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Abstract 
Purpose Increasingly complex MRI studies and variable series naming conventions reveal limitations of rule-based image 
routing, especially in health systems with multiple scanners and sites. Accurate methods to identify series based on image 
content would aid post-processing and PACS viewing. Recent deep/machine learning efforts classify 5–8 basic brain MR 
sequences. We present an ensemble model combining a convolutional neural network and a random forest classifier to dif-
ferentiate 25 brain sequences and image orientation.
Methods Series were grouped by descriptions into 25 sequences and 4 orientations. Dataset A, obtained from our institution, 
was divided into training (16,828 studies; 48,512 series; 112,028 images), validation (4746 studies; 16,612 series; 26,222 
images) and test sets (6348 studies; 58,705 series; 3,314,018 images). Dataset B, obtained from a separate hospital, was 
used for out-of-domain external validation (1252 studies; 2150 series; 234,944 images). We developed an ensemble model 
combining a 2D convolutional neural network with a custom multi-task learning architecture and random forest classifier 
trained on DICOM metadata to classify sequence and orientation by series.
Results The neural network, random forest, and ensemble achieved 95%, 97%, and 98% overall sequence accuracy on dataset 
A, and 98%, 99%, and 99% accuracy on dataset B, respectively. All models achieved > 99% orientation accuracy on both 
datasets.
Conclusion The ensemble model for series identification accommodates the complexity of brain MRI studies in state-of-
the-art clinical practice. Expanding on previous work demonstrating proof-of-concept, our approach is more comprehensive 
with greater sequence diversity and orientation classification.

Keywords Deep learning · Machine learning · MRI · Sequence classification

Introduction

Advances in medical imaging have led to increasingly 
complex studies. A brain MRI can have numerous proto-
col choices (e.g., pediatric, epilepsy, brain tumor, multiple 
sclerosis, acute stroke), and a single study may consist of 
over a thousand images separated into dozens of series. A 
series is a volume of images obtained using a specific pulse 
sequence, tissue contrast, and scan orientation. Choice of 
pulse sequence and scanning plane are important clinical 
considerations. Adding to this complexity are differences 
in scanner manufacturer, model, software operating system, 
pulse sequence design, scan parameters, as well as incon-
sistent or custom naming conventions. Series labeling for 
effective routing of images to PACS, which at first would 
appear to be a straightforward task, becomes increasingly 
challenging. Compounding these issues is the emergence 
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of large healthcare systems encompassing multiple imaging 
sites, often arising from previously independent centers with 
their own conventions. On the other hand, there has never 
been more of a need for scalable automated classification of 
images and series to facilitate the curation of large datasets 
such as required for machine learning application develop-
ment and real-world deployment.

The literature shows proof-of-concept identification of 
5–8 basic brain MRI sequences using machine learning 
[1–4]. Standard machine learning approaches such as ran-
dom forest classifiers (RFC) have demonstrated good accu-
racy, though these depend on consistency of the DICOM 
metadata, which is known to be variable [2, 4]. Deep learn-
ing has also been applied with convolutional neural networks 
(CNN) tapping image content to directly classify sequences 
[1–3]. Translation to clinical application from these ini-
tial works is limited as they include only a few basic pulse 
sequences and lack orientation identification (e.g., axial, 
coronal, sagittal), which is needed for appropriate series 
classification. In this work, we present an ensemble approach 
combining a two-dimensional CNN with an RFC trained 
on DICOM metadata to differentiate 25 clinical brain MRI 
sequences and image orientation using real-world clinical 
imaging datasets.

Methods

Data

This retrospective study was conducted in compliance with 
the Health Insurance Portability and Accountability Act 
and approved by the institutional review board. To iden-
tify brain MRI studies, we searched a deidentified database 
of MRIs performed on 1.5-T and 3-T scanners at an aca-
demic medical center between November 1997 and Decem-
ber 2018 for studies with the DICOM metadata attribute 
BodyPartExamined (0018,0015) set as “brain,” “head,” or 
“neuro.” Ground-truth labels for sequence and orientation 
were based on the SeriesDescription (0008,103E) attribute. 
A board-certified neuroradiologist with 14 years of post-
fellowship experience classified 349 series descriptions 
into 25 sequence classes by reviewing series descriptions 
and visually inspecting sample images (2D unless other-
wise noted): pre-contrast T1, post-contrast T1, pre-contrast 
T1 internal auditory canal (IAC), post-contrast T1 IAC, 
pre-contrast 3D T1, post-contrast 3D T1, pre-contrast 3D 
volumetric interpolated brain examination (VIBE)/golden-
angle radial sparse parallel (GRASP), post-contrast VIBE/
GRASP; T2, HASTE (half-Fourier acquisition single-shot 
turbo spin echo), 3D T2, 3D CISS (constructive interfer-
ence in steady state), FLAIR (fluid-attenuated inversion 
recovery), 3D FLAIR; diffusion, ADC (apparent diffusion 

coefficient), SWI (susceptibility-weighted imaging), SWI 
magnitude (magnitude image), SWI phase (phase map), SWI 
MIP (maximum intensity projection; 3-5 mm slab); perfu-
sion (dynamic-susceptibility contrast), TOF MRA (time-
of-flight MR angiogram), TOF MRA MIP (3D), scout, and 
other. The diffusion class consisted of all diffusion-weighted 
imaging regardless of B-value or number of shells. The other 
class included all other sequences such as quantitative sus-
ceptibility mapping, arterial spin labeling, and functional 
MRI. Fat-suppressed sequences were included with non-
fat-suppressed sequences under their base sequence class. 
Images of ambiguous series descriptions were examined and 
classified accordingly. Series orientation was classified as 
axial, coronal, sagittal, and oblique/other/unlabeled based 
on series description.

To train and evaluate this work, we used two distinct clin-
ical datasets containing a broad range of normal and abnor-
mal cases. Dataset A was stratified by study and divided into 
training (16,828 studies; 48,512 series; 112,028 images), 
validation (4746 studies; 16,612 series; 26,222 images), and 
test sets (6348 studies; 58,705 series; 3,314,018 images). By 
stratifying dataset A by study, we ensured that all images in 
a series and all series in a study were included in only one of 
the subsets. To balance the variation in the number of series 
between different sequence classes in the training set, the 
training data were limited to 4500 images per class. Mean 
subject age in dataset A was 49.8 years (SD: 21.4 years; 
range: 1 day–95 years), and 64.6% of studies were of male 
patients. Distribution of series by scanner manufacturers is 
provided in Table S1.

Dataset B, obtained from a community hospital prior to 
its incorporation into the larger health system from which 
dataset A is drawn, provided out-of-domain external valida-
tion with simpler protocols and fewer pulse sequence types 
(1252 studies; 2150 series; 234,944 images). Mean subject 
age in dataset B was 56.2 years (SD: 24.9 years; range: 
1 day–95 years), and 81.6% of studies were of male patients.

Images were cropped and/or padded to maintain aspect 
ratio, resized to 256 × 256, and normalized by pixel intensity. 
Stochastic data augmentations of rotation at a random degree 
from uniform distribution [− 10°,10°], scaling/cropping 
[− 5%,5%], and translation [− 20,20 pixels] were applied.

Model development

The RFC implemented in scikit-learn [5] classified images 
according to DICOM metadata attributes (Table 1). Selected 
attributes were parameters that often differ between 
pulse sequences and were often included in prior studies 
(Table S2) [2–4]. Due to variable institutional conven-
tions, the attribute ContrastBolusAgent (0018,0010) used 
in these prior studies was not available at either institution. 
Each attribute was checked individually with missing values 

78 Neuroradiology (2023) 65:77–87



1 3

imputed as − 1. RFC hyperparameters were tuned, including 
the number of trees, loss function, and number of random 
features considered when splitting nodes. The final RFC 
consisted of 100 trees analyzing 2 to 14 features and oth-
erwise default parameters. The RFC was trained on a CPU, 
which took approximately 3 h to complete.

The CNN employs multi-task learning (MTL) to learn 
sequence and orientation from the same input, while a 
2D architecture maintains flexibility for clinical practice 
as such a system is independent of the number of slices 
per volume. Each slice in the series passes through a cus-
tom CNN architecture implemented in PyTorch [6] and 
trained with PyTorch-Lightning [7] (Fig. 1). After 10 lay-
ers of convolution, batch normalization, and rectified lin-
ear unit activation, the output is split into two heads for 
parallel MTL of sequence and orientation. The sequence 
head outputs a vector of log probabilities of size equal to 
the number of possible sequences (25). The orientation 
head produces a vector of log probabilities correspond-
ing to the possible orientations (4). Passing a batch of 
size M through the network, weighted cross-entropy loss 
is applied for sequence classification:

where weights wk correspond to the relative proportion of 
images of that class within the training distribution, yk

m
 is 

the ground-truth sequence, and ŷk
m
 is the predicted sequence.

The orientation loss function utilizes masked weighted 
cross-entropy loss:

where indicator function  1k≠unlabeled masks instances from 
the batch where an orientation tag is not provided. This 

(1)lsequence = −
1

M

∑K

k

∑M

m
wky

k
m
log

(

ŷk
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allows the two tasks to train in parallel, albeit with less sam-
pling efficiency for orientation. The contrast and orientation 
loss functions are summed, L = lsequence + lorientation , and the 
gradient of L is used to update network weights via back-
propagation and the Adam optimizer [8].

Many hyperparameter configurations were tuned using 
the validation set from dataset A, including learning rates 
between  10−5 and  10−1, weight decay factors between  10−1 
and  10−5, batch sizes between 16 and 256, and different 
capacity configurations (number of parameters per layer). 
Final hyperparameter configurations from the most accurate 
model on the validation set included a learning rate of  10−4, 
batch size of 8, weight decay factor of 5 ×  10−6, and param-
eter count of 307,491,484. Learning rate was decreased by 
a factor of 10 for every 5 epochs in which the validation 
loss did not improve. The CNN’s best performing validation 
score was achieved in 72 h of training on a 32 GB NVIDIA 
V100 GPU.

Each image in a series received a prediction from the 
RFC as well as a prediction from the CNN. For the CNN 
and RFC, a majority-rules vote over all images in a series 
resulted in the final prediction of sequence and orientation, 
except for orientations of scout series as these often contain 
images of multiple orientations. To produce the ensemble 
model, a majority-rules vote over all the predictions from 
the CNN and RFC (two predictions for each image) for the 
images in the series resulted in a final prediction.

Analysis

Accuracy (number of correctly classified series divided by 
the total number of series), precision (positive predictive 
value), recall (sensitivity), and F1-score (harmonic mean 
of precision and recall) were calculated for each sequence:

where TP = true positives, TN = true negatives, FP = false 
positives, and FN = false negatives. For each model, average 
F1-score, weighted by the number of series for each class, 
was calculated. Accuracy was calculated over all sequences, 
weighted by the number of series for each class, as well as 
over all orientations. Confusion matrices were generated to 
visualize concordance between ground-truth and predicted 
classes. To test if performance differed between classifiers, 
Friedman’s test based on the F distribution was conducted 

(3)precision =
TP

TP + FP

(4)recall =
TP

TP + FN

(5)F
1
=

2

precision−1 + recall−1
=

TP

TP +
1

2
(FP + FN)

Table 1  DICOM metadata attributes extracted by the random forest 
classifier

Parameter DICOM tag

Image type (0008,0008)
Scanning sequence (0018,0020)
Sequence variant (0018,0021)
Scan options (0018,0022)
MR acquisition type (0018,0023)
Repetition time (0018,0080)
Echo time (0018,0081)
Echo train length (0018,0091)
Image orientation (patient) (0020,0037)
Photometric interpretation (0028,0004)
Pixel spacing (0028,0030)
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on F1-scores, followed by Nemenyi’s post hoc test for pair-
wise classifier comparisons, with significance level p < 0.05. 
For the most prevalent sequence classification discrepancies 

with 20 or more series, five randomly selected example 
series were reviewed by imaging experts to determine the 
major types of discrepancies. To visualize the portions of the 

Fig. 1  Convolutional neural network architecture. After 10 layers of 
convolution, batch normalization, and rectified linear unit (ReLU) 
activation, the output is split into two heads for parallel multi-task 

learning of sequence and orientation. Multi-task learning allows a 
network to optimize more than one loss function to learn related tasks 
from the same input data
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input image that contributed most to the CNN’s prediction, 
saliency maps were generated by calculating the gradient 
of the predicted class with respect to each input pixel. To 
determine which DICOM attribute features contributed most 
to the RFC predictions, we utilized SHAP (Shapley Additive 
exPlanations), which employs a game theoretic approach to 
quantify a feature’s contribution to the model’s prediction 
of a given data point [9].

Results

Dataset A

Sequence classification performance on the holdout test set 
is summarized in Table 2. Confusion matrices show con-
cordance between predicted and ground-truth labels (Fig. 2). 
Orientation accuracy was > 99% for the CNN, RFC, and 
ensemble model.

Overall RFC sequence classification accuracy was 97% 
with weighted average F1-score of 0.97. F1-score was 1.00 
for diffusion, ADC, FLAIR, 3D FLAIR, MRA, MRA MIP, 
SWI, and SWI magnitude/MIP/phase. F1-score was lowest 
for VIBE/GRASP post-contrast (0.69; 51 series).

Overall CNN sequence classification accuracy was 95% 
with weighted average F1-score of 0.95. F1-score was 1.00 
for diffusion, MRA MIP, SWI MIP, and SWI phase. F1-score 
was lowest for VIBE/GRASP post-contrast (0.42; 51 series).

Overall ensemble sequence classification accuracy was 
98% with weighted average F1-score of 0.98. F1-score was 
1.00 for diffusion, ADC, FLAIR, 3D FLAIR, MRA MIP, 
perfusion, SWI, SWI magnitude/MIP/phase, and 3D T1 
pre-contrast. F1-score was lowest for VIBE/GRASP post-
contrast (0.64; 51 series).

According to aggregate F1-scores, RFC sequence clas-
sification significantly outperformed the CNN (p = 0.02), as 
did the ensemble (p = 0.01). RFC and ensemble performance 
did not significantly differ (p > 0.05).

Dataset B

Sequence classification performance is summarized in 
Table 3 and confusion matrix (Fig. 3). Orientation accuracy 
was > 99% for the CNN, RFC, and ensemble.
The RFC and ensemble achieved 99% overall sequence clas-
sification accuracy with weighted average F1-score of 1.00. 
F1-score was 1.00 for other, perfusion, scout, 3D T1 pre-
contrast, and T2. F1 was lowest for T1 pre-contrast (0.61; 
16 series).

Overall CNN sequence classification accuracy was 98% 
with weighted average F1-score of 0.98. F1-score was 1.00 
for other and perfusion. F1 was lowest for scout (0.00; 9 
series).

According to aggregate F1-scores, sequence classifica-
tion performance of the RFC, CNN, and ensemble did not 
significantly differ (p > 0.05).

Interpretability analysis

Saliency maps demonstrated high gradients around head 
contours, which may be useful to the CNN for both orien-
tation and sequence classification, as well as high-contrast 
boundaries such as along the ventricular surface, which may 
be useful for sequence classification (Fig. 4).

SHAP analysis of the RFC is summarized in Fig. S1. Ima-
geType was the most impactful feature, especially when set 
to TRACEW, DIFFUSION, or ADC, as these corresponded 
directly to diffusion, diffusion, and ADC sequence classes 
respectively.

Discussion

We developed an ensemble model combining a CNN with a 
novel MTL architecture and RFC trained on DICOM meta-
data to accurately classify up to 25 brain MRI sequences 
and identify image orientation. The model was trained on a 
large real-world clinical dataset encompassing a broad range 
of scanners, protocols, and normal and abnormal cases. The 
model performed well on the holdout test set and external 
data, indicating good generalization across imaging sites, 
scanners, protocols, and pathologies.

We extend work from previous studies providing proof-
of-concept classification of 5–8 basic brain MRI sequences 
using deep learning and conventional machine learning 
[1–4]. Remedios et al. developed PhiNet, a cascaded 3D 
CNN that first classifies series as T1, T2, or FLAIR, then 
classifies T1 and FLAIR as pre-/post-contrast [1]. Pizarro 
et al. developed a CNN to classify series as T1, T1 post-
contrast, T2, FLAIR, proton density (PD), high-resolution 
T1, magnetic-transfer-on, and magnetic-transfer-off [2]. 
Pizarro et al. compared 2D and 3D convolution but did not 
find a significant improvement with 3D convolution, which 
required excessive computational memory. DeepDicom-
Sort, a 2D CNN developed by van der Voort et al., classifies 
slices as T1, T1 post-contrast, T2, PD, FLAIR, diffusion, 
perfusion, or derived (e.g. ADC, CBF maps) [3]. Though 
initially trained on brain tumor studies, DeepDicomSort 
achieved excellent performance on a test set of Alzheimer’s 
disease patients. Gauriau et al. developed an RFC that clas-
sifies series as T1, T2, FLAIR, diffusion, susceptibility, 
angiography, scout, or other (e.g., screenshots, perfusion, 
spectroscopy) with performance varying by scanner manu-
facturer [4]. Like DeepDicomSort, our models consider pre- 
and post-contrast T1-weighted sequences as distinct initial 
classes.
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Fig. 2  Confusion matrix of sequence classification on dataset A (holdout test set) for the A random forest classifier, B convolutional neural net-
work, and C ensemble. The color of each square corresponds to the proportion of sequence labels predicted for each ground-truth label 

Fig. 3  Confusion matrix of sequence classification on dataset B (out-of-domain external validation) for the A random forest classifier, B convo-
lutional neural network, and C ensemble

Table 3  Sequence classification 
performance on dataset B (out-
of-domain test set). N refers 
to the number of series of a 
specific sequence class. The 
weighted average is weighted 
by the proportion of series per 
sequence

a RFC outperforms CNN
b CNN outperforms RFC (ΔF1-score ≥ 0.05)

CNN RFC Ensemble

Sequence N Precision Recall F1 Precision Recall F1 Precision Recall F1

MRA 376 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Othera 7 1.00 0.86 0.92 1.00 1.00 1.00 1.00 1.00 1.00
Perfusion 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Scout 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T1 IAC  prea 3 0.50 1.00 0.67 1.00 1.00 1.00 0.60 1.00 0.75
T1  preb 16 0.88 0.44 0.58 1.00 0.06 0.12 1.00 0.06 0.12
3D T1 pre 848 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
T2 888 1.00 0.95 0.97 1.00 1.00 1.00 1.00 1.00 1.00
Weighted avg 2150 0.99 0.97 0.98 1.00 0.99 0.99 1.00 0.99 0.99
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Beyond including a more complete variety of state-of-
the-art brain MRI sequences, our model provides several 
key advantages and innovations. Our model is the first to 
combine deep learning and standard machine learning 
approaches, as well as the first to use MTL to learn MRI 
sequence and orientation. In MTL, a CNN optimizes more 
than one loss function to learn related tasks from the same 
input data [10]. MTL is a well-studied technique that pro-
vides multiple advantages by increasing focus on relevant 
features, allowing classifiers to share features, and reducing 
overfitting. The literature of deep MTL applied to medical 
imaging is sparse but growing as CNNs in radiology become 
increasingly sophisticated to address more complex prob-
lems. Most MTL studies involve detection, segmentation, 
and classification, such as of gliomas [11], breast lesions 
[12, 13], and COVID-19 pneumonia [14]. Furthermore, we 
include “other” sequence and orientation classes, giving 
the model flexibility in accommodating sequences it may 
not have been trained on. We employ a 2D architecture to 
accommodate series of variable slice number and avoid 
excessive computational power or additional preprocessing 
that 3D convolution requires, such as resampling and volu-
metric inference.

While all models performed well, the ensemble model 
had overall highest and near-perfect accuracy. The ensem-
ble model tended to match whichever model was the higher 
performer for a specific sequence, suggesting that the CNN 
and RFC may complement each other. The RFC slightly 
outperformed the CNN on dataset A, in contrast to previous 
studies that had shown CNNs to outperform RFCs [2, 3]. 
The small samples of certain sequences may have contrib-
uted to the RFC’s edge over the CNN. On dataset A, the 
CNN outperformed the RFC on CISS, T1 pre-/post-contrast, 
and T1 IAC pre-contrast, whereas the RFC outperformed the 
CNN on other, SWI, SWI magnitude, T1 IAC post-contrast, 
HASTE, and VIBE/GRASP post-contrast. These findings 
suggest that the two models may complement each other 
and that an ensemble approach combining both can mitigate 
differences in imaging and DICOM metadata.

Fig. 4  Saliency maps demonstrate high gradients around head contours, which may be particularly useful for orientation determination, as well 
as brain parenchyma and ventricles, likely for sequence classification

Fig. 5  Examples of sequence classification discrepancies by the 
convolutional neural network. A T1 pre-contrast series classified as 
T2 were non-brain studies inadvertently included due to erroneous 
DICOM metadata. B T1 internal auditory canal pre-contrast series 
classified as T1 internal auditory canal post-contrast were indeed 
post-contrast. C T1 pre-contrast series classified as T1 internal audi-
tory canal pre-contrast had limited fields-of-view through the orbits, 
resembling internal auditory canal studies
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Error/discrepancy analysis

The following major types of classification discrepancies 
were identified: (1) inputs that were initially mislabeled and 
not actually brain imaging, (2) incorrect ground-truth labels, 
and (3) incorrect predictions. Some of the misclassifications 
had clear explanations after review; others did not.

Review of discrepancies in dataset A’s test set revealed 
non-brain images included in the data. For example, all 
reviewed examples of T1 pre-contrast that were classified 
as T2 by the CNN (138 series, 2.8% of T1 pre-contrast) were 
non-brain studies (e.g., spine) (Fig. 5A). Non-brain studies 
occurred in dataset A, even after efforts to exclude non-brain 
studies manually and by filtering out studies using DICOM 
metadata. One purpose of our study was to develop models 
using large real-world clinical datasets as opposed to small, 
perfectly curated datasets. In any clinical dataset, it is more 
likely than not that there will be some mislabeled images. 
For example, one analysis of computer vision datasets esti-
mates that up to 6% of images in ImageNet (the most popular 
benchmark dataset containing more than 14 million images) 
are mislabeled [15]. One of the major strengths of machine 
learning methods is that even somewhat imperfect data can 
be extremely useful, yielding highly accurate models given 
large enough datasets [16, 17]. Of note, no non-brain studies 
were found in dataset B.

Some discrepancies between ground-truth and model 
labeling were due to either ambiguous or incorrect series 
descriptions. The CNN and ensemble were able to correctly 
classify many of them, more than the RFC. For example, 
all inspected examples of T1 pre-contrast classified as T1 
post-contrast by the CNN (469 series, 9% of all T1 pre-
contrast) were deemed to be T1 post-contrast images by con-
sensus two-expert review, though some were fat-suppressed 
(Fig. 5B). Similarly, all examples of T1 IAC pre-contrast 
classified as IAC post-contrast (65 series, 12% of all T1 IAC 
pre-contrast) were in fact IAC post-contrast. The CNN’s 
robustness to label noise is advantageous and consistent 
with prior studies demonstrating that deep learning models 
form robust representations of classes instead of memorizing 
specific examples [16, 17].

Some discrepancies were true misclassifications, though 
many were explainable upon further review. Review of T1 
pre-contrast series classified as T1 IAC pre-contrast by the 
CNN (23 series, 0.5% of all T1 pre-contrast) revealed several 
studies which were T1 pre-contrast through the orbit with 
a smaller field-of-view than typical of routine brain imag-
ing, resembling IAC studies (Fig. 5C). Some examples of 
VIBE/GRASP pre-contrast misclassified as VIBE/GRASP 
post-contrast by the CNN (95 series, 8% of VIBE/GRASP 
pre-contrast) and RFC (43 series, 4% of VIBE/GRASP 
pre-contrast) were thin-section source images from pre-/

non-contrast head/neck MR angiograms with hyperintense 
vessels.

True misclassifications without readily available explana-
tions tended to occur more frequently with the RFC than the 
CNN. The RFC demonstrated certain types of true misclas-
sifications that did not occur with the CNN: T1 post-contrast 
classified as T1 pre-contrast (338 series, 15%), T1 IAC pre-
contrast classified as T1 pre-contrast (49 series, 9%), T1 
post-contrast classified as CISS (24 series, 5%).

Some scout images posed problems for both CNN and 
RFC. Discrepancies between CNN and ground-truth labels 
included classifying scout series as HASTE (358 series, 
5% of scout), T2 (94 series, 1%), or 3D T1 pre-contrast (24 
series, 0.3%). RFC discrepancies included classifying scouts 
as CISS (30 series, 0.4%) or HASTE (75 series, 0.9%). In 
some regards, those classified as HASTE were not techni-
cally incorrect, as most scout series performed at our insti-
tution are HASTE (a T2-weighted sequence), though with 
lower resolution than the clinical HASTE series. Further, 
non-HASTE scouts are occasionally obtained and under-
represented in the training data, making it understandable 
that T1-weighted scouts were misclassified as a T1-weighted 
sequence.

From dataset B, all examples of T2 classified as HASTE 
by the CNN and ensemble (27 series, 3% of T2) were in fact 
HASTE of pediatric patients. T2-weighted series classified 
as FLAIR by the ensemble (7 series, 11% of FLAIR) were 
T2 with significant motion artifact.

Review of discrepancies between ground-truth labels and 
model predictions revealed the following study limitations: 
our method of identifying brain MRIs was imperfect and 
introduced a small proportion of non-brain studies. Another 
limitation is determining ground-truth sequence and orienta-
tion labels from series description, the fallibility of which 
motivates our work in the first place. Nevertheless, the 
size of the datasets allowed the CNN to overcome many 
instances of errant labeling; the discrepancy analysis dem-
onstrates several instances where series descriptions were 
ambiguous or incorrect, but the CNN was in fact correct. 
Finally, some sequences contained significantly fewer exam-
ples due to their relative rarity. We attempted to mitigate this 
by capping the number of examples in each class and apply-
ing weighted cross-entropy loss. The generalizability of our 
study is limited by the fact that our training data comes from 
a single institution with conventions and protocols that may 
differ from other institutions. Also, the external validation 
dataset B included few sequence types compared to dataset 
A, though dataset B exclusively consisted of studies from 
the scanner manufacturer that was least represented in the 
training and validation datasets. Our goal was to explore the 
potential of machine learning models in improving routing 
and image display tasks. For generalizability, future studies 
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will need to fine-tune on local data or re-train using multi-
institutional datasets.

The flexibility and modularity of our approach sup-
port many directions for future work. The model’s out-
put can be modified to accommodate more classes such 
as fat-suppressed sequences. The MTL approach can 
be scaled to learn and predict additional medical image 
attributes, such as slice thickness and body part exam-
ined. The model may be transferred to learn sequences 
for other anatomy or incorporated into a larger tool that 
first classifies studies by anatomy. Additional considera-
tions for clinical implementation include integration with 
PACS for radiologist viewing/hanging protocols and user 
ability to correct mislabeled series. Automated sequence 
classification could also serve as the first step in image 
post-processing pipelines, such as a tool that automatically 
identifies FLAIR and T1 sequences at acquisition to detect 
and segment white matter lesions in patients with multiple 
sclerosis. Certain results stimulate additional possibilities. 
For example, the model’s systematic misclassification of 
T2 with severe motion artifact suggests an extension to 
image quality control. While our model’s saliency maps 
suggest that head contours and high-contrast boundaries 
are useful for classification, further detailed investigation 
of model explainability may be worthwhile. While our 
ensemble model combined CNN and RFC results using a 
majority-rules voting system, which allowed us to assess 
the relative performance and contribution of images and 
DICOM metadata to predict sequence and orientation, a 
model trained on both pixel-level data and DICOM meta-
data may perform even better.

Conclusions

This work shows that an ensemble approach combining a 
CNN trained on images and RFC trained on DICOM meta-
data for series identification accommodates the complex-
ity of brain MRI studies in state-of-the-art clinical practice. 
Expanding on previous work demonstrating proof-of-con-
cept, our approach is more comprehensive with many more 
classes, as well as orientation classification, and employs 
unique methods including MTL to formulate a flexible 
model. The ensemble model including CNN and RFC had 
overall high accuracy with weighted mean F1-score of 1.00 
on external validation, and results indicate that the two 
approaches may be complementary.
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