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Abstract
Introduction Intervertebral spacers are made of different
materials, which can affect the postfusion magnetic imaging
(MRI) scans. Susceptibility artifacts especially for metallic
implants can decrease the image quality. This study aimed to
determine whether magnesium as a lightweight and biocom-
patible metal is suitable as a biomaterial for spinal implants
based on its MRI artifacting behavior.
Materials and methods To compare artifacting behaviors,
we implanted into one porcine cadaveric spine different
test spacers made of magnesium, titanium, and carbon-fiber-
reinforced polymers (CFRP). All test spacers were scanned
using two T1-TSE MRI sequences. The artifact dimensions
were traced on all scans and statistically analyzed.
Results The total artifact volume and median artifact area
of the titanium spacers were statistically significantly larger
than magnesium spacers (p<0.001), while magnesium
and CFRP spacers produced almost identical artifacting
behaviors (p>0.05).

Conclusion Our results suggest that spinal implants made
with magnesium alloys will behave more like CFRP devices
in MRI scans. Given its osseoconductive potential as a metal,
implant alloys made with magnesium would combine the
advantages to the two principal spacer materials currently
used but without their limitations, at least in terms of MRI
artifacting.
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Introduction

Spinal fusion devices such as implantable interbody spacers
are well-established and routinely used by spine surgeons to
keep adjacent vertebrae spaced apart while bone ingrowth
and fusion take place. Such spacers also provide weight-
bearing support between adjacent vertebrae. In this context,
titanium alloys as well as nonmetal materials like carbon-
fiber-reinforced polymers (CFRP) are commonly used [1, 3,
8, 11, 14, 17, 21]. These biomaterials have enjoyed clinical
success and rapid widespread use by improving patient
outcomes.

However, these materials have clinical and radiological
limitations. Titanium is an excellently bioinert material that
exhibits high biocompatibility. Titanium spacers produce
good bone ingrowth without bone grafting. However, in
magnetic resonance imaging (MRI) studies, titanium-based
implants tend to cause distortion of the magnetic field which
may obscure normal regional anatomy. These properties
pose difficulties in the postoperative MRI follow-up and
evaluation of the fusion process due to the artifacting it
causes [4, 6, 7, 12, 15].
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The other principal material used for spacers consists of
CFRP. Spacers made of this nonmetallic biomaterial are not
associated with the postoperative diagnostic problems of
titanium because carbon produces a very low rate of artifact
reactions which allows easier evaluation of the fusion process
byMRI [4]. Carbon’s modulus of elasticity affords good load
bearing with sufficient hardness. But unlike titanium, carbon
spacers undergo poor osteointegration because a soft tissue
interface develops around the material surface that prevents
direct ingrowth of bone. As a result, carbon spacers have to
be filled with bone allografts to achieve long-term stability
[1, 4]. CFRP implants have therefore been reviewed very
critically in the literature [17].

Surgeons, over a century ago, recognized the potential
of the lightweight metal magnesium as a biocompatible,
osteoconductive, and degradable implant material [9]. In
1907, Lambotte was the first to introduce magnesium-based
orthopedic devices; using a pure magnesium plate, he secured
a bone fracture of the lower leg with gold-plated nails [9]. A
half a century later, magnesium-based metals were reported
to have osteoconductive bioactivity and produce a more

rapid formation of hard callus when used to support fractures
in humans [20, 27]. The large amount of evidence supporting
the clinical advantages of magnesium has been summarized
in a recent review paper [18]. None of the studies to date
have yet investigated the diagnostic behavior of magnesium
in MRI. This situation motivated us to determine whether
magnesium is a suitable biomaterial for spinal implants by
studying its MRI artifacting behavior.

Material and methods

To evaluate the behavior of spacers made with a magne-
sium alloy, we compared their artifacting in diagnostic MRI
scans with that of spacers made of a conventional titanium
alloy and of CFRP. We consecutively implanted three
spacers made of each of the three biomaterials dimensioned
in small, medium, and large sizes in one cadaveric spine of
a Gottingen minipig (Figs. 1a–c and 2). The three spacers in
group I were made of a magnesium–aluminum–manganese
alloy (MgAlMn50), the three in group II of a titanium–
aluminum–vanadium alloy (TiAl6V4), and those in group
III of a CFRP.

Table 1 presents the implant characteristics. A cylinder
was chosen as for spacer shape because cylinders have
demonstrated lowest rate of MRI artifacting behavior [4].

Fig. 1 a–c Cylindrical EST implants. a Magnesium (implant group I).
b Titanium (implant group II). c CFRP (implant group III)

Fig. 2 Cadaveric porcine spine model with an implanted medium
titanium test cylinder
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The spacer sizes—small, medium, and large—were dimen-
sioned the same for each group (height in centimeter×base
area in square centimeter); and their implant volume (IV) in
cubic centimeter and cross-sectional area (CSA) in square
centimeter were calculated for each size (Table 1). The spacer
sizes were dimensioned as listed after a Newman–Keuls
multiple-comparison analysis showing that the selected sizes
would produce significantly different artifacting behaviors
(p<0.001). Thus, a total of nine individual spacers were
implanted, scanned by MRI, and evaluated for their artifact-
ing behavior on the scans.

Spacer implantation

For each serial MRI study, the cylindrical implant was
placed exactly between two adjacent vertebrae of the
cadaveric porcine spine. The spine with implant was then
completely packed in a soft tissue mass and placed in a plastic
container [5]. To create comparable trial conditions, mark-
ings were drawn on the container wall to demarcate the
vertebrae and implant positions. These demarcations were
used to define the median artifact area (MAA). The container
with the spine implanted with each spacer was examined by
serial MRI.

Magnetic resonance imaging

MRIwas performedwith a 1.5-TMRI (MagnetomSymphony,
Siemens AG Medical Solutions, Erlangen, Germany). The
T1w-TSE sequences were used to acquire a slice thickness of
3 mm (Fig. 3a–c) which included a first sequence (TR 600;
TE 14; flip angle 15; band width 150) and a second sequence
(TR 2,260, TE 14, flip angle 15, band width 150). We selected
a matrix of 512×512 pixels combined with a field of view of
500 mm. The T1w-TSE sequence has been established to
produce best imaging results for implants and the least
amount of intrinsic artifacting [4, 7, 10, 12, 14, 16, 25].

Using a current version of DICOM reader software, one
author (TE) measured the artifact area on the scan of each
of the nine implants six times, i.e., a total of 54 individual
tracings were recorded and analyzed. The measurements
started with the slice with the first artifacting reaction and
ended with the last slice exhibiting an artifact reaction.
Corresponding to the respective implant CSA, the middle
slice of all slices exhibiting artifact reactions was defined as
the MAA for each implant. To calculate the total artifact
volume (TAV) for each spacer, all artifact areas measured for
that spacer were added and multiplied by the slice thickness
of 3 mm according to the multisection slice technique
described by Debatin [2]. The ratio of CSA to MAA and the
ratio of IV to TAV were calculated and presented in tables
(Table 1).

Statistical analysis

Newman–Keuls multiple comparisons were used to calcu-
late intragroup differences in TAV and MAA (Table 2).
t test correlations were performed to determine any
intergroup differences regarding the implant materials

Table 1 Spacer dimensions.

Sizes for
all groups

Dimensions height×
base area, cm×cm2

Cross-sectional
area (CSA), cm2

Implant
volume (IV),
cm³

Small 1.5×0.78 1.5 1.2

Medium 2.0×1.13 2.4 2.3

Large 2.5×1.54 3.8 3.5

Fig. 3 a–c Median MRI artifact
range depicted in a selection of
three large test implants
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(Table 2). A p value<0.05 indicated a significant difference
between the means of any two groups.

Results

Table 1 presents the spacer dimensions. Table 2 shows the
intragroup comparisons of target variables. Table 3 lists the
results of the intergroup t test correlations between TAVand
MAA in relation to spacer material. Mean artifacting
behavior increased with spacer size. When magnesium was
compared with titanium, there were significant differences
in both MAA and TAV. When magnesium was compared
with carbon, the differences were not significant. In fact,
magnesium produces an artifacting behavior very similar to
that of CFRP.

Discussion

Spinal surgeons have not stopped searching for the
optimum spacer material that combines high biocompati-
bility with artifact-free MRI imaging behavior in the

implant environment. This study was conducted to deter-
mine whether cylindrical spacers made of the biomaterial
magnesium are suitable as spinal implants by comparing
their MRI artifacting with that of identically dimensioned
spacers made of a titanium alloy and a carbon-fiber-
reinforced polymer.

In radiological spinal diagnostics, MRI is highly effec-
tive for clarifying postfusion questions regarding osseus
and soft tissue structures in relation to implant position. A
comparative in vitro study shows that MRI has a higher
sensitivity than CT in detecting osseus changes in the
implant’s direct surroundings [24]. Moreover, MRI is well
suited to demonstrate myelopathies, inflammatory and
infectious processes, and any neurodegenerative changes.
The MRI imaging behavior of metallic spinal implants is
obviously well documented in the literature [6, 10, 13–16,
19, 22, 23, 25]. However, the aims of the published studies
differed in that most focused on determining sequence-
related artifact size. In a comparative cadaveric artifact
studies, Wang et al. [26] described the MRI behavior of
intervertebral spacers made of titanium and tantalum. The
authors concluded that T1- and T2-weighted spin echo
images were suitable for both metals to visualize the neural
structures of the spine with comparable amounts of artifact.
The artifact rate of the titanium spacer as well as the
tantalum spacer was primarily limited to the implant’s
direct surroundings and anatomic neighboring structures
were clearly distinguishable.

In a phantom study by Rudisch et al. [15], the relevance
of metallic artifacts and implant-related characteristics, such
as implant material and position, was demonstrated in
addition to effects caused by the selected MRI sequence. In
materials with a higher magnetizability like titanium alloys,
implant shape additionally has an effect on the range of
MRI artifacts [5].

The results of this comparative study showed that
implant material and volume both affected the MRI

Table 2 Intragroup comparison of target variables.

Spacer material Size MAAa, cm2 (mean±SD) Ratio CSA to MAA TAVa, cm2 (mean±SD) Ratio IV to TAV

Group I MgAlMn50 (n=3) Small 1.91±0.04 1:1.3 1.83±0.09 1:1.5

Medium 3.26±0.06 1:1.4 4.17±0.09 1:1.8

Large 4.06±0.07 1:1.2 5.08±0.15 1:1.3

Group II TiAl6V4 (n=3) Small 3.26±0.04 1:2.2 5.71±0.09 1:4.8

Medium 4.61±0.23 1:1.9 9.32±0.10 1:4.1

Large 5.54±0.04 1:1.6 10.84±0.13 1:2.9

Group III CFRP (n=3) Small 1.89±0.07 1:1.3 1.81±0.07 1:1.5

Medium 3.18±0.06 1:1.3 4.09±0.11 1:1.7

Large 4.06±0.13 1:1.2 5.08±0.13 1:1.3

CSA cross-sectional area, MAA median artifact area, IV implant volume, TAV total artifact volume, SD standard deviation
a Newman–Keuls multiple-comparison analysis p<0.001

Table 3 Intergroup comparisons of artifacting behavior by t test
correlation.

Spacer material Size MAA P valuea TAV P valuea

Group I vs. group II Small ≤0.001 ≤0.001
Medium ≤0.001 ≤0.001
Large ≤0.001 ≤0.001

Group I vs. group III Small 0.59 0.61

Medium 0.09 0.26

Large 1.0 0.96

MAA median artifact area, TAV total artifact volume
a Significance level p<0.05
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artifacting behavior of our cylindrical test spacers. It was
also noted that the smaller the implant size, the smaller was
the range of susceptibility artifacts produced. The ratios
calculated in Table 2 prove that the magnesium metal alloy
exhibited behavior artifacting that was more like a nonmetal.
In this context, the magnesium test spacer produced
significantly less artifact compared to the titanium implant.
Given its osseoconductive potential as a metal [9, 18],
implant alloys made with magnesium would combine the
advantages to the two principal spacer materials currently
used, but without their limitations, at least in terms of MRI
artifacting

Acknowledgements The authors thank Dr. Mark Riner of MedTech
Composites GmbH, Switzerland, the Peter BrehmCompany,Weisendorf,
Germany, and the Material Science at the Technical University of
Hannover, Germany for producing the respective test implants.

Conflict of interest statement We declare that we have no conflict
of interest.

References

1. Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid
interbody lumbar fusion. Two-year clinical results in the first 26
patients. Spine 18:2106–2107

2. Debatin JF, Nadel SN, Sostman HD, Spritzer CE, Evans AJ, Grist
TM (1992) Magnetic resonance imaging-cardiac ejection fraction
measurements. Phantom study comparing four different methods.
Invest Radiol 27:198–204. doi:10.1097/00004424-199203000-
00003

3. Diedrich O, Kraft CN, Perlick L, Schmitt O (2001) The posterior
lumbar interbody fusion with cages (PLIF) and transpedicular
stabilization. Zentralbl Neurochir 62:106–113. doi:10.1055/s-2001-
21796

4. Ernstberger T, Heidrich G, Bruening T, Krefft S, Buchhorn G,
Klinger HM (2006) The interobserver-validated relevance of
intervertebral spacer materials in MRI artifacting. Eur Spine J
7:1–7

5. Ernstberger T, Heidrich G, Buchhorn G (2007) Post implantation
MRI with cylindric and cubic intervertebral test implants: evaluation
of implant shape, material and volume in MRI artifacting—an in
vitro study. Spine J 7:353–359. doi:10.1016/j.spinee.2006.03.016

6. Ernstberger T, Heidrich G, Schultz W, Grabbe E (2007) Implant
detectability of intervertebral disc spacers in post fusion MRI:
evaluation of the MRI scan quality by using a scoring system—an
in vitro study. Neuroradiology 49:103–109. doi:10.1007/s00234-
006-0161-5

7. Henk CB, Brodner W, Grampp S, Breitenseher M, Thurnher M,
Mostbeck GH, Imhof H (1999) The postoperative spine. Top Magn
Reson Imaging 10:247–264. doi:10.1097/00002142-199908000-
00006

8. Kuklo TR, Potter BK, Bell RS, Moquin RR, Rosner MK (2006)
Single-stage treatment of pyogenic spinal infection with titanium
mesh cages. J Spinal Disord Tech 19:376–382. doi:10.1097/01.
bsd.0000203945.03922.f6

9. Lambotte A (1932) L’utilisation du magnesium comme materiel
perdu dans l’ostheosynthèse. Bull Mem Coc Nat Chir 28:1325–
1334

10. Malik AS, Boyko O, Atkar N, Young WF (2001) A comparative
study of MR imaging profile of titanium pedicle screws. Acta
Radiol 42:291–293. doi:10.1080/028418501127346846

11. McAfee PC, DeVine JG, Chaput CD, Prybis BG, Fedder IL,
Cunningham BW, Farrell DJ, Hess SJ, Vigna FE (2005) The
indications for interbody fusion cages in the treatment of
spondylolisthesis: analysis of 120 cases. Spine 30(Suppl 6):S60–
S65

12. Ortiz O, Pait TG, McAllister P, Sauter K (1996) Postoperative
magnetic resonance imaging with titanium implants of the thoracic
and lumbar spine. Neurosurgery 38:741–745. doi:10.1097/
00006123-199604000-00022

13. Petersilge CA, Lewin JS, Duerk JL, Yoo JU, Ghaneyem AJ (1996)
Optimizing imaging parameters for MR evaluation of the spine with
titanium pedicle screws. Am J Roentenol 166:1213–1218

14. Rauzzino MJ, Shaffrey CI, Nockels RP, Wiggins GC, Rock J,
Wagner J (1999) Anterior lumbar fusion with titanium threaded
and mesh interbody cages. Neurosurg Focus 15:e7

15. Rudisch A, Kremser C, Peer S, Kathrein A, Judmaier W, Daniaux H
(1998) Metallic artifacts in magnetic resonance imaging of patients
with spinal fusion. A comparison of implant materials and implant
sequences. Spine 23:692–699. doi:10.1097/00007632-199803150-
00009

16. Rupp R, Ebraheim NA, Savolaine ER, Jackson WT (1993)
Magnetic resonance imaging evaluation of the spine with metal
implants. General safety and superior imaging with titanium.
Spine 18:379–385

17. Schreiner U, Schwarz M, Scheller G, Schroeder-Boersch H,
Jani L (2000) Knöchernes Einwachsverhalten von Probekörpern
aus kohlefaserverstärktem Kunststoff. Z Orthop Ihre Grenzgeb
138:540–543. doi:10.1055/s-2000-9598

18. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium
and its alloys as orthopaedic biomaterials: a review. Biomat
27:1728–1734. doi:10.1016/j.biomaterials.2005.10.003

19. Thomsen M, Schneider U, Breusch SJ, Hansmann J, Freund M
(2001) Artefacts and ferromagnetism dependent on different metal
alloys in magnetic resonance imaging. An experimental study.
Orthopade 30:540–544. doi:10.1007/s001320170063

20. Troitskii VV, Tsitrin DN (1944) The resorbing metallic alloy
‘Ostheosinthzit’ as material for fastening broken bone. Khirurgiia
8:41–44

21. Trouillier H, Birkenmaier C, Rauch A, Weiler C, Kauschke T,
Refior HJ (2006) Posterior lumbar interbody fusion (PLIF) with
cages and local bone graft in the treatment of spinal stenosis. Acta
Orthop Belg 72:460–466

22. Vaccaro AR, Chesnut RM, Scuderi G, Healy JF, Massie JB,
Garfin SR (1994) Metallic spinal artifacts in magnetic resonance
imaging. Spine 19:1237–1242

23. Van Goethem JW, Parizel PM, Jinkins JR (2002) Review article:
MRI of the postoperative lumbar spine. Neuroradiology 44:723–
739. doi:10.1007/s00234-002-0790-2

24. Walde TA, Weiland DE, Leung SB, Sychterz CJ, Ho S, Engh CA,
Potter HG (2005) Comparison of CT, MRI and radiographs in
assessing pelvic osteolysis: a cadaveric study. Clin Orthop Relat
Res 437:138–144. doi:10.1097/01.blo.0000164028.14504.46

25. Wang JC, Sandhu HS, Yu MD, Minchew JT, Delamarter RB
(1997) MR parameters for imaging titanium spinal instrumentation.
J Spinal Disord 10:27–32. doi:10.1097/00002517-199702000-00004

26. Wang JC, Yu WD, Sandhu HS, Tam V, Delamarter RB (1998) A
comparison of magnetic resonance and computed tomographic
image quality after the implantation of tantalum and titanium
spinal instrumentation. Spine 1:1684–1688. doi:10.1097/00007632-
199808010-00014

27. Znamenskii MS (1945) Metallic osteosynthesis by means of an
apparatus made of resorbing metal. Khirurgiia 12:60–63

Neuroradiology (2008) 51:525–529 529

http://dx.doi.org/10.1097/00004424-199203000-00003
http://dx.doi.org/10.1097/00004424-199203000-00003
http://dx.doi.org/10.1055/s-2001-21796
http://dx.doi.org/10.1055/s-2001-21796
http://dx.doi.org/10.1016/j.spinee.2006.03.016
http://dx.doi.org/10.1007/s00234-006-0161-5
http://dx.doi.org/10.1007/s00234-006-0161-5
http://dx.doi.org/10.1097/00002142-199908000-00006
http://dx.doi.org/10.1097/00002142-199908000-00006
http://dx.doi.org/10.1097/01.bsd.0000203945.03922.f6
http://dx.doi.org/10.1097/01.bsd.0000203945.03922.f6
http://dx.doi.org/10.1080/028418501127346846
http://dx.doi.org/10.1097/00006123-199604000-00022
http://dx.doi.org/10.1097/00006123-199604000-00022
http://dx.doi.org/10.1097/00007632-199803150-00009
http://dx.doi.org/10.1097/00007632-199803150-00009
http://dx.doi.org/10.1055/s-2000-9598
http://dx.doi.org/10.1016/j.biomaterials.2005.10.003
http://dx.doi.org/10.1007/s001320170063
http://dx.doi.org/10.1007/s00234-002-0790-2
http://dx.doi.org/10.1097/01.blo.0000164028.14504.46
http://dx.doi.org/10.1097/00002517-199702000-00004
http://dx.doi.org/10.1097/00007632-199808010-00014
http://dx.doi.org/10.1097/00007632-199808010-00014

	Artifacts...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Spacer implantation
	Magnetic resonance imaging
	Statistical analysis

	Results
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


