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Abstract
Letm, n ≥ 2 and define ν : ω → {0, . . . ,m−1} by ν(k) ≡ k (mod m). We construct
some new finite semigroups in βN, in particular, a semigroup generated bym elements
of order nwith cardinalitymn+mn−1+· · ·+m.We also show that, for n ≥ m, there is a
sequence p0, . . . , pm−1 inβN such that all sums

∑i+k
j=i pν( j), where i ∈ {0, . . . ,m−1}

and k ∈ {0, . . . , n − 1}, are distinct and ∑i+n
j=i pν( j) = ∑i+n−m

j=i pν( j) for each i . As
consequences we derive some new Ramsey theoretic results. In particular, we show
that, for n ≥ m, there is a partition {Ai,k : (i, k) ∈ {0, . . . ,m − 1} × {0, . . . , n − 1}}
of N such that, whenever for each (i, k), Bi,k is a finite partition of Ai,k , there exist
Bi,k ∈ Bi,k and a sequence (x j )∞j=0 such that for every finite sequence j0 < . . . < js
such that jt+1 ≡ jt + 1 (mod m) for each t < s, one has x j0 + · · · + x js ∈ Bi0,k0 ,
where i0 = ν( j0) and k0 is s if s ≤ n − 1 and n − m + ν(s − n) otherwise.

Keywords Stone–Čech compactification · Idempotent · Right cancelable ultrafilter ·
Finite semigroup · Periodic sums system · Ramsey theory

1 Introduction

The addition of the discrete semigroup N of natural numbers extends to the Stone–
Čech compactification βN of N so that for each a ∈ N, the left translation λa :
βN � x 	→ a + x ∈ βN is continuous, and for each q ∈ βN, the right translation
ρq : βN � x 	→ x + q ∈ βN is continuous.

We take the points of βN to be the ultrafilters on N, identifying the principal
ultrafilters with the points of N. For every A ⊆ N, A = {p ∈ βN : A ∈ p} and
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A∗ = A \ A. The subsets A, where A ⊆ N, form a base for the topology of βN, and
A is the closure of A. For p, q ∈ βN, the ultrafilter p + q has a base consisting of
subsets of the form

⋃
x∈A(x + Bx ), where A ∈ p and for each x ∈ A, Bx ∈ q.

Being a compact Hausdorff right topological semigroup, βN has a smallest two
sided ideal K (βN) which is a disjoint union of minimal right ideals and a disjoint
union of minimal left ideals. Every right (left) ideal of βN contains a minimal right
(left) ideal, the intersection of a minimal right ideal and a minimal left ideal is a group,
and the idempotents in a minimal right (left) ideal form a right (left) zero semigroup,
that is, x + y = y (x + y = x) for all x, y.

The semigroup βN has important applications to Ramsey theory and to topological
dynamics. The first application toRamsey theorywas the proof ofHindman’s theorem:
whenever N is finitely colored, there is an infinite sequence all of whose sums are
monochrome. An elementary introduction to βN can be found in [4].

In 1979, E. van Douwen asked (in [3], published much later) whether there are
topological and algebraic copies of βN contained in N

∗ = βN \ N. This question
was answered in the negative by D. Strauss in [7], where it was in fact established
that continuous homomorphisms from βN to N

∗ have finite images. It follows that if
ϕ : βN → N

∗ is a continuous homomorphism, then ϕ(βN) is a finite cyclic semigroup
generated by p = ϕ(1). That is, there are n ≥ 1 and 1 ≤ m ≤ n called the order and
the period of p (and of the cyclic semigroup) such that all i p = p + · · · + p

︸ ︷︷ ︸
i

, where

i ∈ {1, . . . , n}, are distinct and (n + 1)p = (n + 1−m)p. Conversely, every element
p ∈ N

∗ of finite order determines a continuous homomorphism ϕ : βN → N
∗ by

ϕ(1) = p. In 1996, the author proved that βN contains no nontrivial finite groups (see
[4, Theorem 7.17]). Since the periodic part of a cyclic semigroup is a group, it follows
that if p ∈ βN is an element of order n, then (n + 1)p = np, that is, p has period 1.

As distinguished fromfinite groups,βN does contain bands (semigroups of idempo-
tents): for example, left zero semigroups, right zero semigroups, chains of idempotents
(with respect to the order x ≤ y if and only if x + y = y + x = x), and even rectan-
gular bands (direct products of a left zero semigroup and a right zero semigroup). To
ask whether βN contains a finite semigroup distinct from bands is the same as asking
whether βN contains an element of order 2 which is the same as asking whether there
exists a nontrivial continuous homomorphism from βN to N

∗ [4, Question 10.19].
If the answer to this question is positive, then there is a subset A of N with the fol-
lowing Ramsey theoretic property: whenever A is finitely colored, there is an infinite
sequence in the complement of A, all of whose sums two or more terms at a time are
monochrome [2].

The question whether βN contains an element of order 2 was solved in the affir-
mative in [8, Theorem 1]. In [9], some further finite semigroups in βN consisting of
idempotents and elements of order 2 were constructed, in particular, null semigroups
(x + y = 0 for all x, y), and a connection of finite semigroups in βN with Ramsey
theory was discussed, see also [1]. In [12], it was shown that for every m ≥ 1, the
direct product of the m-element null semigroup and the rectangular band 2c × 2c has
copies in βN (that the rectangular band 2c × 2c has copies in βN was established in
[5]).
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The questionwhetherβN contains an element of finite order n ≥ 3was solved in the
affirmative in [10, Theorem 3]. In fact, it was shown that for anym ≥ 1 and n ≥ 2, βN
contains copies of the semigroup Cm,n generated by the elements q = q1, q2, . . . , qm
with defining relations (n + 1)q = nq and qs + qt = 2q, where s, t ∈ {1, . . . ,m}. (If
m = 1, this is the cyclic semigroup of order n and period 1, and if n = 2, this is the
m-element null semigroup.) In [13], it was shown that for any m ≥ 1 and n ≥ 2, the
direct product of the semigroup Cm,n and the left zero semigroup 2c has copies in βN.

Let m, n ≥ 2 and define ν : ω → {0, . . . ,m − 1} by ν(k) ≡ k (mod m).
In [6], it was shown that there is a sequence p0, . . . , pm−1 in βN such that all sums∑i+k
j=i pν( j), where i ∈ {0, . . . ,m − 1} and k ∈ {0, . . . ,mn − 1 − i} for each i , are

distinct and
∑mn

j=i pν( j) = ∑mn−m
j=i pν( j) for each i .

In this paper, we construct some new finite semigroups in βN, in particular, a
semigroup generated bym elements of order n with cardinalitymn +mn−1 +· · ·+m.
In fact, we construct large locally finite semigroups. The construction is given in
Sect. 2.

In Sect. 3, using those semigroups, we show that, for n ≥ m, there is a sequence
p0, . . . , pm−1 in βN such that all sums

∑i+k
j=i pν( j), where i ∈ {0, . . . ,m − 1} and

k ∈ {0, . . . , n − 1}, are distinct and ∑i+n
j=i pν( j) = ∑i+n−m

j=i pν( j) for each i . We also
discuss all possible finite systems of such periodic sums.

And in Sect. 4, we derive some newRamsey theoretic results. In particular, we show
that, for n ≥ m, there is a partition {Ai,k : (i, k) ∈ {0, . . . ,m − 1} × {0, . . . , n − 1}}
of N such that, whenever for each (i, k), Bi,k is a finite partition of Ai,k , there exist
Bi,k ∈ Bi,k and a sequence (x j )∞j=0 such that for every finite sequence j0 < . . . < js
such that jt+1 ≡ jt + 1 (mod m) for each t < s, one has x j0 + · · · + x js ∈ Bi0,k0 ,
where i0 = ν( j0) and k0 is s if s ≤ n − 1 and n − m + ν(s − n) otherwise.

2 Construction of semigroups

Let m ≥ 1, n ≥ 2, and l = m + n − 1. For every x ∈ N, supp x is a unique finite
nonempty subset of ω = N ∪ {0} such that

x =
∑

k∈supp x

2k .

Pick an increasing sequence I0 ⊆ I1 ⊆ . . . ⊆ Il = ω of subsets of ω such that
Ii \ Ii−1 is infinite for each i ∈ {0, 1, . . . , l} (with I−1 = ∅). Define a function h
from N onto the decreasing chain 0 > 1 > . . . > l of idempotents (with the operation
i ∗ j = max{i, j}) by

h(x) = min{i ≤ l : supp x ⊆ Ii } = max{i ≤ l : (supp x) ∩ (Ii\Ii−1) �= ∅}

and let the same letter h denote its continuous extension βN → {0, 1, . . . , l}. If
x, y ∈ N and max supp x < min supp y, then h(x + y) = h(x) ∗ h(y). It then follows
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(see [4, Theorem 4.21]) that for any u ∈ βN and v ∈ H, where

H =
∞⋂

n=0

2nN,

one has h(u + v) = h(u) ∗ h(v), in particular, the restriction of h toH is a homomor-
phism. For each i ∈ {0, 1, . . . , l}, let

Ti = h−1({0, 1, . . . , i}) ∩ H.

Then T0 ⊆ T1 ⊆ . . . ⊆ Tl = H is an increasing sequence of closed subsemigroups of
H such that h(K (Ti )) = {i} for each i ≤ l, and so Ti ∩ K (Ti+1) = ∅ for each i < l
and K (Tl) = K (βN)∩Tl [9, Lemma 3.1], in particular, all K (T0), K (T1), . . . , K (Tl)
are pairwise disjoint. Moreover, h(K (βN)) = {l}, and so Tl−1 ∩ K (βN) = ∅.

To see this, let u ∈ K (βN). Then u+βN is theminimal right ideal of βN containing
u and βN + u the minimal left ideal containing u. Let v be the identity of the group
(u + βN) ∩ (βN + u). Then u = u + v and v ∈ K (H), so h(u) = h(u + v) =
h(u) ∗ h(v) = h(u) ∗ l = l.

For each i ∈ {0, 1, . . . , l}, let

Xi = {x ∈ N : (supp x) ∩ (Ii \ Ii−1) �= ∅}.

Notice that for any v ∈ Xi ∩ H and u ∈ βN, u + v ∈ Xi , and for any v ∈ Xi and
w ∈ H, v + w ∈ Xi .

Define φi : Xi → ω by

φi (x) = max((supp x) ∩ (Ii \ Ii−1))

and let the same letter φi denote its continuous extension Xi → βω. Notice that
{2k : k ∈ Ii \ Ii−1} ⊆ Xi and, since φi (2k) = k, φi homeomorphically maps
{2k : k ∈ Ii \ Ii−1} onto Ii \ Ii−1. If x ∈ N, y ∈ Xi and max supp x < min supp y,
then x + y ∈ Xi and φi (x + y) = φi (y). And if y ∈ Xi , z ∈ N\ Xi and max supp y <

min supp z, then φi (y + z) = φi (y). It then follows that for any v ∈ Xi ∩ H and
u ∈ βN, φi (u + v) = φi (v), and for any v ∈ Xi and w ∈ H \ Xi , φi (v + w) = φi (v).

To see for example the first statement, we first note that for any x ∈ N and v ∈
Xi ∩ H, φi (x + v) = φi (v) because the continuous functions φi ◦ λx and φi agree
on Xi ∩ 2nN, where n = (max supp x) + 1. Then for any v ∈ Xi ∩ H and u ∈ βN,
φi (u+v) = φi (v) because the continuous function φi ◦ρv is constantly equal to φi (v)

on N.
Notice that K (Ti ) ⊆ Xi ∩ H and Ti−1 ⊆ H \ Xi (with T−1 = ∅).
We shall construct

(i) a chain e0 > e1 > . . . > el of idempotents with ei ∈ K (Ti ),
(ii) for each i ∈ {0, 1, . . . , l}, a left zero semigroup {ei,α : α < 2c} ⊆ K (Ti ) such

that ei,0 = ei and ei,α = e0,α + ei for all α < 2c, and
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(iii) for each i ∈ {1,m + 1, . . . , l − 1} (for i = 1 if n = 2), a right zero semigroup
{ei ( j) : j ∈ ω} ⊆ K (Ti ) such that ei (0) = ei , ei ( j) < ei−1 for all j ∈ ω, and
φi (ei ( j)) �= φi (ei (k)) if j �= k.

Notice that (i) and (ii) imply that

ei,α + e j,β = ei∗ j,α

for all i, j ∈ {0, 1, . . . , l} and α, β < 2c.
Indeed,

ei,α + e j,β = e0,α + ei + e0,β + e j = e0,α + (ei + e0) + e0,β + e j
= e0,α + ei + (e0 + e0,β) + e j = e0,α + ei + e0 + e j
= e0,α + ei∗ j = ei∗ j,α.

The construction goes by induction on i ∈ {0, 1, . . . , l}.
For i = 0, pick an injective 2c-sequence {r0,α : α < 2c} in {2k : k ∈ I0}∗.

Lemma 2.1 (r0,α + Tl) ∩ (r0,β + Tl) = ∅ if α �= β.

Proof Consider the functionN � x 	→ min supp x ∈ ω and let θ denote its continuous
extension βN → βω. If x, y ∈ N and max supp x < min supp y, then θ(x + y) =
θ(x). It then follows that for any u ∈ βN and v ∈ H, θ(u + v) = θ(u). Consequently,
θ(r0,α + Tl) = {θ(r0,α)} and θ(r0,β + Tl) = {θ(r0,β)}. Since θ(2k) = k, θ(r0,α) �=
θ(r0,β), so (r0,α + Tl) ∩ (r0,β + Tl) = ∅. ��

For every α < 2c, choose a minimal right ideal R0,α of T0 contained in r0,α + T0.
Pick a minimal left ideal L0 of T0, and for every α < 2c, let e0,α be the identity of the
group R0,α ∩ L0. By Lemma 2.1, e0,α �= e0,β if α �= β. Put e0 = e0,0.

For i = 1, choose a minimal right ideal R1 of T1 contained in e0 + T1. Pick an
injective sequence (r1, j )∞j=0 in {2k : k ∈ I1 \ I0}∗, and for every j ∈ ω, choose a
minimal left ideal L1, j of T1 contained in T1 + r1, j + e0. For every j ∈ ω, let e1( j) be
the identity of the group R1 ∩ L1, j . Then φ1(e1( j)) = φ1(r1, j + e0) = φ1(r1, j ), so φ1
is injective on {e1( j) : j ∈ ω}. Since e1( j) ∈ e0+T1, one has e0+e1( j) = e1( j), and
since e1( j) ∈ T1+r1, j+e0, one has e1( j)+e0 = e1( j), so e1( j) < e0. Put e1 = e1(0).
For every α < 2c, put e1,α = e0,α + e1. Then e1,α + e1,β = e0,α + e1 + e0,β + e1 =
e0,α + (e1 + e0) + e0,β + e1 = e0,α + e1 + (e0 + e0,β) + e1 = e0,α + e1 + e0 + e1 =
e0,α + e1 = e1,α , so {e1,α : α < 2c} is a left zero semigroup (in K (T1)). Since
e1,α = e0,α + e1 ∈ r0,α + T0 + e1 ∈ r0,α + T1, by Lemma 2.1, e1,α �= e1,β if α �= β.

For i ∈ {2, . . . ,m}, pick a minimal right ideal Ri of Ti contained in ei−1 + Ti and
a minimal left ideal Li of Ti contained in Ti + ei−1 and let ei be the identity of the
group Ri ∩ Li . For every α < 2c, let ei,α = e0,α + ei . Then {el,α : α < 2c} is a left
zero semigroup and ei,α �= ei,β if α �= β.

For i ∈ {m + 1, . . . , l − 1} (for n ≥ 3), choose a minimal right ideal Ri of Ti
contained in ei−1 + Ti . Pick an injective sequence (ri, j )∞j=0 in {2k : k ∈ Ii \ Ii−1}∗,
and for every j ∈ ω, choose aminimal left ideal Li, j of Ti contained in Ti +ri, j +ei−1,
and let ei ( j) be the identity of the group Ri ∩ Li, j . Then φi (ei ( j)) = φi (ri, j + e0) =
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φi (ri, j ), soφi is injective on {ei ( j) : j ∈ ω}, and ei ( j) < ei−1 for all j . Put ei = ei (0).
For every α < 2c, put ei,α = e0,α + ei . Then {ei,α : α < 2c} a left zero semigroup
and ei,α �= ei,β if α �= β.

For i = l, pick a minimal right ideal Rl of Tl contained in el−1 + Tl and a minimal
left ideal Ll of Tl contained in Tl + el−1 and let el be the identity of the group Rl ∩ Ll .
For every α < 2c, put el,α = e0,α + el .

Now for each α < 2c, let

Dl−1,α =
{

{el,α + e1( j) : j ∈ N} if n = 2

{el,α + el−1( j) : j ∈ N} if n ≥ 3.

Since φ1(el,α + e1( j)) = φ1(e1( j)) and φl−1(el,α + el−1( j)) = φl−1(el−1( j)), we
have that if n = 2, φ1 is injective on Dl−1,α (and so |φ1(Dl−1,α)| = 2c) and if n ≥ 3,
φl−1 is injective on Dl−1,α (and so |φl−1(Dl−1,α)| = 2c). For every α < 2c, pick
inductively ql−1,α ∈ Dl−1,α \ Dl−1,α such that

if n = 2, φ1(ql−1,α) �= φ1(e1) and all φ1(ql−1,α) are distinct, and
if n ≥ 3, φl−1(ql−1,α) �= φl−1(el−1) and all φl−1(ql−1,α) are distinct.
Then by downward induction on i ∈ {m + 1, . . . , l − 2} (for n ≥ 4), for each

α < 2c, let

Di,α = {ei+1,α + qi+1,α + ei ( j) : j ∈ N}.

Since φi (ei+1,α + qi+1,α + ei ( j)) = φi (ei ( j)), φi is injective on Di,α . For every
α < 2c, pick inductively qi,α ∈ Di,α \ Di,α such that

φi (qi,α) �= φi (ei ) and all φi (qi,α) are distinct.
For i = m (for n ≥ 3), for each α < 2c, let

Dm,α = {em+1,α + qm+1,α + e1( j) : j ∈ N}.

Since φ1(em+1,α + qm+1,α + e1( j)) = φ1(e1( j)), φ1 is injective on Dm,α . For every
α < 2c, pick inductively qm,α ∈ Dm,α \ Dm,α such that

φ1(qm,α) �= φ1(em) and all φ1(qm,α) are distinct.
Since el,α ∈ K (βN) and K (βN) is an ideal of βN [4, Theorem 4.44], we have

by downward induction that for each i ∈ {m, . . . , l − 1}, Di,α ⊆ K (βN) and qi,α ∈
K (βN).

For each s ∈ {0, 1, . . . , l}, el,α = es,α + el,α and es,α ∈ Xs , so el,α ∈ Xs . It then
follows by downward induction that for each i ∈ {m, . . . , l − 1}, Di,α ⊆ Xs ∩ H

and qi,α ∈ Xs ∩ H. We also have that φ1 is injective on Dm,α and for each i ∈
{m + 1, . . . , l − 1} (for n ≥ 3), φi is injective on Di,α .

An ultrafilter q ∈ N
∗ is right cancelable (in βN) if the right translation of βN by

q is injective. An ultrafilter q ∈ N
∗ is right cancelable if and only if q /∈ N

∗ + q [4,
Theorem 8.18]. From the next lemma we obtain that all qi,α , where i ∈ {m, . . . , l−1}
and α < 2c, are right cancelable.
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Lemma 2.2 Let i ∈ {0, 1, . . . , l}, let D be a countable subset of Xi ∩H, and suppose
that φi is injective on D. Then every q ∈ D \ D is right cancelable.

Proof This is [10, Lemma 5]. ��
The next lemma gives us relations between qi,α and es,β .

Lemma 2.3 For any α, β < 2c,

(1) ql−1,α + el−1,β = el,α ,
(2) if n = 2, then for each s ∈ {1, . . . , l}, ql−1,α + es,β = el,α ,
(3) if n ≥ 3, then for each i ∈ {m + 1, . . . , l − 1}, qi,α + ei−1,β = qi,α ,
(4) if n ≥ 3, then for each i ∈ {m, . . . , l − 2}, qi,α + ei,β = ei+1,α + qi+1,α , and
(5) if n ≥ 3, then for each s ∈ {1, . . . ,m}, qm,α + es,β = em+1,α + qm+1,α .

Proof (1) For n ≥ 3, (el,α + el−1( j)) + el−1,β = el,α + (el−1( j) + el−1,β) =
el,α + ((el−1( j) + el−2,0) + el−1,β) = el,α + (el−1( j) + (el−2,0 + el−1,β)) =
el,α + el−1( j) + el−1,0 = el,α + el−1,0 = el,α , and since ρel−1,β is constantly
equal to el,α on Dl−1,α , ρel−1,β (ql−1,α) = el,α , so ql−1,α + el−1,β = el,α . The
case n = 2 is included in (2).

(2) (el,α +e1( j))+es,β = el,α +(e1( j)+e0,0)+es,β = el,α +e1( j)+(e0,0+es,β) =
el,α + e1( j)+ es,0 = el,α + e1( j)+ (e1,0 + es,0) = el,α + (e1( j)+ e1,0)+ es,0 =
el,α + e1,0 + es,0 = el,α + es,0 = el,α .

(3) For i = l − 1, (el,α + el−1( j)) + el−2,β = el,α + (el−1( j) + el−2,0) + el−2,β =
el,α + el−1( j) + (el−2,0 + el−2,β) = el,α + el−1( j) + el−2,0 = el,α + el−1( j),
and since ρel−2,β is the identity on Dl−1,α , ρel−2,β (ql−1,α) = ql−1,α , so ql−1,α +
el−2,β = ql−1,α . For i ≤ l − 2, (ei+1,α + qi+1,α + ei ( j)) + ei−1,β = ei+1,α +
qi+1,α +(ei ( j)+ei−1,0)+ei−1,β = ei+1,α +qi+1,α +ei ( j)+(ei−1,0+ei−1,β) =
ei+1,α + qi+1,α + ei ( j) + ei−1,0 = ei+1,α + qi+1,α + ei ( j).

(4) For i ≥ m+1, (ei+1,α+qi+1,α+ei ( j))+ei,β = ei+1,α+qi+1,α+(ei ( j)+ei−1,0)+
ei,β = ei+1,α +qi+1,α +ei ( j)+(ei−1,0+ei,β) = ei+1,α +qi+1,α +ei ( j)+ei,0 =
ei+1,α + qi+1,α + ei,0 = ei+1,α + qi+1,α because qi+1,α + ei,0 = qi+1,α by (3).
The case i = m is included in (5).

(5) em+1,α + qm+1,α + e1( j) + es,β = em+1,α + qm+1,α + (e1( j) + e0,0) + es,β =
em+1,α + qm+1,α + e1( j) + (e0,0 + es,β) = em+1,α + qm+1,α + e1( j) + es,0 =
em+1,α+qm+1,α+e1( j)+(e1,0+es,0) = em+1,α+qm+1,α+(e1( j)+e1,0)+es,0 =
em+1,α + qm+1,α + e1,0 + es,0 = em+1,α + qm+1,α + es,0 = em+1,α + qm+1,α
because by (3), qm+1,α+es,0 = (qm+1,α+em,0)+es,0 = qm+1,α+(em,0+es,0) =
qm+1,α + em,0 = qm+1,α .

��
FromLemma2.3we obtain that for each i ∈ {m, . . . , l−1} and each s ∈ {1, . . . , l},

qi,α + es,β =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

el,α if m = l − 1

em+1,α + qm+1,α if s ≤ i = m ≤ l − 2

qi,α if i ≥ m + 1 and s < i

es+1,α + qs+1,α if i ≤ s ≤ l − 2

el,α if l − 1 ≤ s ≤ l.
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Indeed, the first and the second cases are Lemma 2.3(2) and Lemma 2.3(5) respec-
tively.

In the third case, using Lemma 2.3(3), qi,α + es,β = (qi,α + ei−1,0) + es,β =
qi,α + (ei−1,0 + es,β) = qi,α + ei−1,0 = qi,α .

The fourth case for i = s is Lemma 2.3(4). Then by downward induction on
i ∈ {m,m+1, s}, for i < s, qi,α +es,β = qi,α + (ei,β +es,β) = (qi,α +ei,β)+es,β =
ei+1,α + qi+1,α + es,β = ei+1,α + (qi+1,α + es,β) = ei+1,α + es+1,α + qs+1,α =
es+1,α + qs+1,α .

The fifth case for i = s = l − 1 is Lemma 2.3(1). For i ≤ l − 2, using the already
established fourth case, qi,α + el−1,β = qi,α + el−2,β + el−1,β = el−1,α + ql−1,α +
el−1,β = el−1,α + el,α = el,α . Then for each i , qi,α + el,β = qi,α + el−1,β + el,β =
el,α + el,β = el,α .

Now consider the subsemigroup Q of H generated algebraically by the elements
ei,α and qs,β , where i ∈ {1, . . . , l}, s ∈ {m, . . . , l − 1}, and α, β < 2c (we have
interchanged i and s, and so are α and β). It follows from the formula above that Q
consists of elements of the form

ei,α, qs1,β1 + . . . + qst ,βt , and ei,α + qs1,β1 + . . . + qst ,βt ,

where i ∈ {1, . . . , l}, t ∈ N, s1, . . . , st ∈ {m, . . . , l − 1}, and α, β1, . . . , βt < 2c.

Lemma 2.4 All elements

ei,α, qs1,β1 + . . . + qst ,βt , and ei,α + qs1,β1 + . . . + qst ,βt ,

where i ∈ {1, . . . , l}, t ∈ N, s1, . . . , st ∈ {m, . . . , l − 1}, and α, β1, . . . , βt < 2c, are
distinct.

Proof Assume on the contrary that some two distinct expressions represent the same
element. Then canceling the equality by q-s we arrive at one of the following cases:

(1) u + qi,α = v + qs,β for some u, v ∈ βN and (i, α) �= (s, β),
(2) u + qi,α = qs,β for some u ∈ βN,
(3) u + qi,α = es,β for some u ∈ βN,
(4) ei,α = es,β with (i, α) �= (s, β).

The last one is obviously impossible.
In (1), we have that φi (qi,α) = φi (u + qi,α) = φi (v + qs,β) = φi (qs,β). If i = s,

then α �= β and φi (qi,α) = φi (qi,β), a contradiction. If i �= s, say i < s, then
φi (qs,β) = φi (qs,β + ei,0) = φi (ei,0) and φi (qi,α) �= φi (ei,0), again a contradiction.

In (2), since qs,β is right cancelable, one has s �= i . Suppose i < s. Then φi (qi,α) =
φi (qs,β). But φi (qs,β) = φi (ei,0) (as in (1)) and φi (qi,α) �= φi (ei,0), a contradiction.
The case s < i is essentially the same, since applying φs to qs,β = u + qi,α gives us
φs(qs,β) = φs(qi,α).

In (3), since qi,α ∈ K (βN), e1, . . . , el−1 ∈ Tl−1 and Tl−1 ∩ K (βN) = ∅, one
has s = l. Then φi (qi,α) = φi (el,β). But φi (el,β) = φi (el,β + ei,0) = φi (ei,0) and
φi (qi,α) �= φi (ei,0), a contradiction. ��
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From Lemma 2.4 we obtain that

Corollary 2.5 As an abstract semigroup, Q is generated by the chain of left zero
semigroups {ei,α : α < 2c}, where i ∈ {1, . . . , l} and for each i ≤ l − 1,
ei,α + ei+1,β = ei+1,α and ei+1,β + eα,i = ei+1,β , and elements qs,β , where
s ∈ {m, . . . , l − 1} and β < 2c, with the defining relations (1)-(5) in Lemma 2.3.

Now consider the subsemigroup P of Q generated by the elements

ps,α,β = es,α + qm,β ,

where s ∈ {1, . . . ,m} and α, β < 2c.

Lemma 2.6 For all i ≥ 2, s1, . . . , si ∈ {1, . . . ,m}, and α1, β1 . . . , αi , βi < 2c,

psi ,αi ,βi + . . . + ps1,α1,β1 =
{
em+i−1,αi + qm+i−1,βi + . . . + qm,β1 if i ≤ n − 1

el,αi + ql−1,βn−1 + . . . + qm,β1 otherwise.

Proof We use Lemma 2.3. If n = 2, then

ps2,α2,β2 + ps1,α1,β1 = es2,α2 + qm,β2 + es1,α1 + qm,β1

= es2,α2 + (qm,β2 + es1,α1) + qm,β1

= es2,α2 + el,β2 + qm,β1 = el,α2 + qm,β1 and

ps3,α3,β3 + ps2,α2,β2 + ps1,α1,β1 = (ps3,α3,β3 + ps2,α2,β2) + ps1,α1,β1
= el,α3 + qm,β2 + es1,α1 + qm,β1

= el,α3 + (qm,β2 + es1,α1) + qm,β1

= el,α3 + el,β2 + qm,β1 = el,α3 + qm,β1 .

Let n ≥ 3. We first notice that for each j ∈ {1, . . . , n − 2},

qm+ j−1,β j + . . . + qm,β1 + es,α = em+ j,β j + qm+ j,β j + . . . + qm+1,β1 and

ql−1,βn−1 + . . . + qm,β1 + es,α = el,βn−1 + ql−1,βn−2 + . . . + qm+1,β1 .

Indeed, inductively, qm,β1 + es,α = em+1,β1 + qm+1,β1 , and for j ≥ 2,

qm+ j−1,β j + . . . + qm,β1 + es,α = qm+ j−1,β j + (qm+ j−2,β j−1 + . . . + qm,β1 + es,α)

= qm+ j−1,β j + em+ j−1,β j−1 + qm+ j−1,β j−1

+ . . . + qm+1,β1

= em+ j,β j + qm+ j,β j + qm+ j−1,β j−1 + . . .

+ qm+1,β1 ,
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and then

ql−1,βn−1 + . . . + qm,β1 + es,α = ql−1,βn−1 + (ql−2,βn−2 + . . . + qm,β1 + es,α)

= ql−1,βn−1 + el−1,βn−2 + ql−1,βn−2 + . . . + qm+1,β1

= el,βn−1 + ql−1,βn−2 + . . . + qm+1,β1 .

Now by induction on i ∈ {2, . . . , n − 1},

ps2,α2,β2 + ps1,α1,β1 = es2,α2 + qm,β2 + es1,α1 + qm,α1 = es2,α2
+ (qm,β2 + es1,α1) + qm,β1

= es2,α2 + em+1,β2 + qm+1,β2 + qm,β1 = em+1,α2

+ qm+1,β2 + qm,β1 ,

and for i ≥ 2,

psi ,αi ,βi + . . . + ps1,α1,β1 = (psi ,αi ,βi + . . . + ps2,α2,β2) + ps1,α1,β1
= em+i−2,αi + qm+i−2,βi + . . . + qm,β2 + es1,α1 + qm,β1

= em+i−2,αi + em+i−1,βi + qm+i−1,βi + . . .

+ qm+1,β2 + qm,β1

= em+i−1,αi + qm+i−1,βi + . . . + qm,β1 ,

and then

psn ,αn ,βn + . . . + ps1,α1,β1 = (psn ,αn ,βn + . . . + ps2,α2,β2) + ps1,α1,β1
= el−1,αn + ql−1,βn + . . . + qm,β2 + es1,α1 + qm,β1

= el−1,αn + el,βn + ql−1,βn−1 + . . .

+ qm+1,β2 + qm,β1

= el,αn + ql−1,βn−1 + . . . + qm,β1

and

psn+1,αn+1,βn+1 + . . . + ps1,α1,β1 = (psn+1,αn+1,βn+1 + . . . + ps2,α2,β2) + ps1,α1,β1
= el,αn+1 + ql−1,βn + . . . + qm,β2 + es1,α1 + qm,β1

= el,αn+1 + el,βn + ql−1,βn−1 + . . .

+ qm+1,β2 + qm,β1

= el,αn+1 + ql−1,βn−1 + . . . + qm,β1 .

��
It follows from Lemma 2.6 that the subsemigroup P consists of the elements

ps,α,β , em+i−1,α + qm+i−1,βi + . . . + qm,β1 , and el,α + ql−1,βn−1 + . . . + qm,β1 ,
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where s ∈ {1, . . . ,m}, 2 ≤ i ≤ n−1, andα, β1 . . . , βn−1 < 2c, and by Lemma 2.4, all
these elements are distinct. Notice that the elements el,α +ql−1,βn−1 + . . .+qm,β1 form
K (P). Since all q j,β are in K (βN), P ⊆ K (βN), and since el,α ∈ K (βN), K (P) ⊆
K (βN). Also notice that the subsemigroup generated by ps1,α1,β1 , . . . , psi ,αi ,βi is
finite. It then follows that P is locally finite, that is, every finitely generated subsemi-
group is finite.

Given cardinals κ ≥ 1 and λ ≥ 1 and integers m ≥ 1 and n ≥ 2, let
S(κ, λ,m, n) denote the semigroup whose elements are the words sαβ, αβi . . . β1, and
∗αβn−1 . . . β1, where s ∈ {1, . . . ,m}, 2 ≤ i ≤ n−1, α ∈ κ , and β, β1, . . . , βn−1 ∈ λ,
and defining relations are, for j ≥ 2,

s jα jβ j + . . . + s1α1β1 =
{

α jβ j . . . β1 if j ≤ n − 1

∗α jβn−1 . . . β1 otherwise,

soαβi . . . β1 = 1αβi+. . .+1αβ1, and∗αβn−1 . . . β1 = 1αβn−1+1αβn−1+. . .+1αβ1.
If m = 1, we write αβ instead of 1αβ.

It is easy to see that the mapping g : P → S(2c, 2c,m, n) defined by

g(ps,α,β) = sαβ, g(em+i−1,α + qm+i−1,βk + . . . + qm,β1) = αβi . . . β1, and

g(em+n−1,α + qm+n−2,βn−1 + . . . + qm,β1) = ∗αβn−1 . . . β1

is an isomorphism.
We thus have proved the following result.

Theorem 2.7 Letm ≥ 1andn ≥ 2 and let S = S(2c, 2c,m, n). There is an isomorphic
embedding ε : S → H. Furthermore, ε can be chosen so that ε(S) ⊆ K (βN) and
ε(K (S)) ⊆ K (βN).

For each (α, β) ∈ κ × λ, the subsemigroup of S(κ, λ,m, n) consisting of the
elements sαβ, where s ∈ {1, . . . ,m}, andαββ, . . . , α β . . . β

︸ ︷︷ ︸
n−1

, ∗α β . . . β
︸ ︷︷ ︸
n−1

is isomorphic

to the semigroup Cm,n . The semigroup S(κ, 1,m, n) consists of the elements sα0 and

α00, . . . , α 0 . . . 0︸ ︷︷ ︸
n−1

, ∗α 0 . . . 0︸ ︷︷ ︸
n−1

,

where s ∈ {1, . . . ,m} and α ∈ κ , and is isomorphic to the direct product of Cm,n and
the left zero semigroup κ . The semigroup S(κ, λ,m, 2) consists of the elements sαβ

and ∗αβ, where s ∈ {1, . . . ,m} and (α, β) ∈ κ × λ, and is isomorphic to the direct
product of Cm,2 (the m-element null semigroup) and the rectangular band κ × λ.

Now consider the subsemigroup T of S = S(κ, κ, 1, n) generated by the elements
ββ, where β ∈ κ . Since

β jβ j + . . . + β1β1 =
{

β jβ j . . . β1 if j ≤ n − 1

∗β jβn−1 . . . β1 otherwise,
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T consists of the words βiβi . . . β1 and ∗αβn−1 . . . β1, where 1 ≤ i ≤ n − 1 and
α, β1, . . . , βn−1 ∈ κ . Notice that K (T ) = K (S).

Given a cardinal κ ≥ 1 and an integer n ≥ 2, let F(κ, n) denote the semigroup
whose elements are the words βi . . . β1, where 1 ≤ i ≤ n and β1, . . . , βi ∈ κ , and
defining relations are

β j + . . . + β1 =
{

β j . . . β1 if j ≤ n

β jβn−1 . . . β1 otherwise,

so the operation of F(κ, n) is defined by

βi+t . . . βi+1 + βi . . . β1 =
{

βi+t . . . β1 if i + t ≤ n

βi+tβn−1 . . . β1 otherwise.

It is easy to see that the mapping f : T → F(κ, n) defined by

f (βiβi . . . β1) = βi . . . β1 and f (∗αβn−1 . . . β1) = αβn−1 . . . β1

is an isomorphism.
Thus, we obtain from Theorem 2.7 the following result.

Theorem 2.8 Let n ≥ 2 and let F = F(2c, n). There is an isomorphic embedding
ε : F → H. Furthermore, ε can be chosen so that ε(F) ⊆ K (βN) and ε(K (F)) ⊆
K (βN).

The semigroup F(κ, n) is generated by the 1-letter words β, where β ∈ κ , each of
which is an element of order n and each m ≥ 1 of which generate a subsemigroup of
cardinality mn + mn−1 + . . . + m.

3 Periodic sums systems

Let m ≥ 2 and define ν = νm : ω → {0, . . . ,m − 1} by ν(k) ≡ k (mod m). Given
a sequence p0, . . . , pm−1 in an additive semigroup, the periodic sums are sums of
the form

∑i+k
j=i pν( j), where i ∈ {0, . . . ,m − 1} and k ≥ 0, and (

∑i+k
j=i pν( j))

∞
k=0

is the sequence of periodic sums with initial term pi . Suppose that {∑i+k
j=i pν( j) :

k ≥ 0} is finite. Then ∑i+m−1
j=i pν( j) is an element of finite order, say of order si and

period ti , that is, all elements k
∑i+m−1

j=i pν( j), where k ∈ {1, . . . , si }, are distinct and
(si + 1)

∑i+m−1
j=i pν( j) = (si + 1− ti )

∑i+m−1
j=i pν( j). Notice that k

∑i+m−1
j=i pν( j) =

∑i+km−1
j=i pν( j). It follows that there is a smallest li in {sim, . . . , (si + 1)m − 1} such

that
∑i+li

j=i pν( j) = ∑i+li−tim
j=i pν( j). We call li and tim the order and the period of

the sequence (
∑i+k

j=i pν( j))
∞
k=0. If in addition all elements

∑i+k
j=i pν( j), where k ∈

{0, . . . , li − 1}, are distinct, then we call the sequence cyclic of order li and period
tim.
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Lemma 3.1 (i) ti is the smallest t ≥ 1 such that
∑i+l

j=i pν( j) = ∑i+l−tm
j=i pν( j) for

some l ≥ tm,
(ii) li is the smallest l ≥ m such that

∑i+l
j=i pν( j) = ∑i+l−tm

j=i pν( j) for some t ≥ 1
with tm ≤ l.

Proof (i) Assume on the contrary that there is t < ti such that
∑i+l ′

j=i pν( j) =
∑i+l ′−tm

j=i pν( j) for some l ′ ≥ tm. It then follows that
∑i+l

j=i pν( j) =
∑i+l−tm

j=i pν( j) for all l ≥ l ′. Pick l = km − 1 ≥ l ′ with k ≥ si + 1.

Then k
∑i+m−1

j=i pν( j) = ∑i+km−1
j=i pν( j) = ∑i+km−1−tm

j=i pν( j) = (k −
t)

∑i+m−1
j=i pν( j). Butwe also have that k

∑i+m−1
j=i pν( j) = (k−ti )

∑i+m−1
j=i pν( j),

because
∑i+m−1

j=i pν( j) is an element of order si and period ti and k ≥ si +1. Con-

sequently, (k− t)
∑i+m−1

j=i pν( j) = (k− ti )
∑i+m−1

j=i pν( j) and (k− t)−(k− ti ) =
ti − t < ti , a contradiction.

(ii) Assume on the contrary that there is l ′ < li such that
∑i+l ′

j=i pν( j) =
∑i+l ′−tm

j=i pν( j) for some t , and consequently,
∑i+l

j=i pν( j) = ∑i+l−tm
j=i pν( j) for

all l ≥ l ′. Then by (i), t ≥ ti . If t > ti , then taking l = (si + 1)m − 1 gives
us (si + 1)

∑i+m−1
j=i pν( j) = (si + 1 − t)

∑i+m−1
j=i pν( j), a contradiction. And

if t = ti , then l ′ < sim, so taking l = sim − 1 gives us si
∑i+m−1

j=i pν( j) =
(si − ti )

∑i+m−1
j=i pν( j), again a contradiction.

��

The periodic sums system generated by the sequence p0, . . . , pm−1 is the subset S
of the semigroup consisting of all periodic sums

∑i+k
j=i pν( j), where i < m and k ≥ 0.

Lemma 3.2 Suppose that for some i0 < m, {∑i0+k
j=i0

pν( j) : k ≥ 0} is finite. Then

(1) S is finite,
(2) there are t ≥ 1 and li ≥ tm for each i < m such that (

∑i+k
j=i pν( j))

∞
k=0 has order

li and period tm and li ≤ lν(i+1) + 1,
(3) for each i < m,

∑i+m−1
j=i pν( j) is an element of order si = [ lim ] and period t.

Proof For (1) and (2), write i0 = ν(i1 + 1) and suppose that (
∑i0+k

j=i0
pν( j))

∞
k=0 has

order li0 and period tm. From
∑i0+li0

j=i0
pν( j) = ∑i0+li0−tm

j=i0
pν( j) we obtain that

i0+li0∑

j=i1

pν( j) = pi1 +
i0+li0∑

j=i0

pν( j) = pi1 +
i0+li0−tm

∑

j=i0

pν( j) =
i0+li0−tm

∑

j=i1

pν( j).
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It follows that {∑i1+k
j=i1

pν( j) : k ≥ 0} is finite, and by Lemma 3.1, (
∑i1+k

j=i1
pν( j))

∞
k=0

has order li1 ≤ li0 + 1 and period t ′m for some t ′ ≤ t . From

m−1+i1+li1∑

j=i0

pν( j) =
i0+m−1∑

j=i0

pν( j) +
i1+li1∑

j=i1

pν( j) =
i0+m−1∑

j=i0

pν( j) +
i1+li1−t ′m

∑

j=i1

pν( j)

=
m−1+i1+li1−t ′m

∑

j=i0

pν( j),

we obtain that t ′ ≥ t . Hence t ′ = t . Then write i1 = ν(i2 + 1) and so on.
For (3), if s is the order of

∑i+m−1
j=i pν( j), then li ∈ {sm, . . . , (s + 1)m − 1}, and

since sim ∈ {li − m + 1, . . . , li }, one has s = si . ��
It follows from Lemma 3.2 that |li − lr | ≤ m − 1 and |si − sr | ≤ 1 for all

i, r ∈ {0, . . . ,m − 1}.
We call the m-tuple (l0, . . . , lm−1) and the number tm the order and the period of

S.
Let S and S′ be two periodic sums systems generated by sequences p0, . . . , pm−1

and q0, . . . , qm−1 respectively. A mapping h : S → S′ is a homomorphism if
there is s < m such that for each i < m and each k ≥ 0, h(

∑i+k
j=i pν( j)) =

∑i+s+k
i+s qν( j). An isomorphism is a bijective homomorphism. If S is finite of order

(l0, l1, . . . , lm−1) and period tm and S′ is isomorphic to S, then S′ is finite of order
(ls, lν(s+1), . . . , . . . , lν(s+m−1)) for some s < m and period tm. If for each i < m,
(
∑k

j=i pν( j))
∞
k=i is a cyclic sequence of order li and period tm, and all these sequences

are pairwise disjoint, then S is said to be a free finite periodic sums system of order
(l0, l1, . . . , lm−1) and period tm.

Lemma 3.3 Let any m, l0, . . . , lm−1, t ≥ 1 be given such that tm ≤ li ≤ lν(i+1) + 1
for each i < m and consider the semigroup Q generated by elements p0, . . . , pm−1

with defining relations
∑i+li

j=i pν( j) = ∑i+li−tm
j=i pν( j), where i < m. Then the peri-

odic sums system in Q generated by the sequence p0, . . . , pm−1 is free of order
(l0, . . . , lm−1) and period tm.

Proof Let F be the free semigroup over the alphabet {0, . . . ,m − 1} and let W be the
subset of F consisting of words i0 . . . ik such that k ≥ 0 and is+1 = ν(is + 1) for
each s ≤ k − 1. For each i ∈ {0, . . . ,m − 1} and k ≥ 0, let w(i, k) denote the word
i0 . . . ik inW with i0 = i . Let V be the subset ofW consisting of wordsw(i, k), where
i ∈ {0, . . . ,m − 1} and k ≤ li − 1 for each i , and K (V ) the subset of V consisting of
words w(i, k), where i ∈ {0, . . . ,m − 1} and li − tm ≤ k ≤ li − 1 for each i .

Let δ be the smallest congruence on F generated by the relationsw(i, li ) = w(i, li−
tm), where i ≤ m − 1 (that is, for all v,w ∈ F , vδw if and only if v is derivable from
w under those relations). Then Q = F/δ with pi = w(i, 0), where w denotes the
congruence class of w, and

∑i+k
j=i pν( j) = w(i, k). Clearly, for every w ∈ W , w ⊆ W

and w ∩ V �= ∅. Also for every v ∈ w, v and w have the same first and last letters and
|v| ≡ |w| (mod tm). It then follows that for all distinct v,w ∈ K (V ), v ∩ w = ∅.

123



Finite semigroups and periodic sums systems in...

We claim that for each w ∈ V \ K (V ), w = {w}, and consequently, for all distinct
v,w ∈ V , v ∩ w = ∅.

To show this notice that if w = i0 . . . ik ∈ W and w �= {w}, then there is s ∈
{0, . . . , k} such that k − s ≥ lis − tm. Therefore, it suffices to prove the following
statement:

For each w = i0 . . . ik ∈ W and each s ∈ {0, . . . , k}, if k − s ≥ lis − tm, then
k ≥ li0 − tm.

We proceed by induction on s. If s = 0, it is obviously true. Fix r ≥ 0 and suppose
that the statement holds for s = r and let s = r + 1. Then considering the subword
i1 . . . ik the inductive hypothesis gives us that k − 1 ≥ li1 − tm, so k ≥ li1 + 1 − tm.
And since li1 ≥ li0 − 1, we obtain that k ≥ li0 − 1 + 1 − tm = li0 − tm. ��

The subset V of W in the proof of Lemma 3.3 may be considered as a free finite
periodic sums system of order (l0, . . . , lm−1) and period tm, and W itself a free
m-generated periodic sums system of infinite order. Then the mapping π : W → V
defined byπ(w) = w∩V (that is,π(w) = w ifw ∈ V andπ(w) is theword v ∈ K (V )

such that v and w have the same first and last letters otherwise) is a homomorphism.
We callW the set of periodic words over {0, . . . ,m − 1}, V (together with K (V )) the
subset of W representing a free finite periodic sums system of order (l0, . . . , lm−1)

and period tm, and π : W → V the canonical mapping.

Remark 3.4 One may consider the semigroup Q′ generated by idempotents p′
0, . . . ,

p′
m−1 with defining relations

∑i+li
j=i p

′
ν( j) = ∑i+li−tm

j=i p′
ν( j), where i < m. Then the

periodic sums system in Q′ generated by the sequence p′
0, . . . , p

′
m−1 is also free of

order (l0, . . . , lm−1) and period tm.
The proof is practically the same. Let δ′ be the smallest congruence on F generated

by the relations w(i, li ) = w(i, li − tm) and w(i, 1) = w(i, 0), where i ≤ m − 1.
Then Q = F/δ′ with p′

i = w(i, 0)
′
, where w′ denotes the δ′ congruence class of w,

and for every w ∈ W , w′ ∩ W = w.

Since every element of finite order in βN has period 1, it follows that

Theorem 3.5 Every finite m-generated periodic sums system in βN has period m.

In [6] it was shown that for any m ≥ 2 and n ≥ 2, there is a free finite m-generated
periodic sums system in H of order (mn,mn − 1, . . . ,mn − m + 1). Now using
Theorem 2.8 we prove the following result.

Theorem 3.6 For any n ≥ m ≥ 2, there is a free finite m-generated periodic sums
system in H of order (n, n, . . . , n).

Proof First consider the main case where n ≥ m + 1. Let n′ = n − m + 1 and
F = F(m, n′). By Theorem 2.8, F has copies in H, so it suffices to construct a
free m-generated periodic sums system of order (n, n, . . . , n) in F . For each i ∈
{0, . . . ,m−1}, let pi be the 1-letter word i in F , and for each k ∈ {0, . . . , n′ +m−1},
let vi,k be the word in F representing

∑i+k
j=i pν( j). Then

vi,k =
{
iν(i + 1) . . . ν(i + k) if k ≤ n′ − 1

iν(i + k − n′ + 2)ν(i + k − n′ + 3) . . . ν(i + k) otherwise.
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All words vi,k , where i ∈ {0, . . . ,m − 1} and k ∈ {0, . . . , n′ +m − 2}, are distinct (if
k ≤ n′ − 1, the length of vi,k is k + 1, and if n′ − 1 ≤ k ≤ n′ + m − 2, the length of
vi,k is n′ and the last letter in vi,k is ν(i + k)), and vi,n′+m−1 = iν(i + m + 1)ν(i +
m + 2) . . . ν(i + n′ + m − 1) = iν(i + 1)ν(i + 2) . . . ν(i + n′ − 1) = vi,n′−1.

Now let n = m. Consider the rectangular band {0, . . . ,m − 1} × {0, . . . ,m − 1},
and for each i ∈ {0, . . . ,m − 1}, let pi = (i, i). Then for each k ∈ {0, . . . ,m},∑i+k

j=i pν( j) = (i, ν(i + k)), so all sums
∑i+k

j=i pν( j), where i, k ∈ {0, . . . ,m − 1}, are
distinct and

∑i+m
j=i pν( j) = (i, i) = pi . ��

4 Ramsey theoretic consequences

We first prove a general result. It can be deduced from [9, Theorem 4.4], but for
convenience of the reader, we give a straight proof. We shall use the fact that every
finite subsemigroup S of βN is contained in H [9, Lemma 4.1], and so for all p ∈ S
and j ≥ 0, 2 j

N ∈ p.

Theorem 4.1 Let S be a finite semigroup in βN generated by elements p0, . . . , pm−1,
and for each p ∈ S, let (Ap( j))∞j=0 be a sequence of members of the ultrafilter p.

There is a sequence (x j )∞j=0 such that x j ∈ Apν( j) ( j) ∩ 2 j
N and for every finite

sequence j0 < . . . < js , if q = pν( j0) + . . . + pν( js ), then x j0 + . . . + x js ∈ Aq( j0).

Proof Weconstruct inductively a sequence (x j )∞j=0 satisfying for every j the following

conditions in addition to x j ∈ 2 j
N:

for each finite sequence j0 < . . . < js = j ,

x j0 + . . . + x js ∈ Aq( j0),

where q = pν( j0) + . . . + pν( js ), and for each p ∈ S,

x j0 + . . . + x js + p ∈ Aq+p( j0).

To define x0, for each p ∈ S, choose P(p) ∈ p0 such that P(p) + p ⊆ Ap0+p(0).
We can do this because the right translation by p is continuous. Pick

x0 ∈ Ap0(0) ∩
⋂

p∈S
P(p).

Then x0 ∈ Ap0(0) and for each p ∈ S, x0 + p ∈ P(p) + p ⊆ Ap0+p(0), so x0 is as
required.

Fix j ≥ 0 and suppose that we have defined x0, . . . , x j as required. To define x j+1,
let F be the set of all sequences j0 < . . . < js ≤ j and let i = ν( j+1). For each p ∈ S,
choose B(p) ∈ pi such that B(p)+ p ⊆ Api+p( j + 1). Then for each ( j0, . . . , js) ∈
F , choose C( j0, . . . , js) ∈ pi such that x j0 + . . .+ x js +C( j0, . . . , js) ⊆ Aq+pi ( j0),
where q = pν( j0) + . . . + pν( js ), and for each p ∈ S, choose D( j0, . . . , js, p) ∈ pi
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such that x j0 + . . . + x js + D( j0, . . . , js, p) + p ⊆ Aq+pi+p( j0). We can do the first
because by the inductive hypothesis x j0 + . . . + x js + pi ∈ Aq+pi ( j0) and λx , where
x = x j0 + . . . + x js , is continuous, and the second because pi + p ∈ S and by the
inductive hypothesis x j0 + . . . + x js + pi + p ∈ Aq+pi+p( j0) and λx and ρp are
continuous. Now pick

x j+1 ∈ 2 j+1
N ∩ Api ( j + 1) ∩

⋂

p∈S
B(p) ∩

⋂

( j0,..., js )∈F
(C( j0, . . . , js) ∩

⋂

p∈S
D( j0, . . . , js, p))

(all those sets are members of pi ).
To see that x j+1 is as required, let any j0 < . . . < js = j + 1 be given. If s = 0,

then x j+1 ∈ Api ( j + 1) and for each p ∈ S, x j+1 + p ∈ B(w) + p ⊆ Api+p( j + 1).
If s ≥ 1, then

x j0 + . . . + x js ∈ x j0 + . . . + x js−1 + C( j0, . . . , js−1) ⊆ Aq+pi ( j0),

where q = pν( j0) + . . . + pν( js−1), and for each p ∈ S,

x j0 + . . . + x js + p ∈ x j0 + . . . + x js−1 + D(x j0 , . . . x js−1 , p) + p ⊆ Aq+pi+p( j0).

��
Corollary 4.2 Let S be a finite semigroup generated by elements p0, . . . , pm−1 and
suppose that S has a copy in H. Then there is a partition {Ap : p ∈ S} of N such that
whenever for each p,Bp is a finite partition of Ap, there exist Bp ∈ Bp anda sequence
(x j )∞j=0 such that x j ∈ Bpν( j) ∩ 2 j

N and for every finite sequence j0 < . . . < js , if
q = pν( j0) + . . . + pν( js ), then x j0 + . . . + x js ∈ Bq.

Proof Onemay suppose that S is inβN. Choose a partition {Ap : p ∈ S} ofN such that
Ap ∈ p. To see that this partition is as required, for each p, letBp be a finite partition
of Ap. Pick Bp ∈ Bp such that Bp ∈ p, and for every j ≥ 0, put Ap( j) = Bp.
Let (x j )∞j=0 be a sequence guaranteed by Theorem 4.1. For any j0 < . . . < js , if
q = pν( j0) + . . . + pν( js ), then x j0 + . . . + x js ∈ Ap( j0) = Bq . ��

Now from Theorem 2.8 and Corollary 4.2 we obtain the following result.

Corollary 4.3 Let m ≥ 1 and n ≥ 2 and let F be the set of nonempty words over
{0, . . . ,m − 1} of length ≤ n. There is a partition {Aw : w ∈ F} of N such that,
whenever for each w ∈ F,Bw is a finite partition of Aw, there exist Bw ∈ Bw and a
sequence (x j )∞j=0 such that x j ∈ 2 j

N and for every finite sequence j0 < . . . < js , if

v =
{

ν( j0) . . . ν( js) if s ≤ n − 1

ν( j0)ν( js−n+2) . . . ν( js) otherwise,

then x j0 + . . . + x js ∈ Bv .
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Proof Consider F as the semigroup F(m, n). ��
Remark 4.4 We have extended the addition of natural numbers to an operation + on
βN so as to obtain a right topological semigroup. But one can equally well extend the
addition to an operation ∗ on βN so as to obtain a left topological semigroup. The
semigroup (βN, ∗) is the opposite of the semigroup (βN,+): p∗q = q+ p. There are
finite semigroups which have copies in (βN, ∗) and not in (βN,+). For example, the
3-element band {a, b, c}, where {a, b} is right zero semigroup and c is zero [11]. At
the end of the paper [9] it was wrongly remarked that Theorem 4.4 there, an analogue
of Theorem 4.1 here, holds for the semigroup (βN, ∗) as well and so the result can
be extended to finite semigroups which have copies in (βN, ∗). In fact Theorem 4.1
holds for (βN, ∗) with a correction:

Let S be a finite semigroup in (βN, ∗) generated by elements p0, . . . , pm−1, and
for each p ∈ S, let (Ap( j))∞j=0 be a sequence of members of the ultrafilter p. There is

a sequence (x j )∞j=0 in N such that x j ∈ Apν( j) ( j) ∩ 2 j
N and for every finite sequence

j0 < . . . < js , if q = pν( js ) ∗ . . . ∗ pν( j0), then x j0 + . . . + x js ∈ Aq( j0).
And since pν( js ) ∗ . . . ∗ pν( j0) = pν( j0) + . . . + pν( js ), this is the result for the

semigroup (S,+) in (βN,+). Hence, using (βN, ∗) in addition to (βN,+) gives no
new result.

Theorem 4.5 Let S be a finite periodic sums system in H generated by a sequence
p0, . . . , pm−1, and for each p ∈ S, let (Ap( j))∞j=0 be a sequence of members of

p. There is a sequence (x j )∞j=0 such that x j ∈ Apν( j) ( j) ∩ 2 j
N and for every finite

sequence j0 < . . . < js such that jt+1 ≡ jt + 1 (mod m) for each t < s, if
q = pν( j0) + . . . + pν( js ), then x j0 + . . . + x js ∈ Aq( j0).

Proof Let (l0, . . . , lm−1) be the order of S and letW be the set of periodic words over
{0, . . . ,m − 1}, V the subset of W representing a free finite periodic sums system of
order (l0, . . . , lm−1) and period m, and π : W → V the canonical mapping. Also for
each i ∈ {0, . . . ,m−1}, let V (i) denote the subset of V consisting of words with first
letter i . Define f : W → S by f (i0 . . . ik) = pi0 + . . . + pik . Then f (w) = f (π(w))

for all w ∈ W and f (wv) = f (w) + f (v) for all w, v ∈ W such that wv ∈ W .
We construct inductively a sequence (x j )∞j=0 satisfying for every j the following

conditions in addition to x j ∈ 2 j
N:

for each finite sequence j0 < . . . < js = j with w = ν( j0) . . . ν( js) ∈ W ,

x j0 + . . . + x js ∈ A f (w)( j0)

and for each v ∈ V (ν( j + 1)),

x j0 + . . . + x js + f (v) ∈ A f (wv)( j0).

To define x0, for each v ∈ V (1), choose P(v) ∈ p0 such that P(v) + f (v) ⊆
A f (0v)(0). We can do this because p0 + f (v) = f (0v) and ρ f (v) is continuous. Pick

x0 ∈ A0(0) ∩
⋂

v∈V (1)

P(v).
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Then x0 ∈ A0(0) and for each v ∈ V (1), x0 + f (v) ∈ P(v) + f (v) ⊆ A f (0v)(0), so
x0 is as required.

Fix j ≥ 0 and suppose that we have defined x0, . . . , x j as required. To define x j+1,
let F be the set of all sequences j0 < . . . < js ≤ j with ν( j0) . . . ν( js) ∈ W and
ν( js) = ν( j) and let i = ν( j + 1) and r = ν( j + 2). For each v ∈ V (r), choose
B(v) ∈ pi such that B(v) + f (v) ⊆ A f (iv)( j + 1). Then for each ( j0, . . . , js) ∈ F ,
choose C( j0, . . . , js) ∈ pi such that x j0 + . . . + x js + C( j0, . . . , js) ⊆ A f (wi)( j0),
wherew = ν( j0) . . . ν( js), and for each v ∈ V (r), choose D( j0, . . . , js, v) ∈ pi such
that x j0+. . .+x js+D( j0, . . . , js, v)+ f (v) ⊆ A f (wiv)( j0).Wecando thefirst because
by the inductive hypothesis x j0 + . . .+x js + pi ∈ A f (wi)( j0) and λx , where x = x j0 +
. . .+x js , is continuous, and the second because pi+ f (v) = f (iv) = f (π(iv)) and by
the inductive hypothesis x j0 + . . . + x js + f (π(iv)) ∈ A f (wπ(iv))( j0) = A f (wiv)( j0)
(since f (wiv) = f (w)+ f (iv) = f (w)+ f (π(iv)) = f (wπ(iv))) and λx and ρ f (v)

are continuous. Now pick

x j+1 ∈ 2 j+1
N ∩ Ai ( j + 1) ∩

⋂

v∈V (r)

B(v) ∩
⋂

( j0,..., js )∈F
(C( j0, . . . , js) ∩

⋂

v∈V (r)

D( j0, . . . , js, v))

(all those sets are members of pi ).
To see that x j+1 is as required, let any j0 < . . . < js = j +1 with ν( j0) . . . ν( js) ∈

W be given. If s = 0, then x j+1 ∈ Ai ( j + 1) and for each v ∈ V (r), x j+1 + f (v) ∈
B(v) + f (v) ⊆ A f (iv)( j + 1). If s ≥ 1, then

x j0 + . . . + x js ∈ x j0 + . . . + x js−1 + C( j0, . . . , js−1) ⊆ A f (wi)( j0),

where w = ν( j0) . . . ν( js−1), and for each v ∈ V (r),

x j0 + . . . + x js + f (v) ∈ x j0 + . . . + x js−1 + D(x j0 , . . . , x js−1,v)

+ f (v) ⊆ A f (wiv)( j0).

��
Corollary 4.6 Let S be a finite periodic sums system generated by a sequence
p0, . . . , pm−1 and suppose that S has a copy in H. Then there is a partition
{Ap : p ∈ S} of N such that whenever for each p, Bp is a finite partition of Ap,
there exist Bp ∈ Bp and a sequence (x j )∞j=0 such that x j ∈ Bν( j) ∩ 2 j

N and for
every finite sequence j0 < . . . < js such that jt+1 ≡ jt + 1 (mod m) for each t < s,
if q = pν( j0) + . . . + pν( js ), then x j0 + . . . + x js ∈ Bq

Proof Similar to the proof of Corollary 4.2. ��
In [6] it was also deduced from the existence of a free finite m-generated periodic

sums system in H of order (mn,mn − 1, . . . ,mn − m + 1) that:
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There is a partition

{Ai,k : i ∈ {0, . . . ,m − 1} and k ∈ {i, . . . ,mn − 1} for each i}

of N such that, whenever for each (i, k), Bi,k is a finite partition of Ai,k , there exist
Bi,k ∈ Bi,k and a sequence (x j )∞j=0 such that x j ∈ 2 j

N and for every finite sequence
j0 < . . . < js such that jt+1 ≡ jt + 1 (mod m) for each t < s, if i0 = ν( j0) and

k0 =
{
i0 + s if i0 + s ≤ mn − 1

mn − m + ν(i0 + s − mn) otherwise,

then x j0 + . . . + x js ∈ Bi0,k0 .
Now from Theorem 3.6 and Corollary 4.6 we obtain the following result.

Corollary 4.7 Let n ≥ m ≥ 2. There is a partition

{Ai,k : (i, k) ∈ {0, . . . ,m − 1} × {0, . . . , n − 1}}

of N such that, whenever for each (i, k), Bi,k is a finite partition of Ai,k , there exist
Bi,k ∈ Bi,k and a sequence (x j )∞j=0 such that x j ∈ 2 j

N and for every finite sequence
j0 < . . . < js such that jt+1 ≡ jt + 1 (mod m) for each t < s, if i0 = ν( j0) and

k0 =
{
s if s ≤ n − 1

n − m + ν(s − n) otherwise,

then x j0 + . . . + x js ∈ Bi0,k0 .

Proof Consider {0, . . . ,m − 1} × {0, . . . , n − 1} as a free finite m-generated periodic
sums system of order (n, . . . , n) with (i, k) = ∑i+k

j=i pν( j). ��
In cases n = m and n = m + 1, Corollary 4.7 can be strengthened. The free finite

m-generated periodic sums systems of orders (m, . . . ,m) and (m + 1, . . . ,m + 1)
constructed in Theorem 3.6 are in fact the m ×m rectangular band and the semigroup
F(m, 2). Therefore, by Corollary 4.2, the following stronger results hold.

Corollary 4.8 For every m ≥ 2, there is a partition

{Ai,k : (i, k) ∈ {0, . . . ,m − 1} × {0, . . . ,m − 1}}

of N such that, whenever for each (i, k), Bi,k is a finite partition of Ai,k , there exist
Bi,k ∈ Bi,k and a sequence (x j )∞j=0 such that x j ∈ 2 j

N and for every finite nonempty
J ⊆ ω, if i0 = ν(min J ) and k0 = ν(max J ), then

∑
j∈J x j ∈ Bi0,k0 .

Corollary 4.9 For every m ≥ 2, there is a partition

{Ai,k : (i, k) ∈ {0, . . . ,m − 1} × {0, . . . ,m}}
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of N such that, whenever for each (i, k), Bi,k is a finite partition of Ai,k , there exist
Bi,k ∈ Bi,k and a sequence (x j )∞j=0 such that x j ∈ 2 j

N∩ Bν( j),0 and for every finite
J ⊆ ω with |J | ≥ 2, if i0 = ν(min J ) and k0 = 1+ν(max J ), then

∑
j∈J x j ∈ Bi0,k0 .

In Corollary 4.9, (i, k) is identified with the 1-letter word i of F(m, 2) if k = 0 and
the word i(k − 1) otherwise. It is a restatement of case m ≥ n = 2 of Corollary 4.3.

We also notice that a finite periodic sums system generated by two idempotents is
a semigroup, and so for such systems, if they have copies in βN, also stronger results
hold.

For every n ≥ 3 (n ≥ 2), a free finite 2-idempotent generated periodic sums
system of order (n, n − 1) ((n, n)) is the semigroup Sn,n−1 (Sn,n) generated by idem-
potents p0, p1 with defining relations

∑n
j=0 pν( j) = ∑n−2

j=0 pν( j) and
∑n

j=1 pν( j) =
∑n−2

j=1 pν( j) (
∑n+1

j=1 pν( j) = ∑n−1
j=1 pν( j)). Presently m = 2, so ν = ν2. We know

only three of those semigroups that have copies in βN: S2,2 (2× 2 rectangular band),
S3,2 (the band (10) in [9, Theorem 2.3]), and S4,3 (the semigroup (3) in [9, Corollary
3.11]). For all others we do not know whether they have copies in βN, in particular,
for S3,3 which is a free 2-generated band. We also do not know whether a sum of two
idempotents in βN can be an element of order n ≥ 3.

For every finite nonempty subset J ⊆ ω, write the elements of J as j0 < . . . < js
and let f (J ) be the number of all t < s such that jt+1 ≡ jt + 1 (mod 2).

Corollary 4.10 Let n ≥ 3 and suppose that the semigroup Sn,n−1 has a copy in βN.
Then there is a partition

{Ai,k : i ∈ {0, 1} and k ∈ {i, . . . , n − 1} for each i}

of N such that, whenever for each (i, k), Bi,k is a finite partition of Ai,k , there exist
Bi,k ∈ Bi,k and a sequence (x j )∞j=0 such that x j ∈ 2 j

N and for every finite nonempty
J ⊆ ω, if i0 = ν(min J ) and

k0 =
{
i0 + f (J ) if i0 + f (J ) ≤ n − 1

n − 2 + ν(i0 + f (J ) − n) otherwise,

then
∑

j∈J x j ∈ Bi0,k0 .

Proof Consider {(i, k) : i ∈ {0, 1} and k ∈ {i, . . . , n−1} for each i} as the semigroup
Sn,n−1 with (i, k) = ∑k

j=i pν( j). For any finite nonempty J ⊆ ω, if i0 = ν(min J ),

then
∑

j∈J pν( j) = ∑i0+ f (J )
j=i0

pν( j). Apply Corollary 4.2. ��
A subset A ⊆ N is an IP set if it contains an infinite sequence all of whose sums

belong to A. By Hindman’s Theorem, whenever N is partitioned into finitely many
cells, at least one of the cells is an IP set.

Remark 4.11 All results of this section extend to IP sets, that is, in the statement of
each corollary the partitioning set N can be replaced with any IP set A ⊆ N.

Indeed, let (an)∞n=0 be a sequence all of whose sums belong to A. Taking a
sum subsystem of (an)∞n=0 one may suppose that max supp an < min supp an+1
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(see [4, Exercise 5.2.2]), and also that A coincides with the set of all sums of the
sequence. Define a bijection f : N → A by f (x) = ∑

n∈supp x an . Then whenever
max supp x < min supp y, one has f (x + y) = f (x) + f (y).

Now consider say Corollary 4.6. Let {AN
p : p ∈ S} be a partition of N guaranteed

by the corollary. Define a partition {Ap : p ∈ S} of A by Ap = f (AN
p ).

To see that this partition is as required, let for each p, Bp be a finite partition of
Ap and let BN

p = f −1(Bp). Let BN
p ∈ BN

p and (xNj )∞j=0 be as guaranteed by the

corollary. One may suppose that max supp xNj < min supp xNj+1. Define Bp ∈ Bp

and (x j )∞j=0 by Bp = f (BN
p ) and x j = f (xNj ).
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3. van Douwen, E.: The Čech-Stone compactification of a discrete groupoid. Topol. Appl. 39, 43–60
(1991)

4. Hindman, N., Strauss, D.: Algebra in the Stone-Čech Compactification. De Gruyter, Berlin (1998)
5. Hindman,N., Strauss,D., Zelenyuk,Y.:Large rectangular semigroups inStone-Čech compactifications.
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