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Abstract
Introduction MR imaging can noninvasively visualize tumor
phenotype characteristics at the macroscopic level. Here, we
investigated whether somatic mutations are associated with
and can be predicted by MRI-derived tumor imaging features
of glioblastoma (GBM).
Methods Seventy-six GBM patients were identified from The
Cancer Imaging Archive for whom preoperative T1-contrast
(T1C) and T2-FLAIR MR images were available. For each
tumor, a set of volumetric imaging features and their ratios
were measured, including necrosis, contrast enhancing, and
edema volumes. Imaging genomics analysis assessed the
association of these features with mutation status of nine
genes frequently altered in adult GBM. Finally, area under
the curve (AUC) analysis was conducted to evaluate the
predictive performance of imaging features for mutational
status.
Results Our results demonstrate that MR imaging features are
strongly associated with mutation status. For example, TP53-

mutated tumors had significantly smaller contrast enhancing
and necrosis volumes (p=0.012 and 0.017, respectively) and
RB1-mutated tumors had significantly smaller edema vol-
umes (p=0.015) compared to wild-type tumors. MRI volu-
metric features were also found to significantly predict muta-
tional status. For example, AUC analysis results indicated that
TP53, RB1, NF1, EGFR, and PDGFRAmutations could each
be significantly predicted by at least one imaging feature.
Conclusion MRI-derived volumetric features are significantly
associated with and predictive of several cancer-relevant,
drug-targetable DNAmutations in glioblastoma. These results
may shed insight into unique growth characteristics of indi-
vidual tumors at the macroscopic level resulting from molec-
ular events as well as increase the use of noninvasive imaging
in personalized medicine.
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Introduction

Glioblastoma (GBM) is the most common and most aggres-
sive form of brain cancer with a median survival of less than
15 months and a 5-year survival rate of less than 10 % [1].
While factors ranging from younger age at diagnosis, cerebel-
lar location, better cognitive performance, and more extensive
tumor resection have been associated with more favorable
outcome, the current standard of care treatment involving sur-
gery, radiation, and chemotherapy ultimately fails, in part due
to the proliferative and diffusely infiltrative nature of the tu-
mor [2]. Recent molecular analyses have demonstrated signif-
icant diversity in histologically similar tumors that drive pro-
liferation and competitive propagation [3]. In addition, inte-
grated analyses using gene expression, copy number, methyl-
ation, and somatic mutation patterns have identified distinct
GBM subtypes, some of which associated with distinct re-
sponses to treatment [4].

Methods such as magnetic resonance imaging (MRI) that
can noninvasively characterize the tumor at a macroscopic
scale can be of potential value, as they can provide comple-
mentary information to the tumor’s molecular characterization
[5]. Historically, only very basic parameters have been derived
from imaging data, such as measurements of tumor size based
on Brepresentative^ cross sections on a single radiology image
[6–8]. While such measures are easy to perform and serve as
the basis for assessing treatment response [9, 10], there is a
rich set of additional visual characteristics of the tumor that
can also be assessed. One effort to catalog these characteristics
is the VASARI Research Project, which seeks to develop a
controlled vocabulary describing the varied morphology of
glioblastoma (http://cabig.cancer.gov/action/collaborations/
vasari/). The VASARI feature set was developed by The
Cancer Genome Atlas (TCGA) radiology working group
and uses a standard lexicon with the goal of reproducibly
assessing 26 imaging descriptors based on T1-weighted and
T2-weighted FLAIR MRI modalities. For example, variables
such as major axis length, tumor location, proportion enhanc-
ing, thickness of enhancing margin, and proportion of edema
are all measured by trained radiologists in this protocol. Data
obtained from this protocol has led to a number of findings
demonstrating the value of adding imaging data to models
predicting survival [11, 12] and molecular profile [13] in
glioblastoma.

Our current work expands upon these results by using a
semi-automated digital quantification technique, which recent
work has shown to be more objective and lead to more robust
findings than qualitative stagingmethods used in the past [14].
Indeed, feature measurements based on manual estimations
have been shown to be subject to substantial inter- and intra-
observer variability [15]. Recently, quantitative volumetric
measurements of tumor subvolumes, or imaging features,
such as contrast-enhancing tumor, necrosis, and tumor-

associated edema, have been associated with response to treat-
ment and overall prognosis [16–18]. Associations of tumor
subvolume data and somatic mutations would be of clinical
importance, as it would improve our understanding and mac-
roscopic implications of these heavily researched molecular
events [19, 20].

In this study, we investigated whether somatic mutations in
genes consistently implicated in glioblastoma are associated
with and can be predicted by digitally derived volumetric
features from tumor MR images, including contrast enhanc-
ing, necrosis, and T2 FLAIR hyperintensity volumes, as well
as combination and ratios of these features. We chose to focus
on somatic mutations due to the strong literature presence and
clinical relevance. We limited our analysis to an a priori se-
lected gene set as described by Verhaak et al. [4], as well as
showing mutations in at least five patients included in our
cohort, resulting in the following: TP53, PTEN, NF1,
EGFR, IDH1, PIK3R1, RB1, PIK3CA, and PDGFRA.
Many of these genes are drug-targetable, raising the possibil-
ity of treating cancer based on noninvasively derived imaging
biomarkers. In particular, several potential therapies to target
mutant EGFR such as monoclonal antibodies, vaccines, or
small molecule inhibitors are currently being actively investi-
gated [21]. In addition, some PTEN nonsense mutations have
shown to be targeted by drugs that inhibit PKC (byrostatin)
and Raf (AZ628) [22], and IDH1 mutations have been shown
to be targeted by small molecule inhibitors such as AGI-120
[23]. Noninvasive methods that can predict mutation status
would thus be of great clinical importance and could guide
clinical treatment decision-making, especially in situations
where molecular testing or surgical biopsy is not feasible or
appropriate.

Materials and methods

Imaging and mutation data

Presurgical T1-weighted post-Gd contrast (T1C) and T2-
weighted FLAIR sequence MR images were downloaded
from The Cancer Imaging Archine (TCIA) (http://
thecancerimagingarchive.net) in September of 2014. TCIA
is an NCI-sponsored imaging sharing resource that houses
more than three million images from 31 different institutions
[24, 25]. This resource is particularly valuable because it
stores a wide variety of publically available longitudinal data
with associated genomic data, which is not readily obtainable
at a single institution level. As the patients had been previous-
ly de-identified by TCGA andwere available for public down-
load, no Institutional Review Board approval was required.
Since presurgical status of an image was not explicitly includ-
ed in the TCIA data, presurgical status was verified by a
trained neurologist (CH, 17 years of experience). Somatic
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mutation status from whole exome sequencing and clinical
data were downloaded from TCGA using cBioPortal (http://
www.cbioportal.org/public-portal/) queried with the Bcgdsr^
package version 1.1.30 in R [26]. The latest cBioPortal GBM
dataset (version Bprovisional^) was downloaded on
September 25, 2014. Within TCIA, there were 185 GBM
patients with both T1C and T2-weighted FLAIR images avail-
able before surgery. Of these, 76 patients had mutation data
available within TCGA and were included in this analysis.

Volumetric image analysis

For T1C images, 2D masks were drawn on each MRI slice
over the visible tumor using FSLView, a module in the
FMRIB Software Library 5.0 (FSL [27]). For these image
sets, a single contour encapsulating both the dark (necrosis)
and bright (contrast enhancing) areas was segmented, becom-
ing the basis of what will be referred to as tumor bulk volume.
Similarly, for the T2-weighted FLAIR image sets, a single
contour was drawn on each slice over the visible tumor which
encompassed both the region previously identified on the T1C
(i.e., tumor bulk) as well as surrounding hyperintense signal
including the edema envelope. To note, this markup does not
attempt to differentiate between nonenhancing tumor and true
edema, as they both appear hyperintense on the FLAIR image.

Following segmentation, the original mask containing the
tumor region on the T1C images underwent K-means cluster-
ing using the FSL FAST tool (FMRIB’s Automated
Segmentation Tool) [28] to differentiate dark (necrosis) and
bright (contrast enhancing) areas from one another. A subset
of 5–10 machine-generated segmentations were reviewed by
trained experts (CH, DG) to verify proper segmentation; we
determined that the FAST algorithm module produced robust
segmentations without extensive parameter optimization. This
algorithm has been used routinely for more than 10 years to
segment white and gray matter, and we found robust segmen-
tation results when we applied the algorithm to segmenting
Bbright^ versus Bdark^ pixels for contrast enhancement and
necrosis.

Based on the annotations on the T1C images, contrast en-
hancing, necrosis, and tumor bulk volumes could be calculat-
ed (Fig. 1). In addition, incorporation of the T2-weighted
FLAIR series allowed quantification of the total tumor volume
and T2-FLAIR hyperintensity volume (total tumor volume–
tumor bulk volume). For the purposes of our analyses, several
derivative ratios were also calculated: necrosis/contrast en-
hancing, contrast enhancing/tumor bulk, contrast enhancing/
total tumor, necrosis/total tumor, T2-FLAIR hyperintensity/
total tumor, and tumor bulk/total tumor volumes. Individual
imaging feature volumes were computed by computing the
total number of voxels within the respective region and mul-
tiplying by the voxel size; these calculations were performed
using FSL’s fslstats module.

Imaging-genomic analysis

For each of the 11 volumes or ratios defined above, the mean
values corresponding to patients with mutated genes were
compared to those of the wild-type cohort. Significant differ-
ences between groups with and without mutations were tested
with a two-sided Student’s t test. Significance was defined by
p value <0.05. Normal assumption of volumes was confirmed
by p value <0.05 under a Shapiro-Wilk test across all patients.
This analysis was limited to genes from the a priori selected
gene set discussed above.

Predictive power of volumes to predict mutation status was
assessed by the area under the curve (AUC) of the receiver
operator characteristic (ROC) [29]. To make performance
evaluation comparable, we calculated the absolute AUC de-
fined as 0.5+abs(x−0.5), where x is an AUC value. All statis-
tical analysis was carried out by the R statistical software
version 3.0.2 on a Linux platform [30].

Results

To investigate whether somatic mutations were associated
with MRI imaging features, the GBM patients analyzed in
our analysis were limited to those with mutation data available
from TCGA and image data from TCIA (N=76). The genes
analyzed in our study were limited to an a priori selected gene
set as described by Verhaak et al. [4], as well as showing
mutations in at least five patients included in our cohort.
This resulted in a total of nine genes included in our analysis:
TP53, PTEN, NF1, EGFR, IDH1, PIK3R1, RB1, PIK3CA,
and PDGFRA.

Associations between MRI-derived GBM tumor volumes

An initial visual inspection of segmented images demonstrat-
ed a wide variety of measured features across patients that
could be capitalized upon in imaging genomic analyses
(Fig. 2).

The pairwise Pearson correlation coefficients of these 11
analyzed imaging features are shown in Fig. 3. These results
demonstrated the relative independence of many of these vol-
umetric features and ratios. While some higher correlations
were noted (e.g., contrast enhancement and necrosis, r=
0.91, or T2-FLAIR hyperintensity and total tumor volume,
r=0.87), several features also showed low correlations, indi-
cating independence (e.g., necrosis and T2-FLAIR
hyperintensity, r=0.07).

In a final exploratory analysis, patients were clustered into
two groups based on imaging volumes. Importantly, chi-
squared tests did not indicate any significant differences of
gender, disease-free status, Karnofsky performance score,
and age between these groups, suggesting that the measured
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Fig. 1 Visualization of naming
conventions for the tumor
volumetric features used
throughout this article for TCGA-
02-0033, a 54-year-old male
glioblastoma patient. a Tumor-
associated T2-FLAIR
hyperintensity and total tumor
volume was quantified from the
T2-weighted FLAIR images. b
Necrosis, contrast enhancing, and
tumor bulk volume was
quantified from T1-weighted
post-Gd contrast (T1C) images. c
This panel displays both images
co-registered and overlayed on
top of each other for visualization
purposes. Tumor bulk is defined
as the total abnormal tumor area
on the T1C images: combination
of contrast enhancing and
necrosis volumes. Total tumor
volume is defined as the
combination of the tumor bulk
and T2-FLAIR hyperintensity
volumes

Fig. 2 Examples of images characterized by various imaging features.
Representative scans of low (a) and high (b) necrosis/total tumor volume
ratios, low (c) and high (d) FLAIR/total tumor volume ratios, and low (e)
and high (f) tumor bulk volumes are visualized. Masks outline areas used

to determine various volumetric features used throughout the project (red
for tumor bulk on T1-weighted post-Gd contrast (T1C) images, blue for
T2-FLAIR hyperintensity on T2-weighted FLAIR images)
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imaging volumes measured are relatively independent of these
clinical variables (Fig. 4).

Association of MRI volumetric features with somatic
mutations

In comparing the volumetric averages for the 11 measures
between mutant versus wild-type tumors to investigate the
associations between mutation status and volumetric features,
several significant results were observed (Table 1). TP53-
mutated tumors had four subvolumes that were significantly
different from wild-type tumors (Fig. 5a). For example, con-
trast enhancing and necrosis volumes were significantly
smaller for mutated tumors (8588.1 mm3 average difference
(p=0.012) and 7159.2 mm3 average difference (p=0.017),
respectively). EGFR-mutated tumors showed a significantly
higher necrosis/contrast enhancing ratio (p=0.05) and a sig-
nificantly lower contrast enhancing/tumor bulk ratio (p=
0.008) (Fig. 5b). Furthermore, RB1-mutated tumors showed
significantly smaller T2-FLAIR hyperintensity (26,
354.4 mm3 average difference, p=0.015) and total tumor vol-
ume (34,467.2 mm3 average difference, p=0.020) (Fig. 5c).
For the other mutations, the volumetric features did not

significantly differ between mutated and wild-type tumors
(Table 1, Supplemental Digital Content).

Predicting somatic mutation based on MRI volumetric
features

To assess the potential of the MRI volumetric features to
predict somatic mutation status noninvasively, we evaluat-
ed the predictive power using the AUC of the receiver-
operating characteristic. AUC values were calculated by
quantifying the performance of distinguishing between a
mutated and wild-type tumor on the basis of each of the
11 imaging features (Fig. 6, Table 2, Table 2 Supplemental
Digital Content).

In general, we found a tendency for volumetric features
to predict mutation status of one gene specifically. For
example TP53 could be significantly predicted by contrast
enhancing (AUC=0.68, p=0.001), necrosis (AUC=0.67,
p=0.039), as well as total tumor volumes (AUC=0.646,
p=0.010). Of note, these three volumes were all highly
correlated with each other as demonstrated in Fig. 3.
Additionally, NF1 mutation status could be predicted by
contrast enhancing volume (AUC=0.68, p=0.023) and

Fig. 3 Correlation coefficient
matrix between the eleven
imaging feature measurements
used in this study. Note the high
correlation between several
features (e.g., T2-FLAIR
hyperintensity and total tumor
volume), as well as the low
correlation between other features
(e.g., necrosis and T2-FLAIR
hyperintensity). Correlations
were assessed using Pearson
correlation coefficient
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Fig. 4 Heatmap of volume values (Z-scores) and clinical parameters.
Patients are clustered according to their imaging features (rows). The
two main clusters show no significant association (chi-squared test) to
clinical parameters gender, disease-free status (DFS), Karnofsky

performance score (KPS), and age. KPS of 40, 60, 80, and 100 are
indicated by blue, red, yellow, and green, respectively. Age is indicated
by one darker nuance every 10 years (range 21 to 85 years). Gray bars
indicate clinical parameters that were not available for a patient

Table 1 Differences in imaging
feature volumes between mutated
and wild-type tumors for a subset
of significant results

Gene: TP53 EGFR RB1
Number of mutations: 26 24 8

Contrast enhancement Mut–WT difference −8588.05 818.21 −3676.05
t Test p value 0.012* 0.827 0.485

Necrosis Mut–WT difference −7159.16 3555.12 −4436.73
t Test p value 0.017* 0.303 0.289

T2-FLAIR hyperintensity Mut–WT difference −11164.7 6655.63 −26354.4
t Test p value 0.326 0.538 0.015*

Tumor bulk Mut–WT difference −15747.2 4373.33 −8112.78
t Test p value 0.012* 0.533 0.387

Total tumor Mut–WT difference −26911.9 11028.92 −34467.2
t Test p value 0.04* 0.402 0.02*

Necrosis/contrast enhancement Mut–WT difference −0.69 0.14 −0.14
t Test p value 0.492 0.05* 0.056

Contrast enhancement/tumor bulk Mut–WT difference 0.012 −0.046 0.038

t Test p value 0.515 0.008* 0.145

BMut-WT^ refers to difference in average between mutated and wild-type groups for the various volumes (in
mm3 ) as well as differences in ratios. For each gene and imaging feature, a two-sided Student’s t test was
performed to measure significance of the difference and the corresponding p value is also provided. For complete
set of significances in volumetric differences by mutation status, see Table 1 Supplemental Digital Content

*Statistical significance (p<0.05)
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tumor bulk volume (AUC=0.67, p=0.032). EGFR muta-
tions could be predicted by the necrosis/contrast enhancing
(AUC=0.68, p=0.001) ratio and contrast enhancing/tumor
bulk (AUC=0.68, p=0.001) ratio. RB1 mutations could be
predicted by T2-FLAIR hyperintensity (AUC=0.66, p=

0.022) and total tumor volume (AUC=0.68, p=0.011).
Finally, PDGFRA could be predicted by T2-FLAIR
hyperintensity/total tumor volume (AUC=0.72, p=0.026)
and tumor bulk/total tumor volume ratios (AUC=0.72, p=
0.026). All significant results are summarized in Table 2.

Fig. 5 Volumetric differences for mutated versus wild-type tumors for a
TP53, b EGFR, and c RB1. For each plot, the left y-axis corresponds to
the mean volume of the left features and the right y-axis corresponds to the
volume ratio of the features on the right. The bars indicate the standard error
of the mean. Note TP53-mutated tumors were found to have significantly

smaller contrast enhancing, necrosis, and tumor bulk volumes compared to
wild type. EGFR-mutated tumors have a significantly larger necrosis/contrast
enhancing ratio, as well as a significantly smaller contrast enhancing/tumor
bulk ratio. RB1-mutated tumors have significantly larger T2-FLAIR
hyperintensity and total tumor volumes, compared to wild-type tumors
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Discussion

Medical imaging has strong potential to stratify patients, as it
is uniquely situated to noninvasively provide a macroscopic
evaluation of the entire tumor volume. We quantified GBM
MRI phenotypes by defining volumetric features, such as con-
trast enhancing, necrosis, and T2-FLAIR hyperintensity vol-
umes, and ratios thereof. In this work, we investigatedwhether
quantitative assessments of tumor features are significantly
associated with or predictive of somatic mutation status in
GBM.

We found strong associations of MRI characteristics with
underlying somatic mutation patterns, such as tumor bulk and
total tumor volume with TP53 and RB1 mutations.

Importantly, these features were able to significantly predict
mutations, such as TP53, EGFR, RB1, NF1, and PDGFRA—
mutations of clinical importance in GBM [4, 31]. Although
the predictive capability of the volumetric features for muta-
tional status was not perfect (i.e., AUC=1), performance is
much higher and significantly different compared to chance
(i.e., AUC=0.50, p value≥0.05), demonstrating the strong
association of the imaging feature with the underlying driving
biology.

Our results showed that contrast enhancing volume and
necrosis volume are significantly smaller for TP53 mu-
tants, a finding likely driven by the fact that these tumors,
in previous work using the categorically defined VASARI
imaging features, have been shown to be characterized by
smaller volumes in general [13]. We confirmed this qual-
itative assessment using our digitally defined quantitative
volumetric approach, and additionally showed that both
the tumor bulk (on the T1C images) and total tumor vol-
ume (on the T2-weighted FLAIR images), were signifi-
cantly smaller for TP53 mutants.

Our results also show that the necrosis/contrast enhancing
ratio was significantly higher in EGFR mutants. These results
indicate that although the total tumor volume is similar, EGFR
mutants have larger necrosis volumes and smaller contrast
enhancing volumes, compared to wild-type tumors.
Although the tumor volume was higher for EGFR mutants
in our quantitative analysis, the differences were not signifi-
cant, as previous work had demonstrated [13].

Finally, RB1 mutants were noted to have smaller T2-
FLAIR hyperintensity and total tumor volumes but similar
contrast enhancing and necrosis volumes compared to wild-
type tumors, demonstrating the effect of RB1 on tumor-
associated T2-FLAIR hyperintensity. One interpretation of
these findings is that these mutations drive different growth
patterns within individual tumors that are reflected in drastic
differences in the imaged tumor phenotype (for example,
highly necrosis/low CE vs. high CE/low necrosis).
Correlations between our imaging features demonstrated that
in general, the 11 features originally derived from MRI vol-
umes are relatively independent measures of brain tumors
characteristics that many have the potential to offer unique
insight into tumor behavior (Fig. 3). This was also demonstrat-
ed by showing that different features predicted different
mutations.

Several automatic and semi-automatic volumetric algo-
rithms have been proposed to segment GBM tumors in rele-
vant subvolumes [32]. For this work, we attempted a novel
hybrid approach where we used a trained rater to mask the
gross abnormal signal on the T1C and T2-weighted FLAIR
image. The gross tumor volume on T1C is then stratified au-
tomatically into contrast enhancing and necrosis subvolumes
(bright/dark pixels), using the FAST algorithm [33], improv-
ing the robustness of the segmentation process. We should

Fig. 6 AUC value heatmap. For genes that were mutated in at least five
patients, we tested whether the volumes can significantly predict mutation
status better than random (p<0.05, asterisk), using the area under the
curve (AUC) of the receiver operator characteristic (ROC). Volumetric
features could significantly predict five out of nine tested mutated genes.
We note a tendency for tumor features to predict mutation status of one
gene specifically
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note, however, that the segmentations were subsequently
manually reviewed at various stages to ensure quality control.

Previous studies have investigated whether different bio-
logical subtypes confer different macroscopic properties to the
images themselves and significant correlations between genet-
ic expression and macroscopic imaging properties have been
established [34–36]. Imaging genomics seeks to close the gap
between genomics and neuroradiology to provide a compre-
hensive quantification of the tumor phenotype by applying a
large number of automated image characterization algorithms
[14, 20, 37]. In this paper, we applied a relatively low-
dimensional feature extraction (focusing on three key volumes
and derivatives for eleven features total). Future studies will
expand these features and investigate the value of imaging
genomics for the prediction of additional mutational patterns.

Going forward, the development of noninvasive imaging
biomarkers will provide valuable insight to the clinicians to
help in treatment selection and prognosis. As these biomarkers
assess the entire tumor volume, they alleviate some of the
concerns related to most tissue-based assessments that involve
sampling only a small region of the tumor. Given the marked
heterogeneity observedwithin tumor samples taken from even
the same patient [38], a noninvasive technique that allows
serial imaging (e.g., MRI) can provide valuable insight.
Indeed, a limitation to our study is that in our patient set,
TCGA tissue sampling was not performed under image

guidance and therefore exact location of biopsy is not known.
Future studies will investigate the association of intratumor
mutational heterogeneity and MRI volumetric features.

In addition, it is important to note that since the TCIA
imaging data used in our study was collected through a con-
sortium of several institutions around the country, the specific
MR parameters (field strength, slice thickness, voxel size,
slice gap) may not always be perfectly standardized across
patients. However, our results should be relatively unaffected
by issues of slice thickness, image quality, and voxel size,
since we decided to analyze a set of volumetric features rather
than measurements that would be more directly influenced by
these subtle differences. Since the majority of the tumors were
relatively large, and orders of magnitude larger than the size of
an individual voxel (even accounting for voxel variability),
similar to other papers published using this dataset, we there-
fore believe our conclusions are not largely influence by such
factors. We should also note that there is no clear association
between contributing site, and at least within a site the scan-
ner(s) used were much more consistent than between contrib-
uting sites.

In conclusion, our results show that GBM mutations drive
observable phenotypes that are quantifiable with MRI imag-
ing. We demonstrate that somatic mutations are associated
with macroscopic characteristics and that these clinically im-
portant mutations can be significantly predicted with high

Table 2 Gene mutation/volumetric imaging feature correlations for subset containing significant results

Gene: TP53 NF1 EGFR RB1 PDGFRA
Number of mutations: 26 9 24 8 6

Contrast enhancement AUC (p value) 0.679 (0.001*) 0.681 (0.023*) 0.503 (0.971) 0.57 (0.489) 0.621 (0.258)

95 % CI 0.569–0.788 0.525–0.837 0.361–0.644 0.372–0.768 0.411–0.831

Necrosis AUC (p value) 0.666 (0.004*) 0.658 (0.063) 0.556 (0.429) 0.588 (0.365) 0.572 (0.531)

95 % CI 0.552–0.78 0.491–0.825 0.417–0.695 0.397–0.779 0.347–0.796

T2-FLAIR hyperintensity AUC (p value) 0.591 (0.127) 0.537 (0.479) 0.542 (0.499) 0.66 (0.022*) 0.56 (0.687)

95 % CI 0.474–0.708 0.435–0.639 0.42–0.665 0.523–0.797 0.268–0.852

Tumor bulk AUC (p value) 0.675 (0.002*) 0.671 (0.032*) 0.535 (0.631) 0.577 (0.441) 0.612 (0.322)

95 % CI 0.566–0.785 0.514–0.828 0.393–0.676 0.381–0.773 0.39–0.833

Total tumor AUC (p value) 0.646 (0.010*) 0.604 (0.103) 0.551 (0.445) 0.676 (0.011*) 0.515 (0.919)

95 % CI 0.534–0.758 0.479–0.729 0.421–0.681 0.54–0.813 0.218–0.813

Necrosis/contrast enhancement AUC (p value) 0.531 (0.655) 0.516 (0.855) 0.682 (0.001*) 0.642 (0.066) 0.612 (0.375)

95 % CI 0.397–0.664 0.348–0.683 0.571–0.793 0.491–0.793 0.364–0.859

Contrast enhancement/tumor bulk AUC (p value) 0.531 (0.655) 0.516 (0.855) 0.682 (0.001*) 0.642 (0.066) 0.612 (0.375)

95 % CI 0.397–0.664 0.348–0.683 0.571–0.793 0.491–0.793 0.364–0.859

T2-FLAIR hyperintensity/total tumor AUC (p value) 0.522 (0.755) 0.576 (0.256) 0.549 (0.488) 0.572 (0.526) 0.722 (0.026*)

95 % CI 0.383–0.661 0.445–0.707 0.422–0.676 0.35–0.793 0.527–0.918

Tumor bulk/total tumor AUC (p value) 0.522 (0.755) 0.576 (0.256) 0.549 (0.488) 0.572 (0.526) 0.722 (0.026*)

95 % CI 0.383–0.661 0.445–0.707 0.422–0.676 0.35–0.793 0.527–0.918

For each gene and imaging feature, area under the curve (AUC) values, corresponding p value, and 95% confidence interval are provided. For complete
set of correlations, see Table 2 Supplemental Digital Content

*Statistical significance (p<0.05)
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performance. These results may impact personalized medi-
cine, as imaging is noninvasive and already applied routinely
in clinical practice throughout a course of treatment. Finally,
our results may shed insights into unique behavioral and mac-
roscopically visible growth characteristics of individual tu-
mors as a result of tumor mutational differences.
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