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Abstract
Purpose  The Checklist for Artificial Intelligence in Medical Imaging (CLAIM) is a recently released guideline designed 
for the optimal reporting methodology of artificial intelligence (AI) studies. Gliomas are the most common form of primary 
malignant brain tumour and numerous outcomes derived from AI algorithms such as grading, survival, treatment-related 
effects and molecular status have been reported. The aim of the study is to evaluate the AI reporting methodology for out-
comes relating to gliomas in magnetic resonance imaging (MRI) using the CLAIM criteria.
Methods  A literature search was performed on three databases pertaining to AI augmentation of glioma MRI, published 
between the start of 2018 and the end of 2021
Results  A total of 4308 articles were identified and 138 articles remained after screening. These articles were categorised 
into four main AI tasks: grading (n= 44), predicting molecular status (n= 50), predicting survival (n= 25) and distinguish-
ing true tumour progression from treatment-related effects (n= 10). The average CLAIM score was 20/42 (range: 10–31). 
Studies most consistently reported the scientific background and clinical role of their AI approach. Areas of improvement 
were identified in the reporting of data collection, data management, ground truth and validation of AI performance.
Conclusion  AI may be a means of producing high-accuracy results for certain tasks in glioma MRI; however, there remain 
issues with reporting quality. AI reporting guidelines may aid in a more reproducible and standardised approach to reporting 
and will aid in clinical integration.
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Introduction

Gliomas are the most common primary malignant intrac-
ranial tumours and are associated with a poor prognosis. 
Imaging plays a key role in the diagnosis and management 
of patients with gliomas. Artificial intelligence (AI) method-
ologies have been used as a tool to extract quantitative data 
from imaging modalities, in particular magnetic resonance 
imaging (MRI). Aspects of glioma diagnosis and manage-
ment that have been previously examined include prediction 
of pseudoprogression [1], grade [2], molecular status [3] and 
survival [4]. Studies have demonstrated high performance, 
sensitivities and specificities for these tasks and thus, clinical 
integration of AI may be of use. Information gained through 
these algorithms may aid clinicians in counselling on prog-
nosis, guide preoperative management, overcome the limita-
tions of histology and guide post-treatment follow-up [5].
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For optimal clinical translatability, there remain issues 
with the development and reporting of AI algorithm meth-
ods [6]. Reproducibility of results has been a challenge; 
hence, rigour of experimental design and reporting is of 
importance to ensure generalisability for clinical practice 
[7]. Guidelines have been developed to improve the quality 
of AI algorithm reporting within the literature. Such guide-
lines include the CONSORT-AI (Reporting Guidelines for 
Clinical Trial Protocols for Interventions Involving Artifi-
cial Intelligence) [8], SPIRIT-AI (Reporting Guidelines for 
Clinical Trial Reports for Interventions Involving Artificial 
Intelligence) [9] and the recently announced QUADAS-AI 
(Quality Assessment of Diagnostic Accuracy Studies Arti-
ficial Intelligence) [10]. In particular, the Checklist for AI 
in Medical Imaging (CLAIM) [11] is a 42-item checklist 
comprising elements to evaluate optimal reproducibility, rig-
our, quality and generalisability. This is viewed as a “best 
practice” guideline for reporting AI algorithms within the 
literature. The application of this checklist to the current lit-
erature may provide insights into the progress and reporting 
quality of AI algorithms in glioma imaging, in turn aiding 
clinical integration. The aim of this study is to perform a 
thorough methodological examination of the recently pub-
lished literature for AI tasks involving glioma MRI as an 
example of using the CLAIM criteria [11].

Methods

Search strategy

The literature search followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines and was performed on 04/01/2022. In order to 
focus on the most recent literature, we only examined stud-
ies from the start of 2018 to the end of 2021. This was also 
chosen as we wanted to examine studies 2 years before the 
CLAIM introduction in 2020, and 2 years after its intro-
duction. Search terms were derived by pilot searches of the 
literature, the PICO (population, intervention, comparison, 
outcomes) framework and search of Medical Subject Head-
ings (MeSH) subheadings by the first author (A.P.B.). The 
search was performed on three databases: PubMed, Scopus 
and Web of Science. An additional literature search follow-
ing PRISMA guidelines was also performed independently 
by the third author (M.W.) on 01/02/2022 in consultation 
with a hospital librarian. Terms are detailed as follows, with 
adaptations made for each database: (“machine learning” 
OR “artificial intelligence” OR “support vector machine” 
OR “convolutional neural network” OR “deep learning”) 
AND (brain OR cerebrum) AND (MRI OR “magnetic reso-
nance”) AND (tumour OR tumor OR cancer OR carcinoma 
OR neoplasm OR glioma).

Selection of studies

Original studies reporting AI outcomes derived from glioma 
MRI in adult patients were included. Outcomes included 
grading, response to treatment, survival and molecular sta-
tus. Studies were excluded if they were non-English lan-
guage, case reports, literature reviews, conference abstracts, 
preliminary studies, lecture notes or paediatric studies. In 
addition, technique-based studies (such as segmentation or 
studies focusing on pre-processing methodology), compara-
tive studies and studies on MRI-based identification of glio-
mas were excluded.

Outcomes and data extraction

The first, second and third author (A.P.B., L.S. and M.W.) 
split and independently assessed the included articles 
according to the 42-item CLAIM checklist [11]. Subse-
quently, the first, second and third authors cross-checked 
each other’s articles and conflicts were resolved by group 
discussion. Additional data recorded included the type of 
journal (computer science, medical or non-medical science), 
the derived aim of the study, the AI algorithm and the results 
of the highest performing pipeline. The validation set was 
reported first; if this was not available, the testing set was 
reported.

Data analysis

Descriptive statistics were generated using the MedCalc 
19.4.1 statistical software.

Results

A total of 4308 articles were obtained, comprising 789 
articles from PubMed, 2141 articles from Scopus (confer-
ence abstracts were excluded) and 1378 articles from Web 
of Science. After duplicates were removed, 2178 articles 
remained. Articles were then screened by abstract and title, 
and following this, 384 articles remained. After full texts 
were reviewed, 119 articles were considered to fit the inclu-
sion/exclusion criteria. The additional literature search by 
the third author (M.W.) identified a further 19 articles. This 
resulted in a total of 138 articles. Of these, 25 articles were 
published in 2018, 36 in 2019, 38 in 2020 and 39 in 2021.

The majority of articles investigated one of four AI 
tasks: 50 articles evaluated algorithms predicting molecu-
lar status (such as isocitrate dehydrogenase (IDH) or 1p/19q 
status), 44 articles examined grading, 25 articles assessed 
survival and 10 articles examined true tumour progression 
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(TTP) versus treatment-related effects (TRE). Nine arti-
cles assessed other tasks not included under the previously 
specified groups. The Cancer Imaging Archive (TCIA) was 
utilised by 31 articles and the Brain Tumor Segmentation 
(BraTS) challenge by 30 articles.

For predicting tumour grade, reported AUCs (areas under 
the curve) ranged from 0.72 to 1. The highest performance 
for grading was obtained by De Looze et al., who differenti-
ated between WHO CNS grade 2 and 4 gliomas (AUC=1, 
sensitivity=100%, specificity=100%) [12]. However, dif-
ferentiating grade 2 and 3 gliomas yielded AUC of 0.88, 
sensitivity 82% and specificity 94%, while for distinguish-
ing grade 3 and 4 gliomas, AUC, sensitivity and specific-
ity were 0.97, 100% and 97%, respectively. For molecular 
status, reported AUCs ranged from 0.70 to 0.99. Yogananda 
et al. obtained the highest AUC=0.99 (sensitivity=98%, 
specificity=97%) for IDH prediction [13]. AUCs ranged 
from 0.58 to 0.98 for survival prediction. Su et al. achieved 
the best performance, predicting glioblastoma (GBM) sur-
vival beyond a 6-month period with an AUC=0.98 (sensi-
tivity=93.3% and specificity=96.7%) [14]. For TRE versus 
TTP, reported AUCs ranged from 0.8 to 0.94, with the high-
est result obtained by Elshafeey et al. (AUC=0.94) [15].

Most articles were published in medical journals (71 arti-
cles), followed by non-medical science journals (37 articles) 
and computer science journals (30 articles). The 3 most fre-
quently utilised AI algorithms were convolutional neural 
networks (CNN; utilised in 34 articles), random forest (RF; 
used in 26 articles) and supported vector machine (SVM; 
utilised in 37 articles) Fig 1.

The average CLAIM score was 20 out of 42 (48%, range: 
10–31). Examining CLAIM compliance by year, the average 

score for 2018 was 19/42 (45%, range: 12–30), for 2019 
was 21/42 (50%, range: 10–31), for 2020 was 21/42 (50%, 
range: 12–30) and for 2021 was 18/42 (43%, range: 10–29). 
There was no significant difference between CLAIM compli-
ance based on year (ANOVA p-value=0.2). For AI tasks, the 
highest CLAIM compliance was seen in TTP versus TRE - 
average: 24/42 (57%, range: 19–30), followed by molecular 
status - average: 21/42 (50%, range: 14–31), survival - aver-
age: 19/42 (45%, range: 11–30), grade - average: 18/42 (43%, 
range: 10–30) and those that did not fit within one of the above 
categories (average: 18/42: 43%, range: 14–27). Medical jour-
nals had the highest CLAIM compliance (average 21/42: 50%, 
range: 11–31), followed by non-medical science journals (aver-
age: 20/42, 48%, range: 13–30) and computer science (average: 
16/42, 38%, range: 10–23). For the 3 most frequently utilised 
algorithms, the average CLAIM compliance for CNNs was 
18/42 (range 10–29), RF was 20/42 (48%, range: 12–31) and 
SVM was 20/42 (48%, range 10–31). Figure 2 demonstrates 
these findings graphically in box and whisker plots.

Figure 3 demonstrates the percentage of studies ful-
filling each CLAIM criterion. The highest CLAIM com-
pliance percentages were seen in the initial criteria such 
as the title/abstract, introduction and reporting of study 
design. The highest compliance item was seen in item 
3, which assesses the reporting of scientific and clinical 
background, and the clinical role of the AI approach. Com-
mon areas for improvement identified include the reporting 
of data sources, ground truth and validation. The poor-
est performing subsection was the reporting of ground 
truth. For example few studies explicitly stated that neu-
ropathologists were involved in the histological diagnosis 
or utilised a scoring system for inter-observer variability 

Fig. 1   Number of articles by 
year, type of journal, AI task 
and 3 most frequently utilised 
algorithms (abbreviations - TTP 
true tumour progression, TRE 
treatment-related effects, CNN 
convolutional neural network, 
RF random forest, SVM support 
vector machine)
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between neuropathologists. Of the 138 articles, only 50% 
of articles were externally validated. The lowest CLAIM 
compliance was observed for item 13, which assesses the 
reporting of missing data. Compared to computer science 
journals, medical journals were more likely to discuss 
clinical implications for practice. Medical journals were 
also more likely to have a more structured abstract than 
non-medical science journals.

We found no association between CLAIM score and 
citation count (Pearson’s correlation coefficient=0.01). 
There was no association between CLAIM score and 
performance of the algorithm (Pearson’s correla-
tion coefficient=0). There were no significant differ-
ences in CLAIM scores between AI tasks (ANOVA 
p-value=0.029, where Bonferroni corrected p>0.01 
means no significance).

Discussion

AI algorithms in the current literature are achieving a high 
level of performance in terms of AUC (either under a receiver 
operator or precision-recall curve), sensitivity, specificity 
and accuracy. However, with an average CLAIM score of 
20/42 (48%; range 10–31), there have been areas identified 
for improvement which affect reproducibility and generalis-
ability. There were minimal differences in CLAIM score seen 
by year, AI task, journal type and top three AI algorithms (by 
number). Of particular note, quality is not improving over 
time. Pre-CLAIM (years 2018 and 2019) and post-CLAIM 
(years 2020 and 2021) showed no change in CLAIM adher-
ence. The primary areas of improvement in CLAIM scoring 
were in reporting of the ground truth and data use (such as 
reporting how missing data was handled and how data was 

Fig. 2   CLAIM scores by year, 
AI task, journal type and 3 
most frequently utilised AI 
algorithms (abbreviations - TTP 
true tumour progression, TRE 
treatment-related effects, CNN 
convolutional neural network, 
RF random forest, SVM support 
vector machine)

Fig. 3   Percentage of studies 
fulfilling CLAIM criteria by 
item number

910 Neuroradiology (2023) 65:907–913



1 3

de-identified). There was no significant difference in scores 
between articles published before or after the introduction 
of CLAIM in the aforementioned areas. This may be due 
to the recency of the CLAIM criteria such that publishers 
may be unaware of its existence. Of note, no included stud-
ies reported quality utilising CLAIM. Further studies should 
consider reporting quality with the criteria to allow for a 
standardised and reproducible approach from which compari-
sons may be drawn. In addition, there were noteworthy differ-
ences in the structure of the included articles, and emphasis 
was placed on different areas depending on whether the study 
was reported in a computer science versus medical journal. 
For example, the greatest difference between these two jour-
nal types was that medical journals placed more emphasis on 
clinical implications.

Using the CLAIM criteria against these studies has high-
lighted that many pieces of information needed to reach 
clinical practice are not reported. There are, however, items 
of the checklist that are not applicable to certain papers. The 
major areas of deficiency in the data section were the de-
identification process (item 12) and handling of missing data 
(item 13), where only about 8% and 1% of papers reported 
these respectively. The primary implication of this is the eth-
ical consequences if there were any data leaks and thereby 
releasing patient information [16, 17]. Both can also affect 
the statistical analysis of the AI algorithm and thus cause 
misinterpretation of model performance [17]. However, as 
there were many studies that utilised open-access databases 
such as the TCIA, the process of de-identification (and even 
handling of missing data to an extent) is not applicable.

To accurately predict model performance, a well-defined 
ground truth is needed, including exact definitions from 
radiologists, a rationale for why these measurements are the 
standard for a supervised model to learn from, and methods 
for dispute resolution ensure a robust gold standard [18]. 
However, nearly all items in the ground truth section had 
a compliance of below 50%. Approximately 17% included 
a rationale for choice of ground truth (item 15), and 11% 
included methods to measure inter- and intra-rater variability 
and steps to reduce or mitigate them. This ultimately affects 
the interpretability and overall accuracy of the model, and 
should be discussed as a limitation by authors.

The model section achieved adequate reporting standards 
for the most part. Although 28% of authors indicated infor-
mation regarding how their models were initialised (item 
24), this is only applicable to deep learning AI programs 
[17]. This item is not applicable to many of the articles, as 
most used traditional machine learning models. After adjust-
ing for this, the compliance would be high.

Almost half the studies (53%) assessed did not include 
the necessary information to duplicate their models (item 
25). Without this, many of these articles cannot undergo 
rigorous testing necessary to be implemented into clinical 

practice [19]. In training a model, however, there are many 
instances where there is only one model used and there-
fore ensembling is not utilised. While approximately 24% 
of studies included a description of ensemble methods, this 
would not have been applicable to many others.

For stakeholders to be confident in the performance of 
the algorithm, evaluation of the model needs to be of a high 
standard. This being the validation of the model against an 
external source, or if it did not, explaining this as a limitation 
(item 32), of which only approximately 53% did so. Only 
about 17% of authors performed a robustness/sensitivity 
analysis of their models (item 30), meaning that the validity 
of their performance is often unclear [19].

A limitation of AI models and algorithms is that it needs 
an adequate sample of data, and can only interpret what it 
has been taught. This also includes demographic informa-
tion of patients. If this is not known, the program cannot 
confidently predict outcomes of, for example, molecular 
status or survival in gliomas. With only approximately 31% 
of authors including this information (item 34), it can make 
it difficult to reproduce the model performance and compare 
to different populations [17]. Limitation in providing this 
information, however, is that patient information is not being 
readily available in open-access databases such as the TCIA.

For the clinical integration of AI, authors and stakehold-
ers must understand where and why a model fails, producing 
false negatives and false positives. With only approximately 
3% of authors accounting for failures through a confusion 
matrix, a very small portion of papers help to better under-
stand the strengths and, more importantly, limitations and 
areas for improvement for algorithms [19]. Another area for 
improvement is the accessibility to the model’s full protocol 
(item 41), where only 25% of authors included a link. This 
item may help researchers access and further improve the 
algorithm by adding other demographic information that 
may broaden the algorithm’s applicability to multiple cen-
tres or areas. Websites such as GitHub are also known to 
facilitate the uptake and sharing of code.

Three other studies have evaluated the use of CLAIM 
to assess AI reporting quality in other fields and observed 
very similar results to this article. O’Shea et al. evaluated 
186 articles using CNNs for cancer in general, [7] while Le 
VNT et al. assessed 6 articles using CNNs for the detec-
tion of odontogenic cysts [20]. Lastly, Belue et al. evaluated 
53 articles on the detection and classification of prostate 
cancers utilising AI MRI imaging applications [21]. Belue 
et al. identified reporting items which were not applicable to 
certain studies and accounted for this in their analysis, but 
nevertheless identified similar issues and areas for improve-
ment as our article and the other two aforementioned arti-
cles. Major opportunities identified for improvement [7, 20, 
21] included the handling of data, and reporting of ground 
truth across all areas, including a well-defined definition and 
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evaluation of models. We have expanded on the current lit-
erature by evaluating models other than CNNs, in tasks that 
are most progressed within the literature, and in a large sam-
ple of articles that are specific to gliomas. Ongoing appraisal 
of the quality and areas of improvement of the existing lit-
erature is a necessary step in the process of translating AI 
research into clinical practice. Indeed, this is reflected in the 
“Position Statement on the Regulation of AI in Medicine” by 
the Royal Australian and New Zealand College of Radiolo-
gists (RANZCR) [22]. Recommendation two of three states 
that AI systems must be proven to an appropriate standard 
of evidence and deemed safe in the clinical context in which 
they are intended to be applied. Using guidelines such as 
CLAIM will help ensure such recommendations are met. 
In addition, the Food and Drug Administration (FDA) Cen-
tre for Devices and Radiological Health has also released a 
regulatory framework that would allow for use in real world 
environments while ensuring efficacy and safety [23].

Our study has some limitations. Firstly, the CLAIM cri-
teria were only developed in 2020, and thus, the authors 
of many included studies did not have the opportunity to 
incorporate the criteria into their work at commencement. 
Importantly, however, our study demonstrates that authors 
did not adopt reporting items prior to the introduction of the 
CLAIM criteria and are still yet to adopt the guideline. As 
the criteria gain popularity and become a point of reference 
for authors, we hope to see greater adherence and improved 
research quality. Of note, our study only includes papers 
assessing gliomas, and thus, we cannot confirm similar areas 
of improvement across the broader neuro-oncology AI lit-
erature. Nevertheless, findings in this article are similar to 
others [7, 20, 21] assessing areas of AI in oncology using 
CLAIM. However, the criteria may need to be weighted 
according to the importance of reporting items, and some 
manuscripts may not have been able to address every 
CLAIM criterion [11]. Lastly, assessing studies against 
the CLAIM criteria has an inherent degree of subjectivity, 
despite the steps we have taken to minimise this, such as the 
reviewing authors cross-checking each other’s assessments.

Conclusion

The field of AI continues to evolve at a rapid pace. The 
availability of guidelines such as CLAIM allows for a more 
standardised approach to report quality for AI algorithms 
within the literature. From the articles reviewed in this 
study, high performance was observed across the four main 
AI tasks, but on average, assessed articles met less than half 
of the CLAIM criteria. The main areas of improvement 
include handling of data, ground truth, AI algorithm train-
ing, and validation. Introduction of the CLAIM criteria did 

not raise reporting standards as the adherence was still low 
between pre-CLAIM and post-CLAIM groups. Application 
of reporting standards such as the CLAIM will be an impor-
tant means of addressing the translational gap between com-
puter science research and clinical implementation.
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