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Abstract
Purpose  To explore the predictive value of preoperative magnetic resonance imaging structural and diffusion indices of the 
spinal trigeminal tract (SpTV) on the results of microvascular decompression (MVD) in patients with trigeminal neuralgia (TN).
Methods  This retrospective study included patients diagnosed with TN and treated with MVD in the Jining First People’s 
Hospital between January 2020 and January 2021. The patients were divided into good and poor results groups according 
to postoperative pain relief. Logistic regression analysis was performed to explore independent risk factors for poor results 
of MVD, and their predictive value was examined using receiver operating characteristic (ROC) curves.
Results  A total of 97 TN cases were included, 24 cases with a poor result and 73 with a good result. They were comparable 
in demographic characteristics. Fractional anisotropy (FA) was lower (P < 0.001), and radial diffusivity (RD) was higher 
(P < 0.001) in the poor result group compared to the good result group. Patients in the good result group showed a higher 
proportion of grade 3 neurovascular contact (NVC) (39.7% vs. 16.7%, P = 0.001) and a lower RD (P < 0.001). The multivari-
ate analysis showed that the RD of SpTV (OR = 0.000016, 95% CI: 0.000–0.004, P < 0.001) and NVC (OR = 8.07, 95% CI: 
1.67–38.93, P = 0.009) were independently associated with poor results. The area under the curve (AUC) of RD and NVC 
were 0.848 and 0.710, and their combination achieved an AUC of 0.880.
Conclusion  NVC and RD of SpTV are independent risk factors for poor results after MVD surgery, and combining the NVC 
and RD might achieve relatively high predictive value for poor results.
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Introduction

Trigeminal neuralgia (TN) is the most common functional 
neurological disorder of the brain, characterized by recurrent 
episodes of severe pain in the hemifacial trigeminal sensory 
distribution area, with a prevalence of 22–182 per 100,000, 
mostly occurring in middle-aged and older adults and seri-
ously affecting physical and mental health [1-5]. The etiol-
ogy of TN remains unclear, but the prevailing view is that 
vascular compression and nerve demyelination in the root 

zone leading to the crosstalk of the nerve conduction signals 
are the main pathogeneses of TN [2, 5, 6]. Microvascular 
decompression (MVD) is widely used in clinical practice for 
treating TN [4, 5]. Compared to other destructive surgical 
approaches, MVD provides immediate pain relief in about 
90% of patients with no neurological impairment and is the 
surgical treatment of choice for patients without contraindi-
cations to anesthesia or surgery [4, 5]. Nevertheless, about 
10% of patients show ineffectiveness immediately after 
MVD surgery, and approximately 20–30% have poor long-
term postoperative results [1]. Moreover, MVD has inherent 
risks and potential complications, including cranial injuries, 
such as cranial nerve palsy (4%), hearing loss (1.8%), and 
facial hypoesthesia (3%), and severe complications, such as 
death (0.3%), stroke (0.6%), and meningitis (0.39%) [3].

Therefore, predicting the results of MVD preoperatively 
is important to avoid unnecessary cranial injuries. Patients 
with typical facial pain episodes or trigger points have a 
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better prognosis than those with persistent pain or a com-
bined background of persistent pain [5]. Patients showing 
efficacy with oral carbamazepine have a better prognosis 
than those without [5, 7-9]. In addition, older and male 
patients have a better prognosis than female and younger 
patients [5, 7, 8]. Nevertheless, these indicators are general 
and are susceptible to subjective judgment; therefore, objec-
tive indicators might be more meaningful in assessing the 
condition.

Conventional structural magnetic resonance imaging 
(MRI) sequences suggest a better result of MVD for vas-
cular compression combined with morphological changes 
such as trigeminal root atrophy [10, 11], but approximately 
10% of cases with severe neurovascular contact (NVC) do 
not experience painful symptoms [12-14]. It has been sug-
gested that vascular compression is not the root cause of TN, 
as there is no difference in the incidence of vascular com-
pression in the TN and normal populations [12]. Diffusion 
tensor imaging (DTI) is currently the only MRI technique 
that can detect microstructural changes in vivo and is par-
ticularly suitable for changes such as nerve demyelination. 
In particular, the DTI sequence has been shown to have high 
sensitivity in detecting microstructural abnormalities across 
nerve fibers such as trigeminal nerve [15, 16]. Preopera-
tive changes in the trigeminal nerve DTI and its brainstem 
segment have predictive value for TN treatment response 
[17]. However, previous studies have typically used regions 
of interest (ROIs) sampling, and there were differences in 
sampling locations, resulting in inconsistent results [15-17].

Nociceptive fibers from the trigeminal nerve enter the 
brainstem and project mainly through the spinal trigemi-
nal tract (SpTV) to the spinal trigeminal nucleus [18]. The 
characteristics of SpTV fiber bundles extracted using the 
DTI fiber tracing technique might be used for predicting the 
results of MVD treatment. Therefore, this study aimed to 
explore the predictive value of preoperative MRI structural 
and diffusion indices on the results of MVD in patients with 
TN. It was hypothesized that ineffective MVD surgery for 
TN could be related to the microstructural changes at this 
location.

Methods

Study design and patients

This retrospective study included patients diagnosed with 
typical TN and treated with trans-trigeminal manifest MVD 
in the Department of Neurosurgery of the Jining First Peo-
ple’s Hospital between January 2020 and January 2021.

The inclusion criteria were (1) symptoms meeting 
the diagnostic criteria of primary unilateral TN [2], (2) 

preoperative imaging data and postoperative follow-up data 
were complete, and (3) at least one outpatient follow-up pain 
score was recorded within one year after surgery. The exclu-
sion criteria were (1) a history of preoperative trigeminal 
nerve surgical treatment (including radiofrequency ablation, 
balloon compression, or gamma knife) or (2) a history of 
intracranial tumors, multiple sclerosis, or other conditions 
that may cause secondary TN.

The study was approved by the Ethics Committee of the 
Jining First People’s Hospital, Shandong Province (Approval 
number: 062/2021). The requirement of informed consent 
was waived due to the retrospective nature of this study.

Data collection and definition

The demographic (including age and gender) and baseline 
clinical characteristics (including preoperative pain, pain 
duration, and pain laterality), preoperative MRI, and post-
operative data were collected. Postoperatively, pain relief 
was assessed at least one year after surgery. Pain scores were 
measured preoperatively and postoperatively using a visual 
analog scale (VAS) (0 indicates no pain, and 10 indicates the 
most severe pain imaginable). According to previous studies, 
those with postoperative facial pain relief ([preoperative VAS 
score – postoperative VAS score]/preoperative VAS score) 
of ≥ 75% were defined as good results and included in the 
good prognosis group; otherwise, they were defined as poor 
results and included in the poor prognosis group [19]. There 
was no statistical difference in the follow-up time between 
the two groups.

All subjects underwent MRI using the following imag-
ing protocol: DTI: Repetition time (TR)/echo time (TE): 
10,000 ms/91 ms; field of view (FOV): 256 mm × 256 mm; 
voxel dimension 2 mm × 2 mm × 2 mm, b-value = 0 and 
1000  s/mm2, collected from 30 directions and a nomi-
nal acquisition time of 5.45  min. Three-dimensional 
T1-weighted imaging: TR/TE: 1900 ms/2.52 ms; FOV: 
256 mm × 256 mm; voxel dimension: 1 mm × 1 mm × 1 mm; 
slice thickness of 1 mm and no gap. Magnetic resonance 
angiography (MRA): TR/TE: 20  ms/3.59  ms; FOV: 
200 mm × 200 mm; slice thickness of 1 mm, resolution 
1  mm × 0.5  mm × 0.5  mm. Three-dimensional fast spin 
echo sequence (SPACE): TR/TE: 1000 ms/135 ms, FOV: 
200 mm × 200 mm; slice thickness of 0.5 mm, slice over-
sampling 20%, matrix: 384 × 384, FA 120°, resolution 
0.5 mm × 0.5 mm × 0.5 mm, SNR: 1. All the scans were 
obtained using a 3 T MRI scanner (Trio system, Siemens, 
Germany) [20, 21]. The images were analyzed by a senior 
neuroimaging physician who was blinded to the patient’s 
results of MVD.

The obtained DICOM images were converted to NIfTI 
format using the dcm2nii program (http://​nitrc.​org/​proje​
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cts/​dcm2n​ii). Eddy current and motion corrections were 
performed using FMRIB Software Library (FSL v5.08; 
http://​fsl.​fmrib.​ox.​ac.​uk/​fsl/) tools. Deterministic track-
ing of trigeminal fiber bundles was performed using the 
DSI-Studio software (http://​dsi-​studio.​labso​lver.​org/) 
with the same-setting tracking parameters to automate 
the acquisition of trigeminal fiber bundles. The DTI 
images were aligned and fused with 3DT1 images of the 
same patient. SpTV was confirmed by a senior neuro-
imaging physician under double-blind conditions based 
on Afshar’s anatomical atlas of the brainstem (Figs. 1 
and 2). According to the grading standard proposed by 
Maarbjerg S, the degree of NVC was observed in three 
directions (axial, sagittal, and coronal) in the MRA and 
SPACE sequences, with grade 1 being simple neuro-
vascular contact without compression, grade 2 being 
contact with nerve distortion, and grade 3 being contact 
with nerve atrophy [14]. Diffusion indices (including 
fractional anisotropy [FA] and radial diffusivity [RD]) 
of the target fiber bundles were automatically acquired 
by the DSI-Studio software.

Statistical analysis

SPSS 22.0 (IBM, Armonk, NY, USA) and MedCalc soft-
ware were used for statistical analysis. Continuous data were 
presented as means ± standard deviation (SD) and compared 
by independent samples t-test. Categorical data were pre-
sented as n and compared by the chi-square test. Logistic 
regression (forward) analysis was performed on variables 
that were statistically significant in univariate analyses to 
explore independent risk factors for poor results of MVD. 
The receiver operating characteristic (ROC) curve was used 
to assess the diagnostic value of diffusion indexes, and the 
area under the ROC curve predicted by each indicator was 
compared using the Delong test. Results were considered 
statistically significant at two-sided P < 0.05.

Results

Characteristics of the patients

A total of 97 TN cases were collected, including 43 males 
and 54 females, 47 on the left side and 50 on the right side. 
A total of 73 patients were included in the good results group 
and 24 in the poor results group. There were no statistically 
significant differences in gender, age, follow-up time, pain 
score, pain duration, and pain laterality at baseline between 
the two groups (Table 1).

Risk factors for poor results

FA was significantly lower (P < 0.001), while RD of SpTV 
was significantly higher (P < 0.001) in the poor results group 
compared to the good results group. There was a statistical 
difference in the distribution of the NVC scores between 
the two groups, with the poor results group showing a lower 
proportion of grade 3 NVC (16.7% vs. 39.7%, P = 0.001) 
(Table 2).

The multivariate analysis of the prognostic impact of pre-
operative imaging indicators showed that the RD of SpTV 
(OR = 0.000016, 95% CI: 0.000–0.004, P < 0.001) and NVC 
(OR = 8.07, 95% CI: 1.67–38.93, P = 0.009) were indepen-
dently associated with poor results of MVD (Table 3).

ROC analysis

The AUC of combined diagnosis including RD and NVC 
was significantly higher compared to that of NVC (0.880 
vs. 0.710, DeLong test, P < 0.001) (Table 4 and Fig. 3). 
However, there was no statistical difference between the 
AUC of combined diagnosis and RD (0.880 vs. 0.848, 
Delong test, P > 0.05). The optimal cut-off value of RD 
was 0.9782 × 10−3mm2/s, achieving a sensitivity of 83.3% 

Fig. 1   Diffusion tensor imaging tractography of a patient revealed SpTV (white arrows): (A) Axial view, (B) coronal view, and (C) sagittal view
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(95% CI, 62.6–95.3%) and a specificity of 79.4% (95% CI, 
68.4–88.0%).

Discussion

This study suggested that NVC and RD of SpTV are inde-
pendent risk factors for poor results after MVD surgery, and 
combining NVC and RD might achieve relatively high pre-
dictive value. The result could help improve the efficacy of 
predicting the prognosis of TN surgery.

In the present study, the SpTV was successfully extracted. 
The trigeminal nerve fibers through the SpTV are mainly 
composed of nociceptive fibers. The microstructural analysis 
of the SpTV is necessary to understand the pathogenesis of 
TN and the causes of ineffective MVD [22].

The analysis of the diffusion indices of the fiber bundles 
can improve the reliability of the results [23]. The trigeminal 
nerve fibers are complex in composition, and their sensory 
roots enter the brainstem and project to the midbrain, the 
pontine sensory principal nucleus, the medulla oblongata, 
and the spinal tract nuclei of the superior cervical medulla, 
respectively [24]. The fiber bundles have long travel dis-
tances, making it difficult to overcome manual sampling 
errors by manually selecting areas of interest for sampling, 
and the results do not reflect the changes in the fiber bundles 
as a whole. The trigeminal nociceptive fibers are composed 

of Aδ and C fibers that enter the brainstem and project down-
wards in an “elbow” shape to the spinal trigeminal nucleus 
in the medulla [25]. In this study, the DSI-studio software, 
which is robust for brain nerve tracing, was used to auto-
mate the tracing and extraction of the trigeminal nerve fiber 
bundles and obtain the SpTV fibers, which were spatially 
aligned to match the anatomical atlas of the brainstem. Bur-
kett et al. [26] used DTI deterministic tracing to successfully 
trace these fiber bundles in 20 subjects, and comparison with 
the anatomical brainstem atlas proved that the alignment was 
reasonable, but no diffusion index was obtained, and no fur-
ther diffusion index differences were analyzed. The tracking 
parameters we used were in general agreement with those set 
by Burkett et al. [26], and the ability to obtain diffusion val-
ues was expected to reduce the bias of manual selection and 
increase the accuracy and usefulness of the measurements.

Abnormalities in the brainstem segment of the trigeminal 
nerve are associated with poor prognosis in TN treatment 
[1], but the results of studies on the correlation between 
trends in diffusion indexes and the prognosis of TN treat-
ment vary considerably from center to center. Indeed, 
lower FA and higher RD in the entry zone and brainstem 
were associated with a poor prognosis in TN [19, 27]. In 
contrast, Willsey et al. [28, 29] concluded that lower FA 
and higher RD in the root entry zone and brainstem of the 
trigeminal nerve fiber bundles were characteristic of the TN1 
type patients and predicted a better surgical prognosis. The 

Fig. 2   3D reconstruction revealing bundles of SpTV traveling through the brain stem: (A) Reconstruction of the whole trigeminal nerve tracts, 
(B) Different colors were used to mark fibers project to different directions, (C) The SpTV fibers were identified

Table 1   Comparison of baseline 
information between the poor 
and good prognosis groups

VAS, visual analog scale

Characteristics Poor prognosis (n = 24) Good prognosis (n = 73) P

Sex (male/female) 24 (10/14) 73 (33/40) 0.762
Age (mean ± SD), years 53.2 ± 11.4 55.2 ± 9.5 0.390
Pain duration (mean ± SD), years 6.0 ± 2.0 6.6 ± 1.8 0.157
VAS score (mean ± SD) 6.2 ± 2.3 6.0 ± 2.0 0.751
Pain laterality (left/right) 24 (13/11) 73 (34/39) 0.519
Follow-up time (mean ± SD), months 16.08 ± 3.71 16.82 ± 3.69 0.887
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present study showed a decrease in FA and an increase in 
RD in SpTV of TN patients who did not respond to MVD 
treatment, which was in general agreement with Chen et al. 
[30], although the method used in the present study is prob-
ably more reproducible, as the quantitative nerve parameters 
were extracted from the automated nerve tracing and not 
from the manual segmentation of the ROIs. FA is the most 
frequently used index to evaluate nerve fiber integrity and 
represents the degree of anisotropy. RD indicates the diffu-
sion rate perpendicular to the axonal fibers and reflects the 
integrity of the myelin sheath, and its elevation may reflect 
myelin damage [31]. Therefore, impaired nociceptive fibers 
might be present in this group of patients. It is important to 
note that SpTV is dominated by unmyelinated C-fibers, and 
the microstructural changes reflected by the above diffusion 
index abnormalities and their corresponding pathological 
changes need to be further investigated.

The NVC score is a common clinical predictor of MVD 
prognosis and is widely used in clinical practice to guide 
the development of treatment plans. Its disadvantage is that 
it only reflects extrinsic nerve compression. Clinically, TN 
without nerve compression and vice-versa in normal people 
are both common, and the diagnostic specificity and sensi-
tivity of NVC are limited. Therefore, other indicators need 
to be combined with NVC in clinical practice. In the pre-
sent study, the AUC of the ROC curve predicted by NVC 
alone was 0.710, but when combined with RD of the SpTV, 
which is the main trigeminal nociceptive fiber, its predictive 
efficacy was greatly improved, with a combined diagnostic 

AUC of 0.880, indicating the feasibility of this method. A 
previous study suggested that combining clinical features 
such as the type of pain and the effectiveness of oral car-
bamazepine might further improve predictive efficacy [12]. 
Since this study was retrospective, it did not allow for an 
accurate review and statistics of preoperative pain traits. In 
addition, clinical observation was typically recommended 
for patients with ineffective oral carbamazepine treatment.

This study had some limitations. First, it was a retro-
spective study of short duration without a long follow-up, 
reducing its accuracy. The predictive value of long‐term 
clinical outcomes could not be assessed due to a lack of 
follow-up on long-term efficacy. Second, images were ana-
lyzed by one investigator, but ideally, neuroradiologists 
should have analyzed the images, followed by Cohen’s 
kappa coefficient calculation. Moreover, since the SpTV 
analyzed in this study were mainly unmyelinated fibers, 
axial diffusivity (AD) was not included as an indicator of 
myelin integrity. It is undeniable that AD is very meaning-
ful in the study of changes in the microstructure of nerve 
fibers. We believe reanalysis of this indicator is warranted 
as the number of cases accumulates in future studies. And 
then, the diagnostic efficacy of the DTI index was high, 
but the RD units were small, and the difference between 
normal and abnormal values was not significant. There is a 
risk of error in the lateral comparison of data obtained on 
different machines or with different scanning parameters. 
The next step would be setting uniform scanning param-
eters for this group of patients, which could facilitate the 

Table 2   Comparison of imaging 
indicators between the poor and 
good prognosis groups

FA, fractional anisotropy; RD, radial diffusivity; NVC, neovascular contact

Characteristics Poor prognosis (n = 24) Good prognosis 
(n = 73)

P

FA (mean ± SD) 0.40 ± 0.04 0.44 ± 0.05  < 0.001
RD (mean ± SD) 10−3mm2/s 1.06 ± 0.14 0.87 ± 0.12  < 0.001
NVC grade 0.001
1 13 12 0.001
2 7 32
3 4 29

Table 3   Logistic multivariable analysis of the prognostic impact of 
preoperative imaging indicators

RD, radial diffusivity; NVC, neovascular contact

Characteristics OR (95%CI) P

RD (10−3mm2/s) 0.000016 (0.000–0.004)  < 0.001
NVC grade
1 1.00
2 3.503 (0.901–13.263) 0.070
3 8.070 (1.673–38.930) 0.009

Table 4   Predictive value of risk factors for poor prognosis after MVD

AUC​, area under the curve; OR, odds ratio; CI, confidence interval; 
RD, radial diffusivity; NVC, neovascular contact

Characteristics AUC​ OR (95%CI) P

RD (10−3mm2/s) 0.848 0.761 to 0.913 0.000
NVC grade 0.710 0.609 to 0.798 0.001
Combined diagnosis 0.880 0.798 to 0.937  < 0.001
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clinical application of the analysis of DTI. Alternatively, 
the non-symptomatic side could be used as a reference, for 
example, by taking the difference between the diffusion 
index on the symptomatic side and the non-symptomatic 
side. Finally, the OR of RD was very small, and the dis-
crimination in actual comparison is not good. It might be 
because the RD units were small, and the sample size of 
patients with poor results was limited in this study, while 
the ROC of combined diagnosis according to multivariate 
analysis showed good predictive value.

In summary, NVC and RD of SpTV are independent risk 
factors for poor results after MVD surgery, and combining 
the NVC and RD might achieve relatively high predictive 
value for poor results.
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