RESEARCH ARTICLE

The Todd-Coxeter algorithm for semigroups and monoids

T. D. H. Coleman ${ }^{1}$ (D) J. D. Mitchell ${ }^{1}$ (D) F. L. Smith ${ }^{1}$ (D) \cdot M. Tsalakou ${ }^{1}$ (D)

Received: 9 May 2023 / Accepted: 4 April 2024
© The Author(s) 2024

Abstract

In this paper we provide an account of the Todd-Coxeter algorithm for computing congruences on semigroups and monoids. We also give a novel description of an analogue for semigroups of the so-called Felsch strategy from the Todd-Coxeter algorithm for groups.

Keywords Semigroup • Monoid • Finite presentations • Congruences • Algorithms • Computer algebra

Contents

```
1 Introduction
2 \text { Prerequisites}
3 Congruence enumeration
    3.1 Word graphs
    3.2 The definition
4 Validity
    4.1 Completeness, determinism, and compatibility
    4.2 The proofs of Theorem 4.1 and Corollary 4.2
5 \text { Monoids not defined by a presentation}
6 ~ T h e ~ H L T ~ s t r a t e g y ~
The Felsch strategy
    7.1 First version
    7.2 Second version
Implementation issues
9 Further variants
Communicated by Markus Lohrey.
J. D. Mitchell
    jdm3@st-andrews.ac.uk
    T. D. H. Coleman
    tdhc@standrews.ac.uk
    F. L. Smith
    fls3@st-andrews.ac.uk
    M. Tsalakou
    mt200@st-andrews.ac.uk
1 School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
```

```
    9.1 Monoids with zero
    9.2 Rees congruences
    9.3 Stephen's procedure
A Extended examples
B Performance comparison
    B.1 Monoids of transformations
    B.2 Monoids of partitions
    B. }3\mathrm{ Further finitely presented semigroups and monoids
    B.4 Finitely presented groups
References
```


1 Introduction

In this article we describe the Todd-Coxeter algorithm for congruence enumeration in semigroups and monoids. The essential purpose of this algorithm is to compute the action of a finitely presented semigroup or monoid on the equivalence classes of a left, right, or two-sided congruence. Most existing implementations (see, for example, ACE [14], GAP [12], and MAF [38]) and expository accounts (see, for example, [29, p. 351], [31, Sections 4.5, 4.6 and Chapter 5], and [15, Chapter 5]) of the ToddCoxeter algorithm relate to the enumeration of the cosets of a subgroup of a finitely presented group; or, more precisely, to the production of a permutation representation of the action of the group on the cosets. This was extended to linear representations by Linton $[19,20]$. The purpose of this article is to provide an expository, but more or less complete, account of the Todd-Coxeter algorithm for semigroups and monoids.

The Todd-Coxeter algorithm is not a single procedure, but rather an infinite collection of different but related procedures. In the literature for finitely presented groups, examples of procedures in this collection are referred to as coset enumerations; see, for example, [31, Sections 4.5, 4.6 and Chapter 5]. Coset enumerations are also not algorithms, at least by some definitions, in that they might consist of infinitely many steps, and they do not always terminate. In fact, a coset enumeration terminates if and only if the subgroup whose cosets are being enumerated has finite index; for further details see Sect.4. This is not to say, however, that the number of steps, or the run time, of a coset enumeration can be predicted in advance; it is relatively straightforward to find examples of finite presentations for the trivial group where the number of steps in a coset enumeration is arbitrarily high. For instance, the group presentation $\left\langle a, b \mid a b^{n}, a^{n} b^{n+1}, b^{n} a b^{-1} a^{-1}\right\rangle$ defines the trivial group, and is likely that at least n steps are required in any coset enumeration for this presentation; see [17]. Although this might seem rather negative, nothing more can really be expected. For example, if a coset enumeration for the trivial subgroup of a finitely presented group G does successfully terminate, then the output can be used to solve the word problem in G. It is well-known by the theorem of Novikov [27] and Boone [3] that the word problem for finitely presented groups is undecidable and so no procedure that solves the word problem, including any coset enumeration, can be expected to terminate in every case. Analogous statements about the undecidability of the word problem hold for finitely presented semigroups and monoids; see [29, Chapter 12].

Congruences are to semigroups and monoids what cosets are to groups, and so we will refer to congruence enumeration for finitely presented semigroups and monoids as the analogue of coset enumeration for groups. We will not consider the special case of enumerating the cosets of a subgroup of a group separately from the more general case of enumerating classes of a congruence of a semigroup.

The first computer implementation of the Todd-Coxeter algorithm is attributed to Haselgrove in 1953 by Leech [18]. Several authors (for example, Neubüser in [25] and Walker in [36]) comment that this may be the first computer implementation of an algorithm for groups, possibly representing the starting point of the field of computational group theory. Neumann [26] adapted the algorithm in [35] to semigroups, and Jura [17] proved that Neumann's adaptation was valid. One congruence enumeration strategy is described in Ruškuc [30, Chapter 12] as well as variants for computing Rees congruences and minimal ideals. Stephen [32, Chapter 4] also describes a variant of Todd-Coxeter, which can be used to solve the word problem by constructing only part of the action of a finitely presented semigroup or monoid on itself by right multiplication. Stephen's procedure [32, Section 4.1] is similar to one of the two main strategies for congruence enumeration described in Sect. 6; see also Sect. 9.

Versions of the Todd-Coxeter algorithm for semigroups were implemented in FORTRAN by Robertson and Ünlü [28]; in C by Walker [36, 37]; and in GAP by Pfeiffer [12]. The C++ library libsemigroups [24] (by three of the present authors) contains a flexible optimized implementation of the different versions of the Todd-Coxeter algorithm described in this document for semigroups and monoids.

The paper is organised as follows: some mathematical prerequisites from the theory of monoids are given in Sect. 2; in Sect. 3 we define the infinite family of procedures for enumerating a right congruence on a monoid; the validity of congruence enumeration is shown in Sect. 4; in Sect. 5 we discuss how congruence enumeration can be used to compute congruences of a monoid that is not given a priori by a finite presentation; in Sects. 6 and 7 we describe the two main strategies for congruence enumeration; in Sect. 8 we discuss some issues related to the implementation of congruence enumeration; and, finally, in Sect. 9 we present some variants: for enumerating congruences of monoids with zero elements, Rees congruences, and Stephen's procedure [32, Section 4.1].

In Appendix A we give a number of extended examples, and in Appendix B there is a comparison of the performance of the implementations in libsemigroups [24] of various strategies when applied to a number of group, monoid, or semigroup presentations. The authors have also implemented basic versions of the algorithms described in this paper in python3 as a concrete alternative to the description given here; see [23].

2 Prerequisites

In this section, we provide some required mathematical prerequisites. The contents of this section are well-known in the theory of semigroups; for further background information we refer the reader to [16].

If μ is an equivalence relation on a set X, then we denote by x / μ the equivalence class of x in μ and by X / μ the set $\{x / \mu: x \in X\}$ of equivalence classes. The least equivalence relation on X with respect to containment is $\Delta_{X}=\{(x, x) \in X \times X$: $x \in X\}$; we refer to this as the trivial equivalence on X.

If S is a semigroup and $R \subseteq S \times S$, then there is an (two-sided) elementary sequence with respect to R between $x, y \in S$ if $x=y$ or $x=s_{1}, s_{2}, \ldots, s_{m}=y$, for some $m \geq 2$, where $s_{i}=p_{i} u_{i} q_{i}, s_{i+1}=p_{i} v_{i} q_{i}$, with $p_{i}, q_{i} \in S^{1}$ and $\left(u_{i}, v_{i}\right) \in R$ for all i. If $p_{i}=\varepsilon$ for all i in an elementary sequence, then we refer to the sequence as a right elementary sequence; left elementary sequences are defined analogously. We define $R^{\#} \subseteq S \times S$ so that $(x, y) \in R^{\#}$ if and only if there is an elementary sequence between x and y with respect to R. Note that $R^{\#}$ is the least congruence on the semigroup S containing R; see [16, Section 1.5]. The least right congruence containing a subset of $S \times S$ is defined analogously, using right elementary sequences rather than two-sided elementary sequences; we will not reserve any special notation for such least right congruences. Least left congruences are defined dually.

Throughout this article we write functions to the right of their arguments, and compose from left to right. Let S be a semigroup and let X be a set. A function $\Psi: X \times S \longrightarrow X$ is a right action of S on X if $((x, s) \Psi, t) \Psi=(x, s t) \Psi$ for all $x \in X$ and for all $s, t \in S$. If in addition S has an identity element e, we require $(x, e) \Psi=x$ for all $x \in X$ also.

If S is a semigroup, then we may adjoin an identity to S (if necessary) so that S is a monoid. We denote S with an adjoined identity 1_{S} by S^{1}. If $\Psi: X \times S \longrightarrow X$ is a right action of a semigroup S on a set X, then $\Psi^{1}: X \times S^{1} \longrightarrow X$ defined by $(x, s) \Psi^{1}=(x, s) \Psi$ for all $x \in X$ and $s \in S$, and $\left(x, 1_{S}\right) \Psi^{1}=x$ for all $x \in X$, is a right action of S^{1} on X also.

For the sake of brevity, we will write $x \cdot s$ instead of $(x, s) \Psi$, and we will say that S acts on X on the right. The kernel of a function $f: X \longrightarrow Y$, where X and Y are any sets, is the equivalence relation

$$
\operatorname{ker}(f)=\{(x, y) \in X \times X:(x) f=(y) f\}
$$

If X is any set, then X^{X} denotes the set of all functions from X to X. Endowed with the operation of function composition, X^{X} is a monoid, called the full transformation monoid on X. A right action Ψ of a semigroup S on a set X induces a homomorphism $\Psi^{\prime}: S \longrightarrow X^{X}$ defined by $(s) \Psi^{\prime}: x \mapsto x \cdot s$ for all $s \in S$ and all $x \in X$.

The kernel of a right action Ψ of a semigroup S on a set X is the kernel of the function $\Psi^{\prime}: S \longrightarrow X^{X}$,

$$
\begin{aligned}
\operatorname{ker}(\Psi) & =\left\{(s, t):(s) \Psi^{\prime}=(t) \Psi^{\prime}\right\} \\
& =\{(s, t) \in S \times S:(x, s) \Psi=(x, t) \Psi, \text { for all } x \in X\}
\end{aligned}
$$

${ }^{1}$ It is straightforward to verify that the kernel of a homomorphism, and the kernel of a right action of a semigroup S, is a congruence on S.

[^0]

Fig. 1 A commutative diagram illustrating a homomorphism of actions where $X \times S \longrightarrow Y \times S$ is the function defined by $(x, s) \mapsto((x) \lambda, s)$

If S acts on the sets X and Y on the right, then we say that $\lambda: X \longrightarrow Y$ is a homomorphism of right actions if $(x \cdot s) \lambda=(x) \lambda \cdot s$ for all $x \in X$ and $s \in S^{1}$ (see Fig. 1 for a diagram). An isomorphism of right actions is a bijective homomorphism of right actions.

If A is a set, then a word over A is a finite sequence $\left(a_{1}, \ldots, a_{n}\right)$ where $a_{1}, \ldots, a_{n} \in$ A and $n \geq 0$; say that the length of the word is n. We will write $a_{1} \cdots a_{n}$ rather than $\left(a_{1}, \ldots, a_{n}\right)$, and will refer to A as an alphabet and $a \in A$ as a letter. If A is any set, then the free semigroup on A is the set A^{+}consisting of all words over A of length at least 1 with operation given by the juxtaposition of words. The free monoid on A is the set $A^{+} \cup\{\varepsilon\}$ with the operation again the juxtaposition of words and where ε denotes the unique word of length 0 , the so-called empty word; the free monoid on A is denoted A^{*}.

The next proposition might be viewed as an analogue of the Third Isomorphism Theorem for semigroups ([16, Theorem 1.5.4]) in the context of actions. More precisely, Proposition 2.1 will allow us to replace the action of a free monoid on a quotient of a quotient by an action on a single quotient. We require the following definition. Let S be a semigroup, let ρ be a congruence of S, and let σ be a right congruence of S such that $\rho \subseteq \sigma$. The set σ / ρ defined as

$$
\sigma / \rho=\{(x / \rho, y / \rho) \in S / \rho \times S / \rho:(x, y) \in \sigma\}
$$

is a right congruence on S / ρ.
Proposition 2.1 Let S be a semigroup, let ρ be a congruence of S, and let σ be a right congruence of S such that $\rho \subseteq \sigma$. The right actions of S on $(S / \rho) /(\sigma / \rho)$ and S / σ defined by

$$
(u / \rho) /(\sigma / \rho) \cdot v=(u v / \rho) /(\sigma / \rho) \text { and } u / \sigma \cdot v=u v / \sigma \text { for all } u, v \in S
$$

are isomorphic.
The proof of Proposition 2.1 is similar to the proof of [16, Theorem 1.5.4]. An analogue of Proposition 2.1 can be formulated for left congruences, but we do not require this explicitly; see Proposition 3.1, and the surrounding text, for further details.

We also require the following result, the proof of which is routine, and hence omitted.

Proposition 2.2 Let S be a semigroup, let X be a set, and let $\Psi: X \times S \longrightarrow X$ be a right action. If $\mu \subseteq \operatorname{ker}(\Psi)$ is a congruence on S, then $\bar{\Psi}: X \times S / \mu \longrightarrow X$ defined
by

$$
(x, s / \mu) \bar{\Psi}=(x, s) \bar{\Psi}
$$

for all $x \in X$ and $s \in S$, is a right action that is isomorphic to Ψ.

3 Congruence enumeration

In this section we define what we mean by a congruence enumeration for a semigroup or monoid, and establish some further notational conventions. Congruence enumeration, as described in this section, will provide the general context for the more explicit algorithms discussed in Sects. 6 and 7; this section is based, at least in spirit, on [31, Section 5.1] and is also influenced by [32,33].

The purpose of a congruence enumeration is to determine, in some sense, the structure of a finitely presented monoid; or more generally, a congruence on such a monoid. For the sake of simplicity, we will assume throughout that $\mathcal{P}=\langle A \mid R\rangle$ is a monoid presentation defining a monoid M, where A is some totally ordered finite alphabet, and R is a (possibly empty) finite subset of $A^{*} \times A^{*}$. Additionally, we suppose that S is a finite subset of $A^{*} \times A^{*}$. We write $R^{\#}$ to be the least two-sided congruence on A^{*} containing R, and denote by ρ the least right congruence on A^{*} containing $R^{\#}$ and S. In this notation, the monoid M defined by the presentation \mathcal{P} is $A^{*} / R^{\#}$. If the number of congruence classes of ρ is finite, then the output of a congruence enumeration is a description of the natural right action of A^{*} on the congruence classes of ρ. In particular, the output yields the number of such classes, can be used to determine whether or not two words in A^{*} belong to the same class, and provides a homomorphism from A^{*} to the full transformation monoid $\left(A^{*} / \rho\right)^{\left(A^{*} / \rho\right)}$ on the set of congruence classes of ρ. Since it is undecidable whether a finitely presented monoid is finite or not [22] (see also [4, Remark 4]), an upper bound for the number of steps required for a congruence enumeration for $\langle A \mid R\rangle$ to terminate cannot be computed as a function of $|A|$ and $|R|$. If the number of congruence classes of ρ is infinite, then the enumeration will not terminate. If the set S is empty, then a congruence enumeration, if it terminates, gives us a description of the monoid $A^{*} / R^{\#}$ together with the natural right action of A^{*} on $A^{*} / R^{\#}$.

Perhaps it is more natural to want to determine a right congruence of the monoid M defined by the presentation \mathcal{P} rather than on the free monoid A^{*}. However, by Proposition 2.1, to determine the right congruence on $M=A^{*} / R^{\#}$ generated by

$$
\left\{\left(s / R^{\#}, t / R^{\#}\right):(s, t) \in S\right\}
$$

it suffices to determine the right congruence ρ on A^{*} containing $R^{\#}$ and the set S.
It is only for the sake of convenience that we have chosen to consider finitely presented monoids, rather than finitely presented semigroups. To apply the algorithms described in this article to a semigroup that is not a monoid, simply adjoin an identity, perform the algorithm, and disregard the adjoined identity in the output.

The choice of "right" rather than "left" in the previous paragraphs was arbitrary. If $w=a_{1} a_{2} \cdots a_{n} \in A^{*}$, then we denote the reversed word $a_{n} \cdots a_{2} a_{1}$ by w^{\dagger}. If $W \subseteq A^{*} \times A^{*}$, then we denote by W^{\dagger} the set $\left\{\left(u^{\dagger}, v^{\dagger}\right):(u, v) \in W\right\}$.

Proposition 3.1 Let A be an alphabet, let $R, S \subseteq A^{*} \times A^{*}$, let $R^{\#}$ be the least congruence on A^{*} containing R, and let ρ be the least left congruence on A^{*} containing $R^{\#}$ and S. Then ρ^{\dagger} is the least right congruence on A^{*} containing $R^{\# \dagger}$ and S^{\dagger}.

It follows from Proposition 3.1 that any algorithm for computing right congruences can be used for left congruences, by simply reversing every word.

The inputs of a congruence enumeration are the finite alphabet A, the finite set of relations $R \subseteq A^{*} \times A^{*}$, the finite set $S \subseteq A^{*} \times A^{*}$, and a certain type of digraph that is defined in the next section.

3.1 Word graphs

One of the central components of the proofs presented in Sect. 4 is that of a word graph, which is used in a natural representation of equivalence relations on a free monoid. Let A be any alphabet and let $\Gamma=(N, E)$ be a digraph with non-empty finite set of nodes $N \subseteq \mathbb{N}$ with $0 \in N$ and edges $E \subseteq N \times A \times N$. Then, following [32, 33], we refer to Γ as a word graph. The word graph $\Gamma=(\{0\}, \varnothing)$ is the trivial word graph.

If $(\alpha, a, \beta) \in E$ is an edge in a word graph Γ, then α is the source, a is the label, and β is the target of (α, a, β). An edge (α, a, β) is said to be incident to its source α and target β.

A word graph Γ is deterministic if for every node α and every letter $a \in A$ there is at most one edge of the form (α, a, β) in Γ. A word graph Γ is complete if for every node α and every letter $a \in A$ there is at least one edge incident to α labelled by a in Γ.

If $\alpha, \beta \in N$, then an (α, β)-path is a sequence of edges $\left(\alpha_{1}, a_{1}, \alpha_{2}\right), \ldots,\left(\alpha_{n}, a_{n}\right.$, $\left.\alpha_{n+1}\right) \in E$ where $\alpha_{1}=\alpha$ and $\alpha_{n+1}=\beta$ and $a_{1}, \ldots, a_{n} \in A ; \alpha$ is the source of the path; the word $a_{1} \cdots a_{n} \in A^{*}$ labels the path; β is the target of the path; and the length of the path is n. If $\alpha, \beta \in N$ and there is an (α, β)-path in Γ, then we say that β is reachable from α. If $\Gamma=(N, E)$ is a word graph and $\mathfrak{P}\left(A^{*} \times A^{*}\right)$ denotes the power set of $A^{*} \times A^{*}$, then the path relation of Γ is the function $\pi_{\Gamma}: N \longrightarrow \mathfrak{P}\left(A^{*} \times A^{*}\right)$ defined by $(u, v) \in(\alpha) \pi_{\Gamma}$ if there exists a node β such that u and v both label (α, β)-paths in Γ. If Γ is a word graph and α is a node in Γ, then $(\alpha) \pi_{\Gamma}$ is reflexive and symmetric, and $(\alpha) \pi_{\Gamma}$ is transitive for all α if and only if Γ is deterministic. In particular, $(\alpha) \pi_{\Gamma}$ is an equivalence relation for all α if and only if Γ is deterministic. If $R \subseteq A^{*} \times A^{*}, \Gamma$ is a word graph, and π_{Γ} is the path relation of Γ, then we say that Γ is compatible with R if $R \subseteq(\alpha) \pi_{\Gamma}$ for every node α in Γ.

Suppose that $\Gamma=(N, E)$ is a word graph with nodes N and edges $E \subseteq N \times A \times N$, and $\kappa \subseteq N \times N$ is an equivalence relation. The quotient Γ / κ of Γ by κ is the word graph with nodes $\{\min \alpha / \kappa: \alpha \in N\}$, and edges $(\min \alpha / \kappa, a, \min \beta / \kappa)$ whenever $(\alpha, a, \beta) \in E$. It is routine to verify that if $\Gamma=(N, E)$ is a word graph, κ is any equivalence relation on N, and κ^{\prime} is any equivalence relation on the set of nodes of Γ / κ, then $(\Gamma / \kappa) / \kappa^{\prime}=\Gamma / \kappa^{\prime \prime}$ where $\kappa^{\prime \prime}$ is the least equivalence on N containing
κ and every $(\alpha, \beta) \in N \times N$ where $(\min \alpha / \kappa, \min \beta / \kappa) \in \kappa^{\prime}$. If $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(N_{2}, E_{2}\right)$ are word graphs over the same alphabet A, then $\phi: N_{1} \longrightarrow$ N_{2} is a homomorphism if $(\alpha, a, \beta) \in E_{1}$ implies $((\alpha) \phi, a,(\beta) \phi) \in E_{2}$; and we write $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$. An isomorphism of word graphs Γ_{1} and Γ_{2} is a bijection $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$ such that both ϕ and ϕ^{-1} are homomorphisms. If κ is any equivalence relation on a word graph $\Gamma=(N, E)$, then the function $\phi: \Gamma \longrightarrow \Gamma / \kappa$ defined by $(\alpha) \phi=\alpha / \kappa$ is a homomorphism. Conversely, if $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$ is a homomorphism, then $\left(\Gamma_{1}\right) \phi:=\left\{(\alpha) \phi \in N_{2}: \alpha \in N_{1}\right\}$ is isomorphic to the quotient $\Gamma_{1} / \operatorname{ker}(\phi)$. If $\left(\alpha_{1}, a_{1}, \alpha_{2}\right), \ldots,\left(\alpha_{n}, a_{n}, \alpha_{n+1}\right) \in E_{1}$ is a path in Γ_{1} and $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$ is a homomorphism, then, by definition, $\left(\left(\alpha_{1}\right) \phi, a_{1},\left(\alpha_{2}\right) \phi\right), \ldots,\left(\left(\alpha_{n}\right) \phi, a_{n},\left(\alpha_{n+1}\right) \phi\right) \in$ E_{2} is a path in Γ_{2} with the same label $a_{1} \cdots a_{n} \in A^{*}$. In this way, we say that homomorphisms of word graphs preserve paths and labels of paths. This leads to the following straightforward lemma.

Lemma 3.2 Let $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(N_{2}, E_{2}\right)$ be word graphs, and let $\pi_{\Gamma_{1}}$: $N_{1} \longrightarrow \mathfrak{P}\left(A^{*} \times A^{*}\right)$ and $\pi_{\Gamma_{2}}: N_{2} \longrightarrow \mathfrak{P}\left(A^{*} \times A^{*}\right)$ be the path relations of Γ_{1} and Γ_{2}, respectively. If $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$ is a homomorphism and $\alpha \in N_{1}$ is arbitrary, then $(\alpha) \pi_{\Gamma_{1}} \subseteq((\alpha) \phi) \pi_{\Gamma_{2}}$.

Before giving the definition of a congruence enumeration, we highlight that many accounts of the Todd-Coxeter algorithm (see, for instance, [15, 25, 31]) are not formulated in terms of digraphs, but rather as a table whose rows are labelled by a set C of non-negative integers, and columns are labelled by the generating set A. If $\Gamma=(N, E)$ is a deterministic word graph and $f: C \longrightarrow N$ is a bijection such that (0) $f=0$, then the value in the row labelled c and column labelled a is f^{-1} of the target of the unique edge in Γ with source (c) f and label a. According to Neubüser [25], until the 1950s, congruence enumeration was often performed by hand, and, in this context, using tables is more straightforward than using graphs. On the other hand, the language of word graphs provide a more accessible means of discussing congruence enumeration in theory.

3.2 The definition

Recall that we suppose throughout that $\langle A \mid R\rangle$ for some $R \subseteq A^{*} \times A^{*}$ is a finite monoid presentation. Additionally, we will suppose throughout that A is a totally ordered alphabet. A congruence enumeration is a sequence of the following steps TC1, TC2, and TC3 where the input to the i-th step (where $i \in \mathbb{N}$) is $\left(\Gamma_{i}, \kappa_{i}\right)$ for some word graph Γ_{i} with a totally ordered set of nodes N_{i} and set of edges E_{i}, and some equivalence relation $\kappa_{i} \subseteq N_{i} \times N_{i}$.

TC1 (define a new node). If α is a node in Γ_{i} and there is no edge in Γ_{i} labelled by $a \in A$ with source α, then we define Γ_{i+1} to be the word graph obtained from Γ_{i} by adding the new node $\beta:=1+\max \bigcup_{j \leq i} N_{j}$ and the edge (α, a, β). We define $\kappa_{i+1}:=\kappa_{i} \cup\{(\beta, \beta)\}$.
TC2 (follow the paths defined by a relation). Suppose that $\alpha \in N_{i}$ and $(u, v) \in R$ where $u=u_{1} a$ and $v=v_{1} b$ for some $u_{1}, v_{1} \in A^{*}$ and $a, b \in A$.

Fig. 2 A diagram representing TC2(a), solid lines correspond to paths in Γ_{i} and the dashed edge is the one defined in TC2(a)
(a) If u and v_{1} label paths from α to some nodes $\beta, \gamma \in N_{i}$ in Γ_{i}, respectively, but γ is not the source of any edge labelled by b, then we set Γ_{i+1} to be the word graph obtained from Γ_{i} by adding the edge $\left(\gamma, b, \beta\right.$) and we define $\kappa_{i+1}:=\kappa_{i}$ (Fig. 2).
(b) The dual of (a) where there are paths labelled by u_{1} and v to nodes β and γ, respectively, but β is not the source of any edge labelled by a.
(c) If u and v label paths from w to some nodes β and γ, respectively, and $\beta \neq \gamma$, then we define $\Gamma_{i+1}:=\Gamma_{i}$ and κ_{i+1} to be the least equivalence containing κ_{i} and (β, γ).

Note that conditions (a), (b), and (c) are mutually exclusive, and it may be the case that none of them hold.
TC3 (process coincidences or a determination). We define Γ_{i+1} to be the quotient of Γ_{i} by κ_{i} and define κ_{i+1} to be the least equivalence on N_{i+1} containing every $(\beta, \gamma), \beta \neq \gamma$, for which there exist $\alpha \in N_{i+1}$ and $a \in A$ such that $(\alpha, a, \beta),(\alpha, a, \gamma) \in E_{i+1}$. Recall that the quotient Γ_{i} / κ_{i} of Γ_{i} by κ_{i} is the word graph with nodes $\left\{\min \alpha / \kappa_{i}: \alpha \in N_{i}\right\}$ and hence after an application of TC3 each node in Γ_{i+1} is set to be equal to the minimum of the set of nodes in its equivalence class in κ_{i}.

There are only finitely many possible quotients of any word graph. Hence if TC3 is applied repeatedly, then after finitely many iterations the output κ_{i+1} will equal $\Delta_{N_{i}}$, and Γ_{i+1} and Γ_{i} will be equal.

If w labels an (α, β)-path P in some Γ_{i}, then neither TC1 nor TC2 changes any of the edges belonging to P. Hence if Γ_{i+1} is obtained from Γ_{i} by applying TC1 or TC2, then w labels an (α, β)-path in Γ_{i+1} also. If Γ_{i+1} is obtained from Γ_{i} by applying TC3, then Γ_{i+1} is a homomorphic image of Γ_{i}. As already noted, homomorphisms preserve paths, and so w labels a path in Γ_{i+1} also.

We can now formally define a congruence enumeration.

Definition 3.3 (Congruence enumeration.) Suppose that A is a finite alphabet, that $R, S \subseteq A^{*} \times A^{*}$ are finite, that ρ is the least right congruence on A^{*} containing both $R^{\#}$ and S, and that $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ is a word graph with path relation $\pi_{\Gamma_{1}}: N_{1} \longrightarrow$ $\mathfrak{P}\left(A^{*} \times A^{*}\right)$ such that $(0) \pi_{\Gamma_{1}} \subseteq \rho$ and $\kappa_{1}=\Delta_{N_{1}}$. Then a congruence enumeration for ρ with input $\left(\Gamma_{1}, \kappa_{1}\right)$ consists of:
(a) For every $(u, v) \in S$, by repeatedly applying TC1 (if necessary), add edges to Γ_{1} so that it contains paths labelled by u and v both with source 0 .
(b) Apply TC2 to 0 and every $(u, v) \in S$.

If (Γ_{m}, κ_{m}) is the output of steps (a) and (b), then the enumeration is concluded by performing any sequence of applications of TC1, TC2, and TC3 such that the following conditions hold for $\Gamma_{i}=\left(N_{i}, E_{i}\right)$ for every $i \in \mathbb{N}, i \geq m$:
(c) If $\alpha \in N_{i}$ and there is no edge incident to α with label $a \in A$, then there exists $j \geq i$ such that either: α is no longer a node in Γ_{j}; or there is an edge incident to α with label a in Γ_{j}.
(d) If $\alpha \in N_{i}$ and $(u, v) \in R$, then there exists $j \geq i$ such that either: α is no longer a node in Γ_{j} or $(u, v) \in(\alpha) \pi_{\Gamma_{j}}$.
(e) If $\kappa_{i} \neq \Delta_{N_{i}}$ for some i, then there exists $j \geq i$ such that $\kappa_{j}=\Delta_{N_{j}}$.

The initial value of the word graph Γ_{1} that forms the input to a congruence enumeration is usually either the trivial word graph or, if M is finite, the right Cayley graph of the monoid M defined by the presentation $\langle A \mid R\rangle$; see Sect. 5 for more details.

A congruence enumeration terminates if the output $\left(\Gamma_{i}, \kappa_{i}\right)$ has the property that applying any of TC1, TC2, or $\mathbf{T C 3}$ to (Γ_{i}, κ_{i}) results in no changes to the output, i.e. $\left(\Gamma_{i+1}, \kappa_{i+1}\right)=\left(\Gamma_{i}, \kappa_{i}\right)$. It is straightforward to verify that a congruence enumeration terminates at step i if and only if Γ_{i} is complete, compatible with $R \cup S$, and deterministic.

For any given finite monoid presentation, there is a wide range of choices for the order in which steps TC1, TC2, and TC3 are performed, and to which nodes, generators, and relations they are applied. We will examine two specific strategies for enumerating congruences for an arbitrary finite monoid presentation in more detail in Sects. 6 and 7.

4 Validity

In this section we address the validity of congruence enumeration as defined in Sect. 3; we will continue to use the notation established therein.

The main results in this section are the following.
Theorem 4.1 Let A be a finite alphabet, let $R \subseteq A^{*} \times A^{*}$ be a finite set, and let $R^{\#}$ be the least two-sided congruence on A^{*} containing R. If $S \subseteq A^{*} \times A^{*}$ is any finite set, and ρ is the least right congruence on A^{*} containing $R^{\#}$ and S, then the following hold:
(a) If a congruence enumeration for ρ terminates with output word graph $\Gamma=(N, E)$, then A^{*} / ρ is finite and the function $\phi: N \times A^{*} \longrightarrow N$, defined by $(\alpha, w) \phi=\beta$
whenever w labels an (α, β)-path in Γ, is a right action that is isomorphic to the natural action of A^{*} on A^{*} / ρ by right multiplication.
(b) If A^{*} / ρ is finite, then any congruence enumeration for ρ terminates.

Corollary 4.2 Let A be a finite alphabet, let $R \subseteq A^{*} \times A^{*}$ be a finite set, and let $R^{\#}$ be the least two-sided congruence on A^{*} containing R. Then the following hold:
(a) If a congruence enumeration for $R^{\#}$ terminates with output word graph $\Gamma=$ (N, E), then $A^{*} / R^{\#}$ is finite and the function $\phi: N \times A^{*} \longrightarrow N$ defined by $(\alpha, w) \phi=\beta$ whenever w labels an (α, β)-path in Γ is a right action that is isomorphic to the (faithful) natural action of $A^{*} / R^{\#}$ on itself by right multiplication.
(b) If $A^{*} / R^{\#}$ is finite, then any congruence enumeration for $R^{\#}$ terminates.

We will prove Theorem 4.1 and Corollary 4.2 in Sect.4.2. We start by showing that the steps TC1, TC2, and TC3 preserve certain properties of word graphs in Proposition 4.4. In Sect.4.1, we show that every congruence enumeration eventually stabilises and is eventually compatible with R; and in Sect. 4.2 we give the proofs of Theorem 4.1 and Corollary 4.2.

We will make repeated use, without reference, to the following straightforward lemma.

Lemma 4.3 If any of TC1, TC2, or TC3 is applied to $\left(\Gamma_{i}, \kappa_{i}\right)$ where every node in Γ_{i} is reachable from 0 , then every node in the output Γ_{i+1} is reachable from 0 also.

The next proposition also plays a crucial role in the proof of Theorem 4.1 and Corollary 4.2.

Proposition 4.4 If TC1, TC2, or TC3 is applied to $\left(\Gamma_{i}, \kappa_{i}\right)$ where $\Gamma_{i}=\left(N_{i}, E_{i}\right)$ is a word graph such that $(0) \pi_{\Gamma_{i}} \subseteq \rho$, and $(0) \pi_{\Gamma_{i} / \kappa_{i}} \subseteq \rho$, then the output $\left(\Gamma_{i+1}, \kappa_{i+1}\right)$ satisfies $(0) \pi_{\Gamma_{i}} \subseteq(0) \pi_{\Gamma_{i+1}} \subseteq \rho$, and (0) $\pi_{\Gamma_{i} / \kappa_{i}} \subseteq(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}} \subseteq \rho$.

The proof of Proposition 4.4 is split into two parts due to commonalities in the proofs rather than the statements. The two cases are: TC1, TC2(a), TC2(b); and TC2(c), TC3.

Lemma 4.5 Proposition 4.4 holds when TC1, TC2(a), or TC2(b) is applied.
Proof Since (a) and (b) of TC2 are symmetric, it suffices to prove the proposition when TC1 or TC2(a) is applied. In TC1, α is a node in Γ_{i} and there is no edge incident to α labelled by a. In this case, Γ_{i+1} is obtained from Γ_{i} by adding the single node $\beta:=1+\min \bigcup_{j \leq i} N_{j}$ and the single edge (α, a, β), and $\kappa_{i+1}:=\kappa_{i} \cup\{(\beta, \beta)\}$. In TC2(a), there exists $(u, v) \in R, b \in A$, and $v_{1} \in A^{*}$ such that $v=v_{1} b$, and there exist nodes α, β, and γ in Γ_{i} such that u and v_{1} label (α, β) - and (α, γ)-paths in Γ_{i}, respectively. In this case, Γ_{i+1} is obtained from Γ_{i} by adding the single edge (γ, b, β) and $\kappa_{i+1}:=\kappa_{i}$.

Hence if either TC1 or $\mathbf{T C 2}$ (a) is applied, then the identity map $N_{i} \longrightarrow N_{i+1}$ is a homomorphism from Γ_{i} to Γ_{i+1} and so the identity map $N_{i} / \kappa_{i} \longrightarrow N_{i+1} / \kappa_{i}$ is also a homomorphism from Γ_{i} / κ_{i} to $\Gamma_{i+1} / \kappa_{i+1}$. Hence, by Lemma 3.2, (0) $\pi_{\Gamma_{i}} \subseteq(0) \pi_{\Gamma_{i+1}}$ and (0) $\pi_{\Gamma_{i} / \kappa_{i}} \subseteq(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}}$.

To show that (0) $\phi_{\Gamma_{i+1}} \subseteq \rho$ we consider the cases when TC1 and TC2(a) are applied separately.
TC1: Suppose that $(u, v) \in(0) \pi_{\Gamma_{i+1}} \backslash(0) \pi_{\Gamma_{i}}$ is arbitrary. Then there are paths in Γ_{i+1} from 0 to some node γ labelled by u and v but there are no such paths in Γ_{i}. Since β is not a node in Γ_{i}, β is not the target of any path in Γ_{i}. It follows that the edge (α, a, β) must occur at least once in both paths. But β is the source of no edges in Γ_{i+1}, and so (α, a, β) occurs once, and it must be the last edge, in both paths. Hence $u=u_{1} a$ and $v=v_{1} a$ where $u_{1}, v_{1} \in A^{*}$ label $(0, \alpha)$-paths in Γ_{i}. Therefore $\left(u_{1}, v_{1}\right) \in \rho$ by assumption and since ρ is a right congruence, $(u, v)=\left(u_{1} a, v_{1} a\right) \in \rho$ as well. Hence (0) $\pi_{\Gamma_{i+1}} \subseteq \rho$.

TC2(a): We proceed by induction on the total number k of occurrences of the edge (γ, b, β) (defined at the start of the proof) in any pair of paths in Γ_{i+1} with source 0 and the same target node. The inductive hypothesis is: if $(x, y) \in(0) \pi_{\Gamma_{i+1}}, X$ and Y are paths with source 0 labelled by x and y, respectively, and the total number of occurrences of the edge (γ, b, β) in X and Y is strictly less than k, then $(x, y) \in \rho$. The base case is when $k=0$ and, in this case, $(x, y) \in(0) \pi_{\Gamma_{i}} \subseteq \rho$, as required.

Suppose that $k \geq 1$, that $x, y \in A^{*}$ are any words labelling ($0, \delta$)-paths X and Y, respectively, for some node δ, and that (γ, b, β) occurs k times in X and Y. Without loss of generality we can assume that (γ, b, β) occurs at least once in X. If X consists of the edges $e_{1}, \ldots, e_{r} \in E_{i+1}$, and $j \in\{1, \ldots, r\}$ is the largest value such that $e_{j}=$ (γ, b, β), then we may write $x=x_{1} b x_{2}$ where x_{1} labels the $(0, \gamma)$-path $\left(e_{1}, \ldots, e_{j-1}\right)$ and x_{2} labels the (β, δ)-path $\left(e_{j+1}, \ldots, e_{r}\right)$. If w^{\prime} labels any path from 0 to α in Γ_{i}, then $w^{\prime} v_{1}$ labels an $(0, \gamma)$-path in Γ_{i}. It follows that $\left(x_{1}, w^{\prime} v_{1}\right) \in(0) \pi_{\Gamma_{i+1}}$. The number of occurrences of (γ, b, β) in $\left(e_{1}, \ldots, e_{j-1}\right)$ is strictly less than k, and the number in the path (in Γ_{i}) labelled by $w^{\prime} v_{1}$ is 0 . Hence, by the inductive hypothesis, $\left(x_{1}, w^{\prime} v_{1}\right) \in \rho$ and so $\left(x, w^{\prime} v x_{2}\right)=\left(x_{1} b x_{2}, w v_{1} b x_{2}\right) \in \rho$.

The word w^{\prime} labels a $(0, \alpha)$-path, u labels a (α, β)-path, and x_{2} labels a (β, δ) path. The first two of these paths belong to Γ_{i} by assumption, and the third does also, by the maximality of j. Hence $w^{\prime} u x_{2}$ labels a $(0, \delta)$-path in Γ_{i}, which therefore contains no occurrences of the edge (γ, b, β). The word y also labels the $(0, \delta)$-path Y in Γ_{i+1} and this path contains at most $k-1$ occurrences of (γ, b, β), since X and Y together contained k occurrences, and X contained at least 1 occurrence of (γ, b, β). Therefore, by induction, $\left(w^{\prime} u x_{2}, y\right) \in \rho$. Finally, since $(u, v) \in R \subseteq \rho$, $\left(w^{\prime} u x_{2}, w^{\prime} v x_{2}\right) \in R^{\#} \subseteq \rho$ also. Hence $\left(x, w^{\prime} v x_{2}\right),\left(w^{\prime} v x_{2}, w^{\prime} u x_{2}\right),\left(w^{\prime} u x_{2}, y\right) \in \rho$ and so by transitivity, $(x, y) \in \rho$.

We conclude the proof by showing that (0) $\pi_{\Gamma_{i+1} / \kappa_{i+1}} \subseteq \rho$ when either TC1 or TC2(a) is applied. Suppose that $(u, v) \in(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}}$. If $(u, v) \in(0) \pi_{\Gamma_{i+1}}$, then $(u, v) \in \rho$, as required. If $(u, v) \notin(0) \pi_{\Gamma_{i+1}}$, then u and v label $(0, \zeta)$ - and $(0, \eta)$ paths in Γ_{i+1}, respectively, for some nodes $\zeta \neq \eta$. Recall that $\kappa_{i+1}=\kappa_{i} \cup\{(\beta, \beta)\}$ if TC1 is applied, and $\kappa_{i+1}=\kappa_{i}$ if $\mathbf{T C 2}$ (a) is applied. In either case, $(\zeta, \eta) \in \kappa_{i+1}$ and $\zeta \neq \eta$ implies that $(\zeta, \eta) \in \kappa_{i}$. But ζ and η are nodes in Γ_{i} and hence they are reachable from 0 in Γ_{i} by Lemma 4.3. In other words, there exist $u^{\prime}, v^{\prime} \in A^{*}$ labelling $(0, \zeta)$ - and $(0, \eta)$-paths in Γ_{i}, respectively. Hence $\left(u, u^{\prime}\right),\left(v^{\prime}, v\right) \in(0) \pi_{\Gamma_{i+1}} \subseteq \rho$ and, by construction, $\left(u^{\prime}, v^{\prime}\right) \in(0) \pi_{\Gamma_{i} / \kappa_{i}} \subseteq \rho$. Thus, by transitivity, $(u, v) \in \rho$, as required.

Lemma 4.6 Proposition 4.4 holds when TC2(c) or TC3 is applied.
Proof If TC2(c) is applied, then there exist a node α in Γ_{i} and $(u, v) \in R$ such that u and v label (α, β) - and (α, γ)-paths in Γ_{i} for some distinct nodes β and γ in Γ_{i}. In this case, $\Gamma_{i+1}=\Gamma_{i}$ and κ_{i+1} is the least equivalence relation containing κ_{i} and (β, γ). If TC3 is applied, then $\Gamma_{i+1}=\Gamma_{i} / \kappa_{i}$ and κ_{i+1} is the least equivalence on N_{i+1} containing every $(\delta, \zeta), \delta \neq \zeta$, for which there exist $\eta \in N_{i+1}$ and $a \in A$ such that $(\eta, a, \delta),(\eta, a, \zeta) \in E_{i+1}$.

In either case, there is a homomorphism from Γ_{i+1} to $\Gamma_{i+1} / \kappa_{i+1}$ and so Lemma 3.2 implies that (0) $\pi_{\Gamma_{i+1}} \subseteq(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}}$. If $\mathbf{T C 2}$ (c) is applied, then the identity map is a homomorphism from Γ_{i} to Γ_{i+1}. If TC3 is applied, then $\Gamma_{i+1}=\Gamma_{i} / \kappa_{i}$ is a homomorphic image of Γ_{i} also. Hence, in either case, (0) $\pi_{\Gamma_{i}} \subseteq(0) \pi_{\Gamma_{i+1}}$ by Lemma 3.2.

Hence, in both cases, it suffices to show that (0) $\pi_{\Gamma_{i} / \kappa_{i}} \subseteq(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}} \subseteq \rho$. We consider the cases when TC2(c) and TC3 are applied separately.
TC2(c): If β and γ are the nodes defined above, and σ is the least equivalence relation on the set of nodes in Γ_{i} / κ_{i} containing β / κ_{i} and γ / κ_{i}, then $\left(\Gamma_{i} / \kappa_{i}\right) / \sigma=\Gamma_{i} / \kappa_{i+1}=$ $\Gamma_{i+1} / \kappa_{i+1}$. Hence $\Gamma_{i+1} / \kappa_{i+1}$ is a homomorphic image of Γ_{i} / κ_{i} and so (0) $\pi_{\Gamma_{i} / \kappa_{i}} \subseteq$ (0) $\pi_{\Gamma_{i+1} / \kappa_{i+1}}$.

Suppose that $(x, y) \in(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}}$. Then x and y both label $(0, \delta)$-paths in $\Gamma_{i+1} / \kappa_{i+1}$ for some node δ in $\Gamma_{i+1} / \kappa_{i+1}$. It follows that there are nodes ζ and η in Γ_{i+1} such that $(\delta, \zeta),(\delta, \eta) \in \kappa_{i+1}$ and x and y label $(0, \zeta)$ - and $(0, \eta)$-paths in $\Gamma_{i+1}=\Gamma_{i}$, respectively.

If $(\zeta, \eta) \in \kappa_{i}$, then $(u, v) \in(0) \pi_{\Gamma_{i} / \kappa_{i}}$ and so $(u, v) \in \rho$ by assumption. If $(\zeta, \eta) \notin$ κ_{i}, then without loss of generality we may assume that $(\zeta, \eta)=(\beta, \gamma)$. In this case, if $w \in A^{*}$ labels a $(0, \alpha)$ path in Γ_{i}, then $w u$ and x both label $(0, \beta)=(0, \zeta)$-paths in Γ_{i}, and so $(w u, x) \in(0) \pi_{\Gamma_{i}} \subseteq \rho$. Similarly, $w v$ and y both label $(0, \gamma)$-paths in Γ_{i}, and so $(w v, y) \in \rho$, also. Finally, $(u, v) \in R$ and so $(w u, w v) \in R^{\#} \subseteq \rho$, and so $(x, y) \in \rho$ also.
TC3: Clearly, $\Gamma_{i+1} / \kappa_{i+1}$ is a homomorphic image of Γ_{i+1} and Γ_{i+1} is defined to be Γ_{i} / κ_{i} in TC3. Hence (0) $\pi_{\Gamma_{i} / \kappa_{i}} \subseteq(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}}$ by Lemma 3.2. It remains to show that $(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}} \subseteq \rho$.

Suppose that $(x, y) \in(0) \pi_{\Gamma_{i+1} / \kappa_{i+1}}$. Then there exist nodes ζ and η in Γ_{i+1} such that $(\zeta, \eta) \in \kappa_{i+1}$ where x labels a $(0, \zeta)$-path and y labels a $(0, \eta)$-paths in Γ_{i+1}. In $\mathbf{T C 3}, \kappa_{i+1}$ is defined to be the least equivalence containing $(\beta, \gamma) \in N_{i+1} \times N_{i+1}$ such that there are edges (α, a, β) and (α, a, γ) in Γ_{i+1}. Hence $(\eta, \zeta) \in \kappa_{j+1}$ implies that there exist $\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{1}:=\zeta, \beta_{1}, \ldots, \beta_{n}:=\eta \in N_{j+1}$ and $a_{1}, \ldots, a_{n-1} \in A$ where $\left(\alpha_{j}, a_{j}, \beta_{j}\right),\left(\alpha_{j}, a_{j}, \beta_{j+1}\right) \in E_{j+1}$ and $\beta_{j} \neq \beta_{j+1}$ for every j. Suppose that $w_{j} \in A^{*}$ is any word labelling a $\left(0, \alpha_{j}\right)$-path for $j=1, \ldots, n-1$, that $x_{1}=x$, that x_{j} labels a $\left(0, \beta_{j}\right)$-path for $j=2, \ldots, n-1$, and that $x_{n}=y$.

Then $w_{j} a_{j}$ and x_{j} both label $\left(0, \beta_{j}\right)$-paths in Γ_{i+1} for every j. Similarly, $w_{j} a_{j}$ and x_{j+1} both label $\left(0, \beta_{j+1}\right)$-paths in Γ_{i+1} for every j. Hence $\left(w_{j} a_{j}, x_{j}\right),\left(w_{i} a_{j}, x_{j+1}\right) \in$ (0) $\pi_{\Gamma_{i+1}} \subseteq \rho$ for every j. Therefore $\left(x_{j}, x_{j+1}\right) \in \rho$ for every j, and so by transitivity $\left(x_{1}, x_{n}\right)=(x, y) \in \rho$, as required.

4.1 Completeness, determinism, and compatibility

In this section, we will prove that if at some step i in a congruence enumeration the word graph Γ_{i} is complete, then that enumeration terminates, and that every congruence enumeration is eventually compatible with ρ.

We say that a congruence enumeration stabilises if for every $i \in \mathbb{N}$ and every node α of Γ_{i} there exists $K \in \mathbb{N}$ such that for all $j \geq K$ either α is not a node in Γ_{j} or if $(\alpha, a, \beta) \in E_{j}$, then $(\alpha, a, \beta) \in E_{j+1}$ for any $a \in A$.
Lemma 4.7 Every congruence enumeration stabilises.
Proof We will prove a slightly stronger statement, that any sequence of TC1, TC2, and TC3 stabilises.

Suppose that $i \in \mathbb{N}, \alpha$ is an arbitrary node in Γ_{i}, and $a \in A$ is arbitrary. Either there exists $K>i$ such that α is no longer a node in Γ_{K}, or α is a node in Γ_{j} for all $j \geq i$. If α is no longer a node in Γ_{K}, then, from the definitions of $\mathbf{T C 1}, \mathbf{T C 2}$, and $\mathbf{T C 3}, \alpha$ is not a node in Γ_{k} for any $k \geq K$.

Suppose that α is a node in Γ_{j} for all $j \geq i$ and that $\left(\alpha, a, \beta_{1}\right) \in E_{j}$ for some $\beta_{1} \in A^{*}$. If $\beta_{1} \in N_{j}$ is replaced by $\beta_{2} \in N_{k}$ at some step $k \geq j$, then step k is an application of TC3. In particular, $0 \leq \beta_{2} \leq \beta_{1}$. This process can be repeated only finitely many times because there are only finitely many natural numbers less than β_{1}.

If Γ_{i} is complete for some i, then TC1 cannot be applied again at any step after i. In this case, TC2 and TC3 make κ coarser and hence reduce the number of nodes in Γ_{i}. Since the number of nodes in Γ_{i} is finite, it follows that the enumeration must terminate at some point. We record this in the following corollary.
Corollary 4.8 If Γ_{i} is complete at some step i of a congruence enumeration, then the enumeration terminates at some step $j \geq i$.

The next lemma shows that, roughly speaking, if the word graph at some step of a congruence enumeration is non-deterministic, then at some later step it is deterministic.

Lemma 4.9 If $w \in A^{*}$ labels a path in Γ_{i} starting at 0 for some $i \in \mathbb{N}$, then there exists $j \geq i$ such that w labels a unique path in Γ_{j} starting at 0 .
Proof We proceed by induction on the length of the word w. If $w=\varepsilon$, then w labels a unique path in every Γ_{i} starting (and ending) at 0 .

Suppose that every word of length at most $n-1$ labelling a path starting at 0 in Γ_{i} labels a unique path, and let $w \in A^{*}$ be any word of length $n \geq 1$, labelling a path in Γ_{i} starting at 0 . If $w=w_{1} a$ for some $w_{1} \in A^{*}$ and $a \in A$, then w_{1} labels a unique path in Γ_{i} starting at 0 by induction. Suppose that α is the target of the unique path labelled w_{1}. By Lemma 4.7, we may assume without loss of generality that α is a node in Γ_{j} for every $j \geq i$. If there exist edges $\left(\alpha, a, \beta_{1}\right), \ldots,\left(\alpha, a, \beta_{r}\right)$ in Γ_{i}, then at most one of these edges was created by an application of TC1 or TC2. So, if $r>1$, then $\left(\beta_{1}, \beta_{2}\right), \ldots,\left(\beta_{r-1}, \beta_{r}\right) \in \kappa_{i}$.

By part (e) of the definition of a congruence enumeration (Definition 3.3), there exists $j>i$ such that $\kappa_{j}=\Delta_{N_{j}}$ and so at step j, there is only one edge incident to α labelled a.

Next we show that every congruence enumeration is eventually compatible with ρ.
Lemma 4.10 If $(u, v) \in R^{\#}$, then there exists $K \in \mathbb{N}$ such that $(u, v) \in(0) \pi_{\Gamma_{i}}$ for all $i \geq K$.

Proof If $(u, v) \in R^{\#}$, then there exists an elementary sequence $u=w_{1}, w_{2}, \ldots, w_{k}=$ v in A^{*} with respect to R. If $\left(w_{j}, w_{j+1}\right) \in(0) \pi_{\Gamma_{i}}$ for every $j \in\{1, \ldots, k-1\}$, by transitivity $\left(w_{1}, w_{k}\right)=(u, v) \in(0) \pi_{\Gamma_{i}}$ for a large enough i. Hence it suffices to show that $\left(w_{j}, w_{j+1}\right) \in(0) \pi_{\Gamma_{i}}$ for all j and for sufficiently large i.

Suppose that $j \in\{1, \ldots, k-1\}$ is arbitrary, and that $w_{j}=p x q$ and $w_{j+1}=p y q$ where $p, q \in A^{*}$ and $(x, y) \in R$. From part (c) of the definition of a congruence enumeration (Definition 3.3), p labels a path with source 0 in Γ_{j} for all $j \geq i$ for some sufficiently large i. We may choose i large enough so that the target node α of this path is a node in every Γ_{j} for $j \geq i$. By Definition 3.3(d), for sufficiently large $i,(x, y) \in(\alpha) \pi_{\Gamma_{i}}$ and so $(p x, p y) \in(0) \pi_{\Gamma_{i}}$. Again if i is large enough, there is a path labelled q from the target of the path from 0 labelled by $p x$ (or $p y$) and so $\left(w_{j}, w_{j+1}\right)=(p x q, p y q) \in(0) \pi_{\Gamma_{i}}$.

Corollary 4.11 If $(u, v) \in \rho$, then there exists $K \in \mathbb{N}$ such that $(u, v) \in(0) \pi_{\Gamma_{i}}$ for all $i \geq K$.

Proof Recall that ρ is the least right congruence containing $R^{\#}$ and S (as defined in Theorem 4.1). If $(u, v) \in \rho$, then there exists a right elementary sequence $u=$ $w_{1}, w_{2}, \ldots, w_{k}=v$ such that $w_{j}=x q$ and $w_{j+1}=y q$ for some $(x, y) \in R^{\#} \cup S$ and some $q \in A^{*}$. Hence it suffices to show that if $(x, y) \in R^{\#} \cup S$ and $q \in A^{*}$, then, for sufficiently large $i,(x q, y q) \in(0) \pi_{\Gamma_{i}}$.

If $\left(\Gamma_{m}, \kappa_{m}\right)$ is the output of applying steps (a) and (b) of the congruence enumeration (Definition 3.3), then $S \subseteq \pi_{\Gamma_{m} / \kappa_{m}}(0)$. Proposition 4.4 implies that $\pi_{\Gamma_{m} / \kappa_{m}}(0) \subseteq$ $\pi_{\Gamma_{i} / \kappa_{i}}(0)$ for all $i \geq m$. By Definition 3.3(e), TC3 is eventually applied to ($\Gamma_{i-1}, \kappa_{i-1}$) for some $i>m$. Hence $S \subseteq(0) \pi_{\Gamma_{i-1} / \kappa_{i-1}}=(0) \pi_{\Gamma_{i}}$ since $\Gamma_{i}=\Gamma_{i-1} / \kappa_{i-1}$, for large enough i.

Suppose that $q \in A^{*}$ and $(x, y) \in R^{\#} \cup S$ are arbitrary. If $(x, y) \in R^{\#}$ then $(x, y) \in$ (0) $\pi_{\Gamma_{i}}$ for large enough i by Lemma 4.10. If $(x, y) \in S$, then it follows from the previous paragraph that $(x, y) \in(0) \pi_{\Gamma_{i}}$ for large enough i. As in the proof of Lemma 4.10, for sufficiently large $i, x q$ and $y q$ label paths in Γ_{i}, and so $(x q, y q) \in(0) \pi_{\Gamma_{i}}$.

Corollary 4.12 Suppose that $u, v \in A^{*}$ are arbitrary. Then $(u, v) \in \rho$ if and only if there exists $K \in \mathbb{N}$ such that $(u, v) \in(0) \pi_{\Gamma_{i}}$ for all $i \geq K$.

Proof (\Rightarrow) Assume that $(u, v) \in \rho$. By Lemma 4.10, $(u, v) \in(0) \pi_{\Gamma_{K}}$ for large enough K. But (0) $\pi_{\Gamma_{i}} \subseteq(0) \pi_{\Gamma_{i+1}}$ for all i, and so $(u, v) \in(0) \pi_{\Gamma_{i}}$ for all $i \geq K$.
(\Leftarrow) By assumption, Γ_{1} is a word graph with $(0) \pi_{\Gamma_{1}} \subseteq \rho$. By Proposition 4.4, (0) $\pi_{\Gamma_{i}} \subseteq \rho$ for all $i \in \mathbb{N}$. Hence if $(u, v) \in(0) \pi_{\Gamma_{i}}$ for some i, then $(u, v) \in \rho$.

We also obtain the following stronger result for an enumeration of a two-sided congruence.

Corollary 4.13 Suppose that $u, v \in A^{*}$ are arbitrary. Then the following are equivalent:
(i) $(u, v) \in R^{\#}$;
(ii) there exists $K \in \mathbb{N}$ such that $(u, v) \in(\alpha) \pi_{\Gamma_{i}}$ for all nodes α in Γ_{i} and for all $i \geq K$;
(iii) there exists $K \in \mathbb{N}$ such that $(u, v) \in(0) \pi_{\Gamma_{i}}$ for all $i \geq K$.

Proof $\mathbf{(i)} \Rightarrow$ (ii). If $(u, v) \in R^{\#}$ and $w \in A^{*}$ is arbitrary, then $(w u, w v) \in R^{\#}$ and so, by Lemma 4.10, $(w u, w v) \in(0) \pi_{\Gamma_{i}}$ for sufficiently large i. In particular, for large enough $i, w u$ and $w v$ both label $(0, \beta)$-paths for some node β. If α is the target of the path starting at 0 labelled by w, then u and v both label a (α, β)-paths in Γ_{i} and so $(u, v) \in(\alpha) \pi_{\Gamma_{i}}$ for i large enough.
(ii) \Rightarrow (iii) This follows immediately since 0 is a node in every word graph.
(iii) \Rightarrow (i) Follows by applying Corollary 4.12 to $\rho=R^{\#}$.

4.2 The proofs of Theorem 4.1 and Corollary 4.2

In this section, we prove Theorem 4.1 and Corollary 4.2.
Theorem 4.1. Let A be a finite alphabet, let $R \subseteq A^{*} \times A^{*}$ be a finite set, and let $R^{\#}$ be the least two-sided congruence on A^{*} containing R. If $S \subseteq A^{*} \times A^{*}$ is any finite set, and ρ is the least right congruence on A^{*} containing $R^{\#}$ and S, then the following hold:
(a) If a congruence enumeration for ρ terminates with output word graph $\Gamma=(N, E)$, then A^{*} / ρ is finite and the function $\phi: N \times A^{*} \longrightarrow N$, defined by $(\alpha, w) \phi=\beta$ whenever w labels an (α, β)-path in Γ, is a right action that is isomorphic to the natural action of A^{*} on A^{*} / ρ by right multiplication.
(b) If A^{*} / ρ is finite, then any congruence enumeration for ρ terminates.

Proof We start the proof by showing that there is always a bijection between a certain set of nodes in the word graphs Γ_{i} (defined in a moment) and the classes of ρ. Let M be the subset of $\bigcup_{i \in \mathbb{N}} N_{i}$ so that $\alpha \in M$ if $\alpha \in N_{i}$ for all large enough i. By Lemma 4.7, for every $\alpha \in M$ there exists $w_{\alpha} \in A^{*}$ such that w_{α} labels a path from 0 to α in every Γ_{i} for sufficiently large i. We define $f: M \longrightarrow A^{*} / \rho$ by

$$
\begin{equation*}
(\alpha) f=w_{\alpha} / \rho \tag{4.1}
\end{equation*}
$$

We will show that f is a bijection.
If $\alpha, \beta \in M$ are such that $(\alpha) f=(\beta) f$, then $\left(w_{\alpha}, w_{\beta}\right) \in \rho$ and so $\left(w_{\alpha}, w_{\beta}\right) \in$ (0) $\pi_{\Gamma_{i}}$ for large enough i by Corollary 4.12. In particular, w_{α} and w_{β} both label paths from 0 to the same node in every Γ_{i} for large enough i. By Lemma 4.7, we can also choose i large enough so that the target γ of these paths is a node in Γ_{j} for all $j \geq i$. But w_{α} and w_{β} also label $(0, \alpha)$ - and $(0, \beta)$-paths in every Γ_{i} for sufficiently large i. By Lemma 4.9, there exists $j \geq i$ such that w_{α} labels a unique path starting at 0 , and so $\alpha=\gamma$. Similarly, there exists $k \geq j$ such that w_{β} labels a unique path from 0 , and so $\beta=\gamma$ also. In particular, $\alpha=\beta$ and so f is injective.

For surjectivity, let $u \in A^{*}$ be arbitrary. Then u labels a path in Γ_{i} for large enough i. Since every congruence enumeration stabilises, we can choose i large enough so that every edge in the path labelled by u belongs to every Γ_{j} for $j \geq i$. In particular, u

Fig. 3 The commutative diagram in the proof of Theorem 4.1(a)

labels a $(0, \alpha)$-path in Γ_{i} for some $\alpha \in M$. But w_{α} also labels a $(0, \alpha)$-path in Γ_{i}, and so $\left(u, w_{\alpha}\right) \in(0) \pi_{\Gamma_{i}}$. Hence, again by Corollary 4.12, for large enough $i,\left(u, w_{\alpha}\right) \in \rho$ and so $(\alpha) f=w_{\alpha} / \rho=u / \rho$, and f is surjective.
(a). Suppose that (Γ, κ) is the output of the enumeration where $\Gamma=(N, E)$ and that $\pi: N \longrightarrow \mathfrak{P}\left(A^{*} \times A^{*}\right)$ is the path relation of Γ. Since the congruence enumeration process has terminated, Γ is finite and its set of nodes N coincides with the set M defined at the start of the proof. Hence A^{*} / ρ is finite, since $f: N \longrightarrow A^{*} / \rho$ defined in (4.1) is a bijection.

Since any application of $\mathbf{T C} 3$ results in no changes to Γ, it follows that $\kappa=\Delta_{N}$. Hence Γ is deterministic, and so every $w \in A^{*}$ labels exactly one path starting at every $u \in N$. In particular, ϕ (as defined in the statement) is a well-defined function. If $w_{1}, w_{2} \in A^{*}$ label $\left(\alpha_{1}, \alpha_{2}\right)$ - and (α_{2}, α_{3})-paths in Γ, respectively, then certainly $w_{1} w_{2}$ labels a $\left(\alpha_{1}, \alpha_{3}\right)$-path, and so ϕ is an action.

We will show that $f: N \longrightarrow A^{*} / \rho$ defined in (4.1) is an isomorphism of the actions ϕ and the natural action $\Phi: A^{*} / \rho \times A^{*} \longrightarrow A^{*} / \rho$ defined by $(u / \rho, v) \Phi=u v / \rho$. We define $g: N \times A^{*} \longrightarrow\left(A^{*} / \rho\right) \times A^{*}$ by $(\alpha, v) g=((\alpha) f, v)=\left(w_{\alpha} / \rho, v\right)$ for all $(\alpha, v) \in N \times A^{*}$. To show that f is a homomorphism of actions, we must prove that the diagram in Fig. 3 commutes. Suppose that $(\alpha, v) \in N \times A^{*}$. Then

$$
((\alpha, v) g) \Phi=\left(w_{\alpha} / \rho, v\right) \Phi=w_{\alpha} v / \rho
$$

and if v labels a (α, β)-path in Γ, then

$$
((\alpha, v) \phi) f=(\beta) f=w_{\beta} / \rho
$$

But w_{β} and $w_{\alpha} v$ both label $(0, \beta)$-paths in Γ and so $\left(w_{\alpha} v, w_{\beta}\right) \in(0) \pi$. By Corollary 4.12, $(0) \pi \subseteq \rho$ and so $\left(w_{\alpha} v, w_{\beta}\right) \in \rho$. Hence $((\alpha, v) g) \Phi=((\alpha, v) \phi) f$ and so f is homomorphism of the actions ϕ and Φ.
(b). If A^{*} / ρ is finite, then the set M of nodes defined at the start of the proof is also finite. Since every congruence enumeration stabilises, it follows that for every $\alpha \in M$, there exists $K \in \mathbb{N}$ such that $(\alpha, a, \beta) \in E_{i}$ for all $i \geq K$. It follows that $\beta \in M$. Since A and M are finite, there exists $K \in \mathbb{N}$ such that $(\alpha, a, \beta) \in E_{i}$ for all $\alpha \in M$, all $a \in A$, and all $i \geq K$. It follows that none of TC1, TC2, nor TC3 results in any changes to Γ_{i} or $\kappa_{i}, i \geq K$, and so the enumeration terminates.

We conclude this section by proving Corollary 4.2.
Corollary 4.2. Let A be a finite alphabet, let $R \subseteq A^{*} \times A^{*}$ be a finite set, and let $R^{\#}$ be the least two-sided congruence on A^{*} containing R. Then the following hold:
(a) If a congruence enumeration for $R^{\#}$ terminates with output word graph $\Gamma=$ (N, E), then $A^{*} / R^{\#}$ is finite and the function $\phi: N \times A^{*} \longrightarrow N$ defined by

Table 1 A word labelling a path from 0 to each node in the right Cayley graph on the monoid M from Example 5.1; see Fig. 4

0	1	2	3	4	5	6	7	8
ε	a	b	c	a^{2}	$a b$	$b a$	$b c$	$b a b$

$(\alpha, w) \phi=\beta$ whenever w labels an (α, β)-path in Γ is a right action that is isomorphic to the (faithful) natural action of $A^{*} / R^{\#}$ on itself by right multiplication. (b) If $A^{*} / R^{\#}$ is finite, then any congruence enumeration for $R^{\#}$ terminates.

Proof If $S=\varnothing$ in Theorem 4.1, then the least right congruence ρ containing S and $R^{\#}$ is just $R^{\#}$. By Theorem 4.1, the action $\phi: N \times A^{*} \longrightarrow N$ is isomorphic to the natural action of A^{*} on $A^{*} / R^{\#}$ by right multiplication. By Corollary 4.13, the kernel of ϕ is $R^{\#}$, and it is routine to verify that the kernel of the action of A^{*} on $A^{*} / R^{\#}$ by right multiplication is also $R^{\#}$. Hence, by Proposition 2.2 , the action ϕ of A^{*} on N and the induced action of $A^{*} / R^{\#}$ on N are isomorphic. Similarly, the action of A^{*} on $A^{*} / R^{\#}$ is isomorphic to the action of $A^{*} / R^{\#}$ on $A^{*} / R^{\#}$ by right multiplication. Thus the actions of $A^{*} / R^{\#}$ on N and $A^{*} / R^{\#}$ on $A^{*} / R^{\#}$ are isomorphic also. The latter action is faithful since $A^{*} / R^{\#}$ is a monoid. Hence the action of $A^{*} / R^{\#}$ on N is faithful also, and there is nothing further to prove.

5 Monoids not defined by a presentation

Suppose that the monoid M defined by the presentation $\langle A \mid R\rangle$ is finite and that $\phi: A^{*} \longrightarrow M$ is the unique surjective homomorphism extending the inclusion of A in M. Then $\operatorname{ker}(\phi)=R^{\#}$ and (a) $\phi=a$ for every $a \in A$. If $M=\left\{m_{1}, m_{2}, \ldots, m_{|M|}\right\}$, then the right Cayley graph of M with respect to A is the word graph Γ with nodes $N=\{0, \ldots,|M|-1\}$ and edges (α, a, β) for all $\alpha, \beta \in N$ and every $a \in A$ such that $m_{\alpha} a=m_{\beta}$. The right Cayley graph Γ is complete and deterministic, and so if $\pi: N \longrightarrow \mathfrak{P}\left(A^{*} \times A^{*}\right)$ is the path relation on Γ, then $(\alpha) \pi=R^{\#}$ for all $\alpha \in N$.
Example 5.1 Suppose that M is the monoid generated by the matrices

$$
a=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad c=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

over the boolean semiring $\mathbb{B}=\{0,1\}$ with addition defined by

$$
0+1=1+0=1+1=1, \quad 0+0=0
$$

and multiplication defined as usual for the real numbers 0 and 1 . The right Cayley graph of M with respect to its generating set $\{a, b, c\}$ is shown in Fig. 4; see also Table 1.

Suppose that we want to determine a right congruence on a finite monoid M generated by a non-abstract set of generators A-such as transformations, partial permutations, or matrices over a semiring. Of course, every finite monoid M is finitely

Fig. 4 The right Cayley graph of the monoid M from Example 5.1 with respect to the generating set $\{a, b, c\}$; see Table 1 for a representative word for each node. Purple arrows correspond to edges labelled a, gray labelled b, and pink labelled c

presented, and so congruence enumeration can be applied to any presentation for M. It is possible that a presentation for M is already known, or we can compute a presentation for M; for example, by using the Froidure-Pin Algorithm (see [11]).

It is also possible, instead of starting with the trivial word graph, to start a congruence enumeration with the right Cayley graph $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ of M with respect to A as the input to the process. As mentioned above, $(0) \pi_{\Gamma_{1}}=R^{\#}$ and so $\left(\Gamma_{1}, \Delta_{N_{1}}\right)$ is a valid input to a congruence enumeration. The right Cayley graph Γ_{1} is already complete, deterministic, and compatible with $R^{\#}$ by definition. It follows that TC2 and TC3 are the only steps actually applied in a congruence enumeration with input Γ_{1}. More precisely, $\mathbf{T C 2}$ (c) is applied to 0 and every $(u, v) \in S$, and then TC3 is repeatedly applied until $\kappa_{i}=\Delta_{N_{i}}$. The right Cayley graph of a monoid $M=\langle A\rangle$ of one of the types mentioned above, can also be computed using the Froidure-Pin Algorithm, which has complexity $O(|A||M|)$. Given that the right Cayley graph has $|M|$ nodes and $|A||M|$ edges, it is unlikely that, in general, there is a better method for finding the Cayley graph of a monoid from a generating set.

Experiments indicate that if the congruence being enumerated has a relatively large number of classes in comparison to $|M|$, then this second approach is faster than starting from the trivial word graph. On the other hand, if the number of congruence classes is relatively small compared with $|M|$, then starting from the trivial word graph is often faster. Since the number of congruence classes is usually not known in advance, the implementation in libsemigroups [24] runs both these approaches in parallel, accepting whichever provides an answer first.

We end this section with an example of performing a congruence enumeration with a right Cayley graph as an input.

Example 5.2 Suppose that M is the monoid from Example 5.1. To compute the least right congruence ρ on M containing $S=\{(a, b)\}$ we perform the following steps.

Set Γ_{1} to be the right Cayley graph of M with respect to the generating set $\{a, b, c\}$; see Fig. 4 and Table 1. Suppose that $a<b<c$.
Step 1 Apply TC2 to the only pair (a, b) in S, and the output of this is $\left(\Gamma_{2}, \kappa_{2}\right)$ where κ_{2} is the least equivalence on the nodes of Γ_{2} containing (1,2); see Fig. 5a.
Step 2 Apply TC3 to obtain the quotient of Γ_{2} by κ_{2}, the output is $\left(\Gamma_{3}, \kappa_{3}\right)$ where $\Gamma_{3}=\Gamma_{2} / \kappa_{2}$ and κ_{3} is the least equivalence containing $(1,5),(4,6)$, and (4, 7); see Fig. 5 b.
Step 3 Apply TC3 with input $\left(\Gamma_{3}, \kappa_{3}\right)$ and output $\left(\Gamma_{4}, \kappa_{4}\right)$ where $\Gamma_{4}=\Gamma_{3} / \kappa_{3}$ and κ_{4} is the least equivalence containing (4,8); see Fig. 5c.
Step 4 Apply TC3 with input $\left(\Gamma_{4}, \kappa_{4}\right)$ and output $\left(\Gamma_{5}, \kappa_{5}\right)$ where $\Gamma_{5}=\Gamma_{4} / \kappa_{4}$ and $\kappa_{5}=\Delta_{N_{5}}$. Since Γ_{5} is complete and compatible with ρ and κ_{5} is trivial, the enumeration terminates with Γ_{5}; see Fig. 5 d .
We conclude that ρ has 4 equivalence classes whose representatives ε, a, c, and a^{2} correspond to the nodes $\{0,1,3,4\}$ in the graph Γ_{5}. By following the paths in Γ_{5} starting at 0 labelled by each of the words in Table 1 we determine that the congruence classes of ρ are: $\{\varepsilon\},\{a, b, a b\},\{c\},\left\{a^{2}, b a, b c, b a b\right\}$.

6 The HLT strategy

In this section, we describe the so-called HLT strategy for congruence enumeration. The acronym HLT stands for Haselgrove, Leech, and Trotter; for further details see [5] or [31, Section 5.2]. For the record, this is Walker's Strategy 1 in [36], and is referred to as R-style in ACE [14] (" R " for "relators").

The HLT strategy, like every congruence enumeration, starts by applying steps (a) and (b) in the definition (Definition 3.3). We then repeatedly apply TC3 until the resulting κ is trivial, after which we repeatedly perform the following steps:
HLT1. If α is the minimum node in Γ_{i} such that there exists $(u, v) \in R$ where either: u or v does not label a path starting at α, or u and v label paths ending in different nodes. In the former case, we apply TC1 repeatedly until u and v_{1} label paths starting at α where $v=v_{1} b$ for some $b \in A$, and then apply TC2 where part (a) applies. In the latter case, we simply apply TC2 to α and ($u, v) \in R$ where part (c) applies.
HLT2. Repeatedly apply TC3 until the resulting κ_{i+1} is trivial.
HLT3. If α is the node from HLT1, then we apply TC1 to α and every $a \in A$, if any, such that there is no edge incident to α labelled by a.
We note that if for every $a \in A$ there exists $(u, v) \in R$ such that either u or v starts with a, then HLT3 does not have to be performed.

Next we will show that the HLT strategy fulfils the definition of a congruence enumeration.

Proposition 6.1 If $\langle A \mid R\rangle$ is a finite monoid presentation, S is a finite subset of $A^{*} \times A^{*}$, $R^{\#}$ is the least two-sided congruence on A^{*} containing R, and ρ is the least right congruence on A^{*} containing S and $R^{\#}$, then the HLT strategy applied to $\left(\Gamma_{1}, \kappa_{1}\right)$

(a) Step 1 .

(c) Step 3.

(b) Step 2.

(d) Step 4 .

Fig. 5 The output (Γ_{i}, κ_{i}) of each step in Example 5.2. Purple arrows correspond to a, gray to b, pink to c, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes; see Table 1 for a representative word for each node. A dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step
where $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ is a word graph such that $(0) \pi_{\Gamma_{1}} \subseteq \rho$ and $\kappa_{1}=\Delta_{N_{1}}$ is a congruence enumeration.

Proof It suffices to check that the conditions in Definition 3.3 hold. Clearly parts (a) and (b) are included in the HLT strategy and so there is nothing to check for these. (c). Suppose that α is a node in $\Gamma_{i}=\left(N_{i}, E_{i}\right)$ such that there is no edge labelled by some $a \in A$ incident to α. If $\alpha \in N_{j}$ for all $j \geq i$, then there exists $k \in \mathbb{N}$ such that α is the minimum node to which HLT1 is applied. If there exists $(u, v) \in R$ such that the first letter of u is a, then an edge labelled by a incident to α is defined in HLT1. Otherwise, such an edge is defined in HLT3.
(d). Suppose that α is a node in Γ_{i} and $(u, v) \in R$ are such that u and v both label paths starting at α. If $\alpha \in N_{j}$ for all $j \geq i$, then there exists $k \in \mathbb{N}$ such that α is the minimum node to which HLT1 is applied, and so TC2 is applied to α and (u, v) at some later step. Hence either the paths labelled by u and v starting at α end at the same node, or they end at distinct nodes β and γ such that $(\beta, \gamma) \in \kappa_{i}$. But TC3 is applied at some later step, and so β and γ are identified in the corresponding quotient. Eventually

Table 2 A word labelling a path from 0 to each node in the right Cayley graph on the monoid M from Example 6.2; see Fig. 6

0	1	2	3	4
ε	a	b	a^{2}	c

the paths labelled by u and v starting at α end at the same node, i.e. $(u, v) \in(\alpha) \pi_{\Gamma_{i}}$ for sufficiently large i.
(e). If $(\beta, \gamma) \in \kappa_{i}$ for some i, then there exists $j \geq i$ such that $\mathbf{T C} 3$ is applied by the definition of HLT2. If we choose the smallest such j, then $\kappa_{i} \subseteq \kappa_{j}$ and so $(\beta, \gamma) \notin \kappa_{j+1}$.

Example 6.2 Let M be the monoid defined in Example 5.1. Then M is isomorphic to the monoid defined by the presentation

$$
\left\langle a, b, c \mid a c=a^{2}, b^{2}=b, c a=a^{2}, c b=b c, c^{2}=a^{2}, a^{3}=a^{2}, a b a=a^{2}\right\rangle
$$

We will apply the HLT strategy to the presentation and the set $S=\{(a, b)\}$. In other words, we enumerate the least right congruence on the monoid M containing (a, b). This is the same right congruence that we enumerated in Example 5.1. The input word graph Γ_{1} is the trivial graph and the input κ_{1} is $\Delta_{N_{1}}$. We suppose that $a<b<c$.

Step 1 We apply Definition 3.3(a). We add the nodes $1,2 \in N_{1}$ and define the edges $(0, a, 1)$ and $(0, b, 2)$. Since $S=\{(a, b)\}$ this concludes Definition 3.3(a). We continue by applying TC2 to 0 and (a, b). Since a and b label paths from 0 to the nodes 1 and 2, respectively, we define κ_{2} to be the least equivalence containing $\kappa_{1}=\Delta_{N_{1}}$ and (1,2). The output is graph Γ_{2} in Fig. 6a.
Step 2 We continue with Definition 3.3(b). We apply TC3 and we get the graph Γ_{3} in Fig. 6b which is the quotient of Γ_{2} by κ_{2}. The set κ_{3} is defined to be $\Delta_{N_{3}}$.
Step 3 Now we are ready to apply HLT1. Since 0 is the minimum node in Γ_{3} such that $\left(a c, a^{2}\right) \in R$ and $a c$ and a^{2} do not label paths in Γ_{3}, we apply TC1 until node 3 and a path labelled by a^{2} are defined and we continue by applying TC2(b) for $u=a^{2}, v=a c$ and $v_{1}=a$. The output of this step is the graph Γ_{4} in Fig. 6c.
Step 4-8 We apply HLT1 to the node 0 and each of the relations $\left(b^{2}, b\right),\left(c a, a^{2}\right)$, $(c b, b c),\left(c^{2}, a^{2}\right),\left(a^{3}, a^{2}\right) \in R$ (in this order) and the output $\left(\Gamma_{i}, \kappa_{i}\right), i=$ $5, \ldots, 9$ are shown in Fig. 6d-h.
Step 9 In this step, we do not apply HLT1 to 0 and ($a b a, a^{2}$) since $a b a$ and a^{2} both label paths that reach the same node in Γ_{9}. We apply HLT1 to the node 1 and the relation $\left(a c, a^{2}\right) \in R$ and the output is graph Γ_{10} in Fig. 6i.
Step 10 We apply HLT1 to the node 1 and the relation $(c b, b c) \in R$ and the output is graph Γ_{11} in Fig. 6j.
After Step 10, Γ_{11} is complete, deterministic, and compatible with R. Hence the enumeration terminates; see Example 5.1 for details of the enumerated congruence.

Fig. 6 The output (Γ_{i}, κ_{i}) of each step in the HLT strategy in Example 6.2. Purple arrows correspond to a, gray to b, pink to c, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes; see Table 2 for a representative word for each node. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

7 The Felsch strategy

In this section, we describe two versions of the so-called Felsch strategy for congruence enumeration. For the record, this is Walker's Strategy 2 in [36], and is referred to as C-style in ACE [14] ("C" for "cosets").

7.1 First version

The Felsch strategy starts with the trivial word graph $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ and with the trivial equivalence $\kappa_{1}=\Delta_{N_{1}}$ on the nodes N_{1} of Γ_{1}. Just like the HLT strategy, the Felsch strategy starts by applying steps (a) and (b) from the definition of a congruence
enumeration (Definition 3.3). We then repeatedly apply TC3 until the resulting κ is trivial. The following steps are then repeatedly applied:

F1. If $\alpha \in N_{i}$ is the minimum node in Γ_{i} such that there exists $a \in A$ and there is no edge with source α labelled by a, then apply TC1 to α and a. Apply TC2 to every node in Γ_{i} and every relation in R.
F2. Apply TC3 repeatedly until κ_{i+1} is trivial.
It follows immediately from the definition of the Felsch strategy that it satisfies the definition of a congruence enumeration. To illustrate the Felsch strategy, we repeat the calculation from Example 6.2.

Example 7.1 Let M be the monoid defined by defined in Example 5.1. Then M is isomorphic to the monoid defined by the presentation

$$
\left\langle a, b, c \mid a c=a^{2}, b^{2}=b, c a=a^{2}, c b=b c, c^{2}=a^{2}, a^{3}=a^{2}, a b a=a^{2}\right\rangle
$$

We will apply the Felsch strategy to the presentation (with $a<b<c$) and the set $S=\{(a, b)\}$. In other words, we enumerate the least right congruence on the monoid M containing (a, b). This is the same right congruence that we enumerated in Example 5.1. The input word graph Γ_{1} is the trivial graph and the input κ_{1} is $\Delta_{N_{1}}$.

Step 1 We apply Definition 3.3(a). We add the nodes $1,2 \in N_{1}$ and define the edges $(0, a, 1)$ and $(0, b, 2)$. Since $S=\{(a, b)\}$ this concludes Definition 3.3(a). We continue by applying TC2 to 0 and (a, b). Since a and b label paths from 0 to the nodes 1 and 2 , respectively, we define κ_{2} to be the least equivalence containing $\kappa_{1}=\Delta_{N_{1}}$ and $(1,2)$. The output is graph Γ_{2} in Fig. 7a.
Step 2 We continue with Definition 3.3(b). We apply TC3 and we get graph Γ_{3} in Fig. 7 b which is the quotient of Γ_{2} by κ_{2}. The set κ_{3} is defined to be $\Delta_{N_{3}}$
Step 3 We apply F1 and hence we apply TC1 to 0 and c. We add the node $3 \in N_{4}$ and define the edge $(0, c, 3)$. The output is graph Γ_{4} in Fig. 7c.
Step 4 We continue with the application of the second part of $\mathbf{F 1}$ and hence we apply TC2 to 1 and $\left(b^{2}, b\right)$. The output is graph Γ_{5} in Fig. 7d.
Step 5 We apply $\mathbf{F} 1$ and hence we apply TC1 to 1 and a. We add the node $4 \in N_{6}$ and define the edge ($1, a, 4$). The output is graph Γ_{6} in Fig. 7e.
Steps 6-12 We continue with the application of the second part of $\mathbf{F} 1$ and hence we apply TC2 to 0 and $\left(a^{3}, a^{2}\right)$, to 0 and ($a c, a^{2}$), to 1 and ($a c, a^{2}$), to 0 and $\left(c a, a^{2}\right)$, to 0 and $\left(c^{2}, a^{2}\right)$ and to 3 and $\left(b^{2}, b\right)$.
After Step 12, Γ_{13} in Fig. 7 f is complete, deterministic, and compatible with R. Hence the enumeration terminates; see Example 5.1 for details of the enumerated congruence.

7.2 Second version

The purpose of $\mathbf{F} \mathbf{2}$ in the Felsch stategy is to squeeze as much information as possible out of every definition of an edge (α, a, β) made in F1. The implementation of the

Fig. 7 The output (Γ_{i}, κ_{i}) of each step in the Felsch strategy in Example 7.1. Purple arrows correspond to a, gray to b, pink to c, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes; see Table 3 for a representative word for each node. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

Table 3 A word labelling a path from 0 to each node in the right Cayley graph on the monoid M from Example 7.1; see Fig. 7

0	1	2	3	4
ε	a	b	c	a^{2}

Felsch strategy in [23] spends most of its time performing TC2. In this section, we propose a means of reducing the number of times TC2 is applied in $\mathbf{F} 2$ of the Felsch strategy. Roughly speaking, we do this by only applying TC2 to $(u, v) \in R$ and a node α in Γ_{i} if the path in Γ_{i} starting at α and labelled by u, or v, goes through a part of Γ_{i} that has recently changed.

To enable us to do this, we require a new set $D_{i} \subseteq N_{i} \times A$, in addition to the word graph Γ_{i} and equivalence relation κ_{i}, at every step of a congruence enumeration. An element (α, a) of D_{i} corresponds to a recently defined edge incident to α and labelled by a. More precisely, we define $D_{1}=\varnothing$ and for $i \geq 1$ we define

$$
D_{i+1}:=\left\{(\alpha, a) \in N_{i} \times A:(\alpha, a, \beta) \in E_{i+1} \backslash E_{i}\right\}
$$

In order to efficiently use the information recorded in D_{i}, we require the following definition.

Definition 7.2 If $\langle A \mid R\rangle$ is a finite monoid presentation, then we define the Felsch tree $F(A, R)$ of this presentation to be a pair (Θ, ι) where:
(a) $\Theta=(N, E)$ is a graph with nodes N consisting of every (contiguous) subword $w \in A^{*}$ of a word in a relation in R and edges $(u, a, a u) \in E$ whenever $u, a u \in N$ and $a \in A$; and
(b) a function ι from N to the power set $\mathfrak{P}(R)$ of R such that $(u, v) \in(w) \iota$ whenever $w \in N$ is a prefix of u or v.

Fig. 8 The Felsch tree $F(A, R)$ from Example 7.3

Example 7.3 If $A=\{a, b\}$ and $R=\left\{\left(a^{4}, a\right),\left(b^{3}, b\right),\left((a b)^{2}, a^{2}\right)\right\}$, then the nodes in the word graph Θ in $F(A, R)$ are

$$
N=\left\{\varepsilon, a, b, a^{2}, a b, b a, b^{2}, a^{3}, a b a, b a b, b^{3}, a^{4},(a b)^{2}\right\} .
$$

A diagram of Θ can found in Fig. 8 .
The function $\iota: N \longrightarrow \mathfrak{P}(R)$ is:

$$
\begin{aligned}
(\varepsilon) \iota & =R, \\
(a) \iota=\left(a^{2}\right) \iota & =\left\{\left(a^{4}, a\right),\left((a b)^{2}, a^{2}\right)\right\} \\
\left(a^{3}\right) \iota=\left(a^{4}\right) \iota & =\left\{\left(a^{4}, a\right)\right\} \\
(a b a) \iota & =\left\{\left((a b)^{2}, a^{2}\right)\right\} \\
(b) \iota=\left(b^{2}\right) \iota=\left(b^{3}\right) \iota & =\left\{\left(b^{3}, b\right)\right\} \\
(a b) \iota=\left((a b)^{2}\right) \iota & =\left\{\left((a b)^{2}, a^{2}\right)\right\} \\
(b a) \iota=(b a b) \iota & =\varnothing .
\end{aligned}
$$

We modify TC1, TC2, and TC3 so that the set D_{i} is defined appropriately at every step, and then, roughly speaking, we replace $\mathbf{F} 2$ in the Felsch strategy by a backtrack search through Θ in $F(A, R)$ for every pair in D_{i}. We will refer to this as the modified Felsch strategy.

If α is a node in Γ_{i} and $v \in A^{*}$ is a node in Θ, then we perform a backtrack search consisting of the following steps:

PD1. Apply TC2 to α and every relation in $(v) \iota$.
PD2. For every edge $(v, b, b v)$ in Θ that has not been traversed: for every node β in Γ_{i} such that $(\beta, b, \alpha) \in E_{i}$, apply PD1 and PD2 to β and $b v$.
PD3. Repeatedly apply TC3 until κ is trivial.

We will refer to either removing a pair from D_{i} or performing the backtrack search as processing a deduction.

The backtrack search is initiated for every $(\alpha, a) \in D_{i}$. If a is not a node in Θ, then a does not occur in any relation in R and so following the path in Γ_{i} labelled by any u such that $(u, v) \in R$ from any node in w in Γ_{i} cannot contain any edge labelled by a. In particular, no such path contains the edge $(\alpha, a, \beta) \in \Gamma_{i}$; the definition of which caused (α, a) to belong to D_{i} in the first place. Hence if $(\alpha, a) \in D_{i}$, then there is a node a in Θ.

We repeatedly apply PD1, PD2, and PD3 starting from every pair in D_{i}. This must terminate eventually because Θ is finite and we only apply TC2 and TC3 in PD1, PD2, and PD3.

To show that the modified Felsch strategy is a congruence enumeration, we require the following lemma.

Lemma 7.4 Suppose that α is a node in Γ_{j} for all $j \geq i$, and that $(u, v) \in R$ is such that u and v label paths P_{u} and P_{v} in Γ_{i} starting at α. If $(\beta, a) \in D_{i}$ for some i, and there is an edge $(\beta, a, \gamma) \in \Gamma_{i}$ in either P_{u} or P_{v}, then $(u, v) \in(\alpha) \pi_{\Gamma_{k}}$ for some $k \geq i$.

Proof Suppose that P_{u} consists of the edges $\left(\mu_{1}, b_{1}, \mu_{2}\right), \ldots,\left(\mu_{r}, b_{r}, \mu_{r+1}\right)$ where $\mu_{1}=\alpha$ and $u=b_{1} \cdots b_{r}$. Similarly, suppose that P_{v} consists of the edges $\left(\nu_{1}, c_{1}, \nu_{2}\right), \ldots,\left(v_{s}, c_{s}, v_{s+1}\right)$ where $\nu_{1}=\alpha$ and $v=c_{1} \cdots c_{s}$. We may assume that $\mu_{r+1} \neq v_{s+1}$ and that there exists $t \in\{1, \ldots, r\}$ such that $\left(\mu_{t}, b_{t}, \mu_{t+1}\right)=(\beta, a, \gamma)$.

Since $(\beta, a) \in D_{i}$, the backtrack search in PD1 and PD2 will be applied to (β, a) at some step $j \geq i$ of the enumeration. This search begins with PD1, where TC2 is applied to β and every relation in (a)ı. At step PD2 we apply PD1 and PD2 to every $\zeta \in N_{i}$ and w such that there exists an edge of the form (a, b, w) in Θ and an edge $(\zeta, b, \beta) \in E_{i}$.

By definition, $u=b_{1} \cdots b_{t-1} a b_{t+1} \cdots b_{r}$. If $m \in\{1, \ldots, t\}$, then, since $(u, v) \in R, b_{m} \cdots b_{t-1} a$ and $b_{m-1} \cdots b_{t-1} a$ are nodes of Θ and there exists an edge $\left(b_{m} \cdots b_{t-1} a, b_{m-1}, b_{m-1} \cdots b_{t-1} a\right)$ in Θ. Also by assumption $\left(\mu_{m-1}, b_{m-1}, \mu_{m}\right) \in$ E_{i} and so ($\mu_{m-1}, b_{m-1} \cdots b_{t-1} a$) is one of the pairs in PD2 if it is applied to $\left(\mu_{m}, b_{m} \cdots b_{t-1} a\right)$. If $m=t$, then $\left(\mu_{m}, b_{m} \cdots b_{t-1} a\right)=\left(\mu_{t}, a\right)=(\beta, a)$ and hence PD2 is applied to $\left(\mu_{m}, b_{m} \cdots b_{t-1} a\right)$ for every $m \in\{1, \ldots, t\}$. In particular, PD1 is applied to $\left(\mu_{1}, b_{1} \cdots b_{t-1} a\right)=\left(\alpha, b_{1} \cdots b_{t-1} a\right)$ at some point. This means that TC2 is applied to α and every relation in $\left(b_{1} \cdots b_{t-1} a\right) \iota$. Since $b_{1} \cdots b_{t-1} a=b_{1} \cdots b_{t}$ is a prefix of u, it follows that $(u, v) \in\left(b_{1} \cdots b_{t-1} a\right) \iota$ and so TC2 is applied to α and (u, v) at some step $j \geq i$. Because u and v were assumed to label paths originating at α, neither TC2(a) nor (b) applies. Additionally, we assumed that $\mu_{r+1} \neq v_{s+1}$ and so $\mathbf{T C 2}$ (c) is applied and $\left(\mu_{r+1}, v_{s+1}\right) \in \kappa_{i+1}$.

As noted above, Θ is finite, and PD1 and PD2 are only applied finitely many times before there is an application of PD3. If the first application of TC3 (in PD3) after step j occurs at step k, then Γ_{k+1} is the quotient of Γ_{k} by κ_{k} and $\kappa_{i} \subseteq \kappa_{k}$. Therefore $(u, v) \in(\alpha) \pi_{\Gamma_{k+1}}$ as required.

Proposition 7.5 If $\langle A \mid R\rangle$ is a finite monoid presentation, S is a finite subset of $A^{*} \times A^{*}$, $R^{\#}$ is the least two-sided congruence on A^{*} containing R, and ρ is the least right
congruence on A^{*} containing S and $R^{\#}$, then the modified Felsch strategy applied to $\left(\Gamma_{1}, \kappa_{1}\right)$, where $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ is the trivial word graph and $\kappa_{1}=\Delta_{N_{1}}$, is a congruence enumeration.

Proof The only difference between the modified Felsch strategy and the original Felsch strategy is that after F1, TC2 is only applied to particular nodes and relations. Hence, it suffices to show that Definition 3.3(d) holds. Assume $\alpha \in N_{i}$ at some step i in the congruence enumeration and let $(u, v) \in R$. In order for modified Felsch to be a congruence enumeration we need to show that there exists $j \geq i$ such that either $\alpha \notin N_{j}$ or $(u, v) \in(\alpha) \pi_{\Gamma_{j}}$. If $\alpha \notin N_{j}$ for some $j>i$, then $\alpha \notin N_{k}$ for all $k \geq j$ (since new nodes introduced in TC1 are larger than all previous nodes). Hence it suffices to prove that if α is a node for all $j \geq i$, there exists some k such that $(u, v) \in(\alpha) \pi_{\Gamma_{k}}$. Since $\mathbf{F} 1$ is repeatedly applied there exists a step $k+1$ when α is a node in Γ_{k+1} and paths P_{u} and P_{v} leaving α labelled by u and v, respectively, exist in Γ_{k+1}. Suppose that $k \in \mathbb{N}$ is the least value such that this holds. Then, by Lemma 7.4, it suffices to show that there exists an edge (β, a, γ) in either P_{u} or P_{v} that belongs to $E_{k+1} \backslash E_{k}$ so that $(\beta, a) \in D_{k+1}$. If every edge in P_{u} and P_{v} belongs to E_{k}, then u and v both label paths in Γ_{k} starting at α, which contradicts the assumed minimality of k.

8 Implementation issues

In this section, we briefly address some issues relating to any implementation of the Todd-Coxeter algorithm for semigroups and monoids as described herein.

In some examples, it can be observed that the HLT strategy defines many more nodes than the Felsch strategy. One possible antidote to this is to, roughly speaking, perform
"periods of definition à la HLT [that] alternate with periods of intensive scan à la Felsch" [25, p. 14].

In both ACE [14] and libsemigroups [24] it is possible to specify the precise lengths of the periods of applications of HLT and Felsch. As might be expected, some choices work better than others in particular examples, and this is difficult (or impossible) to predict in advance. It is routine to show that alternating between HLT and Felsch in this way still meets the definition of a congruence enumeration given in Definition 3.3. Although we presented the HLT and Felsch strategies separately, it seems that some combination of the two sometimes offers better performance.

The next issue is: how to represent the equivalence relations κ_{i} ? A method suggested in [31, Section 4.6], which is now a standard approach for representing equivalence relations, is to use the disjoint-sets data structure to represent the least equivalence relation containing the pairs (u, v) added to κ_{i} in TC2(c) or TC3. The theoretical time complexity of updating the data structure to merge two classes, or to find a canonical representative of a class given another representative, is $O(\alpha(m)$) time (in both the worst and the average case) and requires $O(m)$ space where m is the number of elements in the underlying set and α is the inverse Ackermann function; see [34].

Another issue that arises in the implementation is how to represent the word graphs Γ_{i}. In order to efficiently obtain the word graph Γ_{i+1} from Γ_{i} in TC3 it is necessary to keep track of both the edges with given source node, and with given target. This is more complex for semigroups and monoids than for groups, because a word graph $\Gamma=(N, E)$ ouput by a coset enumeration for a group has the property that for every $\beta \in N$ and every $a \in A$ there is exactly one $\alpha \in N$ such that (α, a, β) is an edge. As such if it ever arises that there are edges $\left(\alpha_{1}, a, \beta\right)$ and (α_{2}, a, β) in a word graph during a coset enumeration, the pair (α_{1}, α_{2}) can immediately be added to κ_{i}. It is therefore possible to represent every word graph arising during a coset enumeration to have the property that $|\{\alpha \in N:(\alpha, a, \beta) \in E\}|=1$, which simplifies the data structure required to represent such a graph.

In contrast, if $\Gamma=(N, E)$ is a word graph arising in a congruence enumeration for a monoid, then $|\{\alpha \in N:(\alpha, a, \beta) \in E\}|$ can be as large as $|N|$. In practice, in TC3 pairs of nodes belonging to κ_{i} are merged successively. A balance must be struck between repeatedly updating the data structure for the edges with given target in Γ_{i+1} or only retaining the edges with given source and rebuilding the data structure for the target edges later in the process. The former works better if the number of nodes in Γ_{i} is comparable to the number in Γ_{i+1}, i.e. only a relatively small number of nodes are merged. On the other hand, if Γ_{i+1} is considerably smaller than Γ_{i}, then it can be significantly faster to do the latter.

Depending on the sequence of applications of TC1, TC2, and TC3 in two successful congruence enumerations with the same input, the output word graphs may not be equal. However, the output word graphs are unique up to isomorphism. Standardization is a process for transforming a word graph into a standard form. To discuss this we require the following notion.

If A is any alphabet and \preceq is a total order on A^{*}, then we say that \preceq is a reduction ordering if \preceq has no infinite descending chains and if $u \preceq v$ for some $u, v \in A^{*}$, then $p u q \preceq p v q$ for all $p, q \in A^{*}$. It follows from this definition that ε is the \preceq-minimum word in A^{*} for every reduction ordering on A^{*}.

If the set A is totally ordered by \leq, then we may extend \leq to $\leq_{\text {lex }}$ over A^{*}, by defining $\varepsilon \leq_{\text {lex }} w$ for all $w \in A^{*}$ and $u \leq_{\text {lex }} v$ whenever $u=a u_{1}$ and $v=b v_{1}$ for some $a, b \in A$ with $a<b$, or $a=b$ and $u_{1} \leq_{\text {lex }} v_{1}$. This order is usually referred to as the lexicographic order on A^{*}. Note that lexicographic order is not a reduction ordering. The short-lex order \leq slex on A^{*} is defined as follows: if $u, v \in A^{*}$, then $u \leq_{\text {slex }} v$ if $|u|<|v|$ or $|u|=|v|$ and $u \leq_{\text {lex }} v$. It is straightforward to verify that the short-lex order on A^{*} is a reduction ordering. Further examples of reduction orderings on A^{*} include recursive path descent, as well as the wreath product of any finite collection of reduction orderings; see [31, Section 2.1] for further details.

Suppose that \preceq is a reduction ordering on A^{*}. We will say that the word graph $\Gamma=(N, E)$ is standardized with respect to \preceq if $\alpha<\beta$ if and only if $w_{\alpha} \prec w_{\beta}$ for any $\alpha, \beta \in N$ where $w_{\alpha}, w_{\beta} \in A^{*}$ are the \preceq-minimum words labelling $(0, \alpha)$ - and $(0, \beta)$ paths, respectively. Any process that transforms a word graph Γ into a standardized word graph, is referred to as standardization; for example, see STANDARDIZE in [31, p195].

A word graph Γ_{i} can be replaced by any standardized word graph at any step of a congruence enumeration, provided that the values in κ_{i} and D_{i} are also updated
accordingly. In particular, it can be applied repeatedly during a congruence enumeration, or only at the end. Standardization during a congruence enumeration can be very costly in the context of semigroups and monoids. However, it can also be somewhat beneficial in some examples.

The order of the definitions of new nodes in Γ_{i+1} in both HLT1 and F1 depends on the numerical values of their source nodes. Hence replacing Γ_{i} by a standardized word graph can change the order of these definitions, which in turn can influence the number of steps in the enumeration. In an actual implementation, standardising a word graph is a rather complicated process that involves applying a permutation to the data structure representing the graph.

9 Further variants

In this section, we present some variants of the Todd-Coxeter algorithm that appear in the literature, which are used to compute special types of congruences (namely Rees congruences) and for computing congruences on finitely presented inverse monoids.

9.1 Monoids with zero

The first such variant is for finitely presented monoids with a zero element 0 . For example, if M is the monoid defined by the presentation

$$
\left\langle a, b, 0 \mid a b=0, a^{4}=a, b^{3}=b,(a b)^{2}=0, a 0=0 a=0=b 0=0 b=0^{2}\right\rangle
$$

then the relations $a 0=0 a=0=b 0=0 b=0^{2}$ indicate that 0 is a zero element of M. Of course, the algorithms described above can be applied to this finite monoid presentation, as well as every other. On the other hand, the inclusion of the relations $a 0=0 a=0=b 0=0 b=0^{2}$ is rather cumbersome, and so we might rather write:

$$
\left\langle a, b \mid a b=0, a^{4}=a, b^{3}=b,(a b)^{2}=0\right\rangle
$$

where the relations $a 0=0 a=0=b 0=0 b=0^{2}$ are implicit. This is directly analogous to the implicit relations for the identity in a monoid presentation, and in a group presentation for inverses. We refer to such a presentation as a finite monoid-with0 presentation. Both the HLT and Felsch strategies can be adapted for monoid-with-0 presentations without much difficulty as follows.

Suppose that $\langle A \mid R\rangle$ is a finite monoid-with-0 presentation. We refer to a word graph $\Gamma_{i}=\left(N_{i}, E_{i}\right)$ over $A \cup\{0\}$ with a distinguished node $\omega \in N_{i}$ such that the only edges with source ω are loops of the form $(\omega, a, \omega) \in E_{i}$ for all $a \in A$ and edges $(\alpha, 0, \omega)$ for all $\alpha \in N_{i}$ as a word graph-with- 0 . We augment TC1 with the following step:

Z: If β is the new node introduced in $\mathbf{T C 1}$, then we define the edge $(\beta, 0, \omega)$.
Given a monoid-with- 0 presentation, it is routine to verify that if we perform any congruence enumeration (where $\mathbf{T C 1}$ is augmented with \mathbf{Z}) with input $\left(\Gamma_{1}, \kappa_{1}\right)$ where
$\Gamma_{1}=\left(N_{1}, E_{1}\right)$ is a word graph-with- 0 and $\kappa_{1}=\Delta_{N_{1}}$, then the conclusions in Corollary 4.2 still hold.

9.2 Rees congruences

Following [30, Chapter 12], we may extend the discussion of the previous section, to obtain a procedure for enumerating a left, right, or two-sided Rees congruence on a finitely presented monoid (with or without zero element). If I is a left, right, or two-sided ideal of the monoid S, then the Rees congruence associated with I is the congruence $\Delta_{S} \cup(I \times I)$. Such a procedure applies to a finite monoid presentation $\langle A \mid R\rangle$ and set finite $S \subseteq A^{*} \times\{0\}$ (rather than $S \subseteq A^{*} \times A^{*}$ as in Definition 3.3). The input to such an enumeration is a word graph-with-zero $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ and $\kappa_{1}=\Delta_{N_{1}}$. The first steps are identical to those given in Definition 3.3(a) and (b) except that $\mathbf{T C 1}$ and \mathbf{Z} are applied in part (a). The subsequent steps are just any sequence of applications of TC1+Z, TC2, and TC3 satisfying Definition 3.3(c), (d) and (e). It follows immediately from Theorem 4.1, and the validity of the congruence enumeration for monoid-with-0 presentations, that this process is valid.

9.3 Stephen's procedure

Another variant of the Todd-Coxeter algorithm is that of Stephen [32, Chapter 4], mentioned in the introduction of the current article. Note that a similar method for constructing the Cayley graph of groups was described by Dehn [6]. Suppose that M is the monoid defined by a finite monoid presentation $\langle A \mid R\rangle$ and that $\Gamma=(N, E)$ is the right Cayley graph of M with respect to A. If $w \in A^{*}$ is arbitrary and w labels a $(0, \alpha)$-path in Γ for some $\alpha \in N$, then the aim of this variant is to output the subgraph Λ of Γ induced by the set X of nodes in N from which α is reachable. Note that the set of these nodes corresponds to the set of elements in M which are $\geq_{\mathcal{R}} w / R^{\#}$ (recall that two monoid elements $s, t \in M$ satisfy $s \geq_{\mathcal{R}} t$ if $\left.t M \subseteq s M\right)$. If \mathcal{A} is the automata with alphabet A, state set X, initial state 0 , accept state α, and edges consisting of those in Λ, then the language $L(\mathcal{A})$ accepted by \mathcal{A} is the set of words in $v \in A^{*}$ that represent the same element of M as w (i.e. $v / R^{\#}=w / R^{\#}$). As such if the (as yet to be described) procedure terminates, the output allows us to decide the word problem for w in M.

Suppose that $w=a_{1} \cdots a_{n} \in A^{*}$ for some $a_{1}, \ldots, a_{n} \in A$, that $\Gamma_{1}=\left(N_{1}, E_{1}\right)$ is the trivial word graph, and $\kappa_{1}=\Delta_{N_{1}}$. A special case of Stephen's procedure consists of the following steps described in terms of TC1, TC2, and TC3. The first step is always:
S1: TC1 is applied to 0 and a_{1}, then to i and a_{i+1} for every i such that $1 \leq i \leq n-1$. The resulting Γ_{n} consists of the single path from 0 to the node n. (The graph Γ_{n} is referred to as the linear graph of w in [32].)
$\mathbf{S} \mathbf{1}$ is then followed by any sequence of the following steps:
S2: At step i, suppose that the word graph $\Gamma_{i}=\left(N_{i}, E_{i}\right)$ contains a path with source $\alpha \in N_{i}$ labelled u for some $(u, v) \in R$. If $v=v_{1} b$ where $v_{1} \in A^{*}$ and $b \in A$,
then $\mathbf{T C} 1$ is applied until there is a path with source α labelled by v_{1} and then TC2 is applied to α and $(u, v) \in R$. (This is referred to as an elementary expansion in [32].)
S3: Apply TC3. (Quotienting Γ_{i} by the least equivalence containing a single $(\alpha, \beta) \in$ $N_{i} \times N_{i}$ is referred to as a determination in [32]. In TC3 we quotient Γ_{i} by the entire equivalence κ_{i}; this is the only point where the procedure described here differs from the description in [32].)
It is shown in [32] that if any sequence of $\mathbf{S 2}$ and $\mathbf{S 3}$ has the property that after finitely many steps any subsequent applications of $\mathbf{S 2}$ and $\mathbf{S 3}$ result in no changes to the output (i.e. $\left.\left(\Gamma_{i+1}, \kappa_{i+1}\right)=\left(\Gamma_{i}, \kappa_{i}\right)\right)$, then Γ_{i} is isomorphic to the induced subgraph Λ defined at the start of this section. Note that $\mathbf{S} 2$ and $\mathbf{S 3}$ are similar to HLT1, HLT2, and HLT3 described in Sect. 6. While it is not possible to use congruence enumeration, at least as described in this paper, to solve the word problem when the monoid M defined by a presentation $\langle A \mid R\rangle$ is infinite, it is possible to decide whether or not two words $u, v \in A^{*}$ represent the same element of M using the procedure defined in this section, whenever the induced subgraph Λ is finite. Since the set of nodes in Λ corresponds to the set of elements in M which are $\geq_{\mathcal{R}} u / R^{\#}$ (assuming that u is the input word for Stephen's procedure) the word graph Λ is finite when there are only finitely many elements of M that are $\geq_{\mathcal{R}} u / R^{\#}$.

A Extended examples

This appendix contains a number of extended examples of congruence enumerations.
Example A. 1 We will apply the Felsch strategy to the presentation

$$
\mathcal{P}=\left\langle a, b \mid a^{3}=a, b^{3}=b,(a b)^{2}=a^{2}\right\rangle
$$

with $a<b$. The input word graph Γ_{1} is the trivial graph and the input $\kappa_{1}=\Delta_{N_{1}}$. Since $S=\varnothing$, we do not apply steps Definition 3.3(a) and (b).

For the sake of simplicity, the steps in this example correspond to either a single application of $\mathbf{F 1}$ (a single application of TC1 and multiple applications of TC2) or a single application of TC3. If a step produces no change to Γ_{i} or κ_{i}, this step is skipped and does not have a number; see Table 4 and Figs. 9, 10, 11, 12, and 13.

Step 1-2 The only node in Γ_{1} is 0 . Since there is no edge incident to 0 labelled by a, in Step 1 we apply $\mathbf{F 1}$ and add the node 1 and the edge $(0, a, 1)$. Similarly, in Step 2 we add the node 2 and the edge ($0, b, 2$). The output is the word graph Γ_{3} in Fig. 9a.
Step 3 An application of TC1 which leads to the definition of the node 3 and the edge (1, a, 3). At this point $\mathbf{F} 1$ leads to an application of $\mathbf{T C} 2$ to the node 3 and the relation $\left(a^{3}, a\right)$ and hence we define the edge ($3, a, 1$). The output of step 3 is Γ_{4}; see Fig. 9 b.
Step 4-5 We apply TC1 twice (since there are no applications of TC2 that yield new information). In step 4 we define the node 4 and the edge $(1, b, 4)$ and in step 5 the node 5 and the edge ($2, a, 5$); see Fig. 9c.

Step 6 The node 6 and the edge $(2, b, 6)$ are defined. Applying TC2 to the node 6 and the relation $\left(b^{3}, b\right) \in R$ leads to the definition of the edge $(6, b, 2)$. The output of step 6 is Γ_{7}; see Fig. 9d.
Step 7 We apply TC1 and define the node 7 and the edges (3, b, 7); see Fig. 9e.
Step 8 The node 8 and edge $(4, a, 8)$ are defined in TC1. Applying TC2 leads to the definition of edges $(7, b, 3),(8, b, 3)$, and $(8, a, 4)$; see Fig. 9f.
Step 9 We apply TC1 and define the node 9 and the edge ($4, b, 9$). We apply TC2 to 4 and the relation $\left(b^{3}, b\right)$ and define the edge $(9, b, 4)$; see Fig. 9 g .
Step 10 We apply TC1 and define the node 10 and the edge (5, $a, 10$). We apply TC2 to the node 5 and the relation $\left(a^{3}, a\right)$ and define the edge ($10, a, 5$); see Fig. 9h.
Step 11-12 We apply TC1 twice, since there are no applications of TC2 yielding any new information. The nodes 11 and 12 and the edges $(5, b, 11)$ and $(6, a, 12)$ are defined; see Fig. 9i.
Step 13 We apply TC1 and define the node 13 and the edge (7, a, 13). We apply TC2 to the node 1 and the relation $\left((a b)^{2}, a^{2}\right)$ and define the edge $(13, b, 1)$. We also apply TC2 to node 7 and the relation $\left((a b)^{2}, a^{2}\right)$ and define the edge ($13, a, 7$). Next, we apply TC2 to the node 1 and the relation $\left(b^{3}, b\right)$ resulting in the pair $(1,9)$ begin added to κ_{14}. Finally, we apply TC2 to the node 13 and the relation $\left((a b)^{2}, a^{2}\right)$ which yields $(4,13)$ being added to κ_{14}; see Fig. 9j.
Step 14 In this step κ_{14} is the least equivalence relation containing $\{(1,9),(4,13)\}$. Taking the quotient gives graph Γ_{15}. In Γ_{15} there exist two edges $(4, a, 7)$ and $(4, a, 8)$ with the same source and label, and so the pair $(7,8)$ is added to κ_{15}; see Fig. 10a.
Step 15 Taking the quotient of Γ_{15} in $\mathbf{F} 2$ by κ_{15} yields the graph in Fig. 10b.
Step 16 We apply TC1 and define the node 14 and edge (10, b, 14); see Fig. 10c.
Step 17 We apply TC1 and define the node 15 and the edge (11, a, 15). Applying TC2 to 2 and the relation $\left((a b)^{2}, a^{2}\right)$ leads to the definition of the edge $(15, b, 10)$ and applying TC2 to 11 and the relation $\left((a b)^{2}, a^{2}\right)$ leads to the definition of edge (15, a, 11). Finally, an application of TC2 to 15 and the relation $\left(b^{3}, b\right)$ leads to the definition of the node $(14, b, 10)$; see Fig. 10d.
Step 18 The node 16 and the edge $(11, b, 16)$ are defined. After an application of TC2 to 5 and $\left(b^{3}, b\right)$ leads to the definition of $(16, b, 11)$; see Fig. 10e.
Step 19 The node 17 and the edge $(12, a, 17)$ are defined. An application of TC2 to 6 and $\left(b^{3}, b\right)$ leads to the definition of (17, $\left.a, 12\right)$; see Fig. 10f.
Step 20 We apply TC1 and the node 18 and the edge $(12, b, 18)$ are defined; see Fig. 11a.
Step 21 We apply TC1 and the node 19 and the edge (14, a, 19) are defined. Applying TC2 to 5 and the relation $\left((a b)^{2}, a^{2}\right)$ leads to the definition of the edge $(19, b, 5)$ and applying TC2 to 14 and the relation $\left((a b)^{2}, a^{2}\right)$ leads to the definition of edge (19, $a, 14$). We apply TC2 to 19 and $\left(b^{3}, b\right)$ and to node 19 and $\left((a b)^{2}, a^{2}\right)$ yielding the pairs $(5,16)$ and $(11,19)$ are added to κ_{22}; see Fig. 11b.

Table 4 A word labelling a path from 0 to each node in Example A.1; see Figs.9, 10, 11, 12, and 13

0	1	2	3	4	5	6	7	8	9	10	11
ε	a	b	a^{2}	$a b$	$b a$	b^{2}	$a^{2} b$	$a b a$	$a b^{2}$	$b a^{2}$	$b a b$
12	13	14	15	16	17	18	19	20	21	22	23
$b^{2} a$	$a^{2} b a$	$b a^{2} b$	$(b a)^{2}$	$b a b^{2}$	$b^{2} a^{2}$	$b^{2} a b$	$b a^{2} b a$	$b^{2} a^{2} b$	$b^{2} a b a$	$b^{2} a b^{2}$	$b^{2} a^{2} b a$

Step 22 Taking the quotient of Γ_{22} by κ_{22} gives the graph Γ_{23}. In Γ_{23} there are the edges (11, $a, 14$) and ($11, a, 15$) with source 11 and label a and hence the pair $(14,15)$ is added to κ_{23}; see Fig. 11c.
Step 23 Taking the quotient gives graph Γ_{24}; see Fig. 11d.
Step 24 We apply TC1 so that the node 20 and the edge $(17, b, 20)$ are defined; see Fig. 12a.
Step 25 We apply TC1 and the node 21 and the edge $(18, a, 21)$ are defined. We apply TC2 to 6 and $\left((a b)^{2}, a^{2}\right)$ and define the edge $(21, b, 17)$. We also apply TC2 to 18 and $\left((a b)^{2}, a^{2}\right)$ and define (21, $\left.a, 18\right)$. Finally, we apply TC2 to 6 and $\left(b^{3}, b\right)$ and we define ($20, b, 17$); see Fig. 12b.
Step 26 We apply TC1 and define 22 and ($18, b, 22$). Next, we apply TC2 to 12 and $\left(b^{3}, b\right)$. This leads to the definition of (22, $\left.b, 18\right)$; see Fig. 12c.
Step 27 We apply TC1 and define 23 and (20, a, 23). We apply TC2 to 12 and $\left((a b)^{2}, a^{2}\right)$ and define $(23, b, 12)$. We also apply TC2 to 20 and $\left((a b)^{2}, a^{2}\right)$ and define $(23, a, 20)$. Finally, we apply TC2 to 23 and $\left(b^{3}, b\right)$ and to 23 and $\left((a b)^{2}, a^{2}\right)$ yielding the pairs $(12,22)$ and $(18,23)$ in κ_{28}; see Fig. 12d.
Step 28 Taking the quotient of Γ_{28} by κ_{28} gives Γ_{29}. In Γ_{29} there exist two edges $(18, a, 20)$ and (18, $a, 21)$ labelled a leaving $b^{2} a b$ and hence the pair $(20,21)$ is added to κ_{29}; see Fig. 13a.
Step 29 Taking the quotient of Γ_{29} by κ_{29} gives the graph Γ_{30}; see Fig. 13b.
After Step 29, Γ_{30} is complete, deterministic, and compatible with R. Hence the enumeration terminates.

Example A. 2 In this example, we perform the HLT strategy to find the right Cayley graph of the monoid defined by the presentation:

$$
\left\langle a, b, c \mid a^{2}=a c, b^{2}=b, a^{2}=c a, b c=c b, a^{2}=c^{2}, a^{3}=a^{2}, a^{2}=a b a\right\rangle
$$

with $a<b<c$. Each step of this enumeration corresponds to either: at least one application of TC1 (in HLT1) followed by multiple applications of TC2 (in the same HLT1 step as the application of TC1 or subsequent applications of HLT1 where TC1 is not invoked); or a single application of TC3 (in HLT2); see Figs. 14 and 15 for the word graphs Γ_{i} and equivalence relation κ_{i} after every step i; see also Table 5.

Step 1 At this step we apply HLT1 to the node 0 and relation $\left(a^{2}, a c\right)$. TC1 yields the new nodes 1 and 2 , and the edges $(0, a, 1)$ and $(1, a, 2)$; $\mathbf{T C 2}(\mathrm{b})$ then yields the edge (1, $c, 2$); see Fig. 14a.

(a) Steps $1 \& 2$.

(c) Step $4 \& 5$

(d) Step 6 .

(e) Step 7.

(h) Step 10 .

(f) Step 8 .

(i) Steps $11 \& 12$.

(g) Step 9.

(j) Step 13.

Fig. 9 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ for $i=\{3,4,6,7,8,9,10,11,13,14\}$ in the Felsch Strategy in Example 7.1. Purple arrows correspond to a, gray to b, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes a new edge obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

Step 2 We apply HLT1 to the node 0 and relation $\left(b^{2}, b\right)$. TC1 produces the new node 3 and edge $(0, b, 3)$; TC2(a) then yields the edge $(3, b, 3)$; see Fig. 14b.
Step 3 HLT1 is applied to 0 and $\left(a^{2}, c a\right)$; TC1 generates the node 4 and edge $(0, c, 4)$; TC2(b) gives us the edge (4, $a, 2$); see Fig. 14c.

Fig. 10 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ for $i \in\{15, \ldots, 20\}$ in the Felsch strategy in Example 7.1. Purple arrows correspond to a, gray to b, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in $\mathbf{F 1}$, a dashed edge with a single arrowhead denotes an edge that is obtained from $\mathbf{F} 2$, solid edges correspond to edges that existed at the previous step

Steps 4-6 Step 4 is HLT1 applied to 0 and ($b c, c b$); TC1 gives the new node 5 and edge ($3, c, 5$); TC2(b) yields the edge ($4, b, 5$). Step 5 is HLT1 applied to 0 and $\left(a^{2}, c^{2}\right)$. There is already a path from 0 labelled by a^{2} and another by c, and so TC1 is not invoked, but TC2(b) yields the edge (4, $c, 2$). Step 6: HLT1 applied to 0 and $\left(a^{3}, a^{2}\right)$, TC1 is not invoked again, and TC2(a) yields the edge ($2, a, 2$); see Fig. 14d.
Steps 7-9 Step 7: HLT1 applied to 0 and $\left(a^{2}, a b a\right)$; TC1 adds the node 6 and edge $(1, b, 6)$; TC2(b) yields ($6, a, 2$). Step 8: HLT1 applied to 1 and $\left(a^{2}, a c\right)$; TC1 does not apply; TC2(b) yields (2, $c, 2$). Step 9: HLT1 applied to 1 and $\left(b^{2}, b\right)$; TC1 does not apply; TC2(a) yields (6, $b, 6$). See Fig. 14e.

Fig. 11 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ for $i \in\{21,22,23,24\}$ in the Felsch strategy in Example 7.1. Purple arrows correspond to a, gray to b, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

Steps 10-13 Step 10: HLT1 applied to 1 and ($b c, c b$); TC1 adds node 7 and edge (6, $c, 7$). Step 11: HLT1 applied to 1 and $\left(a^{2}, a b a\right)$; TC1 does not apply; TC2(b) yields edge (7, $a, 2$). Step 12: HLT1 applied to 2 and (b^{2}, b); TC1 does not apply; TC2 (a) yields edge (7, $b, 7$). Step 13: HLT1 applied to 2 and ($b c, c b$); TC1 does not apply; TC2(a) yields edge (7, $c, 7$). See Fig. 14f.

Fig. 12 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ for $i \in\{25, \ldots, 28\}$ in the Felsch strategy for Example 7.1. Purple arrows correspond to a, gray to b, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

Steps 14-18 Step 14: HLT1 applied to 3 and ($a^{2}, a c$); TC1 yields nodes 8 and 9 and edges (3, $a, 8$), ($8, a, 9$); TC2(b) yields edge ($8, c, 9$). Step 15: HLT1 for 3 and ($a^{2}, c a$); TC1 not applied; TC2(b) yields edge ($5, a, 9$). Step 16:
HLT1 for b and ($b c, c b$); TC1 does not apply; TC2(b) yields (5, $b, 5$). Step 17: HLT1 for b and $\left(a^{2}, c^{2}\right)$; TC1 does not apply; TC2(b) yields (5, $c, 9$). Step 18: HLT1 for 3 and $\left(a^{3}, a^{2}\right)$; TC1 does not apply; TC2(a) yields (9, a, 9). See Fig. 14g.

Fig. 13 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ for $i=29$ and 30 in the Felsch strategy of Example 7.1. Purple arrows correspond to a, gray to b, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

Steps 19-20 Step 19: HLT1 for 3 and $\left(a^{2}, a b a\right)$: TC1 adds node 10 and edge ($8, b, 10$); TC2(b) yields $(10, a, 9)$. Step 20: HLT1 for 4 and $(b c, c b)$: TC1 does not apply; $\mathbf{T C 2}$ (c) indicates κ_{20} is the least equivalence containing (7, 9). See Fig. 14h.
Step 21 This step is an application of $\mathbf{T C} 3$ to produce $\Gamma_{21}:=\Gamma_{20} / \kappa_{20}$ resulting in the new edges $(7, a, 7),(5, a, 7),(5, c, 7),(8, a, 7),(8, c, 7)$, and $(10, b, 7)$. The edge $(7, a, 2)$ is also an edge in Γ_{21} meaning that κ_{21} is the least equivalence containing (2,7). See Fig. 15a.
Step 22 This step is also an application of TC3 to produce $\Gamma_{22}:=\Gamma_{21} / \kappa_{21}$, the new edges created are $(2, b, 2),(10, a, 2),(8, a, 2),(8, c, 2),(5, a, 2)$, and (5, $c, 2$). See Fig. 15b.
Steps 23-24 Step 23: HLT1 applied to $\left(b^{2}, b\right)$ from 8; TC1 does not apply; TC2(a) yields $(10, b, 10)$. Step 24: HLT1 applied to 8 and $(b c, c b)$ yields (10, $c, 2$). See Fig. 15c.

After Step 24 the graph Γ_{25} is complete and compatible with the relations in the presentation, and κ_{25} is trivial, the enumeration terminates, and we see that the semigroup defined by the presentation is isomorphic to that defined in Example 5.1.

Example A. 3 In this example, we perform the Felsch strategy to find the right Cayley graph of the monoid defined by the presentation:

$$
\left\langle a, b, c \mid a c=a^{2}, b^{2}=b, c a=a^{2}, c b=b c, c^{2}=a^{2}, a^{3}=a^{2}, a b a=a^{2}\right\rangle .
$$

Table 5 A word labelling a path from 0 to each node in the right Cayley graph on the monoid M from Example A.2; see Figs. 14

0	1	2	3	4	5	6	7	8	9	10
ε	a	a^{2}	b	c	$b c$	$a b$	$a b c$	$b a$	$b a^{2}$	$b a b$

Fig. 14 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ for $i=1, \ldots, 20$ in Example A.2. Purple arrows correspond to a, gray to b, pink to c, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or $\mathbf{T C 3}$, solid edges correspond to edges that existed at the previous step

(a) Step 21.

(b) Step 22 .

(c) Steps $23 \& 24$.

Fig. 15 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ for $i=21, \ldots, 24$ of each step in Example A.2. Purple arrows correspond to 1, gray to 3 , pink to 4 , shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes. A dashed edge with a double arrowhead indicates the edge being defined in TC1, a dashed edge with a single arrowhead denotes an edge that is obtained from TC2 or TC3, solid edges correspond to edges that existed at the previous step

Step 1 At this step we apply $\mathbf{F} 1$ to the node 0 . The node 1 and the edge $(0, a, 1)$ are defined; see Fig. 16a.
Step 2 We apply $\mathbf{F} 1$ to the node 0 . The node 2 and the edge $(0, b, 2)$ are defined. Applying F2 to 0 and the relation $\left(b^{2}, b\right)$ leads to the definition of the edge ($2, b, 2$); see Fig. 16b.
Step 3 We apply F1 to 0 . The node 3 and the edge $(0, c, 3)$ are defined; see Fig. 16c.
Step $4 \mathbf{F} 1$ is applied to 1 and hence the node 4 and the edge $(1, a, 4)$ are defined. We apply $\mathbf{F 2}$ and the following applications of TC2 yield new information; applying TC2(b) to 0 and ($a^{2}, a c$) yields the edge ($1, c, 4$), applying TC2(b) to 0 and ($a^{2}, c a$) yields the edge ($3, a, 4$), the application of TC2(b) to 0 and (a^{2}, c^{2}) yields the edge ($3, c, 4$), the application of

TC2(a) to 0 and $\left(a^{3}, a^{2}\right)$ yields the edge $(4, a, 4)$ and finally the application of TC2(b) to 1 and $\left(a^{2}, a c\right)$ yields the edge (4, $\left.c, 4\right)$; see Fig. 16d.
Step 5 We apply $\mathbf{F} 1$ to 1 which leads to the definition of the node 5 and the edge $(1, b, 5)$. We apply $\mathbf{F} 2$ and the following applications of TC2 yield new information; the application of $\mathbf{T C 2}$ (b) to 0 and $\left(a^{2}, a b a\right)$ yields the edge $(5, a, 4)$ and the application of $\mathbf{T C 2}(a)$ to 1 and $\left(b^{2}, b\right)$ yields the edge (5, $b, 5)$; see Fig. 16e.
Step 6 We apply $\mathbf{F} 1$ to 2 which leads to the definition of the node 6 and the edge (2, a, 6); see Fig. 16f.
Step 7 We apply $\mathbf{F} 1$ to 2 which leads to the definition of the node 7 and the edge (2, c, 7). We apply $\mathbf{F} 2$ and the following applications of TC2 yield new information; applying TC2(b) to 0 and $(b c, c b)$ yields the edge $(3, b, 7)$ and applying TC2(b) to 3 and $(b c, c b)$ yields the edge ($7, b, 7$); see Fig. 17a.
Step 8 We apply $\mathbf{F 1}$ and the node 8 and the edge $(4, b, 8)$ are defined. We apply $\mathbf{F} 2$ and the following applications of TC2 yield new information; applying TC2(a) to 1 and ($b c, c b$) yields the edge ($5, c, 8$), applying TC2(b) to 1 and ($a^{2}, a b a$) yields the edge ($8, a, 4$), applying TC2(a) to 3 and ($b c, c b$) yields the edge $(7, c, 8)$, applying TC2(a) to 4 and $\left(b^{2}, b\right)$ yields the edge $(8, b, 8)$ and applying $\mathbf{T C 2}(\mathrm{a})$ to 4 and $(b c, c b)$ yields the edge $(8, c, 8)$. In addition, applying TC2(c) to 5 and $\left(a^{2}, c^{2}\right)$ as well as applying TC2(c) to 8 and $\left(a^{2}, c^{2}\right)$ indicates κ_{9} is the least equivalence containing $(8,4)$ and $\Delta_{N_{9}}$; see Fig. 17b.
Step 9 This step is an application of TC3 to produce $\Gamma_{10}:=\Gamma_{9} / \kappa_{9}$ resulting in the new edges $(5, c, 4),(4, b, 4)$; see Fig. 17c.
Step 10 We apply F1. The node 9 and the edge $(6, a, 9)$ are defined and an application of $\mathbf{F} 2$ follows. Applying TC2(b) to 2 and $\left(a^{2}, a c\right)$ yields the edge ($6, c, 9$), applying $\mathbf{T C 2}$ (b) to 2 and $\left(a^{2}, c a\right)$ yields the edge ($7, a, 9$), applying TC2(a) to 2 and $\left(a^{3}, a^{2}\right)$ yields the edge $(9, a, 9)$ and applying TC2(b) to 6 and ($a^{2}, a c$) yields the edge ($9, c, 9$). In addition, applying TC2(c) to 2 and $\left(a^{2}, c^{2}\right)$ indicates κ_{11} is the least equivalence containing $(4,9)$ and $\Delta_{N_{11}}$; see Fig. 17 d.
Step 11 This step is an application of TC3 to produce $\Gamma_{12}:=\Gamma_{11} / \kappa_{11}$ resulting in the new edges $(7, a, 4),(6, a, 4),(6, c, 4)$; see fig. 17e.
Step 12 We apply $\mathbf{F} 1$ and the node 10 and the edge $(6, b, 10)$ are defined. We apply $\mathbf{F 2}$ and the following applications of TC2 yield new information; applying TC2(b) to 2 and ($a^{2}, a b a$) yields the edge ($10, a, 4$), applying TC2(a) to 6 and $\left(b^{2}, b\right)$ yields the edge $(10, b, 10)$ and applying TC2(a) to 6 and $(b c, c b)$ yields the edge ($10, c, 4$); see Fig. 17f.

After Step 12 the graph Γ_{13} is complete and compatible with the relations in the presentation, and κ_{13} is trivial, the enumeration terminates, and we see that the semigroup defined by the presentation is isomorphic to that defined in Example 5.1.

Fig. 16 The output (Γ_{i}, κ_{i}) of each step in Example A.3. Purple arrows correspond to a, grey to b, pink to c, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes

Fig. 17 The output $\left(\Gamma_{i}, \kappa_{i}\right)$ of each step in Example A.3. Purple arrows correspond to a, grey to b, pink to c, shaded nodes of the same colour belong to κ_{i}, and unshaded nodes belong to singleton classes

B Performance comparison

In this appendix the performance of the libsemigroups [24] implementations of the HLT and Felsch strategies (as described in this paper) is compared to the performance of GAP [12] on a number of examples. Unless otherwise indicated the times for libsemigroups [24] are the mean time of 100 runs and the indicated times for GAP [12] are the mean of 10 runs. All computations were performed on a 2021 Mac M1 computer with 16 GB of RAM.

B. 1 Monoids of transformations

In this section we present some tables of timings for some presentations from the literature of transformation monoids; see Tables 6 and 7.

B. 2 Monoids of partitions

In this section we present some tables of timings for some presentations from the literature of monoids of partitions; see Tables 8, 9, 10, 11, and 12.

B. 3 Further finitely presented semigroups and monoids

In this section we present some tables of timings for some presentations from the literature of finitely presented semigroups and monoids; see Tables 13,14 , and 15.

The presentations referred to in Table 15 are:

$$
\begin{align*}
S= & \langle a, b, c| a^{14}=a, b^{14}=b, c^{14}=c, a^{4} b a=b^{3}, b^{4} a b=a^{3}, \\
& \left.a^{4} c a=c^{3}, c^{4} a c=a^{3}, b^{4} c b=c^{3}, c^{4} b c=b^{3}\right\rangle \tag{B.1}\\
S= & \left\langle a, b \mid a^{32}=a, b^{3}=b, a b a b a=b, a^{16} b a^{4} b a^{16} b a^{4}\right\rangle \tag{B.2}\\
S= & \left\langle a, b \mid a^{16}=a, b^{16}=b, a b^{2}=b a^{2}\right\rangle \tag{B.3}\\
S= & \left\langle a, b \mid a^{3}=a, b^{6}=b,\left(a b a b^{4}\right)^{7} a b^{2} a=b^{2}\right\rangle \tag{B.4}\\
S= & \left\langle a, b \mid a^{3}=a, b^{6}=b,\left(a b a b^{4}\right)^{7} a b^{2} a b^{5} a^{2}=b^{2}\right\rangle \tag{B.5}\\
S= & \left\langle a, b \mid a^{3}=a, b^{9}=b, a b a b^{7} a b a b^{7} a b^{2} a b^{8}=b^{2}\right\rangle \tag{B.6}\\
S= & \langle a, b, c, d, e| a^{3}=a, b^{3}=b, c^{3}=c, d^{3}=d, \\
& e^{3}=3,(a b)^{3}=a^{2},(b c)^{3}=b^{2},(c d)^{3}=c^{2},(d e)^{3}=d^{2}, \\
& a c=c a, a d=d a, a e=e a, b d=d b, b e=e b, c e=e c\rangle \tag{B.7}\\
S= & \left\langle a, b \mid a^{3}=a, b^{23}=b, a b^{11} a b^{2}=b^{2} a\right\rangle . \tag{B.8}
\end{align*}
$$

Table 6 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (CosetTableOfFpSemigroup) for the presentations of the monoids $O P_{n}$ of orientation preserving transformations of a chain from [2]

n	$\left\|O P_{n}\right\|$	$\|A\|$	$\|R\|$	$\sum\|u v\|$	HLT		Felsch		GAP	
					Mean	S.D	Mean	S.D	Mean	S.D
3	24	2	5	43	8.4×10^{-6}	8×10^{-7}	1.84×10^{-5}	1.8×10^{-6}	5.3×10^{-4}	7×10^{-5}
4	128	2	6	86	4.0×10^{-5}	2×10^{-6}	2.77×10^{-4}	5×10^{-6}	1.92×10^{-3}	7×10^{-5}
5	610	2	7	145	4.51×10^{-4}	4×10^{-6}	4.565×10^{-3}	1.5×10^{-5}	1.492×10^{-2}	1.3×10^{-4}
6	2742	2	8	220	4.64×10^{-3}	7×10^{-5}	4.153×10^{-2}	1.2×10^{-4}	1.174×10^{-1}	3×10^{-4}
7	11,970	2	9	311	4.97×10^{-2}	4×10^{-4}	4.0×10^{-1}	5×10^{-2}	8.081×10^{-1}	1.1×10^{-3}
8	51,424	2	10	418	7.11×10^{-1}	5×10^{-3}	3.07×10^{0}	4×10^{-2}	4.488×10^{0}	2×10^{-3}
9	218,718	2	11	541	5.40×10^{0}	3×10^{-2}	2.98×10^{1}	2×10^{-1}	-	-
10	923,690	2	12	680	2.503×10^{1}	-	-	-	-	-
11	3,879,766	2	13	835	2.680×10^{2}	-	-	-	-	-
12	16,224,804	2	14	1006	2.351×10^{3}	-	-	-	-	-
13	67,603,744	2	15	1193	3.160×10^{4}	-	-	-	-	-

Values with no standard deviation indicated were only run once. All times are in seconds
Table 7 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (CosetTableOfFpSemigroup) for the presentations of the monoids $O R_{n}$ of orientation preserving and reversing transformations of a chain from [2]

n	$\left\|O R_{n}\right\|$	$\|A\|$	$\|R\|$	$\sum\|u v\|$	HLT		Felsch		GAP	
					Mean	S.D	Mean	S.D	Mean	S.D
3	27	3	9	65	1.388×10^{-5}	9×10^{-8}	3.75×10^{-5}	3×10^{-7}	6.78×10^{-4}	1.2×10^{-5}
4	180	3	10	122	8.45×10^{-5}	6×10^{-7}	5.784×10^{-4}	1.7×10^{-6}	4.18×10^{-3}	1.5×10^{-4}
5	1015	3	11	199	1.120×10^{-3}	1.0×10^{-5}	1.034×10^{-2}	5×10^{-5}	3.140×10^{-2}	8×10^{-5}
6	5028	3	12	296	1.257×10^{-2}	6×10^{-5}	1.459×10^{-1}	3×10^{-4}	2.466×10^{-1}	2×10^{-4}
7	23,051	3	13	413	2.404×10^{-1}	1.2×10^{-3}	1.369×10^{0}	5×10^{-3}	1.8565×10^{0}	1.1×10^{-3}
8	101,272	3	14	550	4.94×10^{0}	3×10^{-2}	1.437×10^{1}	4×10^{-2}	1.302×10^{1}	4×10^{-2}
9	434,835	3	15	707	7.035×10^{0}	-	-	-	-	-
10	1,843,320	3	16	884	8.509×10^{1}	-	-	-	-	-
11	7,753,471	3	17	1081	8.460×10^{2}	-	-	-	-	-
12	32,440,884	3	18	1298	6.178×10^{3}	-	-	-	-	-

[^1]Table 8 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (Coset TableOfFpSemigroup) for the presentations of the partition monoids P_{n} from [8, Theorem 41]

n	$\left\|P_{n}\right\|$	$\|A\|$	\| R \|	$\sum\|u v\|$	HLT		Felsch		GAP	
					Mean	S.D	Mean	S.D	Mean	S.D
4	4140	4	19	144	7.43×10^{-3}	1.2×10^{-4}	1.918×10^{-2}	5×10^{-5}	1.2919×10^{-1}	1.1×10^{-4}
5	115,975	4	19	163	5.69×10^{-1}	2×10^{-3}	1.082×10^{0}	7×10^{-3}	5.377×10^{0}	6×10^{-3}
6	4,213,597	4	20	198	3.24×10^{1}	3×10^{-1}	1.460×10^{2}	5×10^{-1}	-	-
7	190,899,322	4	20	219	2.240×10^{3}	-	-	-	-	-

Values with no standard deviation indicated were only run once. All times are in seconds

| n | $\left\|B_{n} \backslash S_{n}\right\|$ | $\|A\|$ | \|R| | $\sum\|u v\|$ | HLT | | Felsch | | GAP | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Mean | S.D | Mean | S.D | Mean | S.D |
| 3 | 9 | 6 | 21 | 78 | 1.72×10^{-5} | 2×10^{-7} | 2.4×10^{-5} | 4×10^{-6} | 4.6×10^{-4} | 4×10^{-5} |
| 4 | 81 | 12 | 126 | 600 | 1.955×10^{-4} | 8×10^{-7} | 6.27×10^{-4} | 1.8×10^{-5} | 5.50×10^{-3} | 1.2×10^{-4} |
| 5 | 825 | 20 | 450 | 2300 | 5.33×10^{-3} | 5×10^{-5} | 1.968×10^{-2} | 1.8×10^{-4} | 1.60×10^{-1} | 2×10^{-3} |
| 6 | 9675 | 30 | 1185 | 6240 | 1.359×10^{-1} | 2×10^{-4} | 6.59×10^{-1} | 6×10^{-3} | 4.81×10^{0} | 4×10^{-2} |
| 7 | 130,095 | 42 | 2583 | 13,818 | 3.89×10^{0} | 2×10^{-2} | 2.190×10^{1} | 1.2×10^{-1} | - | - |
| 8 | 1,986,705 | 56 | 4956 | 26,768 | 3.357×10^{2} | - | - | - | - | - |

[^2]inverse monoids I_{n}^{*} from [7]

$n \quad\left\|I_{n}^{*}\right\|$	$\|A\|$	\| R \|	$\sum\|u v\|$	HLT		Felsch		Rc		GAP	
				Mean	S.D	Mean	S.D	Mean	S.D	Mean	S.D
25	3	11	54	1.5×10^{-5}	5×10^{-6}	1.92×10^{-5}	5×10^{-7}	1.850×10^{-5}	8×10^{-8}	4.94×10^{-4}	1.0×10^{-5}
339	4	19	116	4.17×10^{-4}	4×10^{-6}	6.05×10^{-4}	4×10^{-6}	1.104×10^{-3}	9×10^{-6}	8.74×10^{-3}	2×10^{-5}
6721	5	28	177	3.15×10^{-2}	3×10^{-4}	2.780×10^{-2}	7×10^{-5}	2.926×10^{-2}	6×10^{-5}	3.213×10^{-1}	5×10^{-4}
179,643	6	39	276	3.639×10^{0}	9×10^{-3}	1.399×10^{0}	1.2×10^{-2}	4.044×10^{0}	1.3×10^{-2}	3.858×10^{1}	4×10^{-2}
6,166,105	7	52	422	-	-	1.115×10^{2}	-	-	-	-	$-$

This monoid is sometimes called the uniform block bijection monoid. Values with no standard deviation indicated were only run once. All times are in seconds
Table 11 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (CosetTableOfFpSemigroup) the presentations for the factorisable dual symmetric inverse monoids $F I_{n}^{*}$ from [10]

$n \quad\left\|F I_{n}^{*}\right\|$	$\|A\|$	$\|R\|$	$\sum\|u v\|$	HLT		Felsch		Rc		GAP	
				Mean	S.D	Mean	S.D	Mean	S.D	Mean	S.D
16	3	8	47	1.1×10^{-5}	4×10^{-6}	2.6×10^{-5}	4×10^{-6}	1.57×10^{-5}	1.4×10^{-6}	4.48×10^{-4}	1.7×10^{-5}
131	4	13	67	8.8×10^{-5}	4×10^{-6}	1.54×10^{-4}	1.1×10^{-5}	1.02×10^{-4}	4×10^{-6}	2.302×10^{-3}	1.3×10^{-5}
1496	5	20	95	2.64×10^{-3}	5×10^{-5}	2.243×10^{-3}	2.0×10^{-5}	3.35×10^{-3}	1.0×10^{-4}	3.612×10^{-2}	5×10^{-5}
22,482	6	29	131	7.98×10^{-2}	4×10^{-4}	5.39×10^{-2}	4×10^{-4}	5.67×10^{-2}	2×10^{-4}	8.186×10^{-1}	1.3×10^{-3}
426,833	7	40	175	4.78×10^{0}	4×10^{-2}	1.608×10^{0}	1.3×10^{-2}	4.162×10^{0}	1.1×10^{-2}	1.466×10^{2}	1.0×10^{0}
9,934,563	8	53	227	8.030×10^{1}	-	5.572×10^{1}	-	8.193×10^{1}	-	-	-

This monoid is sometimes called the uniform block bijection monoid. Values with no standard deviation indicated were only run once. All times are in seconds
Table 12 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (CosetTableOfFpSemigroup) on the presentations for the Temperley-Lieb monoids J_{n} from [9, Theorem 2.2]; the Temperley-Lieb monoid is also sometimes referred to as the Jones monoid in the literature

| n | $\left\|J_{n}\right\|$ | $\|A\|$ | \|R| | $\sum\|u v\|$ | HLT | | Felsch | | GAP | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Mean | S.D | Mean | S.D | Mean | S.D |
| 3 | 5 | 2 | 4 | 14 | 4.87×10^{-6} | 6×10^{-8} | 5.9×10^{-6} | 4×10^{-7} | 2.69×10^{-4} | 1.2×10^{-5} |
| 4 | 14 | 3 | 8 | 29 | 8.34×10^{-6} | 8×10^{-8} | 1.132×10^{-5} | 1.0×10^{-7} | 3.26×10^{-4} | 6×10^{-6} |
| 5 | 42 | 4 | 13 | 48 | 1.7×10^{-5} | 2×10^{-6} | 2.686×10^{-5} | 1.5×10^{-7} | 5.39×10^{-4} | 1.1×10^{-5} |
| 6 | 132 | 5 | 19 | 71 | 4.18×10^{-5} | 6×10^{-7} | 9.51×10^{-5} | 1.0×10^{-6} | 1.464×10^{-3} | 1.1×10^{-5} |
| 7 | 429 | 6 | 26 | 98 | 1.463×10^{-4} | 1.4×10^{-6} | 4.50×10^{-4} | 4×10^{-6} | 5.35×10^{-3} | 6×10^{-5} |
| 8 | 1430 | 7 | 34 | 129 | 5.93×10^{-4} | 4×10^{-6} | 2.248×10^{-3} | 1.0×10^{-5} | 2.274×10^{-2} | 5×10^{-5} |
| 9 | 4862 | 8 | 43 | 164 | 2.456×10^{-3} | 9×10^{-6} | 1.034×10^{-2} | 5×10^{-5} | 9.753×10^{-2} | 1.4×10^{-4} |
| 10 | 16,796 | 9 | 53 | 203 | 1.052×10^{-2} | 4×10^{-5} | 4.57×10^{-2} | 4×10^{-4} | 4.15×10^{-1} | 3×10^{-3} |
| 11 | 58,786 | 10 | 64 | 246 | 4.238×10^{-2} | 1.4×10^{-4} | 1.966×10^{-1} | 1.4×10^{-3} | 1.789×10^{0} | 9×10^{-3} |
| 12 | 208,012 | 11 | 76 | 293 | 1.805×10^{-1} | 1.6×10^{-3} | 8.52×10^{-1} | 8×10^{-3} | 8.73×10^{0} | 6×10^{-2} |
| 13 | 742,900 | 12 | 89 | 344 | 7.791×10^{-1} | 7×10^{-4} | 3.63×10^{0} | 3×10^{-2} | 4.40×10^{1} | 4×10^{-1} |
| 14 | 2,674,440 | 13 | 103 | 399 | 3.235×10^{0} | 9×10^{-3} | 1.517×10^{1} | 1.1×10^{-1} | - | - |
| 15 | 9,694,845 | 14 | 118 | 458 | 1.424×10^{1} | - | - | - | - | - |
| 16 | 35,357,670 | 15 | 134 | 521 | 6.419×10^{1} | - | - | - | - | - |

[^3]Table 13 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (CosetTableOfFpSemigroup) for the presentations of the stellar monoids from [13]

| n | \| Stellar(n)| | $\|A\|$ | $\|R\|$ | $\sum\|u v\|$ | HLT | | Felsch | | GAP | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Mean | S.D | Mean | S.D | Mean | S.D |
| 3 | 16 | 3 | 9 | 45 | 9.9×10^{-6} | 1.2×10^{-6} | 1.43×10^{-5} | 3×10^{-7} | 4.10×10^{-4} | 1.2×10^{-5} |
| 4 | 65 | 4 | 14 | 71 | 2.239×10^{-5} | 1.8×10^{-7} | 5.35×10^{-5} | 4×10^{-7} | 9.69×10^{-4} | 1.4×10^{-5} |
| 5 | 326 | 5 | 20 | 103 | 1.017×10^{-4} | 8×10^{-7} | 4.30×10^{-4} | 5×10^{-6} | 4.80×10^{-3} | 2×10^{-5} |
| 6 | 1,957 | 6 | 27 | 141 | 8.29×10^{-4} | 4×10^{-6} | 4.10×10^{-3} | 3×10^{-5} | 3.660×10^{-2} | 5×10^{-5} |
| 7 | 13,700 | 7 | 35 | 185 | 9.27×10^{-3} | 5×10^{-5} | 4.192×10^{-2} | 1.2×10^{-4} | 3.310×10^{-1} | 3×10^{-4} |
| 8 | 109,601 | 8 | 44 | 235 | 1.554×10^{-1} | 6×10^{-4} | 4.603×10^{-1} | 1.6×10^{-3} | 3.473×10^{0} | 3×10^{-3} |
| 9 | 986,410 | 9 | 54 | 291 | 9.67×10^{0} | 1.4×10^{-1} | 5.62×10^{0} | 5×10^{-2} | - | - |
| 10 | 9,864,101 | 10 | 65 | 353 | - | - | 7.337×10^{1} | - | - | - |
| 11 | 108,505,112 | 11 | 77 | 421 | - | - | 1.018×10^{3} | - | - | - |

[^4]Table 14 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (CosetTableOfFpSemigroup) for the presentations of the stylic monoids from [1]

n	\mid Stylic(n)	$\|A\|$	\| $R \mid$	$\sum\|u v\|$	HLT		Felsch		GAP	
					Mean	S.D	Mean	S.D	Mean	S.D
3	15	3	11	57	1.07×10^{-5}	1.1×10^{-6}	1.767×10^{-5}	9×10^{-8}	4.7×10^{-4}	8×10^{-5}
4	52	4	24	132	2.97×10^{-5}	2×10^{-7}	8.64×10^{-5}	7×10^{-7}	1.07×10^{-3}	7×10^{-5}
5	203	5	45	255	1.309×10^{-4}	8×10^{-7}	6.69×10^{-4}	5×10^{-6}	4.39×10^{-3}	7×10^{-5}
6	877	6	76	438	7.98×10^{-4}	4×10^{-6}	4.926×10^{-3}	1.2×10^{-5}	2.722×10^{-2}	4×10^{-5}
7	4140	7	119	693	5.52×10^{-3}	3×10^{-5}	3.594×10^{-2}	1.8×10^{-4}	1.899×10^{-1}	3×10^{-4}
8	21,147	8	176	1032	4.033×10^{-2}	8×10^{-5}	2.673×10^{-1}	8×10^{-4}	1.4019×10^{0}	1.9×10^{-3}
9	115,975	9	249	1467	3.048×10^{-1}	4×10^{-4}	2.041×10^{0}	8×10^{-3}	1.0803×10^{1}	1.5×10^{-2}
10	678,570	10	340	2010	2.5358×10^{0}	1.4×10^{-3}	1.625×10^{1}	9×10^{-2}	-	-
11	4,213,597	11	451	2673	2.155×10^{1}	-	-	-	-	-
12	27,644,437	12	584	3468	2.503×10^{2}	-	-	-	-	-

[^5]Table 15 Comparison of libsemigroups [24] and the implementation in the GAP [12] library (CosetTableOfFpSemigroup) on examples from Walker [36]. All times are in seconds

n	$\|S\|$	$\|A\|$	$\|R\|$	$\sum\|u v\|$	HLT		Felsch		GAP	
					Mean	S.D	Mean	S.D	Mean	S.D
(B.1)	1	3	9	99	2.14×10^{-3}	1×10^{-4}	5.68×10^{-2}	3×10^{-4}	1.62×10^{-1}	3×10^{-3}
(B.2)	14,911	4	6	31	5.32×10^{-2}	3×10^{-4}	3.344×10^{-2}	1.6×10^{-4}	6.93×10^{0}	5×10^{-2}
(B.3)	20,490	2	3	40	2.454×10^{-1}	5×10^{-4}	2.382×10^{-2}	1.0×10^{-4}	5.19×10^{0}	3×10^{-2}
(B.4)	36,412	5	6	31	2.903×10^{-1}	9×10^{-4}	8.875×10^{-1}	7×10^{-4}	7.530×10^{0}	1.6×10^{-2}
(B.5)	72,822	5	6	34	4.708×10^{-1}	1.9×10^{-3}	-	-	2.401×10^{1}	9×10^{-2}
(B.6)	78,722	6	7	32	1.327×10^{-1}	5×10^{-4}	3.297×10^{0}	1.8×10^{-2}	6.922×10^{0}	9×10^{-3}
(B.7)	153,500	5	15	76	1.799×10^{-1}	6×10^{-4}	1.819×10^{-1}	1.7×10^{-3}	2.496×10^{0}	9×10^{-3}
(B.8)	270,272	2	3	46	8.002×10^{-1}	1.9×10^{-3}	2.67×10^{0}	3×10^{-2}	1.234×10^{1}	2×10^{-2}

	$\|G: H\|$	$\|A\|$	$\|R\|$	$\sum\|u v\|$	$\underline{\text { libsemigroups }}$		ACE		GAP	
					Mean	S.D	Mean	S.D	Mean	S.D
(B.9)	16,384	6	9	34	2.450×10^{-1}	1.2×10^{-3}	3.62×10^{-2}	1.1×10^{-3}	1.99×10^{-1}	2×10^{-3}
(B.10)	8	6	9	34	2.547×10^{-1}	5×10^{-4}	2.14×10^{-2}	8×10^{-4}	1.444×10^{-1}	4×10^{-4}
(B.11)	131,072	6	9	34	1.392×10^{0}	6×10^{-3}	1.88×10^{-1}	5×10^{-3}	1.89×10^{1}	2×10^{-1}
(B.12)	1	6	9	34	1.037×10^{-1}	6×10^{-4}	1.25×10^{-2}	8×10^{-4}	3.08×10^{-2}	2×10^{-4}
(B.13)	131,072	6	9	34	1.80×10^{0}	2×10^{-2}	2.02×10^{-1}	2×10^{-3}	1.880×10^{1}	1.5×10^{-1}
(B.14)	262,144	7	14	50	3.467×10^{0}	4×10^{-3}	6.08×10^{-1}	3×10^{-3}	3.97×10^{1}	3×10^{-1}
(B.15)	29	14	21	49	7.76×10^{-2}	2×10^{-4}	2.44×10^{-2}	1.6×10^{-3}	2.145×10^{-2}	4×10^{-5}
(B.16)	95,040	7	14	60	2.364×10^{-1}	1.0×10^{-3}	5.63×10^{-2}	8×10^{-4}	1.0025×10^{-1}	1.8×10^{-4}
(B.17)	180	4	7	83	4.63×10^{-1}	3×10^{-3}	1.953×10^{-1}	6×10^{-4}	7.66×10^{0}	3×10^{-2}
(B.18)	786,432	9	21	73	1.252×10^{1}	9×10^{-2}	2.305×10^{0}	1.5×10^{-2}	6.752×10^{1}	1.6×10^{-1}

B. 4 Finitely presented groups

In this section we provide some comparison of the performance of libsemigroups [24], GAP [12], and ACE [14] when applied to group presentations. It might be worth noting that libsemigroups [24] contains no optimizations whatsoever for group presentations, and that when run in libsemigroups [24] each of the presentations given in this section has: an explicit generator a^{-1} for the inverse of each generator a that is not of order 2; the relations $a a^{-1}=a^{-1} a=e$ for every generator a. The version of Todd-Coxeter in GAP [12] is largely written in C, and is specific to group presentations; similarly, ACE [14] is written in C and is specific to groups also. As such it is not surprising that the performance of libsemigroups [24] is generally worse that both ACE [14] and GAP [12] when applied to a group presentation. There are still some cases where libsemigroups [24] is faster than GAP [12]; see Table 16.

$$
\begin{align*}
& G=\left\langle a, b, c \mid a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, a c^{2} a^{-1} a^{-1} b^{-1} a b\right\rangle \\
& H=\langle b c\rangle \tag{B.9}\\
& G=\left\langle a, b, c \mid a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, a c^{2} a^{-1} a^{-1} b^{-1} a b\right\rangle \\
& H=\left\langle b c, a^{-1} b^{-1}\left(a^{-1}\right)^{2} b c a b c^{-1}\right\rangle \tag{B.10}\\
& G=\left\langle a, b, c \mid a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, a c^{2} a^{-1} a^{-1} b^{-1} a b\right\rangle \\
& H=\left\langle a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a a c a^{-1}, a c c a^{-1} a^{-1} b^{-1} a b\right\rangle \tag{B.11}\\
& G=\left\langle a, b, c \mid a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, a c^{2} a^{-1} a^{-1} b^{-1} a b\right\rangle \\
& H=\left\langle b c, a^{-1} b^{-1} a^{-1} a^{-1} b c a b c^{-1}, a^{-1} c^{3} a c b^{-1} c a^{-1}\right\rangle \tag{B.12}\\
& G=\left\langle a, b, c \mid a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, a c^{2} a^{-1} a^{-1} b^{-1} a b\right\rangle \\
& H=\langle\varepsilon\rangle \tag{B.13}\\
& G=\langle a, b, c, x| a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, \\
&\left.a c^{2} a^{-1} a^{-1} b^{-1} a b, x^{2}, a^{-1} x a x, b^{-1} x b x, c^{-1} x c x\right\rangle \\
& H=\left\langle a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, a c^{2} a^{-1} a^{-1} b^{-1} a b\right\rangle \tag{B.14}\\
& G= F_{2,7}=\left\langle a, b, c, d, x, y, z \mid a b c^{-1}, b c d^{-1}, c d x^{-1}, d x y^{-1}, x y z^{-1}, y z a^{-1}, z a b^{-1}\right\rangle \\
& H=\langle\varepsilon\rangle \tag{B.15}\\
& G= M_{12}=\left\langle a, b, c \mid a^{11}, b^{2}, c^{2},(a b)^{3},(a c)^{3},(b c)^{10},(c b)^{2} a b c b c\left(a^{-1}\right)^{5}\right\rangle \\
& H=\langle\varepsilon\rangle \tag{B.16}\\
& G= S L(2,19)=\left\langle a, b \mid a b^{-1} a^{-1} b^{-1} a^{-1} b^{-1}, b^{-1} a^{-1} a a^{-1} b a a, a b^{4} a b^{10} a b^{4} a b^{29} a^{12}\right\rangle \\
& H=\langle b\rangle \tag{B.17}\\
& G=\langle a, b, c, x, y| x^{2}, y^{3}, a b^{-1} c^{-1} b a c, b a^{-1} c^{-1} b a a c a^{-1}, \\
& H= a c c a^{-1} a^{-1} b^{-1} a b, a^{-1} x a x, b^{-1} x b x, c^{-1} x c x \\
&\left.a^{-1} y^{-1} a y, b^{-1} y^{-1} b y, c^{-1} y^{-1} c y, x y^{-1} x y\right\rangle \\
&\left.H a c, b a^{-1} c^{-1} b a^{2} c a^{-1}, a c^{2} a^{-2} b^{-1} a b\right\rangle \tag{B.18}\\
& H
\end{align*}
$$

Acknowledgements The authors would like to thank the referee for their careful reading of the paper, and for their helpful suggestions. The third author was supported by the EPSRC doctoral training partnership
number EP/N509759/1 when working on this project. The fourth author would like to thank the School of Mathematics and Statistics of the University of St Andrews and the Cyprus State Scholarship Foundation for their financial support.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abram, A., Reutenauer, C.: The stylic monoid. Semigroup Forum 105, 1-45 (2022). https://doi.org/ 10.1007/s00233-022-10285-3
2. Arthur, R.E., Ruškuc, N.: Presentations for two extensions of the monoid of order-preserving mappings on a finite chain. Southeast Asian Bull. Math. 24, 1-7 (2000). https://doi.org/10.1007/s10012-000-0001-1
3. Boone, W.W.: The word problem. Proc. Natl. Acad. Sci. 44, 1061-1065 (1958). https://doi.org/10. 1073/pnas.44.10.1061
4. Cain, A.J., Maltcev, V.: Decision problems for finitely presented and one-relation semigroups and monoids. Int. J. Algebra Comput. 19, 747-770 (2009). https://doi.org/10.1142/s0218196709005366
5. Cannon, J.J., Dimino, L.A., Havas, G., Watson, J.M.: Implementation and analysis of the Todd-Coxeter algorithm. Math. Comput. 27, 463-490 (1973). https://doi.org/10.2307/2005654
6. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71, 116-144 (1911). https://doi. org/10.1007/BF01456932
7. Easdown, D., East, J., Fitzgerald, D.G.: A presentation of the dual symmetric inverse monoid. Int. J. Algebra Comput. 18, 357-374 (2008). https://doi.org/10.1142/s0218196708004470
8. East, J.: Generators and relations for partition monoids and algebras. J. Algebra 339, 1-26 (2011). https://doi.org/10.1016/j.jalgebra.2011.04.008
9. East, J.: Presentations for Temperley-Lieb algebras. Q. J. Math. 72, 1253-1269 (2021). https://doi. org/10.1093/qmath/haab001
10. FitzGerald, D.G.: A presentation for the monoid of uniform block permutations. Bull. Aust. Math. Soc. 68, 317-324 (2003). https://doi.org/10.1017/S0004972700037692
11. Froidure, V., Pin, J.-E.: Algorithms for computing finite semigroups. In: Cucker, F., Shub, M. (eds.) Foundations of Computational Mathematics, pp. 112-126. Springer, Berlin (1997). https://doi.org/10. 1007/978-3-642-60539-0_9
12. GAP-Groups: Algorithms, and Programming, Version 4.12.2. The GAP Group (2022). https://www. gap-system.org
13. Gay, J., Hivert, F.: The 0-rook monoid and its representation theory (2019). arXiv:1910.11740 [math.CO]
14. Havas, G., Ramsay, C.: Coset enumeration: ACE version 5.2 (2009). http://staff.itee.uq.edu.au/havas
15. Holt, D.F., Eick, B., O'Brien, E.A.: Handbook of Computational Group Theory. CRC Press, Boca Raton (2004)
16. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs. New Series, vol. 12. Oxford University Press, New York (1995)
17. Jura, A.: Coset enumeration in a finitely presented semigroup. Can. Math. Bull. 21, 37-46 (1978)
18. Leech, J.: Coset enumeration on digital computers. Math. Proc. Camb. Philos. Soc. 59, 257-267 (1963). https://doi.org/10.1017/s0305004100036872
19. Linton, S.A.: Constructing matrix representations of finitely presented groups. J. Symb. Comput. 12, 427-438 (1991). https://doi.org/10.1016/S0747-7171(08)80095-8
20. Linton, S.A.: On vector enumeration. Linear Algebra Appl. 192, 235-248 (1993). https://doi.org/10. 1016/0024-3795(93)90245-J
21. Maltcev, V., Mazorchuk, V.: Presentation of the singular part of the Brauer monoid. Math. Bohem. 132, 297-323 (2007). https://doi.org/10.21136/mb.2007.134125
22. Markov, A.A.: On the impossibility of certain algorithms in the theory of associative systems. Dokl. Akad. Sci. USSR 55, 587-590 (1947)
23. Mitchell, J.D.: An implementation of the Todd-Coxeter algorithm for semigroups and monoids in Python3 (2021). https://gist.github.com/james-d-mitchell/6b06bc78e2bcdb6dfef53a2654d9f953
24. Mitchell, J.D., et al.: libsemigroups-C++ library for semigroups and monoids, Version 2.7.3 (2024). https://doi.org/10.5281/zenodo. 1437752
25. Neubüser, J.: An elementary introduction to coset table methods in computational group theory. In: Campbell, C.M., Robertson, E.F. (eds.) Groups-St Andrews 1981. London Mathematical Society Lecture Notes Series, pp. 1-45. Cambridge University Press, Cambridge (1982). https://doi.org/10. 1017/CBO9780511661884.004
26. Neumann, B.H.: Some remarks on semigroup presentations. Can. J. Math. 19, 1018-1026 (1968)
27. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Tr. Mat. Inst. Steklova 44, 3-143 (1955)
28. Robertson, E.F., Ünlü, Y.: On semigroup presentations. Proc. Edinb. Math. Soc. 36, 55-68 (1992)
29. Rotman, J.J.: An Introduction to the Theory of Groups. Graduate Texts in Mathematics, vol. 148, 4th edn. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4176-8
30. Ruškuc, N.: Semigroup Presentations. PhD thesis. University of St Andrews (1995)
31. Sims, C.C.: Computation with Finitely Presented Groups. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (1994)
32. Stephen, J.B.: Applications of Automata Theory to Presentations of Monoids and Inverse Monoids. PhD thesis. University of Nebraska (1987). https://digitalcommons.unl.edu/dissertations/AAI8803771
33. Stephen, J.: Presentations of inverse monoids. J. Pure Appl. Algebra 63, 81-112 (1990). https://doi. org/10.1016/0022-4049(90)90057-O
34. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22, 215-225 (1975). https://doi.org/10.1145/321879.321884
35. Todd, J.A., Coxeter, H.S.M.: A practical method for enumerating cosets of a finite abstract group. Proc. Edinb. Math. Soc. 5, 26-34 (1936). https://doi.org/10.1017/s0013091500008221
36. Walker, T.: Semigroup Enumeration-Computer Implementation and Applications. PhD thesis. University of St Andrews (1992)
37. Walker, T.: tcsemi (1992). https://github.com/james-d-mitchell/tcsemi
38. Williams, A.: Monoid automata factory (2016). http://maffsa.sourceforge.net/

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: ${ }^{1}$ This is an abuse of notation since $\operatorname{ker}(\Psi)$ might mean its kernel as an action or as a function. However, the reader may be reassured to know that if Ψ is an action, we will never use $\operatorname{ker}(\Psi)$ to mean its kernel as a function.

[^1]: Values with no standard deviation indicated were only run once. All times are seconds

[^2]: Values with no standard deviation indicated were only run once. All times are in seconds

[^3]: Values with no standard deviation indicated were only run once. All times are in seconds

[^4]: Values with no standard deviation indicated were only run once. All times are in seconds

[^5]: Values with no standard deviation indicated were only run once. All times are in seconds

