175

Post hoc Scheffé test ΔCN

fN mN mC rel. diff. p value
PME 2.70 2.61 2.62 0% 0.997
Pi 0.68 0.59 0.54 − 9% 0.599
PDE 2.89 3.04 2.83 − 7% 0.259
PCr 3.65 3.58 3.60 1% 0.984
ATP 2.83 2.70 2.51 − 7% 0.400
pH 6.98 6.99 6.98 − 0.1% 0.343
Mg 0.11 0.10 0.10 1% 0.923
r_TH MANOVA: Wilks-Lambda: p = 0.014

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

PME 2.30 1.96 2.05 4% 0.680
Pi 0.79 0.75 0.73 − 3% 0.892
PDE 2.61 2.56 2.63 3% 0.790
PCr 3.70 3.23 3.38 5% 0.558
ATP 2.43 2.16 2.03 − 6% 0.586
pH 6.99 6.99 6.99 0.0% 0.827
Mg 0.10 0.11 0.10 − 5% 0.469
r_BG MANOVA: Wilks-Lambda: p = 0.358

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

PME 2.17 2.16 2.11 − 2% 0.874
Pi 0.61 0.63 0.53 − 15% 0.117
PDE 2.66 2.70 2.63 − 2% 0.846
PCr 3.48 3.22 3.29 2% 0.865
ATP 2.49 2.36 2.15 − 9% 0.233
pH 6.99 6.99 6.99 0.0% 0.998
Mg 0.11 0.11 0.11 0% 0.991
r_TL MANOVA: Wilks-Lambda: p = 0.034

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

PME 2.03 2.18 2.25 4% 0.764
Pi 0.59 0.58 0.53 − 9% 0.453
PDE 2.03 2.36 2.20 − 7% 0.487
PCr 3.50 3.78 3.79 0% 1.000
ATP 2.30 2.23 2.07 − 7% 0.367
pH 7.00 7.00 6.99 − 0.1% 0420
Mg 0.12 0.11 0.11 − 2% 0.854
r_FWM MANOVA: Wilks-Lambda: p = 0.216

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

PME 2.27 2.35 2.30 − 2% 0.894
Pi 0.61 0.63 0.54 − 15% 0.145
PDE 2.56 2.69 2.44 − 9% 0.118
PCr 3.40 3.46 3.42 − 1% 0.941
ATP 2.60 2.47 2.27 − 8% 0.199
pH 6.98 6.99 6.98 − 0.1% 0.738
Mg 0.11 0.11 0.11 1% 0.970

Absolute mean concentration values (in mmol/kg) and pH in left and 
right-sided voxels for fN, mN, and mC. Left half and right half of the 
FGM voxel were not evaluated separately
ΔCN indicates the relative difference of metabolite values between 
mN and mC: ΔCN =

(mC−mN)

mN

The Wilks-Lambda test reflects the overall effect of the three groups 
on all seven metabolite values included in the MANOVA. NAD was 
excluded because of too many low-quality data. Post hoc Scheffé test 
was used for paired comparison of groups
p values < 0.05 are marked in bold. *Values that remained significant 
after multiple comparisons correction

Table 1   (continued)

l_TH MANOVA: Wilks-Lambda: p = 0.359

Post hoc Scheffé test ΔCN

fN mN mC rel. diff. p value
PME 2.32 2.10 2.09 − 1% 0.986
Pi 0.84 0.80 0.78 − 2% 0.976
PDE 2.63 2.60 2.70 4% 0.943
PCr 3.75 3.50 3.48 − 1% 0.996
ATP 2.44 2.21 2.12 − 4% 0.773
pH 6.99 6.99 6.99 0.0% 0.992
Mg 0.10 0.11 0.10 − 6% 0.146
l_BG MANOVA: Wilks-Lambda: p = 0.122

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

PME 2.41 2.30 2.29 − 1% 0.985
Pi 0.72 0.69 0.63 − 9% 0.488
PDE 2.42 2.54 2.46 − 3% 0.698
PCr 3.68 3.88 3.50 − 10% 0.015
ATP 2.53 2.32 2.23 − 4% 0.766
pH 7.00 7.00 6.99 − 0.1% 0.710
Mg 0.11 0.11 0.11 0% 0.995
l_TL MANOVA: Wilks-Lambda: p = 0.579

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

PME 2.13 2.13 2.23 4% 0.631
Pi 0.63 0.67 0.59 − 12% 0.366
PDE 1.90 1.98 1.86 − 6% 0.518
PCr 3.62 3.91 3.78 − 3% 0.792
ATP 2.27 2.15 2.10 − 3% 0.870
pH 7.00 7.00 7.00 0.0% 0.987
Mg 0.11 0.11 0.11 − 1% 0.976
l_FWM MANOVA: Wilks-Lambda: p = 0.086

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

PME 2.22 2.23 2.19 − 2% 0.934
Pi 0.66 0.60 0.56 − 8% 0.666
PDE 2.14 2.27 2.30 1% 0.958
PCr 3.33 3.73 3.47 − 7% 0.112
ATP 2.35 2.30 2.08 − 10% 0.158
pH 7.00 7.00 7.00 − 0.1% 0.839
Mg 0.11 0.11 0.11 − 2% 0.909
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Table 2   Results of 31P 
MRS, comparison between 
hemispheres

Difference of mean concentration values and pH between right and left hemisphere for fN, mN, and 
mC. Relative differences Δrl were calculated as Δrl = (right−lef t)

lef t
 . For the FGM voxel, no side difference 

could be determined because the left half and right half of the voxel were not evaluated separately. The 
RM MANOVA reflects the overall hemispheric effect of the three groups on all seven metabolite val-
ues included in the MANOVA. NAD was excluded because of too many low-quality data. Paired RM 
MANOVA was used to investigate hemispheric effects for each group separately. Hemispheric differences 
for single metabolites were evaluated by Student’s paired t-test. p values < 0.05 are marked in bold. *Val-
ues that remained significant after multiple comparison correction

TH RM MANOVA: p = 0.000*
Paired comparison between hemispheres:
fN mN mC
Δrl: p = 0.255 Δrl: p = 0.000* Δrl: p = 0.008*
rel. diff. p value (t-test) rel. diff. p value (t-test) rel. diff. p value (t-test)

PME − 1% 0.844 − 7% 0.013* − 2% 0.382
Pi − 5% 0.213 − 5% 0.168 − 7% 0.012*
PDE − 1% 0.771 − 1% 0.567 − 2% 0.189
PCr − 1% 0.373 − 8% 0.000* − 3% 0.002*
ATP 0% 0.785 − 2% 0.178 − 4% 0.045
pH 0.0% 0.722 0.0% 0.838 0.0% 0.782
Mg − 5% 0.081 0% 0.891 1% 0.603
BG RM MANOVA: p = 0.000*

Paired comparison between hemispheres:
fN mN mC
Δrl: p = 0.153 Δrl: p = 0.030 Δrl: p = 0.116
rel. diff. p value (t-test) rel. diff. p value (t-test) rel. diff. p value (t-test)

PME − 10% 0.049 − 6% 0.134 − 8% 0.013
Pi − 15% 0.063 − 10% 0.212 − 16% 0.004*
PDE 10% 0.017 6% 0.304 7% 0.037
PCr − 5% 0.017 − 17% 0.000* − 6% 0.008
ATP − 2% 0.534 2% 0.441 − 4% 0.020
pH − 0.2% 0.224 − 0.1% 0.234 0.0% 0.739
Mg 0% 0.956 − 2% 0.680 − 2% 0.391
TL RM MANOVA: p = 0.163

Paired comparison between hemispheres:
fN mN mC
Δrl: p = 0.917 Δrl: p = 0.192 Δrl: p = 0.238
rel. diff. p value (t-test) rel. diff. p value (t-test) rel. diff. p value (t-test)

PME − 4% 0.422 2% 0.677 1% 0.673
Pi − 5% 0.627 − 12% 0.156 − 10% 0.080
PDE 7% 0.177 19% 0.007* 18% 0.000*
PCr − 3% 0.331 − 3% 0.409 0% 0.920
ATP 1% 0.647 4% 0.300 − 1% 0.481
pH 0.1% 0.456 0.0% 0.906 − 0.1% 0.272
Mg 9% 0.093 3% 0.646 1% 0.890
FWM RM MANOVA: p = 0.011*

Paired comparison between hemispheres:
fN mN mC
Δrl: p = 0.149 Δrl: p = 0.058 Δrl: p = 0.220
rel. diff. p value (t-test) rel. diff. p value (t-test) rel. diff. p value (t-test)

PME 2% 0.540 5% 0.462 5% 0.172
Pi − 7% 0.628 5% 0.656 − 3% 0.739
PDE 20% 0.006* 19% 0.001* 6% 0.223
PCr 2% 0.655 − 7% 0.007* − 2% 0.123
ATP 11% 0.023 7% 0.030 9% 0.008*
pH − 0.2% 0.581 − 0.2% 0.156 − 0.2% 0.054
Mg − 3% 0.428 − 3% 0.380 − 1% 0.903
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regions. None of these differences reached statistical signifi-
cance. In the mC group, PCr was lower in the left BG (ΔCN 
= − 10 %, p = 0.015) and in the left FWM (− 7%), but this 
result was no longer significant after Bonferroni correction.

Hemispheric differences

Statistical analysis with RM MANOVA showed overall 
hemispheric asymmetries of metabolic values in TH (p 

= 0.000), BG (p = 0.000), and the FWM (p = 0.011) 
(Table 2) remaining significant even after Bonferroni cor-
rection. Comparing hemispheres in each group separately, 
significant overall side effects were found only in the thala-
mus for mN (p = 0.000) and mC (p = 0.008), where Δrl 
was negative for all metabolites (Fig. 4).

Looking at single metabolites, PCr and Pi values 
appeared overall lower on the right side compared to the 
left. ATP concentration was significantly higher in the 
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Fig. 2   Results of 31P MRS: relative group difference of metabolite concentrations between male (mN) and female (fN) non-consumers: 
Δmf =

(mN−fN)
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 . Regional variation of Δmf for selected metabolites
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right FWM than in the left. PME tended to be lower on 
the right side in TH and BG, whereas PDE was higher in 
the right hemisphere except for the thalamus.

In total, hemispheric differences of comparable extent could 
be detected in all three groups. For PCr, however, the side effect 
was strikingly larger in the mN group than in fN and mC, most 
notably in the basal ganglia (Δrl = − 17% for mN).

Proton MRS results

Statistical analysis with MANOVA revealed overall sig-
nificant group differences of proton metabolic values only 
in FGM (p = 0.047) (Table 3), but this result remained no 
longer significant after Bonferroni correction.
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Differences between male non‑users (mN) and female 
non‑users (fN): Δmf

Among non-users, males tended to have overall higher lev-
els of proton metabolites than females (Fig. 5a), most pro-
nounced for Cho (Δmf = + 11%) in the FGM.

Differences between male cannabis users (mC) and male 
non‑users (mN): ΔCN

Compared to mN, proton metabolite data of mC showed a 
tendency of overall slightly lower concentrations (Fig. 5b) 
without reaching significance.
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Overview of the results

In summary, we could not find statistically significant dif-
ferences of metabolite concentrations in the brain of male 
cannabis-users compared to male non-users, although the 
data showed some tendencies.

mC showed a reduction in ATP (− 3 to − 12%) and Pi 
(− 2 to − 15%) in all evaluated regions. PCr concentra-
tions were reduced only in the left BG, the left TH, and 
in the left FWM. For proton metabolites (tNAA, tCr, and 
tCho), mC tended to have slightly lower values than mN.

Some differences of metabolite values could also be 
detected between male and female non-users. An overall 
lower ATP concentration (− 2 to − 11%) was observed in 
mN compared to fN. In the TH region, males had gener-
ally lower metabolite concentrations than females. Proton 
metabolites tended to be higher in males.

Hemispheric comparison revealed statistically sig-
nificant asymmetries of phosphorus metabolite values 
between right and left. PCr and Pi had a generally lower 
level in the right hemisphere, most strikingly in the BG 
(up to − 17%). We could not find consistent discrepancies 
of lateralization between the groups except for PCr which 
exhibited a much larger asymmetry in male non-users than 
in fN and mC.

Discussion

A review of the MRS literature concerning cannabis abuse 
clearly shows the paucity of data in this field [53–58]. To 
date, few 1H MRS studies characterizing proton neurome-
tabolite concentrations in cannabis users have been pub-
lished, but 31P MRS data are completely lacking until now. 
This study represents the first attempt to combine 1H MRS 
and 31P MRS in order to evaluate and compare neurome-
tabolism in young cannabis users by performing an absolute 
quantification of several metabolites in different anatomic 
regions of the brain.

Proton spectroscopy studies dealing with cannabis con-
sumption that have been published so far have focused on 
regions such as the frontal lobe, basal ganglia, hippocampus, 
and temporal lobe. Reduced NAA is the most frequently 
observed finding in cannabis users [59–62]. Particularly in 
the youngest subjects, reduced NAA levels were detected 
in frontal lobe regions, including the dorsolateral prefrontal 
cortex, anterior cingulate gyrus, inferior frontal gyrus, and 
midfrontal gray matter. Greater amount of cannabis use was 
associated with lower NAA and lower Cho. These results 
are confirmed by our study which found slightly (but not 
significantly) reduced NAA and Cho levels in all examined 
regions in the mC group.

N-acetylaspartate (NAA) is the second-most-concen-
trated molecule in the brain after the amino acid glutamate; 
its physiological function though still remains not absolutely 
clear [63]. NAA is detectable not only in neurons in the adult 
brain [64] but also in oligodendrocytes and myelin [65].

As a contributor to energy production from the amino 
acid glutamate, NAA correlates with the integrity of neu-
ronal mitochondrial function [66]. Reduction of NAA con-
centration in the brain of cannabis users as observed both in 
previous and in our study might reflect neurotoxic effects of 
cannabis compromising neural viability.

Choline has many functions within humans and other 
organisms with the key feature of serving as a synthetic 
precursor for phospholipids that form cell membranes, the 
neurotransmitter acetylcholine, and trimethylglycine. Lower 
Cho refers to a reduced membrane turnover or increased 
cellular/neuronal senescence. Subsequently, lowered ace-
tylcholine concentrations interfere with neuronal integrity, 

Table 3   Results of 1H MRS, comparison between groups

Absolute mean concentration values (in mmol/kg) for fN, mN, and 
mC
ΔCN indicates the relative group difference of metabolite values 
between male non-consumers (mN) and male cannabis-consumers 
(mC):ΔCN =

(mC−mN)

mN

The Wilks-Lambda test reflects the overall effect of the three groups 
on all three metabolites included in the MANOVA. Post hoc Scheffé 
test was used for paired comparison of groups. p values < 0.05 are 
marked in bold

FGM MANOVA: Wilks-Lambda: p = 0.047
Post hoc Scheffé test ΔCN

fN mN mC rel. diff. p value
tNAA 22.6 22.8 22.1 − 3% 0.759
tCr 15.5 16.0 16.2 2% 0.984
tCho 4.1 4.5 4.6 1% 0.973
r_TL MANOVA: Wilks-Lambda: p = 0.480

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

tNAA 16.1 15.9 15.2 − 4% 0.846
tCr 10.3 10.3 10.2 − 2% 0.950
tCho 3.0 3.3 3.1 − 5% 0.978
r_TH MANOVA: Wilks-Lambda: p = 0.455

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

tNAA 14.0 14.8 13.4 − 10% 0.500
tCr 8.5 9.2 7.9 − 14% 0.712
tCho 2.4 2.7 2.5 − 6% 0.610
r_FWM MANOVA: Wilks-Lambda: p = 0.593

Post hoc Scheffé test ΔCN
fN mN mC rel. diff. p value

tNAA 14.7 15.7 14.7 − 6% 0.272
tCr 8.2 8.8 8.6 − 2% 0.997
tCho 2.7 2.9 2.8 − 2% 0.962
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metabolism, cognition, consciousness [67] and are a predis-
posing factor in neurodegenerative illnesses, e.g., Alzhei-
mer’s disease [68–70].

In our study, we did not find a significant impact of sex 
on proton metabolite concentrations, but the data showed 
some tendencies in several regions of the brain. Males (mN) 
tended to have higher levels than females (fN), especially for 
creatine and choline. These results could be interpreted in 
the context of well-known sex differences in brain function 
and structure [71]. In addition, metabolic effects of men-
strual cycle have to be considered [72, 73].

The most interesting result of our 31P MRS measure-
ments is the consistent, but not statistically significant, trend 
to a reduction of ATP and Pi levels in mC compared to mN. 
PDE values were decreased mainly in the frontal and in the 
temporal lobe. Lowering of PCr was observed in the left part 
of BG, TL, and FWM. ATP, which is provided by oxida-
tive chain reactions on the inner mitochondrial membrane, 
is essential for the cellular energy supply, especially for brain 
neurons. PCr serves as a cellular energy reservoir which can 
quickly provide ATP through hydrolysis. Depletion of ATP 

and Pi was observed in mC compared to mN which could 
probably point to an energy shortage in neurons, axons, and 
the neuroglial cells. As PDE mainly represents phospholipid 
breakdown products [74], reduced PDE levels as found in 
the frontal and in the temporal lobe could indicate lower 
membrane turnover, probably as a result of disturbed phos-
pholipid generation rather than accelerated phospholipid 
degradation [75, 76]. Cannabis-induced metabolic changes 
in the TL are of particular interest regarding auditory percep-
tion and language processing. The temporal lobe includes 
many important functions, such as the primary auditory cor-
tex and Wernicke area which represent an integrated part of 
the speech recognition and speech production; the concrete 
function is still seen controversial [77]. The reduction of 
metabolite concentrations (except PME) observed in the TL 
is consistent with the fMRI study of Winton-Brown et al. 
2011 [78] which found an attenuation of temporal auditory 
activation after administration of THC. Whereas their study 
showed an increase in psychotic symptoms associated with 
the attenuation of temporal activation, there were no signs 
of psychosis in our subject group.

Fig. 5   a Relative group differ-
ence of metabolite concentra-
tions between male (mN) and 
female non-consumers (fN): 
Δmf =

(mN−fN)

fN
 . b Relative 

group difference of metabolite 
concentrations between male 
cannabis-consumers (mC) and 
male non-consumers (mN): 
ΔCN =

(mC−mN)

mN

a

b
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Furthermore, a slight tendency of reduced pH values 
could be determined in the FGM, FWM, TL, and BG simi-
lar to decreased pH values reported in the frontal lobe of 
patients with bipolar disorder [79]. Reduction of pH could 
be the result of the above-mentioned energy shortage that 
leads to an increased anaerobic glycolysis with elevated 
lactate levels and reduced pH value. As we did not detect 
lactate in our proton MRS measurements, these presumably 
increased lactate levels are still very low.

In summary, our 31P MRS results can be interpreted—
with all due caution—as an indication of reduced energy 
supply and decreased membrane turnover particularly in the 
frontal lobe and in the BG of cannabis users. As shown by 
several studies, the frontal lobe is an important part of the 
neuronal network responsible for social function [80], cogni-
tive skills [81, 82], and general intelligence [83]. The BG are 
associated with the control of movements but also a variety 
of cognitive and affective functions [84–86]. In conclusion, 
our findings might help to understand the negative impact 
of cannabis use on a variety of brain functions observed in 
long-term cannabis users. In general, the obtained 31P MRS 
results correlate with the results of the FDG PET findings 
[28] which showed a decreased glucose uptake in several 
brain regions of young cannabis users.

Structural T2-weighted images did not reveal any vis-
ible correlate to the metabolic changes we found in cannabis 
users, but several structural brain changes on cellular levels 
have been found in other studies, for example, the impact of 
cannabis use on white matter integrity [87], corpus callosum 
[88], gray matter density [89], and brain tissue composition 
[16]. Microscopy studies analyzing brain tissue of cannabis 
users are not available up to now. Thus, more MRI studies 
are needed to determine whether brain lesions might occur 
in the long term.

The analysis of sex influence on phosphorus metabolites 
yielded an inhomogeneous pattern. Major effects were found 
in the thalamus where mN exhibited overall lower concen-
trations than fN. ATP values were lower in males than in 
females in all examined regions. As explained above in the 
case of proton metabolites, sex-related differences may be 
partially related to hormonal conditions.

In all of our three subject groups, we found significant 
asymmetries of phosphorus metabolite concentrations 
between right and left hemisphere. In general, concen-
trations of PCr, Pi, and PME are higher on the left side, 
while PDE levels are lower, indicating an intensified energy 
metabolism and an elevated rate of membrane synthesis in 
the left hemisphere compared to the right. These side differ-
ences can be explained in the framework of functional and 
structural lateralization of the brain. As only right-handers 
were included in the study, we can assume that their left 
hemisphere is dominant. Complex functions like the control 
of behavioral structures, movement, language, and cognition 

are primarily located in the dominant hemisphere [90–92] 
potentially resulting in an asymmetric distribution of energy 
and membrane metabolism between the hemispheres, in 
accordance with our findings.

It is worth noting that the extent of metabolic asymmetry 
is about the same in all three analyzed subject groups except 
for PCr. Side differences of PCr concentration are fairly low 
in fN as well as in mC. In mN, however, the level of PCr 
was detected to be much lower on the right side than on 
the (dominant) left, especially in the BG. Behavioral studies 
have shown reduced left-hemispheric language dominance 
in schizophrenia as well as in healthy schizotypal subjects 
[93]. As cannabis use is considered as a risk factor for the 
development of psychosis, it may also influence the extent 
of lateralization for specific metabolites. Thus, the reduced 
asymmetry of PCr values in mC compared to mN might be 
interpreted in this context.

In conclusion, combined 1H/31P-MRS showed a trend 
towards decreased concentrations of Pi, ATP, and PCr in the 
frontal lobe region, as well as the right and left basal ganglia 
in young cannabis users compared to non-cannabis users. 
The results suggest that functional brain disorders observed 
in long-term cannabis users might be caused by an impair-
ment of the energy metabolism of the brain, interfering neu-
ronal integrity and viability, cognition, motoric, and sensual 
perception. Some of the results indicate that this impact on 
brain metabolism might accelerate neuronal senescence and 
subsequently could be a predisposing factor for neurode-
generative diseases. The extent of the observed metabolite 
concentration differences between the groups did not reach 
the level of significance; only the hemispheric asymmetric 
effects were statistically significant. Thus, more 31P-MRS 
long-term studies are required for verification.

Limitations

The results presented should be interpreted with caution. 
Due to imperfect magnetic field homogeneity and rela-
tively small size of ROIs, the SNR of spectroscopic sig-
nals is fairly low in some regions of the brain, particularly 
for those metabolites that always produce relatively small 
peaks such as PME, PDE, and Pi. Moreover, there was a lack 
of homogeneity of the mC subject group caused by a wide 
range of cannabis use. This might be one of the reasons that 
metabolic differences between cannabis users and non-users 
did not reach the level of significance. In contrast, meta-
bolic differences between the right and left hemisphere of 
the brain could be established in all three groups with high 
significance, because paired comparison within groups is 
less susceptible to inter-subject variations.

Another limitation concerning our 1H MRS data is 
caused by the use of a long echo time TE, as we origi-
nally focused on the main metabolites NAA, Cho, and Cr. 
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Choosing a value of TE = 135 ms impeded the detection of 
other relevant metabolites such as glutamine and glutamate 
which seem to be important in cannabis use, according to 
recent publication [55].

One additional factor that needs to be considered in our study 
is the possibly confounding role of smoking. Nicotine consump-
tion (package years) was not balanced between the groups but 
strongly associated with cannabis use (supplementary_Demo-
graphics: suppl_table 1). So, we cannot exclude that nicotine 
consumption could have contributed to the difference of metabo-
lite values between mN and mC found in this study. On the 
other hand, to our knowledge, there is no comparable 31P MRS 
study investigating the influence of nicotine on brain metabolism 
in young adults but only 1H MRS studies focusing mainly on 
the anterior cingulate cortex with reported inconsistencies in 
the findings [94]. Furthermore, the half-life of nicotine in the 
brain is approximately 1 to 2 h [95–97] temporally restricting the 
effect on cerebral blood flow and metabolism. In contrast, THC 
is expected to have a long-term impact on brain metabolism due 
to its very long half-life of 5–13 days [98]. Moreover, nicotine 
consumption in the mC group was fairly low with a median of 
1.2 py (supplementary_Demographics: suppl_table 1). In order 
to reduce the potential nicotine effect, subjects were instructed 
to abstain from smoking on examination day; noncompliance 
led to exclusion from the study.

As well as moving to enhanced techniques of investiga-
tion there is also the need for standardization of the popu-
lations being studied and better metabolite quantification. 
Future studies using 1H MRS should definitely be based on 
short echo times in order to extend the range of detectable 
metabolites. Finally, the constantly growing use of canna-
bis and worries about school performance in young users 
demand further research in this field.
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