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Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays
a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying
causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the
wide range of hereditary or sporadic ataxias.
Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary
degenerative ataxias, to help neuroradiologists in the evaluation of these patients.
Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all
cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar
atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis.
Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data,
could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appro-
priate genetic testing.
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Introduction

Cerebellar ataxias are a large group of disorders charac-
terized by various clinical presentations, ranging from
the presence of a pure cerebellar phenotype to a hetero-
geneous combination of cerebellar signs along with
extra-cerebellar symptoms [1]. Although still very chal-
lenging, different workflows have been proposed to help
clinicians in identifying the cause of the clinical presen-
tation and reach a proper diagnosis [2–4]. In all cases,
the in vivo evaluation of brain parenchyma via MRI
plays a pivotal role in the diagnostic assessment of cer-
ebellar ataxias [5]. Indeed, it is mandatory to exclude
that the observed cerebellar involvement could be due
to structural damage secondary to non-degenerative con-
ditions (e.g., stroke, neoplasm, metabolic or toxic disor-
ders). Once these possible causes are ruled out in deter-
mining the cerebellar symptoms, the diagnosis is usually
researched in the wide range of hereditary or sporadic
ataxias, which are all usually characterized only by the
presence of non-specific and sometimes overlapping
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of the most common hereditary degenerative ataxias, to highlight the main
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imaging findings, with cerebellar atrophy being the least
common denominator. Nevertheless, although challeng-
ing, a proper evaluation of imaging data and the integra-
tion of the patient’s clinical history could allow the neu-
roradiologist to identify some conditions and exclude
others, addressing the neurologist to the more appropri-
ate genetic testing.

Given this background, here, we propose a review of
the main clinical and conventional imaging findings of
the most common hereditary degenerative ataxias, to
highlight the main features in these conditions. We will
discuss degenerative ataxias according to their frequency
and clinical relevance [6], while in this review, we will
not cover the malformative conditions (e.g., ponto-
cerebellar hypoplasias, some tubulinopathies, or certain
dystroglycanopathies), given their different pathophysi-
ology and imaging appearance.

Autosomal dominant ataxias

Spinocerebellar ataxia type 1

Spinocerebellar ataxia type 1 (SCA1) accounts for 6% of
autosomal dominant cerebellar ataxias [7]. Affected in-
dividuals have 39 or more CAG trinucleotide repeats in
the ATXN1 gene, which encodes for the Ataxin1 protein
[8]. Onset is typically between the third and the fourth
decades, even though childhood onset has been reported
[9, 10]. The phenotype comprises a cerebellar syndrome
with ataxia of gait, stance, and limbs, dysarthria, and
oculomotor abnormalities. Pyramidal signs are common,
but amyotrophy and sensory loss also occur [7]. The
duration of disease from onset to death is 10 to 30 years
in the adult-onset forms, whereas it is more rapid and
severe in juvenile-onset forms [10].

Fig. 1 Brain MRI scan of a 69-
year-old female SCA1 patient.
Axial T2-weighted (a) and coro-
nal FLAIR (b) images show a
global cerebellar volume loss,
along with brainstem atrophy (c–
d) and the presence of the “hot
cross bun” sign (arrows)
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Brain MRI typically shows olivo-ponto-cerebellar atrophy
and white matter volume decrease, with a similar distribution
but less severe than SCA2 [11, 12].

The presence of a midline T2-hyperintensity in the pontine
base has been reported [13] as well as a cruciform pontine T2-
hyperintensity, the “hot cross bun” sign, due to ponto-
cerebellar fibers degeneration [14] (Fig. 1). Usually, the
supratentorial compartment is relatively spared by the disease,
with high-intensity areas on T2-weighted images in the frontal
white matter only anecdotally reported [15]. Finally, spinal
cord volume reduction might be present [12] and correlates
with the SARA score, length of CAG expansion, and disease
duration [16].

Spinocerebellar ataxia type 2

Spinocerebellar ataxia type 2 (SCA2) is caused by an abnor-
mal expansion of CAG repetition (>33) in the ATXN2 gene,
coding for Ataxin2 protein [17], with an estimated prevalence
in certain areas of 6.57 cases per 100,000 individuals [18].
Showing a mean disease duration of around 10 years, the
onset usually occurs in the fourth decade, but can vary from
childhood to late adulthood with an inverse correlation be-
tween age of onset and CAG repeat length [17]. Patients with
SCA2 present with a cerebellar syndrome associated more
often than SCA1 with saccadic slowing, hyporeflexia, tremor,
or titubation. In some cases (especially those with a smaller
number of CAG repeat expansions), SCA2 can present as
parkinsonism [7]. First symptoms are slowly progressive gait
ataxia and leg cramps, whereas dysarthria, kinetic, or postural
tremor, decreased muscle tone, and tendon reflexes appear
later [19]. Dystonia, chorea, and dementia have also been
described as relatively common (almost 40% of the patients)
[20]. Rarely, it can be associated with L-dopa-responsive par-
kinsonism [21–23], while ocular findings (i.e., nystagmus,
slow saccadic eye movements, and supranuclear
ophthalmoplegia) are more common [24].

Brain MRI shows significant global atrophy of the cerebel-
lum, with marked volume loss involving both hemispheres
and the vermis. Furthermore, pontine atrophy (with flattening
of the inferior part) (Fig. 2) and a variable degree of medulla
oblongata and spinal cord volume loss are also usually
depicted [18], with the severity of the olivo-ponto-cerebellar
volume loss that correlates with clinical disability [25]. The
“hot cross bun” sign may be present, resembling a sporadic
multi-system atrophy pattern, while basal ganglia T2-
hyperintensity are only rarely reported [25]. In advanced
stages of the disease, a pattern of fronto-temporal atrophy with
ventricular enlargement can also be depicted [26].

Spinocerebellar ataxia type 3

Spinocerebellar ataxia type 3 (SCA3), also known as
Machado-Joseph disease, is the most common SCA subtype
worldwide and is caused by abnormal CAG trinucleotide re-
peats (52–86) inATXN3 gene encoding for the Ataxin3 protein
[9, 27]. Its onset usually occurs between the second and fifth
decade, being characterized by ataxia, dysarthria,
hyperreflexia, diplopia, and nystagmus [28]. Ambulation dif-
ficulty progressively increases, with assistive devices usually
required 10 to 15 years after onset [28], while upper motor
neuron signs are often present and maymimic hereditary spas-
tic paraplegia [29, 30]. Sleep disturbance and impaired exec-
utive and emotional functioning have also been reported [31,
32]. The disease duration is variable from few up to 30 years
after onset, with exitus usually occurring due to pulmonary
complication and cachexia [33].

Brain imaging reveals a variable degree of ponto-cerebellar
atrophy, less severe compared to the one found in SCA1 and
SCA2 patients, mainly involving the vermis and dentate nu-
clei with subsequent enlargement of the fourth ventricle [34]
(Fig. 3). Also, similar to what is reported in SCA1 and SCA2,
pontine T2-weighted hyperintensities may be present in these
patients, resembling in some cases the “hot cross bun” sign

Fig. 2 Imaging findings in a 38-
year-old female SCA2 patient.
Sagittal (a) and axial (b)
multiplanar reconstructions of 3D
T1-weighted volume show a
global cerebellar volume loss, in-
volving both the vermis and cer-
ebellar hemispheres, along with
significant brainstem atrophy,
particularly affecting the pons
which demonstrates a flattening
of its inferior profile (arrows)
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morphology [12]. As the disease progresses, frontal and tem-
poral lobe atrophy can be observed [35], while abnormal
pallidal linear hyperintensities on T2-weighted and FLAIR
sequences have been sporadically reported [36].

Spinocerebellar ataxia type 6

Spinocerebellar ataxia type 6 (SCA6), characterized by
an abnormal CAG trinucleotide repeat expansion in
CACNA1A gene [37], shows an estimated prevalence of
about 0.02 on 100,000 individuals [38]. The onset can be
extremely variable, ranging from 19 to 73 years (mean
onset age = 43–52 years), with a relatively preserved
lifespan [39, 40]. Clinically, SCA6 usually presents with
a “pure” cerebellar ataxia, although a mild peripheral
neuropathy (as well as bradykinesia, dystonia, and pyra-
midal signs) can also occur in some patients [41]. Ocular

abnormalities are also quite common, as they have been
described in 50% of patients, mainly consisting of dip-
lopia and downbeat nystagmus [42–44].

At brain imaging, a variable degree of cerebellar atrophy
has been described, involving the hemispheres but mostly the
vermis (Fig. 4), with volume loss affecting the pons and mid-
dle cerebellar peduncles that has been only anecdotally report-
ed in these patients [34]. No brain signal abnormalities have
been reported in SCA6, nor supratentorial atrophy.

Spinocerebellar ataxia type 7

Spinocerebellar ataxia type 7 (SCA7) shows a preva-
lence of less than 1:100,000, representing 2% of all
SCAs [45, 46]. It is associated with the presence of more
than 36 CAG trinucleotide repeat expansion in the
ATXN7 gene, although the development of symptoms

Fig. 3 Axial (a, c) and coronal (b) T2-weighted images showing mild cerebellar atrophy, with enlargement of the 4th ventricle (arrow), in a 30-year-old
female SCA3 patient

Fig. 4 Brain MRI findings in a
56-year-old female SCA6. In the
sagittal T1- (a) and coronal T2-
(b) weighted images, it is appre-
ciable a global cerebellar atrophy,
with particular involvement of the
vermis (arrow) and a relative
sparing of the pons
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has been also reported in patients with a lower number of
repeats [47]. Disease onset ranges from childhood up to
the sixth decade, with early-onset forms being more ag-
gressive and rapidly progressive [48, 49]. Typical symp-
toms include cerebellar syndrome and visual loss caused
by retinal degeneration, ultimately leading to complete
blindness [50, 51].

MRI findings include cerebellar atrophy, mainly in-
volving the superior part of the vermis, along with
marked pontine atrophy [52] (Fig. 5), with the latter pre-
ceding and showing some degree of independence from
the presence of cerebellar degeneration [53]. The “hot
cross bun” sign has been reported in only one SCA7

patient [54], while no further reports describing signal
alterations in SCA7 are available in literature. Finally,
a variable degree of supratentorial atrophy can be present
in these patients [52] (Fig. 5).

Spinocerebellar ataxia type 8

Spinocerebellar ataxia type 8 (SCA8) accounts for 2–5% of
autosomal dominant forms of inherited ataxia and is more
common in Finland [55, 56]. It is caused by the abnormal
expansion of both an expanded CTG trinucleotide repeat in
the ATXN8OS gene and the complementary CAG repeat in the
ATXN8 gene [57]. The onset is extremely variable, ranging

Fig. 5 Neuroradiological findings in a 79-year-old male SCA7 patient.
Axial T2- (a) and sagittal T1- (b) weighted sequences demonstrate a
global cerebellar, as well as pontine (arrow), atrophy. Along with the

infratentorial involvement, a diffuse supratentorial gray matter volume
loss is also present (c)

Fig. 6 Brain MRI scan of 43-
year-old male SCA8 patient.
Coronal T2- (a) and sagittal T1-
(b) weighted images show global
cerebellar atrophy, with a relative
sparing of the pons
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from 1 to 73 years, and the phenotype is characterized by
ataxia, scanned dysarthria, and tremor, with reflex hyperactiv-
ity that may be present in severe cases [58]. Progression is
usually independent of the age of onset and may take decades,
though it does not significantly shorten lifespan [59, 60].

On brain MRI, cerebellar atrophy affecting both the hemi-
spheres and the vermis is usually found, with preservation of
the brainstem and the cerebral hemispheres [61] (Fig. 6). No
signal abnormalities have been described, except for a case of
“hot cross bun” sign [54], while mild spinal cord atrophy can
sometimes be present [58].

Spinocerebellar ataxia type 17

Spinocerebellar ataxia type 17 (SCA17) is caused by the ex-
pansion of a CAG trinucleotide (42 or more repeats) in the
TATA-box-binding protein gene (TBP) [62, 63]. Similarly to
SCA8, it is also characterized by wide variability in its age of
onset (from 3 to 75 years, mean = 34.6 years) [64]. The clin-
ical features include cerebellar ataxia, cognitive decline, psy-
chiatric symptoms, parkinsonism, and hyperkinetic disorders
(e.g., chorea or dystonia, hence SCA17 being also referred to
as Hunt ington disease- l ike 4 [65] ) . Among the
abovementioned symptoms, ataxia and psychiatric abnormal-
ities usually represent the initial manifestations of the disease,
being then followed by involuntary movement, parkinsonism,
dementia, and pyramidal signs [62, 66–68].

Conventional brain MRI shows a variable degree of cere-
bellar atrophy, affecting both the vermis and the hemispheres
[25]. No significant changes are usually reported in the
supratentorial areas, both in terms of signal changes or atro-
phy, with the exception of a single case showing a T2-
hyperintense putaminal rim [69].

Autosomal recessive ataxias

Friedreich’s ataxia

Friedreich’s ataxia (FRDA) is the most common autosomal re-
cessive ataxia, with an estimated prevalence in Europe between 1
in 750,000 (Finland) and 1 in 20,000 (Northern Spain) [70]. It is
caused by biallelic GAA trinucleotide repeat expansions in intron
1 of the FXN gene on chromosome 9q21, encoding Frataxin
[71]. FRDA first symptoms typically present between the age
of 10 and 15, with onset after 25 and 40 years considered as late
and very late onset, respectively [70, 72]. FRDA patients expe-
rience a shortened lifespan (average 35–40 years), with the most
common cause of exitus represented by cardiac dysfunction [73].
From a neurological standpoint, FRDA is a disorder affecting
both the central and peripheral nervous systems, with gait and
limb ataxia, dysarthria, and lower limb areflexia that are present
in almost all cases [74]. Pyramidal weakness is a relatively late
sign, much more prominent in the lower limbs, while hearing
difficulties due to acoustic neuropathy and eye movement abnor-
malities (e.g., square-wave jerks) are common signs of FRDA
[74]. Systemic involvement is present in this condition, as shown
by the presence of musculoskeletal (i.e., scoliosis and
equinovarus deformities), cardiac (i.e., cardiomyopathy), and en-
docrine (i.e., diabetes mellitus) abnormalities [70, 74–76].

Unlike most of the inherited ataxias, brain MRI in FRDA
patients typically shows normal cerebellar volume (Fig. 7), or
only mild atrophy of the upper portion of the vermis, while
global cerebellar atrophy can be rarely found in very-late-
onset patients [77, 78]. Indeed, the main imaging finding in
this condition is a decrease of the antero-posterior diameter of
the medulla oblongata and the cervical spinal cord, sometimes
associated to signal abnormalities in the posterior or lateral
columns [79], a finding consistent with degeneration of the

Fig. 7 Axial (a) and sagittal (b)
multiplanar reconstructions of a
3DT1-weighted volume show the
typical brain MRI appearance in
FRDA patients, as depicted in this
20-year-old male subject where a
preserved cerebellar volume is
present
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ascending dorsal column system [80]. Furthermore, dentate
nuclei atrophy, with increased iron accumulation, may be de-
tected by susceptibility-weighted imaging [78, 81–83]. The
supratentorial compartment is usually spared in this condition,
both in terms of signal changes and volume loss.

Autosomal recessive spastic ataxia of Charlevoix-
Saguenay

Autosomal recessive spastic ataxia of Charlevoix-Saguenay
(ARSACS) shows a high prevalence in northeastern Quebec
Canada [84], although cases have been reported outside
Canada in recent decades [85–87]. It is caused by autosomal
recessive mutations in the SACS gene (13q11), which encodes
a large protein named Sacsin, that might have roles in mitochon-
drial function, protein chaperoning, and the ubiquitin-proteasome
system [88, 89]. The mean age at onset is approximately 6 years
(range: 0–40 years), but an increasing number of cases with
disease onset in teenage or early adult ages have been reported
[90]. Disease progression is slow, and patients become wheel-
chair bound by the third or fourth decade of life. Most ARSACS
patients show a typical clinical triad characterized by early-onset
cerebellar ataxia, lower limb spasticity, and peripheral neuropa-
thy [91]. Other symptoms and signs include dysarthria, nystag-
mus, and hypermyelination of the retinal fibers [91].

Brain MRI features include early and progressive superior
vermis atrophy and linear hypointensities on T2-weighted im-
ages in the pons near the pyramidal tracts [92] (Fig. 8). Recent
studies also found T2-hyperintensities of the lateral pons when
merging into the middle cerebellar peduncles that appear
thickened, probably related to abnormally large transverse
ponto-cerebellar fibers, along with a frequent association with
posterior fossa arachnoid cysts [93]. Furthermore, bilat-
eral parietal atrophy and short-stretched thinning of the

posterior mid-body of the corpus callosum can be
depicted in ARSACS patients [93], as well as a thinning
of the cervical spinal cord [94] (Fig. 8).

Ataxia with oculomotor apraxia type 1

Ataxia with oculomotor apraxia type 1 (AOA1) is caused by
biallelic mutations in the APTX gene at locus 9p13.3, which
encodes for a nuclear histidine triad (HIT) protein, named
aprataxin [95]. The first manifestation is usually represented
by progressive gait imbalance (mean age of onset = 4.3 years;
range = 2–10 years), with a mean disease duration of 29.8 ±
14.8 years [96]. The clinical phenotype of AOA1 is character-
ized by an early-onset cerebellar syndrome, nystagmus, dys-
arthria, oculomotor apraxia, areflexia, peripheral axonal neu-
ropathy, muscle weakness, and a variable degree of intellec-
tual disability [97]. Laboratory findings include hypoalbumin-
emia and hypercholesterolemia, while alpha-fetoprotein
(AFP) value is usually relatively increased, although less than
what was reported in AOA2 patients [98].

MRI findings include diffuse cerebellar atrophy, mainly
involving the anterior vermis, and possible brainstem atrophy,
without T2-weighted signal changes [96] (Fig. 9).
Disappearance of the dentate nuclei hypointensity on
susceptibility-weighted imaging (SWI) has been described in
AOA1 patients, along with a preserved volume, findings sug-
gestive of an iron content change in this structure [99].

Ataxia with oculomotor apraxia type 2

Ataxia with oculomotor apraxia type 2 (AOA2) is caused by
mutations in the senataxin (SETX) gene at locus 9q34, which
encodes for a protein suspected to be a DNA/RNA helicase
[95, 100, 101]. It is a progressive, disabling cerebellar ataxia

Fig. 8 Brain MRI findings in a 45-year-old female ARSACS patient. A
predominant superior vermian atrophy is shown on a sagittal T1-
weighted sequence (a, white arrow), along with as a mild T2-weighted

hypointensity affecting the transverse pontine fibers (b, black arrows).
Parietal (c) and cervical spinal cord (a, arrowheads) atrophy is also
evident
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occurring within the second decade [102]. The clinical pheno-
type is characterized by progressive cerebellar ataxia, senso-
rimotor peripheral neuropathy, occasional oculomotor apraxia
(relatively less frequently than the frequency reported in
AOA1 patients), strabismus, chorea, and/or dystonia [102].
Laboratory examination reveals elevated AFP serum levels
(more than those reported in AOA1 patients) and less fre-
quently elevated creatine kinase serum level [98].

From a neuroradiological standpoint, MRI findings are
very similar to those found in AOA1 patients (Fig. 10), with
cerebellar atrophy (with prominent involvement of the vermis
and the anterior lobe) and loss of dentate SWI hypointensity
and relative supratentorial sparing [99, 103].

Spastic paraplegia 7

Spastic paraplegia 7 (SGP7) is the fourth cause of genetic
ataxia in the UK, and the second most common cause of

recessive ataxia (Kara2016). Indeed, recent studies demon-
strated that SPG7 mutations are a frequent cause of undiag-
nosed cerebellar ataxias with adult-onset and pyramidal signs
and provided the minimum prevalence of SPG7-related dis-
ease at 0.72/100,000 [104]. It appears to have a predilection
for male patients (83%), with an average age of symptoms
onset at 41.7 years [105]. Almost all patients show cerebellar
ataxia at the diagnosis, usually along with mild spasticity and
ocular findings [104]. Some patients present with a compli-
cated phenotype of spastic paraplegia, associated with optic
neuropathy, urinary urgency, scoliosis, pes cavus, neuropathy,
and amyotrophy [106].

At the brain MRI examination, the most frequent feature is
represented by mild cerebellar atrophy, mostly involving the
vermis [105] (Fig. 11). An increased T2-weighted signal in
dentate nuclei is reported in this condition, while the red nu-
cleus signal is usually normal [105]. No supratentorial in-
volvement has been reported so far in SPG7 patients.

Fig. 9 Axial T2- (a) and sagittal
T1- (b) weighted images of an 18-
year-old male AOA1 patient
showing a severe global cerebel-
lar atrophy, with relative sparing
of the brainstem

Fig. 10 Coronal T2- (a) and sag-
ittal T1- (b) weighted images of a
25-year-old female AOA2 patient
showing a moderate global cere-
bellar and a relative brainstem
sparing
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Ataxia-telangiectasia

Ataxia-telangiectasia (AT) is a primary immunodeficiency
disease caused by mutations in AT mutated (ATM) gene
encoding a serine/threonine protein kinase [107, 108].
Disease onset is usually between 6 and 18 months, and
the clinical phenotype can be highly variable, including
progressive cerebellar ataxia, oculo-cutaneous telangiecta-
sia, variable immunodeficiency, radiosensitivity, suscepti-
bility to malignancies, and metabolic disorders [109].
Involuntary movements (e.g., chorea, dystonia, athetosis,
myoclonic jerks, or various tremors) can be present, while

cognitive impairment is usually observed in up to 30% of
patients [109]. Disease duration is less than 25 years, with
the two most common causes of exitus that are chronic
pulmonary diseases and malignancy [110].

At brain MRI, AT patients typically demonstrates progres-
sive cerebellar atrophy, with significant vermian involvement
[111] (Fig. 12). In addition, in some cases, supratentorial
white matter T2-weighted and SWI hypointensities can be
detected, representing hemosiderin deposits and deep cerebral
telangiectatic vessels [111, 112] (Fig. 12). In older patients,
diffuse T2-weighted hyperintensity of the cerebral white mat-
ter can be found as an expression of vascular damage [112].

Fig. 11 Imaging finding in a 69-
year-old male SPG7 patient.
Brain MRI axial (a) and sagittal
T2- (b) weighted images show the
presence of a mild global cere-
bellar atrophy, with particular in-
volvement of the vermis (black
arrow)

Fig. 12 Neuroradiological findings in a 26-year-old female AT patient. A
mild global cerebellar atrophy is shown in both axial (a) and coronal (b)
T2-weighted images, while the T2*-weighted sequence allows for the

depiction of small punctuate hypointense foci (arrows in c) representing
both hemosiderin deposits and telangiectatic vessels
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Ataxia with isolated vitamin E deficiency

Ataxia with isolated vitamin E deficiency (AVED) is caused
by mutations in the alpha tocopherol transfer protein (TTPA)
gene, mapped on chromosome 8q13 that codifies for a
protein which binds alpha tocopherol and very-low-
density lipoproteins (VLDLs) in the liver [113]. The mu-
tated protein impairs the incorporation of vitamin E into
plasma VLDL, with subsequent systemic oxidative stress
damage [114].

The age of onset is variable, from early childhood to very
late adult life [115]. The neurological phenotype is very sim-
ilar to the one found in FRDA patients (progressive cerebellar

ataxia with posterior column involvement, Romberg’s sign,
and pyramidal spasticity) [116], although AVED patients are
more frequently experiencing head titubation and dystonia,
with less pronounced cardiovascular impairment and neurop-
athy [117]. In the presence of this phenotype, the evidence of
very low serum vitamin E levels, in the absence of fat malab-
sorption, is highly suggestive of AVED [118].

Similarly to the neurological phenotype, also brain MRI
findings in AVED patients resemble those found in FRDA,
with the presence of preserved cerebellar volumes in almost
all cases [119], although mild hemispheric atrophy has been
reported in some subjects [120]. Finally, no cervical spine
abnormalities are usually reported in AVED patients.

Fig. 13 BrainMRI findings in a 42-year-old male CTX patient. Along with a mild global cerebellar atrophy, it is present gliosis and calcifications of the
deep cerebellar WM, extending to the peri-dentate region (arrows), as shown in the axial FLAIR (a), T1-weighted (b), and SWI (c) sequences

Fig. 14 A 36-year-old female
SCAR10 patient showing a global
cerebellar atrophy, along with a
mild T2-weighted hyperintensity
affecting both dentate nuclei
(black arrows in b)
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Cerebrotendinous xanthomatosis (CTX)

Cerebrotendinous xanthomatosis CTX is a neurometabolic
storage disorder caused by mutations in the CYP27A1
gene, mapped on chromosome 2q33 and codifying for
the 27-hydroxylase, with mutations that lead to reduced
enzymatic activity and elevated levels of cholestanol, cho-
lesterol, and bile alcohols [121]. The age of onset may
range from infancy to adulthood, with a median age of
clinical presentation that ranges between 9 and 19 years,
although diagnosis usually occurs only later during adult-
hood [122].

Clinical symptoms and signs are both neurological and
non-neurological. Among systemic manifestations,
xanthomas present early in childhood and enlarge over
time, with the Achilles tendon being the most common
affected site, although they can also be found in other
subcutaneous tissues, especially at the level of the elbow
[123]. Other non-neurological manifestations include neo-
natal cholestatic jaundice, chronic diarrhea, and ocular
manifestations (e.g., cataract, optic neuropathy, optic disk
paleness, and premature retinal senescence) [124].
Hallmark neurological signs are represented by intellectu-
a l d isab i l i ty , pyramida l s igns ( i . e . , spas t ic i ty ,
hyperreflexia, extensor plantar responses), cerebellar signs
(ataxia, dysarthria, nystagmus), and peripheral neuropa-
thy, while other symptoms include epileptic seizures and
parkinsonism [122].

MRI studies show, along with a variable degree of cerebral
and cerebellar atrophy, focal or diffuse subcortical and
periventricular white matter T2-weighted hyperintensities,
sometimes also found affecting the midbrain [125]. Areas of
low T2-weighted signal can also be observed, referable to
vacuolation and calcifications, and have been proved to be a
possible biomarker of disease progression [125]. Furthermore,
a non-homogeneous T2-weighted hyperintense signal in

dentate nuclei and surrounding cerebellar white matter
has been demonstrated in most of the CTX patients,
apparently showing some degree of correlation with
clinical severity [125] (Fig. 13).

Autosomal recessive spinocerebellar ataxia type 10

Autosomal recessive spinocerebellar ataxia type 10
(SCAR10), also known as autosomal recessive cerebellar
ataxia type 3 (ARCA3), is caused by homozygous or com-
pound heterozygous mutations in the anoctamin 10 (ANO10)
gene, mapped on 3p21.33 [126].

The onset is reported in the teenage or young adult years
[127], usually presenting with gait and limb ataxia, dysarthria,
nystagmus, and occasional involvement of lower motor neu-
rons, while the cognitive status may be normal or impaired
[128]. A characteristic finding of this condition is the presence
of low levels of coenzyme Q10 (CoQ10) [129].

At the brainMRI scan, SCAR10 patients showmoderate to
marked cerebellar atrophy [129–131], in some cases coupled
to a mild T2-weighted hyperintensity of the DN [130, 131]
(Fig. 14). Diffuse supratentorial cortical atrophy, more pro-
nounced in the fronto-parietal regions, can be also detected
in older patients [129, 131].

X-linked ataxias

Fragile X-associated tremor/ataxia syndrome

FXTAS constitutes a progressive neurodegenerative move-
ment disorder caused by a fragile X “premutation,” defined
as 55–200 CGG repeats in the 50-untranslated region of the
FMR1 gene, while the presence of more than 200 repeats
results in the development of the fragile X syndrome (a heri-
table form of cognitive impairment) [132].

Fig. 15 Imaging findings in a 55-
year-old male patient with
FXTAS. Axial T1- (a) and T2-
(b) weighted sequences show the
presence of a mild global cere-
bellar atrophy, associated with the
typical T2-weighted
hyperintensity of the middle cer-
ebellar peduncles (black arrows in
b)
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FXTAS is more common in males than in females, the onset is
usually over the age of 50 [133], with a life expectancy that ranges
between 5 and 25 years [134]. Classical neurological manifesta-
tions include kinetic tremor and cerebellar ataxia, but cognitive
decline, psychiatric disorders, peripheral neuropathy, and auto-
nomic dysfunction are also frequently described [135, 136].

At brain MRI scan, FXTAS patients show characteristic fea-
tures, useful for a correct diagnosis along with clinical signs and
genetic tests. Indeed, the revised FXTAS diagnostic criteria [137]
include the presence of twomajor radiological features, namely the
presence of white matter lesions in middle cerebellar peduncles
and in corpus callosum splenium. The first finding is considered a
radiological hallmark of this condition (Fig. 15), although also
being reported in cerebellar type multiple system atrophy (MSA-
C) or acquired hepato-cerebral degeneration [86], while the second
has been recently reported as a more reliable MRI sign [134].
Other common and minor findings include the presence of T2-
weighted hyperintensities in the pons (i.e., the “hot cross bun”
sign) and in the afferent projections of the middle and superior
cerebellar peduncles, as well as supratentorial areas (e.g., insula or
periventricular white matter), along with a generalized brain,
brainstem, and cerebellar atrophy [138].

Conclusion

Neuroradiological diagnosis of hereditary degenerative
ataxias can be very challenging, given that usually brain
MRI scans show, in most of these conditions, the presence
of non-specific and sometimes overlapping imaging findings.

In this work, we have reviewed the main clinical and con-
ventional imaging findings of the most common hereditary
degenerative ataxias. A proper assessment of imaging and
clinical data is crucial for the neuroradiologist to identify some
and exclude other conditions, leading the clinician to a more
appropriate genetic testing to ultimately achieve a diagnosis.
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