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Abstract
Purpose The reproducibility of neurite orientation dispersion and density imaging (NODDI) metrics in the human brain has not
been explored across different magnetic resonance (MR) scanners from different vendors. This study aimed to evaluate the scan–
rescan and inter-vendor reproducibility of NODDI metrics in white and gray matter of healthy subjects using two 3-T MR
scanners from two vendors.
Methods Ten healthy subjects (7 males; mean age 30 ± 7 years, range 23–37 years) were included in the study. Whole-brain
diffusion-weighted imaging was performed with b-values of 1000 and 2000 s/mm2 using two 3-T MR scanners from two
different vendors. Automatic extraction of the region of interest was performed to obtain NODDI metrics for whole and localized
areas of white and gray matter. The coefficient of variation (CoV) and intraclass correlation coefficient (ICC) were calculated to
assess the scan–rescan and inter-vendor reproducibilities of NODDI metrics.
Results The scan–rescan and inter-vendor reproducibility of NODDI metrics (intracellular volume fraction and orientation
dispersion index) were comparable with those of diffusion tensor imaging (DTI) metrics. However, the inter-vendor reproduc-
ibilities of NODDI (CoV = 2.3–14%) were lower than the scan–rescan reproducibility (CoV: scanner A = 0.8–3.8%; scanner B =
0.8–2.6%). Compared with the finding of DTI metrics, the reproducibility of NODDI metrics was lower in white matter and
higher in gray matter.
Conclusion The lower inter-vendor reproducibility of NODDI in some brain regions indicates that data acquired from different
MRI scanners should be carefully interpreted.

Keywords Diffusion-weighted imaging . Diffusion tensor imaging . Inter-vendor reproducibility . Neurite orientation dispersion
and density imaging . Scan–rescan reproducibility

Introduction

Diffusion-weighted imaging (DWI) is a form of magnetic
resonance (MR) imaging widely used to non-invasively
evaluate the brain by measuring the displacement of water
molecules in biological tissues in vivo [1, 2]. Among the
available DWI techniques, diffusion tensor imaging (DTI)
[3] is most commonly used to observe brain microstructur-
al changes in neurological abnormalities [4, 5]. Although
commonly used in neurological research, the use of DTI is
limited in multiple ways. First, DTI is insufficient for
modeling non-Gaussian diffusion scatter patterns in bio-
logical structures [6, 7]. Second, despite its sensitivity,
DTI metrics are not tissue-specific. For example, a de-
crease in fractional anisotropy (FA) may be attributed to
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either or both of these: (A) loss of structural integrity (such
as axonal loss or demyelination) and (B) increase in the
complexity of tissue structure (such as increase in axon
size and packing density and change in the degree of axo-
nal dispersion). Finally, DTI is not the preferred method for
evaluation of gray matter (GM) (particularly the cortex)
because it cannot thoroughly describe microstructural ab-
normalities in GM due to isotropic water diffusion [8].

Neurite orientation dispersion and density imaging
(NODDI) was introduced by Zhang et al. [9] to overcome
the limitations of DTI. NODDI is a multi-compartment diffu-
sion imaging model that measures microstructural metrics
from multi-shell diffusion MRI data acquired using a clinical
scanner within a clinically feasible period [9]. NODDI as-
sumes a three-compartment biophysical tissue model, includ-
ing intracellular (restricted diffusion; modeled by sticks), ex-
tracellular (hindered diffusion; modeled by parallel and per-
pendicular diffusion in an anisotropic tensor), and cerebrospi-
nal fluid compartments (free diffusion; modeled by an isotro-
pic tensor) within a single voxel based on the orientation-
dispersed cylinder model in accordance with Watson distribu-
tion [9]. Intracellular volume fraction (ICVF) and orientation
dispersion index (ODI) are the two main output metrics for
NODDI that reflect neurite density and neurite orientation and
dispersion, respectively, thereby disentangling the two facets
of FA [9].

NODDI metrics have been identified as useful diagnostic
biomarkers for revealing microstructural changes in the brains
of patients with Alzheimer’s disease [10], Parkinson’s disease
[7, 11, 12], stroke [13], and multiple sclerosis [14, 15].
Recently, NODDI has been used to differentiate brain tumors
[16] and explore white matter (WM) microstructure in very
preterm-born children [17]. In addition, NODDI has been
used to demonstrate neurite properties in the human cerebral
cortex that are correlated with the myeloarchitecture [18].
ICVF has exhibited good correlations with the histological
measurements of hyperphosphorylated tau levels in the GM
of a human tauopathy mouse model, unlike the traditional DTI
metrics of mean diffusivity (MD) and FA, which failed to
exhibit any correlation [19].

Chung et al. [6], Huber et al. [20], and McCunn et al. [21]
attempted to assess the scan–rescan reproducibility of NODDI
metrics in 8 human subjects using 1.5-Tand 3-TMR scanners,
a group of children (ages 7–12 years) using a 3-TMR scanner,
and 10 adult Sprague–Dawley rats using a 9.4-T MR scanner,
respectively; they demonstrated that ICVF and ODI are highly
reproducible. However, to the best of our knowledge, no study
has explored the reproducibility of NODDI metrics in the
human brain across different MR scanners from different ven-
dors to date. Therefore, in this study, we aimed to evaluate the
scan–rescan and inter-vendor reproducibility of NODDI met-
rics in WM and GM of healthy subjects using two 3-T MR
scanners from two different vendors.

Materials and methods

Study participants

A total of 10 healthy subjects (7 males and 3 females; mean age
30 ± 7 years, range 23–37 years) with no history of neurological,
psychiatric, or other systemic diseaseswere included in the study.
The Institutional Review Board of Juntendo University Hospital,
Tokyo, Japan approved this study, and all subjects gave written
informed consent prior to participation.

Imaging protocol

Each subject was scanned on two sessions scheduled at least
1 day apart using two 3-T MRI scanners (Vantage Galan
ZGO, Canon Medical Systems, Otawara, Japan (scanner A)
and MAGNETOM Prisma, Siemens Healthcare, Erlangen,
Germany (scanner B)), both located at one site. All subjects
were scanned twice in each session to assess the scan–rescan
reproducibility. Each volunteer was removed from the scanner
briefly following the first acquisition and repositioned for the
second acquisition.

Whole-brain DWI was acquired using a 2D multiband
spin-echo echo-planar imaging (EPI) sequence [22] with b-
values of 1000 and 2000 s/mm2, each with 64 motion-probing
directions. Each DWI acquisition was completed with one b0
image without diffusion gradients. Standard and reverse
phase-encoded blipped images without diffusion weighting
(blip up and blip down) were also acquired to correct for
magnetic susceptibility-induced distortions related to EPI ac-
quisitions [23]. We also obtained 3D T1-weighted image with
magnetization-prepared rapid gradient echo (MPRAGE) with
180° radiofrequency pulse. The sequence parameters of each
scanner are shown in Table 1.

Pre-processing for diffusion MRI

The diffusionMRI data were corrected for susceptibility-induced
geometric distortions, eddy current distortions, and inter-volume
subject motion using EDDYand TOPUP toolboxes [23]. Next,
all diffusion MRI data were visually checked for 64 different
directions in axial, sagittal, and coronal planes for both scanners.
We confirmed that all datawere free from severe artifacts, such as
gross geometric distortion, signal dropout, and bulk motion.

The resulting images were fitted to the NODDI model [9]
using the NODDI MATLAB Toolbox 5 (http://www.nitrc.org/
projects/noddi_toolbox); then, ICVF, ODI, and isotropic volume
fraction (ISO) maps were generated. The diffusion tensor was
estimated using ordinary least squares applied to diffusion-
weighted images with b-values of 0 and 1000 s/mm2. FA, MD,
axial diffusivity (AD), and radial diffusivity (RD) maps were
then generated for all subjects using the DTIFIT tool implement-
ed in functional magnetic resonance imaging of the brain
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(FMRIB) Software Library 5.0.9 (FSL, Oxford Centre for
Functional MRI of the Brain, UK; www.fmrib.ox.ac.uk/fsl) to
fit the tensor model to each voxel of the DWI data [3].

Signal-to-noise ratio calculation

Signal-to-noise ratio (SNR) was calculated for each scanner
using the single region of interest (ROI) approach and two b0
images with Camino [24]. Manual ROIs were drawn in the
genu and splenium of the corpus callosum on the b0 images in
the sagittal plane obtained on the first scan for each scanner
(Fig. 1a). First, σdiff was calculated as follows:

σdiff ¼
stddev S i1f g−S i2f g;…; S N1f g−S N2f g

� �

sqrt 2ð Þ

where S{i1} is the signal from voxel i of image 1, whereas
S{i2} is the signal from the same voxel in image 2, and N
represents the number of voxels in an ROI. Then, SNR was
calculated as the mean signal from the ROI divided by σdiff, as
follows:

SNRdiff ¼
mean S i1f g þ S i2f g

� �

2:0� σdiff

ROI analysis

DTI and NODDI values were measured for the whole WM
and GM, subcortical GM, localizedWM, and cortical regions.
Whole WM and GM, subcortical GM, and cortical segmenta-
tion were performed with FreeSurfer pipeline (http://surfer.

Table 1 Acquisition parameters
DWI T1 MPRAGE

Scanner A Scanner B Scanner A Scanner B

TR/TE (ms) 4900/70 4900/70 2400/2.7 2300/2.32

FOV (mm) 230 × 230 230 × 230 240 × 240 240 × 240

Matrix size 128 × 128 128 × 128 256 × 256 256 × 256

Resolution (mm) 1.8 × 1.8 1.8 × 1.8 0.9 × 0.9 0.9 × 0.9

Slice thickness (mm) 1.8 1.8 0.9 0.9

Acquisition time (min) 11.07 10.56 5.08 6.25

Gradient direction 64 64

Maximal gradient strength (mT/m) 100 80

Flip angle (°) 90 90

Acceleration factor 2 2

Multiband factor 2 2

FOV, field of view; TE, echo time; TR, repetition time

Fig. 1 a Placement of regions of interests on b0 images of the genu (red)
and splenium (green) of the corpus callosum for the measurement of
signal-to-noise ratio. b Boxplots of group mean signal-to-noise ratio for

scanners A and B in the genu and splenium. *Wilcoxon signed-rank test
significance at P < 0.05
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nmr.mgh.harvard.edu/fswiki) as previously described [25]
using 3D MPRAGE T1-WI.

Whole WM and GM, subcortical GM (caudate, putamen,
pallidum, thalamus, hippocampus, amygdala, and
accumbent), and cortical (frontal, temporal, parietal, occipital,
and cingulate) regions were then labeled using the Desikan–
Killiany atlas [26]. For localized WM areas, FA maps of all
subjects were first realigned according to the FA template of
the Johns Hopkins University International Consortium for
Brain Mapping (JHU ICBM) using the FMRIB’s nonlinear
image registration tool [27]. The corresponding MD, AD,
RD, ICVF, ODI, and ISO maps were subsequently realigned
according to the transformation parameter obtained from the
FA maps. Localized WM (genu, body, and splenium of the
corpus callosum, corticospinal tract, anterior and posterior
limb of internal capsule, anterior, superior, and posterior co-
rona radiata; posterior thalamic radiation; sagittal stratum; ex-
ternal capsule; superior longitudinal fasciculus, superior
fronto-occipital fasciculus; and uncinate fasciculus) regions
were labeled with JHU ICBM-DTI-81 WM labels [28].
Lastly, the average diffusion metric was averaged over the
region delineated by those atlases for all subjects.

Statistical analysis

All statistical analyses were performed using the IBM SPSS
Statistics for Windows (version 22.0; IBM Corporation,
Armonk, NY, USA). The Shapiro–Wilk test was used to as-
sess the normality of the SNR data. Not all data were normally
distributed; therefore, differences in SNR measured in the
genu and splenium of the corpus callosum between scanners
A and B from the first scan were analyzed using the Wilcoxon

signed-rank test. The threshold for statistical significance was
set at p value < 0.05.

Coefficient of variation (CoV) was determined to evaluate
the scan–rescan and inter-vendor reproducibility using the fol-
lowing equation:

CoV %ð Þ ¼ Standard deviation=Meanð Þ � 100

The inter-vendor CoV was calculated using the average
values from each scanner. For each subject, the inter-vendor
CoVs were calculated using the data of the first scan, which
was averaged into a single inter-scanner CoV value. The
scan–rescan CoVs were calculated for each subject and then
averaged across all subjects.

In addition, we used intraclass correlation coefficient (ICC)
with 95% confidence interval. ICC values less than 0.50 were
indicative of poor reliability, values between 0.50 and 0.75
were indicative of moderate reliability, values between 0.75
were indicative of good reliability, and values greater than
0.90 were indicative of excellent reliability [29].

Results

For the genu and splenium, the SNRof scannerAwas significant-
ly lower than thatof scannerB(Fig.1b).Thescan–rescanDTIand
NODDI maps of one healthy participant for the two scanners are
represented in Fig. 2. Figures 3 and 4 present the mean values of
DTI and NODDI metrics, respectively, for WM and GM.

Table 2 shows the scan–rescan CoVs of DTI and NODDI
metrics. In WM, the highest scan–rescan CoVs were 1.9%
(FA), 3.3% (MD), 2.5% (AD), and 4.1% (RD) and 1.4%
(ICVF), 3.8% (ODI), and 18.5% (ISO) for DTI and NODDI

Fig. 2 Diffusion tensor imaging
(fractional anisotropy [FA], mean
diffusivity [MD], axial diffusivity
[AD], and radial diffusivity [RD])
and neurite orientation dispersion
and density imaging (intracellular
volume fraction [ICVF],
orientation dispersion index
[ODI], and isotropic volume
fraction [ISO]) maps of one
healthy subject
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Fig. 3 Means and standard deviations of diffusion tensor imaging
(fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity
[AD], and radial diffusivity [RD]) metrics across all subjects.
Abbreviations: ACR anterior corona radiata, ALIC anterior limb of
internal capsule, CC corpus callosum, CST corticospinal tract, GM gray

matter, PCR posterior corona radiata, PLIC posterior limb of internal
capsule, PTR posterior thalamic radiation, SCR superior corona radiata,
SFOF superior fronto-occipital fasciculus, SLF superior longitudinal fas-
ciculus, UF uncinate fasciculus, WM white matter

Fig. 4 Means and standard deviations of neurite orientation dispersion
and density imaging (intracellular volume fraction (ICVF), orientation
dispersion index (ODI), and isotropic volume fraction [ISO]) metrics
across all subjects. Abbreviations: ACR anterior corona radiata, ALIC
anterior limb of internal capsule, CC corpus callosum, CST

corticospinal tract, GM gray matter, PCR posterior corona radiata, PLIC
posterior limb of internal capsule, PTR posterior thalamic radiation, SCR
superior corona radiata, SFOF superior fronto-occipital fasciculus, SLF
superior longitudinal fasciculus, UF uncinate fasciculus, WM white
matter
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metrics, respectively, in scanner A. On the other hand, in
scanner B, the CoVs were 0.9% (FA), 1.7% (MD), 1.3%
(AD), and 2.0% (RD) and 1.5% (ICVF), 2.6% (ODI), and
9.1% (ISO) for DTI and NODDI metrics, respectively. In
GM, the highest scan–rescan CoVs were 2.0% (FA), 2.7%
(MD), 2.1% (AD), and 3.1% (RD), and 0.8% (ICVF), 0.8%
(ODI), and 4.8% (ISO) for DTI and NODDI metrics, respec-
tively, in scanner A. On the other hand, in scanner B, the CoVs
were 0.5% (FA), 0.8% (MD), 0.8% (AD), and 0.8% (RD) and
0.8% (ICVF), 0.5% (ODI), and 3.5% (ISO) for DTI and
NODDI metrics, respectively.

Table 3 shows the inter-vendor CoVs of DTI and NODDI
metrics. For all metrics, the inter-vendor CoVs were generally
higher than the scan–rescan CoVs. In WM, the highest inter-
vendor CoVs for DTI metrics were 2.6% (FA), 3.9% (MD),
5.3% (AD), and 5.9% (RD), whereas those for NODDI met-
rics were 7.0% (ICVF), 14% (ODI), and 38.9% (ISO). In GM,
the highest inter-vendor CoVs for DTI metrics were 7.1%

(FA), 4.7% (MD), 5.1% (AD), and 5.0% (RD), whereas those
for NODDI metrics were 2.3% (ICVF), 4.3% (ODI), and
13.9% (ISO).

Table 4 shows the scan–rescan ICCs of DTI and NODDI
metrics. InWM, scanner A and scanner B demonstrated poor to
excellent scan–rescan reproducibility of DTI (scanner A: FA
[ICC = 0.744–0.995], MD [ICC = 0.777–0.968], AD [ICC =
0.964–0.994], and RD [ICC = 0.884–0.980]; scanner B: FA
[ICC = 0.918–0.996], MD [ICC = 0.905–0.987], AD [ICC =
0.912–0.997], and RD [ICC = 0.926–0.997]) and NODDI met-
rics (scanner A: ICVF [ICC = 0.773–0.989], ODI [ICC =
0.910–0.996], and ISO [ICC = 0.211–0.945]; scanner B:
ICVF [ICC = 0.909–0.987], ODI [ICC = 0.789–0.998], and
ISO [ICC = 0.133–0.997]). In GM, scanner A and B also dem-
onstrated poor to excellent scan–rescan reproducibility of DTI
(scanner A: FA [ICC = 0.383–0.890], MD [ICC = 0.731–
0.980], AD [ICC = 0.769–0.985], and RD [ICC = 0.690–
0.974]; scanner B: FA [ICC = 0.810–0.984], MD [ICC =

Table 3 Inter-vendor coefficient of variation (CoV [%]) across all subjects

DTI NODDI

FA MD AD RD ICVF ODI ISO

White matter

Whole WM 2.1 ± 0.7 3.0 ± 0.4 3.8 ± 0.3 2.2 ± 0.6 0.9 ± 0.4 4.2 ± 0.6 15.9 ± 4.4

Genu of CC 0.5 ± 0.4 1.4 ± 0.5 2.3 ± 1.3 2.5 ± 2.4 1.5 ± 1.2 5.2 ± 4.4 7.5 ± 4.4

Body of CC 0.6 ± 0.4 2.7 ± 1.1 4.8 ± 1.3 3.2 ± 2.8 1.3 ± 1.0 7.3 ± 6.9 16.2 ± 7.5

Splenium of CC 0.4 ± 0.4 1.4 ± 1.2 2.6 ± 1.5 5.9 ± 3.3 4.6 ± 1.1 5.2 ± 4.1 21.6 ± 7.2

CST 2.3 ± 1.2 3.9 ± 3.7 5.3 ± 4.0 4.0 ± 3.3 7.0 ± 2.6 10.2 ± 3.3 21.1 ± 10.0

ALIC 0.8 ± 0.6 0.8 ± 0.4 1.6 ± 1.2 1.8 ± 1.5 1.4 ± 1.1 4.7 ± 2.9 12.2 ± 7.1

PLIC 0.5 ± 0.3 1.3 0.7 1.2 ± 0.7 2.0 ± 0.6 2.3 ± 0.9 2.9 ± 1.3 18.5 ± 6.6

ACR 0.8 ± 0.6 1.7 ± 0.5 1.5 ± 0.9 2.1 ± 1.2 1.3 ± 1.2 1.6 ± 1.1 10.7 ± 6.5

SCR 0.6 ± 0.6 2.4 ± 0.6 2.9 ± 0.5 1.9 ± 0.9 1.5 ± 0.6 2.2 ± 0.8 23.4 ± 9.9

PCR 0.8 ± 0.5 2.8 ± 0.7 4.1 ± 0.6 1.6 ± 0.9 1.5 ± 0.6 5.9 ± 2.0 34.9 ± 11.4

PTR 1.2 ± 0.8 2.6 ± 1.0 5.3 ± 1.4 1.8 ± 1.3 2.5 ± 1.6 14.0 ± 4.2 38.9 ± 10.4

Sagittal stratum 1.2 ± 1.0 1.9 ± 0.5 3.9 ± 1.2 1.7 ± 0.9 1.8 ± 0.9 6.8 ± 2.9 31.9 ± 11.5

External capsule 2.6 ± 0.9 2.5 ± 0.7 3.3 ± 0.8 2.1 ± 0.9 1.8 ± 1.1 5.3 ± 2.4 29.1 ± 8.1

SLF 0.7 ± 0.7 1.9 ± 0.6 3.1 ± 0.7 1.4 ± 0.7 1.3 ± 0.6 5.0 ± 2.3 30.4 ± 9.8

SFOF 2.1 ± 1.0 1.4 ± 0.7 2.9 ± 1.5 2.4 ± 1.7 2.0 ± 1.6 6.6 ± 2.1 11.0 ± 6.0

UF 2.5 ± 1.9 3.5 ± 2.9 2.7 ± 2.7 4.2 ± 3.4 3.4 ± 2.8 4.1 ± 3.3 28.7 ± 19.7

Gray matter

Whole GM 1.4 ± 1.0 2.2 ± 0.5 2.5 ± 0.5 2.0 ± 0.6 1.1 ± 0.4 2.4 ± 0.7 5.2 ± 2.1

Sub-cortical 1.9 ± 1.3 3.1 ± 1.5 2.9 ± 1.1 3.6 ± 1.3 0.8 ± 0.7 1.2 ± 0.8 6.2 ± 3.1

Cortical frontal 4.1 ± 2.0 0.9 ± 0.6 0.8 ± 0.7 1.2 ± 0.8 0.7 ± 0.3 2.8 ± 1.2 13.9 ± 6.7

Cortical temporal 7.1 ± 1.8 4.4 ± 0.4 3.3 ± 0.4 5.0 ± 0.4 2.3 ± 0.8 0.8 ± 0.6 3.8 ± 3.8

Cortical parietal 5.0 ± 1.3 2.7 ± 0.8 3.5 ± 0.8 2.1 ± 0.8 1.3 ± 0.8 4.3 ± 0.7 3.9 ± 3.4

Cortical occipital 3.1 ± 1.4 4.7 ± 0.7 5.1 ± 0.8 4.4 ± 0.7 1.2 ± 0.7 3.6 ± 0.9 6.6 ± 3.5

Cortical cingulate 3.1 ± 1.5 2.4 ± 0.7 2.8 ± 0.6 2.1 ± 0.7 0.9 ± 0.6 2.1 ± 0.6 12.3 ± 5.5

ACR, anterior corona radiata; ALIC, anterior limb of the internal capsule;CC, corpus callosum;CST, corticospinal tract;GM, gray matter; PCR, posterior
corona radiata; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic radiation; SCR, superior corona radiata; SFOF, superior fronto-
occipital fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; WM, white matter
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0.593–0.956], AD [ICC = 0.450–0.983], and RD [ICC =
0.703–0.984]) and NODDI metrics (scanner A: ICVF [ICC =
0.668–0.952], ODI [ICC = 0.729–0.926], and ISO [ICC =
0.396–0.975]; scanner B: ICVF [ICC = 0.812–0.963], ODI
[ICC = 0.929–0.976], and ISO [ICC = 0.915–0.972]).

Table 5 shows the inter-vendor ICCs of DTI and NODDI
metrics. In WM, DTI and NODDI metrics showed poor to
excellent inter-vendor reproducibility (DTI: FA [ICC = 0.538–
0.973], MD [ICC = 0.214–0.890], AD [ICC = 0.119–0.929],
and RD [ICC = 0.411–0.949]; NODDI: ICVF [ICC = 0.300–
0.935], ODI [ICC = 0.181–0.962], and ISO [ICC = 0.013–
0.545]). In GM, DTI metrics showed poor to moderate inter-
vendor reproducibility (FA [ICC = 0.013–0.528], MD [ICC =
0.095–0.488], AD [ICC = 0.133–0.416], and RD [ICC =
0.084–0.596]) and NODDI metrics showed poor to excellent
inter-vendor reproducibility (ICVF [ICC = 0.395–0.849], ODI
[ICC = 0.043–0.580], and ISO [ICC = 0.092–0.903]).

Discussion

This study explored the scan–rescan and inter-vendor repro-
ducibility of NODDI metrics (ICVF, ODI, and ISO) obtained
using two MR scanners from different vendors in a single-
institution setting. Using CoVand ICC analyses, NODDImet-
rics (ICVF and ODI) in the WM and GM demonstrated com-
parable scan–rescan and inter-vendor reproducibility with
DTI metrics (FA, MD, AD, and RD). In general, however,
the reproducibility of ISO was lower compared with the other
measured metrics. Also, the inter-vendor reproducibility of all
metrics was lower compared with scan–rescan reproducibility.

In contrast to a study by Chung et al. [6], who demonstrated
higher scan–rescan CoVs for NODDI metrics than for DTI
metrics in the human brain, our study showed that the scan–
rescan reproducibility of NODDI metrics using both scanners
is comparable with that of DTI metrics (NODDI: ICVF = 0.3–

Table 4 Scan–rescan intraclass correlation coefficient across all subjects

Scanner A Scanner B

DTI NODDI DTI NODDI

FA MD AD RD ICVF ODI ISO FA MD AD RD ICVF ODI ISO

White matter

Whole WM 0.923 0.963 0.974 0.939 0.964 0.977 0.747 0.996 0.987 0.991 0.990 0.980 0.988 0.895

Genu of CC 0.978 0.949 0.975 0.980 0.968 0.990 0.676 0.985 0.976 0.987 0.986 0.974 0.997 0.710

Body of CC 0.901 0.948 0.983 0.974 0.973 0.989 0.922 0.967 0.987 0.997 0.997 0.959 0.998 0.942

Splenium of CC 0.971 0.968 0.986 0.975 0.985 0.985 0.924 0.984 0.865 0.980 0.951 0.982 0.993 0.765

CST 0.979 0.822 0.832 0.884 0.905 0.910 0.945 0.988 0.879 0.898 0.926 0.890 0.789 0.943

ALIC 0.913 0.777 0.969 0.959 0.922 0.984 0.819 0.977 0.837 0.990 0.959 0.943 0.997 0.133

PLIC 0.939 0.783 0.975 0.955 0.812 0.996 0.211 0.994 0.901 0.918 0.972 0.964 0.980 0.938

ACR 0.869 0.904 0.964 0.825 0.946 0.985 0.621 0.991 0.966 0.980 0.926 0.909 0.988 0.378

SCR 0.896 0.811 0.974 0.917 0.939 0.993 0.692 0.976 0.959 0.985 0.985 0.912 0.997 0.510

PCR 0.987 0.957 0.979 0.978 0.983 0.986 0.821 0.987 0.980 0.989 0.993 0.982 0.989 0.692

PTR 0.995 0.925 0.970 0.968 0.989 0.986 0.792 0.995 0.973 0.971 0.989 0.987 0.978 0.805

Sagittal stratum 0.990 0.880 0.994 0.951 0.948 0.974 0.524 0.957 0.936 0.841 0.978 0.966 0.979 0.711

External capsule 0.958 0.845 0.969 0.909 0.816 0.978 0.781 0.988 0.975 0.988 0.968 0.947 0.993 0.868

SLF 0.970 0.924 0.987 0.967 0.970 0.990 0.844 0.993 0.979 0.989 0.993 0.977 0.996 0.634

SFOF 0.744 0.956 0.987 0.978 0.984 0.993 0.557 0.918 0.905 0.912 0.968 0.960 0.995 0.149

UF 0.872 0.952 0.911 0.969 0.773 0.914 0.884 0.962 0.987 0.985 0.990 0.954 0.969 0.997

Gray matter

Whole GM 0.739 0.978 0.978 0.968 0.790 0.877 0.911 0.972 0.941 0.937 0.942 0.892 0.961 0.950

Subcortical 0.383 0.731 0.769 0.690 0.775 0.918 0.922 0.984 0.593 0.450 0.703 0.963 0.976 0.972

Cortical frontal 0.764 0.935 0.937 0.911 0.678 0.870 0.807 0.983 0.931 0.890 0.938 0.897 0.968 0.956

Cortical temporal 0.810 0.928 0.967 0.885 0.668 0.729 0.396 0.810 0.942 0.953 0.941 0.900 0.968 0.940

Cortical parietal 0.890 0.971 0.973 0.968 0.866 0.962 0.975 0.938 0.911 0.973 0.905 0.835 0.942 0.915

Cortical occipital 0.806 0.980 0.985 0.974 0.952 0.867 0.970 0.979 0.983 0.983 0.984 0.812 0.944 0.971

Cortical cingulate 0.776 0.905 0.911 0.901 0.694 0.893 0.973 0.960 0.956 0.939 0.966 0.930 0.929 0.963

ACR, anterior corona radiata; ALIC, anterior limb of the internal capsule;CC, corpus callosum;CST, corticospinal tract;GM, gray matter; PCR, posterior
corona radiata; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic radiation; SCR, superior corona radiata; SFOF, superior fronto-
occipital fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; WM, white matter
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1.5%, ODI = 0.2–3.8% and DTI: FA = 0.2–2.0%, MD 0.2–
3.3%, AD = 0.1–2.5%, and RD = 0.2–4.1%). Overall, our
study also found lower CoVs of NODDI than those reported
by Chung et al. [6] (0.6–7.3%). These results possibly dem-
onstrate that higher-angular resolution pulse sequence (64 di-
rections in this study vs. 20 directions in the previous study)
provided more robust diffusion estimates [30]. Our results are
consistent with those reported in recent studies that assessed
the test–retest reproducibility of DTI metrics acquired for hu-
man subjects with 3-T MR scanners using 30 [2] and 64 gra-
dient directions [31] and showed CoVs of < 7% and < 5%,
respectively, in whole WM.

DTI and NODDI metrics had higher scan–rescan repro-
ducibility than inter-vendor reproducibility, possibly
reflecting cross-scanner differences in the absolute mea-
sures of diffusivity, but these results might also be second-
ary to biological variability [32]. Scan–rescan was done on
the same day, but scans on different MR scanners were

done on different days. This might have also contributed
to the higher inter-vendor differences. Further, the scanners
used different head coils (scanner A: 32 channels and scan-
ner B: 64 channels). The differences between the coils
affect unfolding methods and performance in parallel and
multiband imaging [33]. A larger number of channels in a
coil intrinsically lead to higher SNR, particularly in surface
regions [34]. In addition, there may have been differences
in imaging conditions and environments depending on set-
tings for each vendor that may also explain the inter-
vendor differences in terms of SNR. In fact, the SNRs of
scanner B for the genu and splenium of the corpus
callosum were significantly higher than those of scanner
A. Lower SNR has been shown to cause bias in the mea-
surement of diffusion measures [35]. Thus, lower SNR of
scanner A may also have contributed to lower inter-vendor
reproducibility. Indeed, the scan–rescan CoVs of scanner
A were relatively higher than those of scanner B.

Table 5 Inter-vendor intraclass correlation coefficient across all subjects

DTI NODDI

FA MD AD RD ICVF ODI ISO

White matter

Whole WM 0.538 0.214 0.150 0.429 0.869 0.224 0.018

Genu of CC 0.938 0.860 0.846 0.941 0.859 0.949 0.545

Body of CC 0.755 0.557 0.816 0.949 0.934 0.962 0.310

Splenium of CC 0.917 0.890 0.872 0.825 0.554 0.902 0.211

CST 0.908 0.589 0.482 0.565 0.300 0.181 0.248

ALIC 0.860 0.722 0.929 0.842 0.895 0.948 0.324

PLIC 0.969 0.547 0.856 0.833 0.445 0.903 0.013

ACR 0.824 0.576 0.846 0.411 0.756 0.932 0.303

SCR 0.950 0.386 0.614 0.751 0.793 0.941 0.105

PCR 0.973 0.455 0.381 0.894 0.935 0.730 0.055

PTR 0.931 0.220 0.253 0.927 0.758 0.402 0.046

Sagittal stratum 0.933 0.392 0.119 0.861 0.823 0.646 0.045

External capsule 0.624 0.485 0.526 0.769 0.669 0.744 0.092

SLF 0.943 0.467 0.438 0.926 0.873 0.816 0.018

SFOF 0.794 0.757 0.774 0.942 0.889 0.906 0.129

UF 0.559 0.804 0.607 0.850 0.349 0.849 0.504

Gray matter

Whole GM 0.458 0.420 0.325 0.493 0.692 0.173 0.742

Subcortical 0.469 0.365 0.416 0.305 0.782 0.348 0.412

Cortical frontal 0.079 0.403 0.401 0.242 0.849 0.102 0.092

Cortical temporal 0.013 0.095 0.133 0.084 0.395 0.580 0.399

Cortical parietal 0.194 0.469 0.320 0.588 0.428 0.135 0.903

Cortical occipital 0.528 0.482 0.378 0.548 0.753 0.043 0.848

Cortical cingulate 0.295 0.488 0.339 0.596 0.653 0.301 0.574

ACR, anterior corona radiata; ALIC, anterior limb of the internal capsule;CC, corpus callosum;CST, corticospinal tract;GM, gray matter; PCR, posterior
corona radiata; PLIC, posterior limb of the internal capsule; PTR, posterior thalamic radiation; SCR, superior corona radiata; SFOF, superior fronto-
occipital fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; WM, white matter
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Generally, in agreement with the study by Chung et al. [6]
investigating scan–rescan reproducibility of NODDI in 1.5 T
and 3 T, the reproducibility of NODDI metrics was lower in
WM and higher in GM than that of DTI metrics. It has previ-
ously been speculated that NODDI metrics are nosier than DTI
metrics for modeling WM because NODDI is a more complex
model requiring higher b-values [6]. In addition, cardiac pulsa-
tion leading to intra-voxel dephasing and inaccurate estimation
of anisotropy parameters and tensor orientation possibly in-
creased the variability of NODDI metrics, particularly ODI, in
WM [6]. In contrast, NODDI seems to bemore robust compared
with DTI in the evaluation of GM than on WM, which may be
because NODDI metrics serve as a more direct marker for com-
plex and heterogeneous neurobiological features of GM [9, 18].

In line with previous studies [6, 21], ISO in the WM and
GM was found to have low scan–rescan and inter-vendor
reproducibility compared with the other measuredmetrics that
may be because ISO is highly susceptible to noise [6, 21]. The
improvements in SNR are predicted to increase the reproduc-
ibility of ISO. In this study, indeed, the reproducibilities of
ISO in scanner B are higher than those of scanner A.

Consistent with the observations reported by Zhang et al. [9]
and Chung et al. [6], the NODDI maps in our study reflected a
spatial pattern of tissue distribution (Figs. 3 and 4), consistent
with the known brain anatomy. ICVF, the index of neurite den-
sity, values were shown to be lower for GM than for WM and,
as expected, ODI, the index of orientation dispersion, were
lower in WM but higher in GM (e.g., in WM, the highest
ICVF value and lowest ODI value were found in the corpus
callosum). Furthermore, FA has been shown to be highly influ-
enced by orientation dispersion [36]. In our study, in line with
previous studies [6, 9], ODI and FA exhibited regional varia-
tions that are inversely correlated with each other (Figs. 3 and
4).

A major limitation of the present study is the small
number of participants who were scanned at a single in-
stitution using MRI scanners from only two vendors. To
reduce the acquisition time in a clinically feasible manner,
DWI data were obtained using a multiband EPI sequence.
However, at our institution, the multiband EPI sequence is
installed only in MRI scanners from vendors A and B;
therefore, we could not expand the study to include addi-
tional vendors. Thus, a multi-site study with a larger sam-
ple size and more scanners might be needed to demon-
strate the robustness of NODDI. In addition, this study
was performed using b-values of 1000 and 2000 s/mm2,
whereas the optimized NODDI protocols use b-values of
711 and 2855 s/mm2 (acquired in approximately 30 min).
However, Zhang et al. [9] demonstrated that there is no
significant loss in the accuracy of the metrics using the
current protocol. Furthermore, our protocol can be per-
formed in a shorter time (< 15 min), which makes it more
feasible in the clinical setting.

Conclusion

In this study, NODDI demonstrated excellent scan–rescan re-
producibility that was comparable with DTI. However, lower
inter-vendor reproducibility of DTI and NODDI in some areas
of the brain indicates that data acquired from different MRI
scanners should be carefully interpreted.
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