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Abstract
Purpose CT angiography (CTA) is the imaging standard for large vessel occlusion (LVO) detection in patients with acute 
ischemic stroke. StrokeSENS LVO is an automated tool that utilizes a machine learning algorithm to identify anterior large 
vessel occlusions (LVO) on CTA. The aim of this study was to test the algorithm’s performance in LVO detection in an 
independent dataset.
Methods A total of 400 studies (217 LVO, 183 other/no occlusion) read by expert consensus were used for retrospective 
analysis. The LVO was defined as intracranial internal carotid artery (ICA) occlusion and M1 middle cerebral artery (MCA) 
occlusion. Software performance in detecting anterior LVO was evaluated using receiver operator characteristics (ROC) 
analysis, reporting area under the curve (AUC), sensitivity, and specificity. Subgroup analyses were performed to evaluate 
if performance in detecting LVO differed by subgroups, namely M1 MCA and ICA occlusion sites, and in data stratified 
by patient age, sex, and CTA acquisition characteristics (slice thickness, kilovoltage tube peak, and scanner manufacturer).
Results AUC, sensitivity, and specificity overall were as follows: 0.939, 0.894, and 0.874, respectively, in the full cohort; 
0.927, 0.857, and 0.874, respectively, in the ICA occlusion cohort; 0.945, 0.914, and 0.874, respectively, in the M1 MCA 
occlusion cohort. Performance did not differ significantly by patient age, sex, or CTA acquisition characteristics.
Conclusion The StrokeSENS LVO machine learning algorithm detects anterior LVO with high accuracy from a range of 
scans in a large dataset.
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Introduction

Patients with acute ischemic stroke due to large vessel occlu-
sions (LVO), on average, may account for around 15–20% of 
all acute ischemic stroke patients [1]. However, LVO strokes 
contribute to 90% of stroke mortality and severe clinical dis-
ability if left untreated [2]. Recent advances in endovascular 
stroke treatment (EVT) have led to significant reduction in 
disability in these patients in comparison to best medical 
management [3]. Because of the robust evidence from clini-
cal trials confirming its efficacy and safety, EVT has become 
the standard of care in patients with anterior circulation 
stroke due to LVO [3].

Contrast-enhanced CT angiography (CTA) has been 
widely adopted as the imaging standard for LVO detection 
in order to identify eligible patients for endovascular 
treatment [4–6]. Timely CTA interpretation and LVO 
detection remain challenging especially in smaller, more 
rural hospitals where physicians with experience in stroke 
imaging are not always available [7]. Since any delay in 
the treatment of patients with LVO directly affects patient 
outcomes [8], automated detection and notification 
of suspected LVO can help improve patient outcomes 
by directly reducing the time to diagnosis and clinical 
decision-making [6].

StrokeSENS LVO (Circle Neurovascular Imaging, 
Calgary, Canada) is a computer-aided triage and 
notification (CADt) tool which utilizes machine learning 
to automatically detect LVO on CTA head images. The 
automated software is intended to notify clinicians 
of patients with suspicious LVO via pre-determined 
communication protocols, thus allowing them to get 
involved in the case sooner than they may have been able 
to if using standard diagnostic workflows. The aim of this 
retrospective cohort study was to evaluate the software’s 
performance in LVO detection, when compared to a 
neuroradiologist expert consensus assessment on imaging 
data from a large multicenter image database.

Methods

Software development dataset

The StrokeSENS LVO algorithm was developed using a 
dataset of 874 CTA cases (development dataset) of pooled 
de-identified imaging data from three clinical trials initiated 
from the University of Calgary (INTERRSeCT[9], PRove-
IT[10], ESCAPE[11]). The primary goal for the software 
development was a reliable detection of the anterior LVO 
including intracranial ICA and M1 MCA occlusions. The 
subset of data used for development was selected from the 

pooled database according to the following inclusion crite-
ria: age of 18 years or older who underwent baseline CTA 
imaging for suspected acute stroke with image slice thick-
ness between 0.5 and 2.5 mm.

The imaging data for development were acquired from 
multiple institutions and multiple CT scanners, manufac-
tured by four different CT vendors (GE, Siemens, Philips, 
Toshiba). Scans determined to be technically inadequate 
(e.g., invalid DICOM image or inappropriate head cover-
age or no contrast) or with significant patient motion were 
excluded. Images in the development dataset included 553 
subjects with anterior LVO [internal carotid artery (ICA) 
and the M1 segment of the middle cerebral artery (MCA)] 
and 321 subjects with other/no occlusions [negative cases 
(non-occlusions), distal occlusions (i.e., M2, M3 MCA), and 
non-anterior circulation occlusions (i.e., occlusions in the 
vertebrobasilar territory)]. There was no scan with intrac-
ranial hemorrhage (ICH) in the development dataset. The 
manually labeled data points annotating the occlusion were 
used for the algorithm development.

Image preprocessing and convolutional neural 
network

A preprocessing pipeline was used to transform the raw CTA 
volume into a normalized space suitable for use as inputs 
to a convolutional neural network. This is required so that 
the network is always presented with images of the same 
resolution, field of view, and range of intensity values; and 
so, it does not have to account for these factors of variation 
as they are standardized. To this end, the volumes were 
cropped 181 mm from the top of the raw volume and then 
resampled to a voxel spacing of 1.13  mm3, leading to an 
input shape of 160 × 192 × 160 voxels. Furthermore, the 
image intensities were clipped to the range of 0 to 1000 
Hounsfield units (HU).

A 3D convolutional neural network (CNN) [12] was used 
to extract valuable features from the normalized volume and 
to perform the detection of LVO. It was composed of 4 down 
blocks, each of which was composed of 2 convolutional lay-
ers with 8 kernels. The activation function for each convo-
lutional layer was the rectified linear unit (ReLU) function 
[13]. At the end of each down block, a batch normalization 
operation was performed [14]. After the last convolutional 
layer, all nodes were flattened, and a single fully connected 
layer was applied to compute the output layer. The output 
layer encoded information about both the existence of an 
LVO and the location of the clot from the manually labeled 
data points on the source scans.

The training of the model was performed using an Adam 
optimizer [15] with a learning rate of 1e-3 and a batch size 
of 16 for 2700 epochs. In each epoch, the entire training 
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set was backpropagated through the model. During training, 
several data augmentation operations were performed. These 
include (1) rotation of up to + -45 degrees on the axial plane, 
(2) rotation of + -20 degrees in the coronal/sagittal planes, 
(3) flipping along the x axis only, and (4) translation of up 
to + -40 voxels in all axes.

The loss function was necessary to guide the training pro-
cess of the model and was not used during the deployment of 
the model. It was based on the softmax cross entropy func-
tion between the output layer and the reference encoding, 
both of which contained information about the existence of 
an LVO and the location of the clot. (Of note, the occlusion 
location was used for the software development, but only 
to a limited extent, and the information about the occlusion 
location is not provided to the end-users).

Software validation dataset (test set)

This test data was independent of the development dataset 
and was retrospectively selected from the following studies, 
namely, ESCAPE-NA1[16], ALIAS[17], TEMPO-1[18], 
and PREDICT [19]. Additional inclusion criteria for the test 
set included subjects aged 18 years or older, who under-
went baseline CTA imaging for acute stroke with image slice 
thickness between 0.5 and 2.5 mm. Similar to the derivation 
dataset, the imaging data for the test set were acquired from 
multiple CT scanner models, manufactured by four different 
CT scanner vendors (GE, Siemens, Philips, Toshiba), as well 
as from multiple hospital sites and geographies. Scans deter-
mined to be technically inadequate (e.g., invalid DICOM 
image or inappropriate head coverage or no contrast) or with 
significant patient motion were excluded.

Based on data from similar marketed devices, it was 
determined that a lower bound 95% confidence interval 
(CI) of 80% for both sensitivity and specificity is required 
to demonstrate the clinical utility of the device. Using the 
normal approximation interval, and assuming that the sensi-
tivity/specificity point estimates would be at 85% (5% above 
the acceptance criteria), a sample size of 200 LVO and 200 
other/no occlusion was deemed necessary to meet this per-
formance goal.

Random selection with purposive sampling was per-
formed to achieve a balanced number of LVO and other/
no occlusion cases and to ensure representation of cases 
acquired on multiple scanner manufacturers. The sam-
pling was automated and informed by patient-level meta-
data which included only the scanner manufacturer and the 
clinical reference label (LVO yes/no) from the originating 
clinical study.

Expert consensus was used as ground truth to establish 
the reference dataset labels. Three board-certified neuro-
radiologists (with > 5 years of experience in stroke imag-
ing) independently read all CTA images. A LVO scan was 

defined as containing an ICA or M1 MCA occlusion. A 
other/no occlusion scan was defined as any scan that does 
not contain an LVO, i.e., it may either had other more dis-
tally located intracranial occlusions or no occlusions at all. 
In addition to reporting “LVO” vs “other/no occlusion,” the 
readers were also asked to report the site of occlusion (ana-
tomical location including any intracranial ICA segment, 
M1 MCA segment, and/or other occlusion/distal occlusions; 
the MCA bifurcation/trifurcation was used as the anatomical 
cutoff between M1 and M2 MCA segments) as well as the 
presence of any intracranial hemorrhage (ICH). The readers 
interpreted the scans blinded to any clinical information. The 
consensus was determined when at least two of three read-
ers agreed on the presence or absence of LVO. This study 
was approved by the University of Calgary Conjoint Health 
Research Ethics Board.

StrokeSENS LVO detection and notification

StrokeSENS generates a binary prediction of the presence 
or absence of LVO on CTA images of the brain. CTA head 
scans were automatically routed to the StrokeSENS LVO 
processing engine where they were processed and analyzed. 
In the case of a positive finding, i.e., a LVO detection by the 
software, the StrokeSENS user interface stated that a LVO 
was suspected (Fig. 1). In the case of a positive finding, the 
system also automatically generates a notification which is 
sent to a prespecified email list. In a typical clinical scenario, 
the notification would be configured to be sent to physicians 
at a treating hospital parallel to the standard of care work-
flow. In the current setting, the notifications are sent only for 
suspected LVO cases.

Statistical analysis

Baseline characteristics of patients with LVO vs. other/no 
occlusion were compared using a chi-square test or Wil-
coxon rank-sum test as appropriate. Expert reads on the pres-
ence or absence of LVO were considered as the ground truth. 
Software performance for LVO detection was assessed using 
ROC analysis, reporting area under the curve (AUC), sensi-
tivity, and specificity. The level of softmax cross entropy was 
used to calculate the AUC. False-negative and false-positive 
cases were retrospectively analyzed, and the reason for the 
false-negative/false-positive result was identified.

Subgroup analyses were performed to evaluate soft-
ware performance in the detection of M1 and ICA segment 
occlusions separately. Software performance was also tested 
on data stratified by patient sex (female versus male), age 
(< 70 years or ≥ 70 years or), slice thickness (< 1.0 mm 
or ≥ 1.0 mm), kilovoltage tube peak (< 120 kVp or ≥ 120 
kVp) of the scan, and scanner manufacturer (GE Medical, 
Siemens, Philips, Toshiba). As no cases with ICH were used 
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for the development, a sensitivity analysis to evaluate an 
impact of the ICH presence on the software performance 
was performed. Separate logistic regression models were 
used to test if the association between software prediction 
and ground truth (expert reads of LVO vs. not) were modi-
fied by either patient age, sex, presence or absence of ICH, 
slice thickness, kVp, or scanner manufacturer. Additionally, 
the mean, the maximum, and the minimum processing times 
for positive cases (both true positive and false positive) were 
reported as a representative measure of time to notification 
(representing the time from the moment the scan is received 
in StrokeSENS to the notification send to the end-user). No 
imputation was performed for missing data since there were 
no missing data. Data analysis was performed using Stata 
16.1 (Stata LLC Corp).

The Checklist for AI in Medical Imaging (CLAIM) 
guidelines was followed [20].

Results

Out of 2779 eligible stroke cases, 1205 cases with identified 
baseline CTA and initial core lab reading were included into 
the preliminary dataset (excluded scans: 1339 cases with no 
baseline CTA, 52 scans with missing age information, and 
183 scans with missing initial core lab read). Scans with 
inappropriate head coverage (n = 12), no contrast (n = 11), 
or corrupted DICOM (n = 4) were additionally excluded and 
400 cases randomly selected for expert consensus read (200 
scans allocated in the primary LVO cohort and 200 scans 

allocated to the primary other/no occlusion cohort). In total, 
17 scans were reclassified by the consensus as LVO, and a 
total of 400 cases (217 allocated to a LVO cohort and 183 
allocated to other/no occlusion cohort) were included in the 
test set (Fig. 2).

Baseline characteristics of patients stratified by presence 
or absence of LVO are shown in Table 1. Patients with LVO 
presented with more severe stroke symptoms (expressed 
with higher National Institutes of Health Stroke Scale 
[NIHSS]) and had lower Alberta Stroke Program Early CT 
Score (ASPECTS) on non-contrast CT. The distribution of 
intracranial occlusion site in patients with LVO was termi-
nal ICA (35.5%, n = 77) and M1 MCA (64.5%, n = 140). In 
the patients without LVO, there were 183 scans with either 
no occlusion (21.3%), a more distally located MCA occlu-
sion (15.8%), or an occlusion in the posterior circulation 
(2.7%). The intracranial hemorrhage was present in 110 
cases (60.1% of other/no occlusion cohort).

Of the 217 LVO cases evaluated, 194 (89.4%) were cor-
rectly identified as LVO by the software. Of 23 falsely nega-
tive cases, there were seven cases with ICA occlusion but 
normally opacified terminal ICA through the circle of Willis, 
six cases with short-segment M1 MCA occlusions and good 
collaterals, three with M1 MCA occlusion, and one case 
with ICA occlusion demonstrated good collaterals and also 
early venous opacification that may contribute to “richer” 
vasculature beyond the occlusion; four cases demonstrated a 
distal M1 MCA occlusion with a prominent anterior tempo-
ral artery, and one case had a nonocclusive M1 MCA throm-
bus. Poor contrast opacification was present in one case.

Fig. 1  Exemplary cases of StrokeSENS LVO software performance. 
In case A and B, StrokeSENS LVO correctly detected a large vessel 
occlusion (demonstrated as a red circle in the upper left corner) in the 
right M1 middle cerebral artery (A, yellow arrow) and right terminal 

internal carotid artery (B, yellow arrow). In case C, StrokeSENS LVO 
correctly predicted that no large vessel occlusion was present. (Of 
note, the occlusion sites are marked with yellow arrows for clarity, it 
is not part of the software analysis)
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Of the 183 other/no occlusion cases, 23 (12.6%) were 
incorrectly identified as LVO by the software. A review 
identified multiple possible reasons for the false-positive 
findings: scan asymmetry at the level of the circle of Wil-
lis was present in six cases; four cases had an M2 segment 
occlusion and either relatively short M1 MCA segment 

or a dominant M2 MCA branch occlusion; three cases 
had M1 MCA segment stenosis; beam hardening artifact 
obscured the ICA/MCA segment in three cases; one case 
was with a M1 MCA aneurysm adjacent to the M1 seg-
ment occlusion; and two cases had low-quality scans (poor 
contrast filling, incomplete study). No obvious reason for 

Fig. 2  Scan selection of the test 
set that was used for evaluation 
of large vessel occlusion detec-
tion with StrokeSENS LVO. 
Note: ICA, internal carotid 
artery; LVO, large vessel occlu-
sion; M1 MCA, M1 segment of 
the middle cerebral artery

Table 1  Baseline clinical and 
imaging characteristics of 
subjects in the test set

a Derived from Wilcoxon rank sum test
b Derived from chi-square test
Note: ASPECTS, Alberta Stroke Programme Early CT Score; IQR, interquartile range; LVO, large vessel 
occlusion; NIHSS, National Institutes of Health Stroke Scale

Baseline characteristic LVO (n = 217) Other/no occlusion 
(n = 183)

p value

Age, median (IQR) 70 (61–78) 69 (58–78) 0.671a

Sex, female, n (%) 97 (44.7) 86 (46.7) 0.687b

Baseline NIHSS, median (IQR) 17 (11–21) 8 (6–16)  < 0.001a

Baseline ASPECTS, median (IQR) 8 (7–9) 10 (9–10)  < 0.001a

Onset to CT, min, median (IQR) 134 (71–253) 115 (72–195) 0.261a

2249Neuroradiology (2022) 64:2245–2255
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the false-positive finding was found in the remaining four 
cases.

The sensitivity and specificity for LVO detection 
were 0.894 (95% CI: 0.854–0.932) and 0.874 (95% CI: 
0.817–0.919), respectively, and the AUC was 0.939 (95% 
CI: 0.915–0.962). The results of subgroup analyses for 
the M1 and ICA segment occlusion detection were com-
parable to the main analysis (Table 2). In an analysis 
stratified by patient sex, age, slice thickness, kVp, and 
scan manufacturer, the sensitivity, specificity, and AUC 
ranged from 0.843 to 0.945, 0.83 to 1.0, and 0.928 to 
0.970, respectively (Table 2). There was also no differ-
ence found in the software performance when the cases 
with ICH were excluded from the other/no occlusion 
cohort (Supplementary Table 1). No statistically signifi-
cant interactions were noted between age, sex, presence/
absence of ICH, slice thickness, kVp, and software pre-
diction of LVO in logistic regression models testing for 
association between software prediction and ground truth 
(all p > 0.05).

The mean processing time for the sum of 217 true 
and false-positive cases was 44.5  s (standard devia-
tion ± 11 s), the minimum time was 18.4 s, and the maxi-
mum time was 77.9 s.

Discussion

In this study, we test the ability of StrokeSENS LVO in 
detecting LVO of the anterior circulation automatically in 
patients presenting with acute stroke. The accuracy (sensi-
tivity and specificity of 0.894 and 0.874 overall, with similar 
results across various subgroups, Fig. 3) and speed of detec-
tion of the software in a large dataset from multiple centers 
and geographies, using a variety of vendor machines and 
protocols for CTA image acquisition, supports the gener-
alizability of the software’s use in routine clinical practice.

In general, sensitivity is important metrics to indeed cap-
ture as many positive cases as possible and consider them 
for lifesaving EVT treatment; on the flip side, specificity 
is very important, especially in hospital sites in which the 
prevalence of LVOs is very low, since the positive predictive 
value (precision) is directly influenced by it. In turn, low 
PPV values can lead clinicians to not trust the tool which 
can, in turn, lead them to ignore the notifications of the tool 
entirely [21]. Given that, we aimed at maximizing both the 
sensitivity and specificity of the model equally.

The test set in this analysis was purposively sampled to 
include a higher prevalence of common pathologies (i.e., 
ICH, distal occlusions, and posterior circulation occlusions) 

Table 2  Area under the curve, sensitivity, and specificity for automated LVO detection using the machine learning-based algorithm

Note: AUC, area under the curve; CI, confidence interval; ICA, internal carotid artery; kVp, kilovoltage peak; LVO, large vessel occlusion; M1 
MCA, M1 segment of the middle cerebral artery

Group # of LVO # of other/no 
occlusion

Total Sensitivity [95% CI] Specificity [95% CI] AUC [95% CI]

Full cohort 217 183 400 0.894 [0.854, 0.932] 0.874 [0.817, 0.919] 0.939 [0.915, 0.962]
Site of occlusion

  ICA + 
other/no occlusion

77 183 260 0.857 [0.759, 0.927] 0.874 [0.817, 0.919] 0.927 [0.888, 0.965]

  M1 MCA + other/no occlusion 140 183 323 0.914 [0.855, 0.955] 0.874 [0.817, 0.919] 0.945 [0.918, 0.972]
Age

   < 70 years 108 95 203 0.843 [0.760, 0.901] 0.916 [0.841, 0.963] 0.928 [0.891, 0.965]
   ≥ 70 years 109 88 197 0.945 [0.884, 0.980] 0.83 [0.735, 0.901] 0.951 [0.923, 0.980]

Sex
  Male 120 97 217 0.875 [0.802, 0.928] 0.866 [0.782, 0.927] 0.936 [0.905, 0.968]
  Female 97 86 183 0.918 [0.844, 0.964] 0.884 [0.797, 0.943] 0.940 [0.903, 0.977]

Slice thickness
   < 1.0 mm 120 100 220 0.883 [0.812, 0.935] 0.850 [0.765, 0.914] 0.936 [0.904, 0.967]
   ≥ 1.0 mm 97 83 180 0.939 [0.849, 0.983] 0.924 [0.832, 0.975] 0.939 [0.902, 0.977]

Tube voltage
   < 120 kVp 76 4 80 0.908 [0.819, 0.962] 1.0 [0.398, 1.0] 0.970 [0.923, 1.0]
   ≥ 120 kVp 141 179 320 0.887 [0.822, 0.934] 0.872 [0.814, 0.917] 0.935 [0.905, 0.965]

Scanner manufacturer
  GE Medical 62 84 146 0.903 [0.801, 0.964] 0.869 [0.778, 0.933] 0.956 [0.924, 0.987]
  Siemens 63 80 143 0.857 [0.746, 0.933] 0.90 [0.812, 0.956] 0.924 [0.875, 0.972]
  Other (Philips, Toshiba) 92 19 11 0.913 [0.836, 0.962] 0.79 [0.544, 0.94] 0.927 [0.871, 0.983]
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than is typically encountered in consecutive suspected acute 
stroke cases in the anterior circulation. The objective of the 
purposive sampling was to test the model’s diagnostic per-
formance in a dataset with a large representation of less 
straightforward cases (i.e., ICH and “other” occlusions) that 
are expected to be encountered by the algorithm in the clini-
cal practice. A high proportion of hemorrhagic scans in the 
other/no occlusion cohort was included in order to test the 
consistency of the software’s performance in LVO detection 
and verified the consistency of the tool. We considered this 
to be a valid feature of the software tool as the presence of 
the ICH, or other pathologies such as intracranial tumors 
can lead to a false-positive finding due to tissue distortion 
resulting in a change of the vessel course [22]. Although 
ICH cases can be detected on NCCT scan and will most 
likely be excluded from further imaging in many diagnos-
tic settings, the fact that other settings include a CTA after 
NCCT in patients with ICH (for detection of neurovascular 
abnormalities or spot sign identification) means that even 
with diagnostic pathways including such cases being sent to 
the algorithm, the performance continues to be good.

Several automated standalone acute stroke software plat-
forms are available for use in the clinical practice, such as 
iSchemaView (RAPID CTA), Viz.ai (VIZ LVO), Braino-
mix (e-CTA), Canon (AUTOStroke Solution LVO), or Strok-
eViewer (NICO.LAB). These platforms use different arti-
ficial intelligence (AI) including machine-learning (ML) 
methods for automatic detection of LVOs. Strategies for 
computer-aided detection of LVO include the direct identi-
fication of occlusion site using local vascular features (i.e., 
detect the clot directly by identifying the discontinuity of 

the contrast-enhanced vessel) and the indirect identification 
of occlusion site based on the regional vessel density asym-
metry between the affected hemisphere and the unaffected 
hemisphere. The 3D CNN that is at the core of StrokeSENS 
LVO was trained using information about the existence of 
LVO and the location of the clot, which allows it to extract 
both global (image-level) features as well as local features of 
the clot. Additional analysis is required to assess the trade-
off between these two strategies, but it is expected that an 
ideal device will take both strategies into consideration, sim-
ilar to how a clinician typically reviews a CTA scan. More 
specifically, it is well known that in LVO cases with good 
collateral flow, the downstream effect of the occlusion on the 
opacification of the peripheral vasculature might not be eas-
ily detectable; in contrast, a bundle of vessels around the site 
of occlusion in LVO cases, or an intracranial MCA stenosis 
or aneurysm in other/no occlusion cases, may influence a 
detection of the clot features and result in false-negative/
positive findings.

Different methodologies for the computer-aided detec-
tion of LVO are discussed in a systematic review by Murray 
et al. [23] published in 2019. Of the previously mentioned 
commercial LVO detection platforms, most have undergone 
validation studies that describe the software’s performance 
in LVO (ICA and M1 MCA) occlusion detection (Table 3). 
The reported sensitivity and specificity of the software tools 
ranged from 0.72 to 0.97 and 0.74 to 0.96, respectively. The 
performance of the software tools was tested on various 
datasets, and therefore a direct comparison is not possible. 
However, with regard to this limitation, the available data 
suggest that Stroke SENS with its sensitivity and specificity 

Fig. 3  Areas under the receiver 
operating characteristic curves 
(AUC) for the StrokeSENS 
LVO. Model performance is 
demonstrated in the full dataset 
and in data stratified by occlu-
sion site (internal carotid artery 
[ICA] and M1 segment of the 
middle cerebral artery [MCA]), 
age (< 70 years and ≥ 70 years), 
sex, and presence/absence of 
intracranial hemorrhage
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of 0.89 and 0.87, respectively, is likely comparable to the 
currently available tools.

The retrospective review of false-negative cases revealed 
imaging characteristics that the algorithm did not over-
come such as normally opacified terminal ICA segment in 
the presence of more proximally located ICA occlusion or 
presence of short-segment occlusion and good collaterals. 
The same reasons for the false-negative finding were men-
tioned by the authors of the RAPID CTA validation study 
[25]. This suggests that an early opacification of the vascu-
lature beyond the occlusion through collateral flow remains 
a challenge for automatic software. Similar to the previously 
reported reasons for false-positive findings in literature [22, 
25], intracranial MCA stenosis or the presence of an MCA 
aneurysm led to falsely positive results also in our dataset. 
However, the most common reason identified in this study 
that likely led to false-positive results was an asymmetric 
projection of the circle of Willis on the axial scan caused 
by lateral tilt. This is important information that could be 
incorporated into the further development of the software 
tool. In three cases, M2 occlusions were identified as LVO 
and marked as false-positive result while the validated soft-
ware version was primarily developed to identify ICA and 
M1 MCA occlusions.

Automated software systems utilizing AI for detection of 
stroke signs can potentially accelerate the triage, diagnosis, 
and treatment initiation of stroke patients significantly [29]. 
Current methods of notifying the treating physician result in 
delays in treatment that negatively impact patient outcomes 
[30]. A recent study showed that utilizing an automated 
LVO detection software together with a notification system 
resulted in an average reduction of 22.5 min in triage and 
transfer times between the spoke primary stroke center and 
the hub comprehensive stroke center [31]. While CTA is 
often the only advanced imaging modality in primary cent-
ers, a tool for automated LVO detection and notification that 
would streamline the clinical workflow can aid in accurate 
and timely patient selection for rapid EVT at spoke hospi-
tals. The StrokeSENS LVO showed excellent performance 
in speed of potential notification with a mean processing/
notification time of 44.5 s in this study. Although a short 
processing time is a promising feature, the time for data 
transfer from the CT machine to the processing computer 
needs to be evaluated in the real world.

This study has some limitations. First, the current ver-
sion of the software has been developed to identify only 
LVOs in the anterior circulation, and its primary evaluation 
was therefore focused only on detection of such LVOs. With 
increasing evidence of endovascular treatment benefit in 
more distally located occlusions and occlusions in the pos-
terior territory, further software development is warranted 
to reliably identify such intracranial occlusions. Second, 
the software performance was evaluated in a retrospective 

fashion on data from clinical studies that may have excluded 
patients with stroke mimics and other non-stroke pathologies 
that are detected routinely in real-life practice. Our study 
dataset consisted of an artificially high LVO prevalence 
(54%) as we optimized the model with as many LVO cases 
as possible while matching those with an equal number of 
examples of other/no occlusion findings. The real-world 
LVO prevalence is approximately 15–30%; therefore, the 
evaluation of the software performance in real-world data 
is warranted. The StrokeSENS LVO’s performance in LVO 
detection and potential speed of notification in this valida-
tion dataset will need to be supported by tests in real-life 
conditions done in a prospective manner. Such studies are 
planned. Finally, the impact of tools such as StrokeSENS will 
need to be compared with the current standard workflow in a 
randomized manner for us to understand the true benefit of 
such tools on the population of acute stroke patients.

Conclusion

Automated LVO detection and notification can aid in acute 
stroke management by quickly and accurately detecting 
patients with anterior LVO who may likely require immediate 
medical attention and benefit from  EVT19. However, a further 
development including the full range of clinically relevant 
intracranial occlusions is as well as prospective studies exploring 
the impact of the software tools on acute stroke workflow and 
patient outcomes is warranted.
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