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Abstract
Purpose Neuromelanin MRI (NM-MRI) is applied as a proxy measurement of dopaminergic functioning of the substantia 
nigra pars compacta (SN). To increase its clinical applicability, a fast and easily applicable NM-MRI sequence is needed. 
This study therefore compared accelerated NM-MRI sequences using standard available MRI options with a validated 2D 
gradient recalled echo NM-MRI sequence with off-resonance magnetization transfer (MT) pulse (2D-MToffRes).
Methods We used different combinations of compressed sense (CS) acceleration, repetition times (TR), and MT pulse to 
accelerate the validated 2D-MToffRes. In addition, we compared a recently introduced 3D sequence with the 2D-MToffRes.
Results Our results show that the 2D sequences perform best with good to excellent reliability. Only excellent intraclass 
correlation coefficients were found for the CS factor 2 sequences.
Conclusion We conclude that there are several reliable approaches to accelerate NM-MRI, in particular by using CS.
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Introduction

Neuromelanin MRI (NM-MRI) is becoming a key instrument 
for in-vivo visualization of dopaminergic functioning of the sub-
stantia nigra pars compacta (SN) and has potential for clinical 
application in disorders characterized by dopaminergic altera-
tions such as Parkinson’s disease and schizophrenia [1]. Several 
NM-MRI sequences have been investigated, but most commonly 
used is the 2D gradient recalled echo NM-MRI sequence with 
off-resonance MT pulse (2D-MToffRes), as its contrast ratio 
(CR) has been validated with postmortem regional NM concen-
tration and already successfully applied in clinical research [2]. 
An important drawback of the sequence is its scan duration of 

over 10 min. Customization of the standard MT pulse can reduce 
scan duration to 4–7 min; however, this is not readily applicable 
in clinical practice [3]. Instead, for a clinical protocol, it is essen-
tial to accelerate the scan using standard available MRI options. 
Most recently, a 3D sequence using on-resonance MT pulse with 
a scan duration of approximately 4 min has been introduced [4]. 
Advantages of 3D scanning are the potentially higher resolu-
tion for small structures such as the SN and a better contrast to 
noise ratio. This sequence has not been validated or compared 
to other sequences, yet. The aim of the current study is therefore 
to assess the performance in terms of CR in the SN of several 
accelerated NM-MRI sequences using standard available MRI 
options, including compressed sense (CS) and 3D scanning, and 
compare these with the validated 2D-MToffRes. Sequences with 
good to excellent reliability are considered useful alternatives.

Methods

Participants

This study was approved by the Medical Ethics Commit-
tee of the Amsterdam Medical Centre. All participants 
gave written informed consent prior to the scan after the 
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procedure had been fully explained. Nine healthy partici-
pants (aged 26.2 ± 3.3 years; 5 males) were included in de CS 
protocol and 10 healthy participants (aged 26.3 ± 6.1 years; 
2 males) in the 3D protocol. All participants were aged 
between 18 and 40 years. Prior to inclusion, participants 
were screened by means of an interview and excluded if they 
had a neurological or psychiatric disorder or had any MRI 
contraindication.

Image acquisition

All MR data were acquired using a 3 Tesla Ingenia MRI 
system (Philips, Best, The Netherlands) with a 32 chan-
nel SENSE head coil. For slice placement and registra-
tion, high-resolution structural T1-weighted volumetric 
images were acquired (TE/TR = 4.1/9.0  ms; 189 slices; 
FOV = 284 × 284 × 170 mm; voxel size = 0.9 × 0.9 × 0.9 mm, 
FA = 8°). Two protocols with different NM-MRI sequences 
were acquired (Table 1). In the CS protocol, we used CS 
factors 2 and 3 and adjusted repetition time (TR) to assure 
most efficient scanning (i.e., using only one slice package 
instead of three in the original 2D MToffRes). In the 3D pro-
tocol, we acquired 3D sequences with different FA and one 
2D sequence without MT pulse preparation. For all NM-MRI 
scans, the axial slice orientation was the anterior commissure 
to posterior commissure line. To calculate the CR in the SN, 
we applied both manual and standardized analysis methods 
with crus cerebri (CC) as reference region.

Manual analysis

The SN was manually segmented on the three consecutive 
slices and six consecutive slices, for the 2D and 3D respectively, 
with the highest voxel intensity using ITK-Snap (v. 3.6.0). The 
CC was segmented as reference region and consisted of six 
default circles three on each side of the SN. Segmentation 
was performed by K. T. T. J., who was trained and performed 
over a 100 segmentations of the SN on NM-MRI prior to this 
research. The CR  ([SSN −  SCC]/SCC) was calculated as described 
previously [2, 5], where  SSN and  SCC illustrate the mean signal 
intensities of the SN and CC, respectively. In addition, we cal-
culated the contrast to noise ratio (CNR =  [SSN −  SCC]/SDCC) as 
a measure for image quality with the standard deviation of the 
CC  (SDcc) representing the noise [6].

Standardized analysis

In addition, the NM-MRI scans were analyzed using a pipe-
line from a previous study [3]. All NM-MRI data were nor-
malized to MNI standard space and spatially smoothed with 

a 1-mm full-width-at-half-maximum Gaussian kernel using 
ANTS software. Template masks of the SN and CC were 
created by manual tracing with ITK-Snap on a standard-
ized average image of all 2D-MToffRes scans. The CR was 
calculated at each voxel in the SN mask using the CC as 
reference region. The mean CR per participant was acquired 
by averaging the CR values of all voxels in the SN mask that 
had a non-negative value.

Statistical analyses

Statistical analyses were performed in SPSS [7]. Sequences 
were compared with the validated original 2D-MToffRes 
using the intraclass correlation coefficients (ICC) from a 
mixed consistency model and Pearson correlation coeffi-
cients. ICC values > 0.75 are considered good and > 0.90 
excellent [8].

Results

An overview of the NM-MRI scans are depicted in Fig. 1. The 
scans demonstrated a CNR between 2.18 and 4.47, with the 
highest CNR for the 2D sequence with a TR of 633 ms and 
3D sequences. CR was lowest for the 3D sequence with a FA 
of 25 and highest for the 2D sequence with a TR of 633 ms 
(Table 2). Only excellent ICCs were found for the sequences 
with CS factor 2, with a TR of 260 ms and 633 ms (Table 2). 
The manual analysis performed worse than the standardized 
analysis.

Discussion

This study demonstrates that several directly applicable 
strategies to accelerate NM-MRI show good to excel-
lent reliability compared to the validated 2D-MToffRes 
sequence. The 2D sequence with a TR of 633 ms and 3D 
sequences demonstrate the highest CNR, as expected for 
the 3D sequences [4]. However, in terms of reliability, 
the 3D sequences perform worse than the 2D sequences. 
The 2D sequences with CS most reliably correspond to 
the validated 2D-MToffRes, especially using the stand-
ardized analysis protocol. The sequences with CS factor 
2 show excellent ICCs, which is unaffected by increas-
ing TR.

We used CS to accelerate the sequences as CS does 
not affect the MT and T1-shortening effects, but instead 
undersamples k-space to reduce scan time [9]. The para-
magnetic neuromelanin-iron complexes in combination 
with the high water content of neuromelanin compared 
to the surrounding tissues lead to the T1-shortening and 

308 Neuroradiology (2023) 65:307–312



1 3

Ta
bl

e 
1 

 S
ca

n 
pa

ra
m

et
er

s

Th
e 

C
S 

pr
ot

oc
ol

 c
on

si
ste

d 
of

 (1
) t

he
 o

rig
in

al
 2

D
 N

M
-M

R
I w

ith
 o

ff-
re

so
na

nc
e 

M
T 

pu
ls

e 
(2

D
-M

To
ffR

es
); 

(2
) t

he
 o

rig
in

al
 2

D
 N

M
-M

R
I w

ith
ou

t M
T 

pu
ls

e 
(2

D
-M

Tn
o)

; (
3/

4)
 th

e 
2D

-M
To

ffR
es

 
w

ith
 C

S 
fa

ct
or

 2
 a

nd
 3

 (2
D

-C
S2

 a
nd

 2
D

-C
S3

, r
es

pe
ct

iv
el

y)
; (

5/
6/

7)
 th

e 
2D

-M
To

ffR
es

 w
ith

 a
n 

ad
ju

ste
d 

TR
 o

f 6
33

 m
s (

2D
-T

R
ad

) a
nd

 w
ith

 C
S 

fa
ct

or
 2

 a
nd

 3
 (2

D
-T

R
ad

-C
S2

 a
nd

 2
D

-T
R

ad
-C

S3
, 

re
sp

ec
tiv

el
y)

. T
he

 3
D

 p
ro

to
co

l c
on

si
ste

d 
of

 (1
) t

he
 2

D
-M

To
ffR

es
; (

2)
 th

e 
or

ig
in

al
 2

D
 N

M
-M

R
I w

ith
 o

n-
re

so
na

nc
e 

M
T 

pu
ls

e 
(2

D
-M

To
nR

es
); 

(3
/4

/5
) a

 3
D

 N
M

-M
R

I s
ca

n 
w

ith
 o

n-
re

so
na

nc
e 

M
T 

pu
ls

e 
an

d 
a 

fli
p 

an
gl

e 
of

 1
2,

 1
5,

 a
nd

 2
5 

(3
D

-F
A

12
, 3

D
-F

A
15

, a
nd

 3
D

-F
A

25
, r

es
pe

ct
iv

el
y)

. T
E,

 e
ch

o 
tim

e;
 T

R,
 re

pe
tit

io
n 

tim
e;

 F
A,

 fl
ip

 a
ng

le
; F

O
V,

 fi
el

d 
of

 v
ie

w
; N

SA
, n

um
be

r o
f s

ig
na

l a
ve

ra
ge

s;
 

Ac
ce

l. 
fa

ct
or

, a
cc

el
er

at
io

n 
fa

ct
or

; M
T,

 m
ag

ne
tiz

at
io

n 
tra

ns
fe

r; 
Ac

q.
 ti

m
e,

 a
cq

ui
si

tio
n 

tim
e;

 C
S,

 c
om

pr
es

se
d 

se
ns

e;
 S

, s
en

se

Pa
ra

m
et

er
TE

 (m
s)

TR
 (m

s)
FA

°
Sl

ic
es

Sl
ic

e 
ga

p
Sp

at
ia

l r
es

ol
ut

io
n 

(m
m

)
FO

V
 (m

m
)

N
SA

A
cc

el
. f

ac
to

r
M

T 
off

se
t (

H
z)

M
T 

du
r. 

(m
s)

A
cq

. t
im

e 
(m

in
)

C
S 

pr
ot

oc
ol

  2
D

-M
To

ffR
es

3.
9

26
0

40
8

0.
25

0.
39

 ×
 0.

39
 ×

 2.
5

16
2 ×

 19
9

2
-

12
00

15
.6

13
:2

0
  2

D
-n

oM
TR

es
3.

9
26

0
40

8
0.

25
0.

39
 ×

 0.
39

 ×
 2.

5
16

2 ×
 19

9
2

-
-

-
04

:2
6

  2
D

-C
S2

3.
9

26
0

40
8

0.
25

0.
39

 ×
 0.

39
 ×

 2.
5

16
2 ×

 19
9

2
C

S 
=

 2
12

00
15

.6
06

:4
2

  2
D

-C
S3

3.
9

26
0

40
8

0.
25

0.
39

 ×
 0.

39
 ×

 2.
5

16
2 ×

 19
9

2
C

S 
=

 3
12

00
15

.6
04

:2
8

  2
D

-T
R

ad
3.

9
63

3
40

8
0.

25
0.

39
 ×

 0.
39

 ×
 2.

5
16

2 ×
 19

9
2

-
12

00
15

.6
10

:4
7

  2
D

-T
R

ad
-C

S2
3.

9
63

3
40

8
0.

25
0.

39
 ×

 0.
39

 ×
 2.

5
16

2 ×
 19

9
2

C
S 

=
 2

12
00

15
.6

05
:2

5
  2

D
-T

R
ad

-C
S3

3.
9

63
3

40
8

0.
25

0.
39

 ×
 0.

39
 ×

 2.
5

16
2 ×

 19
9

2
C

S 
=

 3
12

00
15

.6
03

:3
6

3D
 p

ro
to

co
l

  2
D

-M
To

ffR
es

3.
9

26
0

40
8

0.
25

0.
39

 ×
 0.

39
 ×

 2.
5

16
2 ×

 19
9

2
-

12
00

15
.6

13
:2

0
  2

D
-M

To
nR

es
3.

9
26

0
40

8
0.

25
0.

39
 ×

 0.
39

 ×
 2.

5
16

2 ×
 19

9
2

-
0

8.
5

08
:5

4
  3

D
-F

A
12

7.
5

62
12

48
-

0.
67

 ×
 0.

67
 ×

 1.
34

25
6 ×

 19
2

1
S 

=
 2

0
8.

5
04

:0
3

  3
D

-F
A

15
7.

5
62

15
48

-
0.

67
 ×

 0.
67

 ×
 1.

34
25

6 ×
 19

2
1

S 
=

 2
0

8.
5

04
:0

3
  3

D
-F

A
25

7.
5

62
25

48
-

0.
67

 ×
 0.

67
 ×

 1.
34

25
6 ×

 19
2

1
S 

=
 2

0
8.

5
04

:0
3

309Neuroradiology (2023) 65:307–312



1 3

MT effects which are thought to underlie the contrast 
[10]. We assessed the CS sequences also with adjusted 
TR. Using a TR of 260 ms on our scanner resulted in 
separating the slices in 3 packages. This was less time 
efficient, because of the incorporated waiting time due 
to specific absorption rate limits. Adjusting the TR to 
633 ms made it possible to fit all slices in one package, 

decreasing scan duration. In addition, more slices in one 
package increases the multi-slice MT effect and thereby 
the CR [11]. Higher CR could result in easier manual 
tracing of the SN and may thereby explain the better 
performance of the manual analysis [5]. It should be 
noted though that the 3D sequences with higher CR and 
CNR show lower ICCs. This underlines that higher CR 

3D-protocol

CS-protocol

2D-MToffRes
CNR: 2.61

2D-MTonRes
CNR: 2.66

3D-FA12
CNR: 4.26

3D-FA15
CNR: 4.27

3D-FA25
CNR: 3.24

2D-MToffRes
CNR: 2.83

2D-CS2
CNR: 2.18

2D-noMT
CNR: 2.92

2D-TRad
CNR: 4.47

2D-Trad-CS2
CNR: 3.94

2D-Trad-CS3
CNR: 3.00

Fig. 1  Overview of the neuromelanin MRI scans. An example of 
the neuromelanin MRI sequences of one participant of the CS pro-
tocol and one participant of the 3D protocol, with the mean contrast 

to noise ratio (CNR) of all participants per scan. MT, magnetization 
transfer; Res, resonance; CS, compressed sense; TRad, repetition time 
adjusted; FA, flip angle

Table 2  Mean contrast ratio and reliability of the different sequences

TRad, repetition time adjusted; FA, flip angle; MT, magnetization transfer; Res, resonance; CS, compressed sense; SD, standard deviation; R, 
Pearson’s correlation coefficient; ICC, intraclass correlation coefficient (mixed consistency model)

Manual analysis Standardized analysis

Mean SD R p-value ICC p-value Mean SD R p-value ICC p-value

CS protocol
  2D-MToffRes 21.81 1.83 16.60 1.82
  2D-noMT 20.93 1.55 0.79 0.06 0.79 0.02 16.72 1.31 0.83 0.04 0.79 0.02
  2D-CS2 20.37 1.51 0.55 0.12 0.54 0.05 15.01 1.96 0.91 0.00 0.91 0.00
  2D-TRad 27.29 2.93 0.91 0.00 0.82 0.00 20.05 2.27 0.86 0.00 0.84 0.00
  2D-TRad-CS2 26.21 3.11 0.87 0.00 0.76 0.01 19.09 2.02 0.93 0.00 0.93  < 0.001
  2D-TRad-CS3 26.21 3.18 0.89 0.00 0.79 0.01 19.30 1.74 0.87 0.01 0.86 0.00

3D-protocol
  2D-MToffRes 19.33 2.06 14.94 1.42
  2D-MTonRes 24.51 2.37 0.91 0.00 0.90 0.00 18.71 2.28 0.88 0.00 0.69 0.01
  3D-FA12 24.78 3.97 0.80 0.01 0.66 0.01 17.24 5.15 0.80 0.01 0.41 0.11
  3D-FA15 22.56 3.58 0.87 0.00 0.75 0.00 13.23 3.25 0.77 0.01 0.56 0.04
  3D-FA25 15.95 1.91 0.84 0.00 0.84  < 0.001 9.64 2.27 0.66 0.04 0.60 0.03
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and CNR are not necessarily more reliable and stresses 
the importance of comparing optimized sequences to a 
validated sequence or post mortem data.

The 3D sequences show a relatively high CNR and 
moderate to good ICCs using the manual analysis; how-
ever, they fail to reach good ICCs using the standardized 
analysis. The manual analysis is biased though by intra-
rater differences and the circularity of acquiring the CR 
in a mask based on the highest contrast [5]. Therefore, 
the results of the standardized analysis are an impor-
tant indication that the 3D sequences are less reliable for 
semi-quantification than the 2D sequences. This finding 
is in line with the results of a meta-analysis on findings 
in Parkinson’s disease, showing that studies using 2D 
sequences report a slightly better diagnostic performance 
than studies using a 3D sequence [12]. We should men-
tion though that the standardized analysis is validated 
for the 2D sequences and might be less accurate for the 
3D sequences [3]. Advantages of the 3D sequences are 
the short scan duration and high resolution. They may be 
useful for anatomical localization of the SN. However, 
for semi-quantitative purposes, the 2D sequences with 
CS appear to be most reliable.

We also adjusted the MT effects by changing the MT pulse 
to the on-resonance MT pulse and by omitting the MT pulse. 
The on-resonance MT pulse is more time efficient than the off-
resonance MT sequence which requires a longer TR to avoid 
too high specific absorption rates. Adjusting the MT pulse did 
not appear to markedly affect the reliability. It should be noted 
that the 2D sequence without MT pulse was scanned in one 
package and thereby the increased multi-slice MT effect could 
have compensated the effect of the off-resonance MT pulse.

Interestingly, our results show some difference in CR 
for the validated 2D-MToffRes sequence between the two 
protocols. It should be noted that the CS protocol and 
3D protocol consisted of different participant samples 
and, albeit scanned on the same scanner, the protocols 
were scanned more than a year apart during which two 
scanner software updates occurred. The difference is not 
likely related to reproducibility issues since several NM-
MRI 2D sequences have demonstrated a good to excellent 
reproducibility [3, 13], including the validated 2D-MTof-
fRes sequence used in this study with a test–retest vari-
ability below 6% [5].

Finally, it will be essential to further validate the acceler-
ated sequences in patient samples. Our samples consisted of 
small and homogenous groups (e.g., similar age), making the 
statistical results more prone to limited variation in data points.

To conclude, there are several reliable approaches to 
accelerate NM-MRI. CS or similar acceleration tech-
niques appear to be most suitable for semi-quantitative 
purposes.
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