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Abstract
Purpose Advances in computational network analysis have enabled the characterization of topological properties of human brain
networks (connectomics) from high angular resolution diffusion imaging (HARDI) MRI structural measurements. In this study,
the effect of changing the diffusion weighting (b value) and sampling (number of gradient directions) was investigated in ten
healthy volunteers, with specific focus on graph theoretical network metrics used to characterize the human connectome.
Methods Probabilistic tractography based on the Q-ball reconstruction of HARDI MRI measurements was performed and
structural connections between all pairs of regions from the automated anatomical labeling (AAL) atlas were estimated, to
compare two HARDI schemes: low b value (b = 1000) and low direction number (n = 32) (LBLD); high b value (b = 3000)
and high number (n = 54) of directions (HBHD).
Results LBLD and HBHD data sets produced connectome images with highly overlapping hub structure. Overall, the HBHD
scheme yielded significantly higher connection probabilities between cortical and subcortical sites and allowed detecting more
connections. Small worldness and modularity were reduced in HBHD data. The clustering coefficient was significantly higher in
HBHD data indicating a higher level of segregation in the resulting connectome for the HBHD scheme.
Conclusion Our results demonstrate that the HARDI scheme as an impact on structural connectome measures which is not
automatically implied by the tractography outcome. As the number of gradient directions and b values applied may introduce a
bias in the assessment of network properties, the choice of a given HARDI protocol must be carefully considered when
comparing results across connectomic studies.
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Introduction

Brain connectivity and the connectome have unlocked new
experimental and theoretical avenues in many areas of neuro-
science. Recent advances in diffusion magnetic resonance im-
aging (dMRI) and functional magnetic resonance imaging
(fMRI) techniques have made it possible to model the human
brain as a complex network in vivo. Using graph theory, both
a functional and a structural brain network can be described as
a graph, i.e. a collection of nodes, each corresponding to a
brain region, and connections or edges, each expressing a
pathway between two nodes. On the basis of a suitable formal
description, a number of graph-theoretic measures can be used
to describe several properties of the network’s architecture [1].

Structural connectivity can be assessed in vivo in humans
by the combination of dMRI-based white matter tractography
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and gray matter parcellation methods. Compared to clinical
applications of dMRI, increasing the diffusion weighting and
the number of diffusion gradient directions represent two sim-
ple options available to any clinician in order to increase the
angular resolution of white matter tractography and therefore
the robustness of graph-theoretic measures. Although the ef-
fect of b value on HARDI reconstruction for tractography has
been studied before [2], here we compared for the first time
the impact on the estimation of network properties in two
HARDI MRI protocols, one with a low b value and a low
number of direction (LBLD) and one with a high b value
and a high number of directions (HBHD).

The most typical graph-theoretic metrics used in brain
connectomics include the degree of clustering, the global effi-
ciency, the modularity, and the small worldness [3]. Briefly, the
degree of clustering and the strength of a given node measure
the extent to which the node is connected to the rest of the
network, while the centrality and the efficiency capture how
many short paths between two parts of the network pass
through the node. Modularity refers to the property of a net-
work of being divided into multiple modules according to how
nodes result densely interconnected with other nodes within the
same module and sparsely interconnected with other nodes
outside the module. A Bsmall-world^ network is characterized
by a topology in which most of the nodes are not neighbors of
each other but can be reached through a relatively small num-
ber of steps [4]. Some works have revealed that brain networks
intrinsically possess small world properties, and some small
world attributes have been proposed as clinical markers [5–7].

To enable the calculation of these metrics and fully charac-
terize the brain structural networks in terms of graph-theoretic
measures, the diffusion tensor imaging (DTI) [8, 9] represents
the most common post-processing technique for dMRI data to
calculate the initial connectivity matrix, which represents the
input of all graph-theoretic measures. However, HARDI acqui-
sition techniques in combination with the Q-ball imaging (QBI)
[10] have been more recently explored in the context of graph-
theoretic characterizations of brain structural networks [3].

In this study, we performed a whole-brain connectomic anal-
ysis using a probabilistic QBI tractography on a cortical
parcellation of 90 regions obtained from the automated anatom-
ical label (AAL) atlas and determined the effect of the dMRI
acquisition scheme on global and local graph network measures.

Methods

Subjects

Ten healthy subjects (4 male and 6 female, age 52 ±
7.15 years) were scanned on a 3TGEMedical System scanner
(Signa HDxt3T twin speed GE) equipped with an eight-
channel parallel head coil. The research was conducted

according to the principles expressed in the Declaration of
Helsinki. Ethics approval was obtained from the Ethics
Committee of the institute where the study has been per-
formed, and informed consent was obtained from all
participants.

MRI acquisition

Three-dimensional T1-weighted sagittal images were ac-
quired with GE sequence IR-FSPGR (TR = 6988 ms, TI =
1100 ms, TE = 3.9 ms, flipangle = 10,voxel size = 1 mm ×
1 mm× 1.2 mm).

Whole-brain diffusion-weighted MRI was performed first
using a spin echo echo-planar imaging (EPI) LBLD sequence
(repetition time = 10,000 ms, echo time = 83.2 ms, field of
view = 320 mm, isotropic resolution = 2.5 mm, b value =
1000 s/mm, 32 isotropically distributed gradients, frequency-
encoding left-right (LR)) and then with a spin echo EPI
HBHD sequence (repetition time = 16,000 ms, echo time =
104 ms, field of view = 320 mm, isotropic resolution =
2.5 mm, b value = 3000 s/mm, 54 isotropically distributed
gradients frequency-encoding LR).

Data preprocessing

Motion, eddy currents correction and brain tissue extraction
(BET) of diffusion-weighted images were performed with
FSL version 5.0.8 [11]. A Q-ball model was fitted at each
voxel, generating generalized fractional anisotropy (GFA)
maps with qboot, a command line tool of the FSL package.
This command allows estimation of diffusion ODFs using the
Q-ball constant solid angle (CSA) model [12]. After
coregistration of dMRI images with T1-weighted images,
the cortical gray matter parcellation was performed using the
Automated Anatomical Labeling Atlas (AAL) [13, 14] which
includes 90 cortical and subcortical regions. The obtained
structures were then used as ROIs for fiber tracking.
Probabilistic fiber tracking was performed in FSL according
to Behrens and colleagues [15]. To estimate the connection
probability, probabilistic tractography was applied by sam-
pling 5000 streamline fibers per each voxel. For each sampled
fiber, a sample direction was first drawn from the local direc-
tion distribution at the seed voxel, then a new sample direction
from the local distribution was obtained at the next position,
located 0.5 mm along the previous direction, etc. For each
seed region, 5000 × n fibers were sampled, n being the num-
ber of voxels in the region. The number of fibers passing
through a given region divided by 5000 × n is finally given
as the connection probability from the seed region to the target
region [16]. In the present study, each cortical region was
selected as the seed region and its connection probability to
each of the other 90 regions was calculated [17].
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Network construction and graph-theoretic measures

From the tractography results, each data set was transformed
into a connectivity matrix, measuring connection probability
from the seed region to the target region. Each individual
network is thus represented by a symmetric 90 × 90 matrix,
in which each row and column represents a node and each
element represents an edge.

The raw individual networks are likely to contain spuri-
ous connections due to noise and algorithm errors; however,
the graphs can be controlled for spurious connections using
group-level non-parametric statistics [18]. In fact, connec-
tions between two specific nodes are more likely to be real
and reliable if they are consistently detected across individ-
uals. The non-parametric sign test was applied by taking
each individual as a sample, with the null hypothesis being
that there is no existing connection (i.e., connectivity
weight = 0). The Bonferroni method was used to correct
for multiple comparisons across all node pairs within the
network. For each group data set (LBLD, HBHD), the node
pair surviving a corrected p < 0.05 was deemed to have a
connection. As a result, a binary matrix (1 for node pairs
with a connection and 0 for node pairs without a connection)
was generated for each group of WM networks. This binary
mask was then applied to each individual subject network to
remove the spurious connections [19]. For each type of WM
networks, the network density, which is the fraction of pres-
ent connections to possible connections, becomes the same
across all subjects of the groups, improving the between-
groups comparability of network measures. We calculated
eight network measures as described in [20] with the Brain
Connectivity Toolbox: Betweeness Centrality, Global effi-
ciency, Local efficiency, Node strength, Node degree,
Clustering coefficient (C), Characteristic Path-length (L),
Modularity (M), and Small worldness. Each of these prop-
erties and their biological significance has been defined and
discussed in detail elsewhere [1, 6]. Moreover, the mean
betweenness centrality was calculated for each node in
LBLD and HBHD groups, respectively. Then, regions on
the topographic betweenness centrality map with values in
the 80th percentile were defined as group hub regions [21,
22].

Statistical analysis

The network-based statistic (NBS) tool [23] was used to mea-
sure the size of sequence effect using intensity of network
connectivity values comprising pairs of regions after correc-
tion for multiple comparisons. For each nodal and global
scale, the null hypothesis LBLD = HBHD was tested using
a t test and was rejected with p < 0.05 for all network measures
considered (false discovery rate (FDR) corrected).

Results

NBS analysis revealed a significantly higher connection prob-
ability in HBHD compared to LBLD data sets in 88 pairs of
node (p = 0.0002) (Fig. 1, Table 1).

The global clustering coefficient was also found higher in
HBHD compared to LBLD (p = 0.026).

Global M and small worldness were significantly lower in
HBHD, compared to LBLD data sets (M: p = 0.001; small
worldness: p = 0.042). There were no significant differences
in global efficiency and L.

The distribution of hubs across the whole connectome was
similar between the two sequences. Hubs in common between
LBLD and HBHD data sets are summarized in Table 2 (Fig.
2). Two regions corresponding to the left inferior frontal or-
bital gyrus and the right superior frontal orbital gyrus in the
AAL were identified as hubs only in LBLD-derived matrices,
and two regions corresponding to the left olfactory cortex and
the left fusiform gyrus in the AAL were identified as hubs
only in HBHD-derived matrices.

In terms of local measures, local efficiency was higher in
HBHD in several regions (right temporal superior and medial
gyri, bilateral medial cingulate cortex, right superior temporal,
postcentral and anterior cingulate cortex, medial frontal gyrus,
angular gyrus, and left inferior temporal gyrus) compared to
LBLD data (p < 0.05, FDR corrected); local clustering coeffi-
cient was higher in HBHD in right temporal superior and
medial gyrus, bilaterally medial cingulate cortex, right medial
frontal and postcentral gyrus, anterior cingulate cortex, angu-
lar gyrus, left inferior temporal gyrus, and left and posterior
cingulate cortex (p < 0.05, FDR corrected).

There were no significant differences in betweenness cen-
trality, node strength, and node degree after FDR correction.

Discussion

Graph theoretical measures can be used to characterize net-
work topological organization in both healthy and diseased
brains and to detect structural and functional abnormalities
associated with different neurological and psychiatric disor-
ders. These measures can be broadly classified into global
measures, assessing the level of network integration, and local
measures, assessing the level of network segregation.

Structural brain networks have been shown to be both high-
ly segregated (due to the presence of relatively more selective
pathways between specific regions compared to other) and
highly integrated, i.e. forming several small-world networks
or modules [24]. Both aspects could be independently altered
in brain pathology with respect to normative values. In this
work, we investigated the influence of the dMRI gradient
scheme on the computational measures of structural brain
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networks obtained with QBI tractography at different numbers
of directions.

We detected an overall increase in the values of connection
probability across all pairs of anatomical regions when com-
paring the HBHD data set to the LBLD data set. This can be
due to the fact that higher b values cause stronger diffusion
weightings; however, due to the lower signal-to-noise, this
may also create false positive connections because of the
noise. To reduce the impact of false positives on subsequent
network feature estimations, we only consider as actual con-
nections (of varying strength) those connections that were
consistently present across all subjects using a non-
parametric procedure based on the sign test [19].

Another difference between HBHD and LBLD data sets that
might have possibly contributed to the observed increase in the
connection probabilities and the number of connections is the
higher density of sampled directions of the HBHD scheme. In
fact, given that the number of connections depends on howmuch
the sampled direction agrees with the orientation of the fiber, the
connection probability is expected to be lower for the LBLD
scheme, [25, 26] . On the other hand, with a higher number of
sampled directions in the HBHD scheme, it is more probable to
measure higher signal responses as more sampled directions tend
to correspond better to the actual orientation of the fibers.

Using the QBI, in line with [4], we found that the small
world metrics were dependent on the directional resolution of
the gradient scheme, with the values of small worldness in
HBHD being significantly lower than LBLD data sets. This
is in agreement with our expectation since a higher number of
secondary tracts in addition to the main ones (that are in com-
mon between the LBLD and HBHD schemes) likely imply
that brain modules are relatively more connected to each other

via secondary connections than via direct connections (that
pass through the network hubs).

LBLD also showed significantly higher values for M com-
pared to HBHD, M being the degree to which a system can be
broken into multiple subnetworks. This clearly indicates that
LBLD data produce more segregated and less interconnected
network modules. Conversely, lower M values are indicative
of stronger connections among modules, thus gathering a
more integrated distribution of subnetworks or modules.

The level of clustering expresses the level of local connect-
edness of a network, with high levels of clustering commonly
interpreted as high levels of local organization of the network
inmodules [23]. Averaged over the entire network, the HBHD
clustering coefficient was higher than that of LBLD, suggest-
ing a higher degree to which relatively closer nodes share local
connectivity within the module. In other words, HBHD data
better highlighted the presence of densely interconnected
groups of regions within each module.

Despite the higher number of connections detected for
HBHD, the hub structure (i.e. the approximate number and
location of nodes qualified as hubs) was highly similar be-
tween LBLD and HBHD data sets. Nonetheless, the lower
M values obtained for HBHD suggest that the information
about the overall transmission of neural impulses among mod-
ules is better preserved by the HBDB scheme (see, e.g., [1]).

Addressing the influence of the dMRI sequence parameters
on graph-theoretic measures is therefore fundamental for the
interpretation of various local and global structural brain net-
work measures. In fact, differences in structural brain network
measures could be mistakenly related to markers of neurolog-
ical disease whereas these might be due to a different sensi-
tivity of the particular acquisition scheme.

Fig. 1 Representation of nodes
and edges showing significantly
higher connection probability (t
score) in HBHD compared to
LBLD data sets (p < 0.05,
corrected for multiple
comparisons)
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For DTI [4], the average node degree has been shown to
increase with the number of gradient directions (6, 12, and
32), which may result from the fact that longer streamlines
are tracked and, therefore, more densely connected networks
are generated, at higher directional resolution. However, even
if characteristic path length increases, the mean clustering

coefficient drops when the number of gradients rises from 6
to 12 [4]. Indeed, DTI can only estimate a single fiber direc-
tion per imaging voxel, thereby the partial volume effect may
potentially average two or more fiber populations with differ-
ent local orientations across large parts of the imaging volume.
This has stimulated the investigation of different acquisition

Table 1 Connections showing significantly higher connection probability (t score) in HBHD compared to LBLD

Seed region Target region T score (9 df) of links

Frontal_Sup_L Supp_Motor_Area_R., Rectus_R., Temporal_Mid_R. 2.88, 2.88, 3.81

Frontal_Sup_R Frontal_Sup_Medial_R., Insula_L., Angular_R., Temporal_Mid_R. 2.83, 3.26, 3.28, 3.28

Frontal_Sup_Medial_L Rectus_L., Rectus_R., Fusiform_R., Temporal_Mid_R. 3.54, 4.13, 3.3, 4.19

Frontal_Mid_L Rectus_R., Temporal_Mid_R. 3.01, 2.96

Frontal_Mid_R Insula_L., Angular_R., Temporal_Mid_R. 3.09, 2.91, 2.83

Frontal_Sup_Medial_R Insula_L., Insula_R., Hippocampus_R., Fusiform_R., Caudate_L.,
Temporal_Mid_L., Temporal_Mid_R.

5.06, 2.86, 3.05, 3.11, 3.44, 2.81, 3.32

Frontal_Inf_Oper_L Cingulum_Ant_R. 3.07

Frontal_Inf_Orb_L Cingulum_Mid_R., Postcentral_R., Caudate_L. 4.03, 3.19, 3.22

Insula_L Cingulum_Post_L., Cingulum_Post_R., Hippocampus_R.,Lingual_R.,
Fusiform_R., Postcentral_R.

2.84, 2.89, 3.88, 3.23, 2.97, 2.93

Rolandic_Oper_L Hippocampus_R. 3.02

Cingulum_Mid_R Occipital_Sup_L., Occipital_Mid_R., Parietal_Sup_L., Parietal_Sup_R.,
Putamen_R., Pallidum_R., Temporal_Mid_R., Temporal_Inf_L.,
Temporal_Inf_R.

3.53, 2.83, 3.96, 2.99, 3.52, 3.16, 4.67,
4.43, 3.17

Cingulum_Mid_L Occipital_Mid_L., Parietal_Sup_L., Temporal_Mid_L., Temporal_Inf_L. 3.19, 3.02, 2.94, 3.32

Frontal_Sup_Orb_R Fusiform_R., Temporal_Inf_R. 2.82, 2.9

Cingulum_Ant_L Fusiform_R., Temporal_Mid_L., Temporal_Mid_R. 2.88, 3.99, 2.94

Calcarine_L Postcentral_L. 3.68

Lingual_L Postcentral_L., Paracentral_Lobule_L. 2.8, 3.34

Insula_R Postcentral_R. 2.83

Cingulum_Post_R Postcentral_R., Parietal_Inf_L., Temporal_Inf_R. 3.27, 2.89, 2.98

Supp_Motor_Area_R Parietal_Sup_R. 2.98

Occipital_Inf_L Paracentral_Lobule_L. 3.47

Fusiform_L Paracentral_Lobule_L., Temporal_Sup_R. 3.53, 2.89

SupraMarginal_R Paracentral_Lobule_L., Heschl_R. 2.81, 2.97

Frontal_Inf_Tri_L Thalamus_R., Temporal_Mid_R. 2.87, 2.83

Thalamus_R Temporal_Sup_R., Temporal_Mid_R. 3.66, 2.92

Cingulum_Ant_R Temporal_Mid_L., Temporal_Pole_Mid_R., Temporal_Inf_L. 3.15, 3.5, 2.97

Caudate_R Temporal_Mid_L., Temporal_Inf_L. 2.8, 2.94

Supp_Motor_Area_L Temporal_Mid_R. 3.33

Cingulum_Post_L Temporal_Mid_R., Temporal_Inf_R. 3.03, 3.72

Occipital_Sup_L Temporal_Mid_R. 3.14

Occipital_Mid_L Temporal_Mid_R. 3.14

Parietal_Sup_L Temporal_Mid_R. 3.85

Putamen_L Temporal_Pole_Mid_R., Temporal_Inf_R. 3, 3.27

Temporal_Pole_Sup_R Temporal_Pole_Mid_R. 2.99

Amygdala_L Temporal_Inf_L. 2.92

Rectus_R Temporal_Inf_R. 3

Hippocampus_L Temporal_Inf_R. 3.24

Parietal_Sup_L Temporal_Inf_R. 3.15

Temporal_Inf_L Temporal_Inf_R. 3.33
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protocols in combination with alternative water diffusion
models also for graph-theoretic measures.

Similar trends were observed for the diffusion spectrum
imaging (DSI) approach, which uses hundreds of diffusion
sensitive gradients with different amplitudes to sample direc-
tions typically along a Cartesian grid. DSI has the potential of

producing biologically more meaningful mapping of the hu-
man connectome; however, it requires long acquisition times
(> 35 min) [26], thereby DSI can be not feasible for clinical
applications. In contrast to DSI, QBI is a model-free recon-
struction scheme which allows measuring the angular struc-
ture of the diffusion spectrum with less diffusion directions
and therefore shorter acquisition times (< 20 min). The QBI
model estimates the orientation distribution function (ODF)
over a sphere sampled at many points, allowing the identifi-
cation of more than one diffusion direction in each voxel and
enabling a more accurate fiber tractography in regions with
multiple populations of fibers with different orientations.

Tractography studies can reveal localized network abnor-
malities by investigating one or more specific white matter
tracts [27], but in some diseases such as epilepsy [28],
Alzheimer’s disease [24] and schizophrenia [4], the abnormal-
ity does not necessarily involve specifics white matter tracts,
and the exact location of the impairment remains unknown.
Nonetheless, it remains possible to assess the integrity of the
entire brain network using graph theory. In a previous work
[25], we investigated the impact of the QBI model on the
tractography of major white matter tracts using different gra-
dient acquisition schemes and showed that clinical studies
aiming to investigate WM fiber integrity may benefit from
application of a QBI model to dMRI data sets acquired at high
b values and high numbers of diffusion direction (HBHD
scheme) compared to low b values and low number of diffu-
sion direction (LBLD scheme), especially when analyzing
fiber tracts characterized by more than one dominant fiber
direction. In previous work, we proposed an HARDI acquisi-
tion scheme with a b value and number of directions resulting
in an acceptable scanning time (~ 15 min) for clinical

Table 2 List of hubs in common between the two data set (HBHD and
LBLD) and in each group

Name of hub region Acquisition scheme

Left superior frontal orbital HBHD, LBLD

Left rectus HBHD, LBLD

Left anterior cingulum HBHD, LBLD

Left medial cingulum HBHD, LBLD

Left calcarine HBHD, LBLD

Right calcarine HBHD, LBLD

Right lingual HBHD, LBLD

Left lingual HBHD, LBLD

Right fusiform HBHD, LBLD

Left superior parietal HBHD, LBLD

Right superior parietal HBHD, LBLD

Left precuneus HBHD, LBLD

Right precuneus HBHD, LBLD

Right superior orbital frontal LBLD

Left frontal inferior orbital LBLD

Right posterior cingulum HBHD, LBLD

Right superior frontal HBHD, LBLD

Right rectus HBHD, LBLD

Left fusiform HBHD

Left olfactory cortex HBHD

Fig. 2 Hub regions with groups
betweenness centrality scores in
the 80th percentile displayed on
brain MNI template surface. Blue
nodes were hubs in common
between the two-acquisition
scheme; red nodes were hubs only
for HBHD scheme and yellow
only for LBLD scheme
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applications [29] and demonstrated that this scheme can gath-
er good performances at reasonable scan times for studying
the (generalized) fractional anisotropy of WM regions [25].
Similarly, in the present work, we have shown important ef-
fects of the dMRI scheme also on global and local network
features, which in some cases could be linked to the optimal
sampling of fiber bundles with more than one dominant fiber
direction. This was most likely the case for the anterior part of
the fronto-occipital fasciculus (right superior frontal medial
and right temporal medial nodes) and the superior longitudinal
fasciculus (left insula and right hippocampus nodes), which
where two regions where the local network properties exhib-
ited significant differences between the two schemes. On the
other hand, apart from the acquisition protocol, network met-
rics for the human connectome are also affected by several
post-processing parameters, such as the orientation model, the
brain parcellation, the tractography algorithm, and the weight
threshold [3].

Several studies have revealed important topological prop-
erties for human brain WM networks [5, 17, 30], addressing
the effects of brain abnormalities on specific network proper-
ties in terms of modified weight or threshold parameters
[31–33]. For instance, in the Bweighted graph^ approach, a
distance weight is associated with each edge linking two
nodes; thus, by combining (e.g., averaging) connection matri-
ces across multiple subjects, inconsistent or weak weights are
confronted with ad hoc thresholds, and eventually removed,
leading to a reduction of the connections. However, there is no
standard threshold in the literature and its value is often a free
choice value in the graph-theoretic analysis. Moreover, apart
from the thresholds, the criterion used for cortical gray matter
parcellation, the dMRI acquisition scheme, the diffusion data
model, and the fiber tracking algorithm are all methodological
variants that may have a substantial impact on the resulting
network measures.

In conclusion, our results suggest that both local and global
topological properties of human structural brain networks ex-
hibit strong dependence on the choice of dMRI acquisition
scheme, also when the Q-ball model is used for tractography.
This adds up to previous similar evidence obtained on DTI
schemes and may thus help the planning of future
connectomic studies in specific pathological populations.

These results are potentially relevant if several pathologies
are investigated, especially by comparing those mostly affect-
ing subcortical structures (e.g., Parkinson’s disease and other
movement disorders involving basal ganglia) versus those
mostly affecting cortical structures (e. g., Alzheimer’s disease,
frontotemporal dementia, amyotrophic lateral sclerosis, and
psychiatric conditions), as supported by several recent
connectomic analyses [34–39]. In particular, a connectomic
approach could reinforce current knowledge of the interplay
between the cerebral cortex, the basal ganglia, and the thala-
mus and its role in the pathophysiology of neurological

disorders involving the cortico-basal and thalamo-cortical
loops and their links to the cerebellum [37, 40]. Moreover,
connectomic alterations of brain circuits may have a predic-
tive role of clinical outcome in several neurological [38, 39,
41] and psychiatric [42] conditions.

Further investigation is needed to quantify the extent to
which the reported results hold of a general population, as this
study comprised a small data set of 10 subjects. Moreover,
future studies are needed to compare different (non-QBI)
dMRI models among them and possibly disentangle the effect
of the b value and number of directions in the determination of
graph-theoretic measures of structural brain networks.
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