Semigroup Forum (2024) 108:488-509
https://doi.org/10.1007/s00233-024-10424-y

RESEARCH ARTICLE

®

Check for

updates
Finite semigroups and periodic sums systems in SN and
their Ramsey theoretic consequences
Yevhen Zelenyuk'
Received: 3 January 2024 / Accepted: 12 March 2024 / Published online: 5 April 2024
© The Author(s) 2024
Abstract
Letm,n > 2anddefinev : w — {0,...,m—1}byv(k) = k (mod m). We construct

some new finite semigroups in BN, in particular, a semigroup generated by m elements
of order n with cardinality m" +m" '+ . .+-m. We also show that, forn > m, thereisa
sequence po, - . ., pm—1 in BN such that all sums Z’]Z Pu(jy, wherei € {0, ..., m—1}

and k € {0, ...,n — 1}, are distinct and Z’]Z‘ Pu(j) = Z’]J;’Z_m pu(j) foreachi. As
consequences we derive some new Ramsey theoretic results. In particular, we show
that, for n > m, there is a partition {A; x : (i,k) € {0,...,m — 1} x{0,...,n — 1}}
of N such that, whenever for each (i, k), %, i is a finite partition of A; j, there exist
Bi x € #i r and a sequence (x j)(,)'io such that for every finite sequence jo < ... < Jg
such that j, 11 = j, + 1 (mod m) for each t < s, one has Xjo + -+ xj € Bjj s
where igp = v(jo) and kg is s if s <n — 1 and n — m + v(s — n) otherwise.

Keywords Stone—Cech compactification - Idempotent - Right cancelable ultrafilter -
Finite semigroup - Periodic sums system - Ramsey theory

1 Introduction

The addition of the discrete semigroup N of natural numbers extends to the Stone—
Cech compactification AN of N so that for each a € N, the left translation A, :
BN > x > a 4+ x € BN is continuous, and for each ¢ € BN, the right translation
pq : BN 3 x = x + g € BN is continuous.

We take the points of BN to be the ultrafilters on N, identifying the principal
ultrafilters with the points of N. Forevery A € N, A = {p € BN : A € p} and
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A*=A \ A. The subsets ‘A, where A C N, form a base for the topology of BN, and
A is the closure of A. For p, g € BN, the ultrafilter p + ¢ has a base consisting of
subsets of the form UxeA(x + B,), where A € p and foreach x € A, By € q.

Being a compact Hausdorff right topological semigroup, BN has a smallest two
sided ideal K (BN) which is a disjoint union of minimal right ideals and a disjoint
union of minimal left ideals. Every right (left) ideal of BN contains a minimal right
(left) ideal, the intersection of a minimal right ideal and a minimal left ideal is a group,
and the idempotents in a minimal right (left) ideal form a right (left) zero semigroup,
thatis, x + y =y (x + y = x) forall x, y.

The semigroup BN has important applications to Ramsey theory and to topological
dynamics. The first application to Ramsey theory was the proof of Hindman’s theorem:
whenever N is finitely colored, there is an infinite sequence all of whose sums are
monochrome. An elementary introduction to SN can be found in [4].

In 1979, E. van Douwen asked (in [3], published much later) whether there are
topological and algebraic copies of SN contained in N* = SN \ N. This question
was answered in the negative by D. Strauss in [7], where it was in fact established
that continuous homomorphisms from BN to N* have finite images. It follows that if
¢ : BN — N*is a continuous homomorphism, then ¢(8N) is a finite cyclic semigroup
generated by p = ¢(1). That is, there are n > 1 and 1 < m < n called the order and
the period of p (and of the cyclic semigroup) such that all ip = p + --- + p, where

—

1
i €{l,...,n},aredistinctand (n 4+ 1)p = (n + 1 — m) p. Conversely, every element
p € N* of finite order determines a continuous homomorphism ¢ : SN — N* by
¢(1) = p.In 1996, the author proved that SN contains no nontrivial finite groups (see
[4, Theorem 7.17]). Since the periodic part of a cyclic semigroup is a group, it follows
that if p € SN is an element of order n, then (n 4+ 1)p = np, thatis, p has period 1.

As distinguished from finite groups, SN does contain bands (semigroups of idempo-
tents): for example, left zero semigroups, right zero semigroups, chains of idempotents
(with respect to the order x < y if and only if x + y = y + x = x), and even rectan-
gular bands (direct products of a left zero semigroup and a right zero semigroup). To
ask whether SN contains a finite semigroup distinct from bands is the same as asking
whether SN contains an element of order 2 which is the same as asking whether there
exists a nontrivial continuous homomorphism from BN to N* [4, Question 10.19].
If the answer to this question is positive, then there is a subset A of N with the fol-
lowing Ramsey theoretic property: whenever A is finitely colored, there is an infinite
sequence in the complement of A, all of whose sums two or more terms at a time are
monochrome [2].

The question whether SN contains an element of order 2 was solved in the affir-
mative in [8, Theorem 1]. In [9], some further finite semigroups in BN consisting of
idempotents and elements of order 2 were constructed, in particular, null semigroups
(x + y = 0 for all x, y), and a connection of finite semigroups in BN with Ramsey
theory was discussed, see also [1]. In [12], it was shown that for every m > 1, the
direct product of the m-element null semigroup and the rectangular band 2¢ x 2 has
copies in BN (that the rectangular band 2¢ x 2¢ has copies in SN was established in

[5D.
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The question whether BN contains an element of finite order n > 3 was solved in the
affirmative in [10, Theorem 3]. In fact, it was shown that forany m > l andn > 2, BN
contains copies of the semigroup C, , generated by the elements ¢ = g1, g2, ..., gm
with defining relations (n 4+ 1)g = nq and g5 + q; = 2q, where s, t € {1, ..., m}. (If
m = 1, this is the cyclic semigroup of order n and period 1, and if n = 2, this is the
m-element null semigroup.) In [13], it was shown that for any m > 1 and n > 2, the
direct product of the semigroup C,, ,, and the left zero semigroup 2¢ has copies in SN.

Letm,n > 2 and definev:w — {0,...,m — 1} by v(k) = k (mod m).

In [6], it was shown that there is a sequence po, .. ., pm—1 in BN such that all sums
Z'ji/f Pv(j)> wherei € {0,...,m — 1} and k € {0,...,mn — 1 — i} for each i, are
distinct and 377 pucjy = 212" pujy for each i

In this paper, we construct some new finite semigroups in SN, in particular, a
semigroup generated by m elements of order n with cardinality m” +m"~! 4. .. 4 m.
In fact, we construct large locally finite semigroups. The construction is given in
Sect. 2.

In Sect. 3, using those semigroups, we show that, for n > m, there is a sequence
Po, - - -, Pm—1 in BN such that all sums Z’]'Z Dv(j)» wherei € {0,...,m — 1} and
k €{0,...,n — 1}, are distinct and Z’;’Z Poj) = l]':l'_
discuss all possible finite systems of such periodic sums.

And in Sect. 4, we derive some new Ramsey theoretic results. In particular, we show
that, for n > m, there is a partition {A; x : (i,k) € {0,...,m — 1} x{0,...,n —1}}
of N such that, whenever for each (i, k), %, i is a finite partition of A; j, there exist
B; x € %\ and a sequence (x j);?o o such that for every finite sequence jo < ... < js
such that jr+1 = j; +1 (mod m) for each t < s, one has xj, +--- + x;; € Bijj k»
where ig = v(jo) and kg is s if s <n — 1 and n — m + v(s — n) otherwise.

" py(j for each i. We also

2 Construction of semigroups

Letm > 1,n > 2,andl = m +n — 1. For every x € N, supp x is a unique finite
nonempty subset of @ = N U {0} such that

X = Z 2K,

kesupp x

Pick an increasing sequence Ip € I} € ... € I} = w of subsets of w such that
I; \ I;_ is infinite for each i € {0, 1,...,/} (with I_; = ). Define a function &
from N onto the decreasing chain 0 > 1 > ... > [ of idempotents (with the operation
i *x j =max{i, j}) by

h(x) =min{i <[ :suppx C [;} =max{i <[ : (supp x) N (I;\1;—1) # ¥}

and let the same letter 4 denote its continuous extension SN — {0, 1,...,1}. If
x,y € N and max supp x < minsupp y, then h(x +y) = h(x) x h(y). It then follows
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(see [4, Theorem 4.21]) that for any u € SN and v € H, where

one has h(u + v) = h(u) x h(v), in particular, the restriction of % to H is a homomor-
phism. Foreachi € {0, 1,...,1}, let

T, =h~'({0,1,...,iH) NH.

Then Top € T € ... € T; = H is an increasing sequence of closed subsemigroups of
H such that #(K (T;)) = {i} foreachi <[,and so T; N K(T;j4+1) = @ foreachi <[
and K(T;) = K(BN)NT; [9, Lemma 3.1], in particular, all K (Ty), K(T1), ..., K(T;)
are pairwise disjoint. Moreover, #(K (BN)) = {/}, and so 7;_1 N K(BN) = @.

To see this, letu € K(BN). Then u+ SN is the minimal right ideal of BN containing
u and BN 4+ u the minimal left ideal containing u. Let v be the identity of the group
(u+BN)N (BN +u). Thenu = u +vand v € K(H), so h(u) = h(u +v) =
h(u) * h(v) = h(u) x1 =1.

Foreachi € {0, 1,...,1}, let

Xi={x e N:(suppx) N (L; \ li—1) # ¥}

Notice that for any v € XiNHandu € BN, u+v € X;, and for any v € X; and
weH,v+we X;.
Define ¢; : X; — w by

@i (x) = max((supp x) N (/; \ i—1))

and let the same letter ¢; denote its continuous extension X; — Bw. Notice that
(28 : k € I; \ I,_1} € X; and, since ¢;(2¥) = k, ¢; homeomorphically maps
{2k :ke; \I_1}onto I; \ I;_1.If x € N, y € X; and max supp x < minsupp y,
thenx+y € X; and ¢; (x +y) = ¢i(y). Andif y € X;,z € N\ X; and max supp y <
min supp z, then ¢;(y + z) = ¢;(y). It then follows that for any v € X; N H and
u € BN, ¢; (u+v) = ¢;(v), and forany v € X; and w € H\ X;, ¢; (v + w) = ¢; (v).

To see for example the first statement, we first note that for any x € N and v €
X; NH, ¢;(x + v) = ¢;(v) because the continuous functions ¢; o A, and ¢; agree
on X; N 2"N, where n = (max supp x) + 1. Then for any v € X; NH and u € BN,
¢i (u+v) = ¢; (v) because the continuous function ¢; o p,, is constantly equal to ¢; (v)
on N.

Notice that K(7;) € X; NHand T;_; € H \ X; (with T_; = ).

We shall construct

(i) achainep > e; > ... > ¢; of idempotents with e; € K (T;),
(ii) foreachi € {0, 1,...,1}, a left zero semigroup {e; o : @ < 2°} € K(T;) such
thate; 0 = ¢; and ¢; ¢ = €00 + ¢; forall @ < 2¢, and
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(iii) foreachi € {I,m+1,...,1 — 1} (fori = 1 if n = 2), a right zero semigroup
{ei(j) : j € w} € K(T;) such that ¢;(0) = e;, ¢;(j) < ej—1 forall j € w, and
diei())) # pilei(k))if j # k.

Notice that (i) and (ii) imply that
€iatejp=E¢ixja

foralli, j € {0,1,...,l}and a, B < 2°.
Indeed,

eiotejp=eoateteypte;=epq+(e+ey) +eopte;
=epqt+e +(eotep) +ej=epqte +ete;

= e0,a T €ixj = €ixj,a-

The construction goes by inductiononi € {0, 1,...,1[}.
For i = 0, pick an injective 2¢-sequence {ro : @ < 2} in {2F : k € Ip}*.

Lemma 2.1 (roo + 1) N(rop+T) =P ifa #B.

Proof Consider the function N 3 x — min supp x € w and let & denote its continuous
extension SN — Bw. If x, y € N and max supp x < minsupp y, then 0(x + y) =
0 (x). It then follows that for any u € N and v € H, 8(u 4 v) = 6(u). Consequently,
0(ro.e + T1) = {6(ro.)} and 6(ro.p + Ti) = {6(ro,p)}. Since 6(2%) =k, 6(r0.0) #
0(ro,p), 50 (ro,« + 11) N (ro,p + 1T1) = V. o

For every o < 2%, choose a minimal right ideal Rg , of Ty contained in ¢ o + To.
Pick a minimal left ideal Lg of Tp, and for every a < 2°, let ¢g o be the identity of the
group Ro o N Lo. By Lemma 2.1, eg o # eo g if o = B. Put ey = eg,o.

For i = 1, choose a minimal right ideal Ry of T contained in ey + T;. Pick an
injective sequence (rl,j);?ozo in {2% : k € I\ Io}*, and for every j € w, choose a
minimal leftideal L; ; of 71 contained in 77 +r1,; + €. Forevery j € w, lete1(j) be
the identity of the group Ry N Ly ;. Then ¢1(e1(j)) = ¢1(r1,j +eo) = ¢1(r1,;), 50 ¢
isinjectiveon {e1(j) : j € w}.Since e;(j) € ep+ 11, onehaseg+e1(j) = e1(j),and
sincee1(j) € Ti+r1,j+ep,onehase;(j)+eo = e1(j),soe1(j) < eg.Pute; = e1(0).
Forevery o < 2%, pute; o =epq +e1. Thenej o +e1 8 =e0q +e1+e0p+e1 =
€0, + (e1 +ep) +eop+er =epoter+(eo+eop)ter =epoter+et+e =
€00 + €1 = €14, 80 {e14 1 @ < 2°} is a left zero semigroup (in K (71)). Since
el =€0q+e1 €rgq+To+e €rgq+ T, by Lemma2.l, e o #eypifa #pB.

Fori € {2, ..., m}, pick a minimal right ideal R; of 7; contained in e;_1 + 7; and
a minimal left ideal L; of 7; contained in 7; 4 ¢;_1 and let ¢; be the identity of the
group R; N L;. For every o < 2, lete; o = €04 + ¢;. Then {4 : @ < 2} is a left
zero semigroup and e; o # e; g if a # B.

Fori € {m+1,...,1 — 1} (for n > 3), choose a minimal right ideal R; of T;
contained in ¢;_1 + T;. Pick an injective sequence (”i,j)?io in{2K: ke I; \ L1},
and forevery j € w, choose a minimal leftideal L; ; of T; containedin T; +7; j+e;_1,
and let ¢; (j) be the identity of the group R; N L; ;. Then ¢;(e;(j)) = ¢i(ri j +ep) =
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@i (7i,j),s0 ¢; isinjectiveon {e; (j) : j € w},ande;(j) < e;—; forall j.Pute; = ¢;(0).
For every o < 2%, pute; 4 = eo.o + €;. Then {e; o : @ < 2°} a left zero semigroup
ande; o # e gifa # B.

For i = [, pick a minimal right ideal R; of T; contained in ¢;_1 + 7; and a minimal
left ideal L; of T; contained in 7 4 ¢;—1 and let ¢; be the identity of the group R; N L;.
Forevery a < 2%, pute; o = eo.o + €.

Now for each @ < 2°¢, let

D _ Meawte():jeNy  ifn=2
LT ew 1) j €N} ifn > 3.

Since ¢1(er,o + e1(j)) = d1(e1(j)) and ¢y—1(e1o +e1-1(j)) = Ppr—1(e1-1(j)), we
have that if n = 2, ¢ is injective on D;_1 4 (and 0 |¢1(Dj—1,¢)| =2°) and if n > 3,
¢1—1 is injective on Dj_; 4 (and so |¢;—1(Dj—1,4)| = 2°). For every o < 2°, pick
inductively g;—1.¢ € Dj—1.o \ Di—1, such that

ifn=2,¢1(q—1.a) # ¢1(e1) and all ¢1(g;—1 ) are distinct, and

ifn >3, ¢g—1(q1-1,0) # P1—1(e1—1) and all ¢;—1(q1-1,4) are distinct.

Then by downward inductionon i € {m + 1,...,1 — 2} (for n > 4), for each
a < 2° let

Diy = {eit1,a0 +Gi+1,0 T €i(j): j € NL

Since ¢;(eir1,0 + giv1,0 +€i(j)) = ¢i(ei(j)), ¢; is injective on D; . For every
a < 2°, pick inductively ¢; o € D; o \ Di o such that

®i(qi,«) # ¢i(e;) and all ¢;(g; o) are distinct.

For i = m (for n > 3), for each a < 2°, let

Do = {emi1,a + gm+1,e +e1(j): j € N}L

Since ¢ (€mt1.a + qmri.a +€1()) = $1(e1()). 1 is injective on Dy, q. For every
a < 2°, pick inductively ¢ ¢ € Dm.o \ Dm,o such that

$1(Gm.a) # $1(em) and all ¢y (gum.) are distinet.

Since e¢;, € K(BN) and K(BN) is an ideal of SN [4, Theorem 4.44], we have
by downward induction that for eachi € {m,...,[ — 1}, D; o € K(BN) and g; 4 €
K (BN). . o

Foreachs € {0,1,...,1l}, e1,« = €50 + €10 and e5 o € X5, 50 ¢« € X;. It then
follows by downward induction that for each i € {m,...,l — 1}, D; o < X, NH
and g; o € X, N H. We also have that ¢1 is injective on D,, o and for each i €
{m+1,...,1 =1} (for n > 3), ¢ is injective on D; 4.

An ultrafilter ¢ € N* is right cancelable (in BN) if the right translation of SN by
q is injective. An ultrafilter ¢ € N* is right cancelable if and only if ¢ ¢ N* 4 ¢ [4,
Theorem 8.18]. From the next lemma we obtain that all ¢; o, wherei € {m, ..., [ —1}
and o < 2°, are right cancelable.
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Lemma2.2 Leti €{0,1,...,1}, let D be_a countable subset Oin NH, and suppose
that ¢; is injective on D. Then every g € D \ D is right cancelable.

Proof This is [10, Lemma 5]. O
The next lemma gives us relations between g; o and e; g.
Lemma 2.3 Foranya, f < 2°,

(1) gi—1,0 +e€1-1, = €l

(2) ifn =2, then foreach s € {1,...,1}, qi—1,4 + €58 = €/ a,

(3) ifn =3, then foreachi e m+1,...,1 -1}, qi.o +€i-1,8 = Gi a

(4) ifn > 3, then for eachi € {m, ..., 1 =2}, giq +e€i g =e€it1,a + qit1,a and
(5) ifn > 3, then for each s € {1, ..., m}, gno + €5, = €mil,a + Gmil,a-

Proof (1) For n > 3, (ejo + €1—1(j)) + e1—1,8 = e1oa + (e1-1(j) + e/—1,8)
ela + ((e1-1(J) + e1—2,0) + e1—1,p) = e1q + (e1-1(j) + (e1-2,0 + €1-1,)) =
el +e—1(j) +e—10 = e1.a +€i—1,0 = €14, and since Pe_1 g is constantly
equal to e, ¢ on Di—1,a, Pe;_y 4(qi—1,0) = €l SO qi—1,0 + €1-1,p = €1,o. The
case n = 2 is included in (2).

(2) (erat+e1(j))+esp =era+(e1(j)+eo0)tesp=eat+er(j)+(eo0+esp) =
elatel(j)t+eso=-enat+ei(j)+(e1,0+es50) =ea+(e1(j)+ero0) +es0=
elgte10tes0o=¢€ute.0=E€qu-

(3) Fori=1—1,(ejo +e-1(j)) +ei2p=e o+ (e1-1(j) +e-20) +e25 =
elq +e—1(j) + (e1—20 +e—2p) =era+e-1(j) +e-20 = era+e-10)),
and since Per_s is the identity on D;_1 o, Per_2 g (GQi-1.0) = G1—1,0> S0 Gi—1,a +
el 2 =q-1,a-Fori <1 —2,(ej11,0 +qit+1,0 +€(J) +ei—1,8 =€it1,0 +
Gi+1,et+(ei(j)+ei—1,0)+ei—1.p = €it1,atqi+1.at+ei(j)+(ei—10tei-18) =
eivla T qitiatei(j)+ei10=et1.a+qgiv1,a+e(j).

(4) Fori > m+1,(eir1,a+qgit1,at+ei(j))+eip = eit1,a+qit1,a+(€i(j)+ei—1,0)+
eip=eirlatqitiatei(j)+(ei—1,0+€e ) =eir1,a+qgit1,ate(j)+eio=
€itl,a + qitl,a + €0 =€itrl,a + git1,o bECAUSE Gi11,o + €0 = gi+1,a bY (3).
The case i = m is included in (5).

(5) emt1,0 +gmit,e te1(j) + 5.8 =emita + gm0 + (€1(j) +eo0) + €55 =
em+l,a T dm+l,a + er(j) + (60,0 + es,ﬁ) =em+l,a T gm+l,a + e1(j) + €50 =
ein+l,a+Qm+l,a+el(j)+(el,0+es,0) = em+1,a+Qm+l,a+(61 (j)+el,0)+es,0 =
em+l,a T Gm+l,a T €1,0 + 65,0 = emtla + dm+l,a + €50 = €m+l,a + Gm+l,0
because by (3), ¢m+1,0 +€5,0 = (Gm+1,0 +€m,0) +€5,0 = Gmt1,0+(€mo+eso) =

dm+l,a + €m0 = dm+1,a-
O

From Lemma 2.3 we obtain that foreachi € {m,...,[—1}andeachs € {1,...,1},

el.a ifm=1[-1

emila tqmitla fs<i=m=<Il-2
Qi t+es,p=1qiagifi>m+1 ands <i

es+latqstla i <s=<l-2

€l ifl—1<s<l
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Indeed, the first and the second cases are Lemma 2.3(2) and Lemma 2.3(5) respec-
tively.

In the third case, using Lemma 2.3(3), gi.« + €58 = (Gia + €i-1,0) + 5,8 =
Gia + (€i-1,0 + €5.8) = Gi,w + €i-1,0 = Gia-

The fourth case for i = s is Lemma 2.3(4). Then by downward induction on
ie{m,m+1,s}fori <s,qio+esp=qiat(eigtesp) = (qioteip)tess=
Citla + qgitla tesp = €Citia+ (it1,a T €5.8) = €itla + €stla + gstl,0 =
€s+l,a + gs+1,a-

The fifth case fori = s =1 — 1 is Lemma 2.3(1). For i <[ — 2, using the already
established fourth case, i T -1, = qia +€-2p+€-1=€-1a+q—-1,a0 +
e—1,8 =e€—1,a +e.q =e . Thenforeachi, g o +e1p=¢qia+e—1p+ep=
eloq T elp=elqu.

Now consider the subsemigroup Q of H generated algebraically by the elements
eiq and gy g, where i € {I,...,l},s € {m,...,l —1},and a, B < 2¢ (we have
interchanged i and s, and so are « and B). It follows from the formula above that O
consists of elements of the form

o> ds.py + .-+ ds,.p, and e o + gy, g + ...+ g5,

wherei € {I,...,l},t e N,sy,...,s, € {m,..., [ —1},and 0, By, ..., By <2°.

Lemma 2.4 All elements

€ias Gsi,p1 -t s p» and eio +qs,p + -+ Gy, B,

wherei € {1,...,1},teN si,....,s, €{m,....[ — 1}, and a, By, ..., Br <2F, are
distinct.

Proof Assume on the contrary that some two distinct expressions represent the same
element. Then canceling the equality by g-s we arrive at one of the following cases:

(1) u+¢gi.o« =v+gs,pforsomeu,v € BNand (i, o) # (s, B),
(2) u+ gi.a = gs,p for some u € BN,

(3) u + gi.o = es p forsomeu € BN,

4) ej o = e5p with (i, @) # (s, B).

The last one is obviously impossible.

In (1), we have that ¢;(gi,«) = ¢i(u + gi,a) = ¢i(v +gs,8) = ¢i(gs,p).- I i =5,
then o # B and ¢;(gi«) = ¢i(qi g), a contradiction. If i # s, say i < s, then
0i(gs.p) = ¢i(gs,p + ei,0) = ¢i(ei0) and ;i (gi.o) # Pi(ei,0), again a contradiction.

In (2), since gy g is right cancelable, one has s # i. Suppose i < s. Then ¢;(g; o) =
@i (gs,p)- But ¢ (gs,p) = ¢i(ei o) (asin (1)) and ¢; (¢i,«) # ¥i(ei,0), a contradiction.
The case s < i is essentially the same, since applying ¢ to g5 g = u + g; o gives us
¢s(CIs,ﬁ) = ¢S(Cﬁ,a)-

In (3), since ;.o € K(BN), e1,...,e,—1 € Tj—1 and T;—1 N K(BN) = {J, one
has s = [. Then ¢;(qi «) = di(e1,p). But ¢i(e1 ) = ¢iler,p + ei0) = Pi(ei,0) and
¢i(gi o) # ¢i(ei0), a contradiction. O
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From Lemma 2.4 we obtain that

Corollary 2.5 As an abstract semigroup, Q is generated by the chain of left zero
semigroups {e;y : o < 2%}, where i € {1,...,1} and for each i < | — 1,
o+ €it1,p = €l and ej11p + ey = ejy1,p, and elements qs g, where
s e€f{m,...,l —1}and B < 2%, with the defining relations (1)-(5) in Lemma 2.3.

Now consider the subsemigroup P of Q generated by the elements

Ps.a,p = €s,a + qm,B»
where s € {1,...,m}and a, B < 2°.

Lemma2.6 Foralli >2,s1,...,5; €{l,...,m},anday, By ...,q;, Bi <?2F,

em+i—l,a; T 9m+i—1.8 + -+ qm.p l..fl. <n-1

Psiei i T oot Pspar pr = ]
si,0i, B s1,1,B1 elo; +qi-1,6,_1 + -+ qm,p otherwise.

Proof We use Lemma 2.3. If n = 2, then

Psy.en.fy T Psiar.py = €sa.00 T qm.py + s T qm.py
=en.m + Gmpy + €s1.0) T dmp
= €50y T €1.py T dm.py = €Ly + Gm.py and
Pssas.s T Psaan.po T Psiar.pi = (Psyas.s + Psran o) + Psivan .y
= €las T qm.py t spa0 T qm.p
= €lay T (qm.py + €s1.01) + dm,py
=€l t g T dmpr = €las T qm.pr-

Let n > 3. We first notice that foreach j € {1,...,n — 2},

qm+j-1,6; * -t qmpy T €s,0 = €mij.p; +dm+j.p; + - T qmt1,8 and
q-1p,y t---+qmp, T esa=¢€p,_, +q-1.8,_o+ -+ qm+1,p-

Indeed, inductively, g, g, + €56 = €m+1,, + gm+1,,, and for j > 2,

Gm+j—1.8; + - T qmp + €0 =qmtj-1,8; + @m+j—2.8; 1 + -+ dmp + €s5,a)
= dm+j-1.8; T €mtj—1.p-1 T dm+j—1.p;-
+ .o gmt1p
=em+j,B; T Gm+j,B; t dm+j-1,6;_1 +---
+ dm+1.81>
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and then

Q1 F o T Gmp tesa =qi-18,_, +(Q-2,5F -+ Gmup +esa)
=qi-1,8,-1 T €18, T -1, t -+ qm+1,
=el g, T q-1,,20+ - -+ qm+1,p,-

Now by inductiononi € {2,...,n — 1},

Psy.o0.p T Psion.pt = €0+ Gm o + €510y T Gmooy = sy
+ Gm.py + €s1,01) + G, By
= €y.a T Cm+1.p T qm+1.6, T dm.piy = €m+1l,0;
t qm+1., + Gm.p1 >

and fori > 2,

Psii i T oot Psponpr = Psicipi -+ Psnn o) T Psiarpy
= em+i—2,0; T qm+i-2,8 * --- T qm.po T €s1.00 T Gm. B
= emti-2,0; T €mti—1,8; + gmti—1,8; + - ..
t qm+1.6, + qm.py
= em+ti—1l,o; T qm+i—1.p; T -+ qmpy

and then

Pspan by T F Psiarpr = Pspan b + - Psran.pp) + Psyr By
=€ -1, T -1, % -t qmp, + €s,ay + Im.p
=e -1, Tep tq-1p_,+- -
T dm+1,, + qm.
=€, Tq-1,1 T T qmp

and

Psuctnet font T oo T Psiarpi = Pspprong fosr T+ Py o) + Psiarpy
=€l TAI-1.8, Tt dmpy T s T Gm
=€l tenp, tq-1,0 -

+ qm+1.8, + qm,
=€, +q-1.,1 1 -+ qmp-

It follows from Lemma 2.6 that the subsemigroup P consists of the elements
Ps.a.Bs €mti—l,a + qmyi—1,; + -+ qmp, and e g +qi-1,8, 1 + ...+ qm,p,
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wheres € {1,...,m},2 <i <n—1,ando, B ..., Br—1 < 2%, and by Lemma 2.4, all
these elements are distinct. Notice that the elements ¢; o +¢;—1,8,_; +. . . +@m,p, form
K (P). Since all g; g are in K(BN), P € K(BN), and since ¢; , € K(BN), K(P) C
K (BN). Also notice that the subsemigroup generated by pg, a; gs---» Psi a8 19
finite. It then follows that P is locally finite, that is, every finitely generated subsemi-
group is finite.

Given cardinals « > 1 and A > 1 and integers m > 1 and n > 2, let
S(k, A, m, n) denote the semigroup whose elements are the words saf, af; . . . B1, and
*ofp—1...B1,wheres € {1,....,m},2<i <n—1l,a €k,and g, B1, ..., Bn—1 € A,
and defining relations are, for j > 2,

aifi...5 ifj<n-—1
SjOlj,Bj‘l‘...-I-S]Ol],Bl: 'l'BJ p J )
*jfy—1...P1 otherwise,
soafi...B1 = laBi+...+1laB,and*aB,—1 ... 1 = laB,—1+1aB,—1+...+1apB;.
If m = 1, we write af instead of laf.
It is easy to see that the mapping g : P — S(2°, 2%, m, n) defined by

&(ps,a.p) = saB, glemyi—1.a + qmti—1.8e + -+ -+ qmp) =aBi...p1, and
g(em+n—1,oz + qdm+n—2,8,_, +... .+ Qm,ﬁl) =*xaf,—1...01

is an isomorphism.
We thus have proved the following result.

Theorem 2.7 Letm > landn > 2andlet S = S(2°, 2%, m, n). There is an isomorphic
embedding ¢ : S — H. Furthermore, € can be chosen so that ¢(S) C K(BN) and
e(K(S)) € K(BN).

For each («, B) € k x A, the subsemigroup of S(k, A, m, n) consisting of the
elements saB, wheres € {1, ..., m},andaff,...,af...B,*a B ... Bisisomorphic
S—— Se——

n—1 n—1
to the semigroup C,, ,. The semigroup S(k, 1, m, n) consists of the elements s0 and

«00,...,00...0,%*«¢0...0,
—— N —

n—1 n—1

where s € {1,...,m} and a € k, and is isomorphic to the direct product of C,, , and
the left zero semigroup «. The semigroup S(k, A, m, 2) consists of the elements s
and xaf, where s € {1,...,m} and («, B) € k X A, and is isomorphic to the direct
product of C, 2 (the m-element null semigroup) and the rectangular band « x A.

Now consider the subsemigroup T of S = S(«k, k, 1, n) generated by the elements
BB, where B € k. Since

BiBj---Bi ifj<n—1
*BjBn—1...B1 otherwise,

BiBj+ ...+ BiBi ={
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T consists of the words B;6; ... 81 and *af,—1...B1, where | < i <n — 1 and
o, B, ..., Bu—1 € k. Notice that K(T) = K(S).

Given a cardinal x > 1 and an integer n > 2, let F(k, n) denote the semigroup
whose elements are the words B; ... 81, where | <i <nand 8y,...,8; € k, and
defining relations are

Bj... B if j<n
BjBn—1...B1 otherwise,

,3j+...+,31={

so the operation of F'(«, n) is defined by

Bive ... B ifi +1t<n
BiviBn—1...B1 otherwise.

Bivt ... Bir1 +Bi ... B1 :{

It is easy to see that the mapping f : T — F(«, n) defined by

SBiBi---B1) =Bi...p1and f(xaBu—i...B1) = afp—1...BI

is an isomorphism.
Thus, we obtain from Theorem 2.7 the following result.

Theorem 2.8 Let n > 2 and let F = F (2, n). There is an isomorphic embedding
€ : F — H. Furthermore, € can be chosen so that €¢(F) C K(BN) and e(K (F)) C
K(BN).

The semigroup F(«, n) is generated by the 1-letter words 8, where B € «, each of
which is an element of order n and each m > 1 of which generate a subsemigroup of
cardinality m" +m" "' + ...+ m.

3 Periodic sums systems

Letm > 2 and definev = v, : w — {0,...,m — 1} by v(k) = k (mod m). Given
a sequence po, ..., pu—1 in an additive semigroup, the periodic sums are sums of
the form Y% py(;), where i € {0,...,m — 1} and k > 0, and (2;1’; P
is the sequence of periodic sums with initial term p;. Suppose that {Z’;;’j Du(j) -

k > 0} is finite. Then ZT;’:FI Du(j) 1s an element of finite order, say of order s; and
’ i+m—1

period #;, that is, all elements k Z/:i Dv(j), Where k € {1, ..., s;}, are distinct and
(si+1) Zl/irln_l Pu(j) = (i +1—1;) Z?/ZT_I Dv(j)- Notice that k sz—:n—l Du(j) =
Z’ﬁ;’;m_l Pu(j)- It follows that there is a smallest /; in {s;m, ..., (s; + 1)m — 1} such

that Z’]J;ll’ Poj) = Z;J;l;'_l"m Pu(jy- We call [; and t;m the order and the period of
the sequence (lej Pu(j))ieo- If in addition all elements Z’;;’f Pu(j)» Where k €
{0, ...,l; — 1}, are distinct, then we call the sequence cyclic of order l; and period

tim.
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Lemma3.1 (i) 1 is the smallest t > 1 such that Z/ D) = ZH'[ " pu(jy for

some | > tm,
(ii) I; is the smallest | > m such that Z] L Pv() = 2
with tm < 1.

i+l—tm
j=i

Proof (i) Assume on the contrary that there is ¢ < f; such that Z’;;l; Dv(j) =

Z;:li/_tm po(j) for some I > tm. It then follows that Zl]il, Po(j)

Du(j) for somet > 1

S Gy forall 1> I Pick [ = km — 1 > I' with k > s; + L.

j=i
1 k 1 i+km—1—
Then kY0 pyy = YT pugy = X by = (k-

1) Z’+m lpvm But we also have that k Z’+m lpv(]) = (k—1t;) Z’+m 1pv(j),
because Z ; pv( ) is an element of order s; and period #; and k > s; + 1. Con-
sequently, (k—t) Y pygy = k=1 X7 pygy and (k—1) — (k—1;) =
i —t<t,a contrad1ct10n

(ii) Assume on the contrary that there is I’ < l,- such that ZTL[[/ Poijy =

Z;’;li/_’m Pu(j) for some 7, and consequently, ] ooy = Z’H " pyjy for

alll > 1. Then by (1) t > t;. If t > t;, then taking [ = (s; + I)m — 1 gives

us (s; + 1) Z’]; Poj) = (i +1—1) Z”“m lpv(j), a cont.radiction. And

ift =, then!’” < s;m, so taking [ = s;m — 1 gives us s; Z’]J;'l"_l Po(j) =
—1) Z’+m ! Py(j)- again a contradiction.

m}

The periodic sums system generated by the sequence PO, - - -» Pm—1 1S the subset S
of the semigroup consisting of all periodic sums Z j—i Pv(j)» Where i < m and k> 0.

Lemma 3.2 Suppose that for some iy < m, {Z’J(H'l](; pu(j) - k > 0} is finite. Then

(1) S is finite,

(2) therearet > 1 andl; > tm for eachi < m such that (Z pU(J)) o has order

l; and period tm and l; < 1,41y + 1,
(3) foreachi < m, ZH"" ! Pyv(j) is an element of order s; = [%] and period t.

Proof For (1) and (2), write iy = v(11 + 1) and suppose that (Zj —io p,,(j))k 2o h
to+l,oftm

order /;, and period tm. From Zj=i0 Pv() = 2 =iy Pu(j) We obtain that

i0+li0 i0+li0 io+li0—tm i()—l—l,-0 —tm

Z Dv(j) = Pi; + Z Pv(j) = Piy + Z Pu(j) = Z Dv(j)-

J=ii Jj=io Jj=io J=il
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It follows that {Y"/** py(j) : k = 0} is finite, and by Lemma 3.1, (3" p, ;)52
has order /;, < l;, + 1 and period ¢'m for some ¢’ < . From

m—1+i1 -+l ig+m—1 i1+, ig+m—1 i1+ —t'm
Z Pv(j) = Z o) t Z Po(j) = Z Pv(j) t Z Pu(j)
J=io J=io Jj=i1 j=io Jj=i1

m—1+iy -+l —t'm

= D P

J=io

we obtain that #' > . Hence ¢ = ¢. Then write i; = v (i + 1) and so on.

For (3), if s is the order of Z'J:’ln_l Pu(j). thenl; € {sm, ..., (s + 1)m — 1}, and
since sim € {l; —m+1,...,1;},onehas s = s;. O

It follows from Lemma 3.2 that |l; — [,| < m — 1 and |s; — s,|] < 1 for all
i,ref{0,...,m—1}.

We call the m-tuple (I, ..., [,,—1) and the number ¢tm the order and the period of
S.

Let S and S’ be two periodic sums systems generated by sequences po, ..., pm—1
and qo, ..., gm—1 respectively. A mapping h : S — S is a homomorphism if
there is s < m such that for each i < m and each k > 0, h(Z’;;’; Dv(j)) =

Ziif’k qv(j)- An isomorphism is a bijective homomorphism. If § is finite of order
(lo, 11, ..., Lu—1) and period tm and S’ is isomorphic to S, then S’ is finite of order
(s, Los+1ys -+ s -+ 5 Lu(s4m—1)) for some s < m and period tm. If for each i < m,
(Zl;zi Pv(j))re,; is acyclic sequence of order /; and period ¢m, and all these sequences
are pairwise disjoint, then § is said to be a free finite periodic sums system of order

(lo, 1, ..., l;m—1) and period tm.

Lemma3.3 Letanym,ly, ..., Ly—1,t = 1 be given such that tm < 1; < l,iy1) + 1
for each i < m and consider the semigroup Q generated by elements po, ..., Pm—1
with defining relations Zl]ill’ Po(j) = sz:l;—zm Pu(j), where i < m. Then the peri-
odic sums system in Q generated by the sequence py, ..., pm—1 1S free of order
(lo, . .., Ly—1) and period tm.

Proof Let F be the free semigroup over the alphabet {0, ..., m — 1} and let W be the
subset of F consisting of words ig...i; such that k > 0 and i;4+1 = v(iy + 1) for
eachs <k —1.Foreachi € {0,...,m — 1} and k > 0, let w(i, k) denote the word
ig ... in Wwithip = i.Let V be the subset of W consisting of words w (i, k), where
ief0,...,m—1}and k <[; — 1 foreachi, and K (V) the subset of V consisting of
words w(i, k), wherei € {0,...,m — 1}andl; —tm < k <1; — 1 foreachi.

Let § be the smallest congruence on F generated by the relations w(i, [;) = w(i, [; —
tm), where i < m — 1 (thatis, for all v, w € F, véw if and only if v is derivable from
w under those relations). Then Q = F/§ with p; = w(i, 0), where w denotes the
congruence class of w, and Zf;’: Du(j) = w(i, k). Clearly, foreveryw € W, w C W
andwNV # (. Also for every v € w, v and w have the same first and last letters and
|[v] = |w| (mod tm). It then follows that for all distinct v, w € K(V),vNw = @.
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We claim that for each w € V \ K(V), w = {w}, and consequently, for all distinct
v,weV,vNw=40.
To show this notice that if w = ip...iy € W and w # {w}, then there is s €

{0, ..., k} such that k —s > [;, — tm. Therefore, it suffices to prove the following
statement:
Foreach w = ip...iy € Wandeachs € {0,...,k},if k —s > [;, —tm, then

k>1l;; —tm.

We proceed by induction on s. If s = 0, it is obviously true. Fix » > 0 and suppose
that the statement holds for s = r and let s = r + 1. Then considering the subword
i1 ... the inductive hypothesis gives us thatk — 1 > [;; —tm,sok > [;; +1 — tm.
Andsince l;; > l;; — 1, weobtainthatk > ;) — 14+ 1 —tm = [;; —tm. O

The subset V of W in the proof of Lemma 3.3 may be considered as a free finite
periodic sums system of order (lo, ..., [l;—1) and period tm, and W itself a free
m-generated periodic sums system of infinite order. Then the mapping w : W — V
defined by 7 (w) = wNV (thatis, 7(w) = wifw € V and 7 (w) isthe wordv € K (V)
such that v and w have the same first and last letters otherwise) is a homomorphism.
We call W the set of periodic words over {0, ..., m — 1}, V (together with K (V)) the
subset of W representing a free finite periodic sums system of order (ly, ..., Lu—1)
and period tm, and w : W — V the canonical mapping.

Remark 3.4 One may consider the semigroup Q’ generated by idempotents py, ...,

p,,_ with defining relations leill‘ P = Z’jilf_'m Pyjy» Where i < m. Then the
periodic sums system in Q' generated by the sequence p6, <oy Dy is also free of
order (o, ..., ln—1) and period tm.

The proof is practically the same. Let 8’ be the smallest congruence on F generated
by the relations w(i, ;) = w(i,l; —tm) and w(i, 1) = w(i,0), where i < m — 1.
Then Q = F /8 with p) = w(i, O)/, where W’ denotes the §’ congruence class of w,
and forevery w € W, w' N'W = w.

Since every element of finite order in SN has period 1, it follows that
Theorem 3.5 Every finite m-generated periodic sums system in BN has period m.

In [6] it was shown that for any m > 2 and n > 2, there is a free finite m-generated
periodic sums system in H of order (mn,mn — 1,...,mn —m + 1). Now using
Theorem 2.8 we prove the following result.

Theorem 3.6 For any n > m > 2, there is a free finite m-generated periodic sums
system in H of order (n, n, ..., n).

Proof First consider the main case where n > m 4+ 1. Letn’ = n — m + 1 and
F = F(m,n’). By Theorem 2.8, F has copies in H, so it suffices to construct a
free m-generated periodic sums system of order (n,n,...,n) in F. For each i €
{0, ..., m—1},let p; be the 1-letter word i in F/, and foreachk € {0, ..., n +m—1},
let v; x be the word in F representing Z']j Pv(j)- Then

ivi+1)...v@ +k) ifk<n' —1

Vig =
Pk ivi +k—n"4+2v@i+k—n"+3)...v( +k) otherwise.
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All words v; , wherei € {0, ...,m — 1}and k € {0, ..., n' +m — 2}, are distinct (if
k <n' —1,thelength of v; y isk + 1,and if n’ — 1 < k < n’ + m — 2, the length of
v  is n’ and the last letter in v; ¢ is v(i + k)), and v; ,r4m—1 = iv(@ +m + v +
m4+2)..vi@+n+m—-D=ivi+ D@ +2)...v@+n —1)=v; 1.

Now let n = m. Consider the rectangular band {0, ..., m — 1} x {0, ..., m — 1},
and for each i € {0,...,m — 1}, let p; = (i,7). Then for each k € {0,...,m},
Zlf;lf Py = (i, v(i +k)), so all sums Z’;’: Pu(j), where i, k € {0, ..., m — 1}, are

distinct and Z’;’l” Py = (I, 1) = p;. o

4 Ramsey theoretic consequences

We first prove a general result. It can be deduced from [9, Theorem 4.4], but for
convenience of the reader, we give a straight proof. We shall use the fact that every
finite subsemigroup S of BN is contained in H [9, Lemma 4.1], and so for all p € §
and j > 0,2/N € p.

Theorem 4.1 Let S be a finite semigroup in BN generated by elements py, . .., pm—1,
and for each p € S, let (Ap(j))j?ozo be a sequence of members of the ultrafilter p.

There is a sequence ()cj)‘;":0 such that xj € Ap, . (j) N 2/N and for every finite
sequence jo < ... < Jo, if ¢ = pu(jo) + ...+ Du(j,), then xj, + ...+ x; € Ag(jo).

Proof We constructinductively a sequence (x )?":0 satisfying for every j the following

conditions in addition to x; € 2/N:
for each finite sequence jo < ... < js = J,

Xjo +...+xj, € Ag(jo),
where ¢ = py(jo) + ...+ Pu(j,), and for each p € S,
Xjg+ ...+ x5+ p€Ayypo).

To define x, for each p € S, choose P(p) € po such that P(p) + p C Ap,1p,(0).
We can do this because the right translation by p is continuous. Pick

x0 € Ap(0) N[ P(p).
pesS

Then xg € Ap,(0) and foreach p € S, xo+p € P(p) + p S Apy+p(0), s0 xq is as
required.

Fix j > 0 and suppose that we have defined xo, . . ., x; as required. To define x 11,
let F be the setof all sequences jo < ... < jg < jandleti = v(j+1).Foreachp € S,
choose B(p) € p; such that B(p) +p € Ap, 4+, (j + 1). Then for each (jo, ..., js) €
F,choose C(jo, ..., js) € pisuchthatxj, +...+x; +C(jo, ..., js) € Agyp; (o),
where g = py(j,) + ...+ DPu(j,), and for each p € S, choose D(jo, ..., js, p) € pi
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such that xj, + ... +xj, + D(jo, ..., js, P) + P € Agsp;+p(jo). We can do the first
because by the inductive hypothesis x, + ...+ x;, + p; € Ag4p; (jo) and A, where
X = Xxj, + ...+ xj,, is continuous, and the second because p; + p € § and by the
inductive hypothesis xj, + ...+ xj, + p;i + p € Agyp+p(jo) and A, and p, are
continuous. Now pick

X1 € 2NN AL,GHDN (BN () (Clos---r i) N
peS (Jjoseees Js)EF

() DGo- - -+ Js- P))

pes

(all those sets are members of p;).

To see that x4 is as required, let any jo < ... < j, = j + 1 be given. If s = 0,
thenx; 1 € Ap,(j+1)andforeachp € S,x; 1 +pe Bw)+p CApp(j+ 1.
If s > 1, then

Xjog+ ..+ xj €xjy+ ...+ x5, + C(jo, -+ Js—1) € Aq+p,'(j0)v
where g = py(jy) + ...+ Pu(j,_), and for each p € §,
Xjo+...+x,+pE€xjy+...+xj_, +D&xjy,...xj_, p)+p S Ayip+p(o).

m}

Corollary 4.2 Let S be a finite semigroup generated by elements py, ..., pm—1 and
suppose that S has a copy in H. Then there is a partition {A, : p € S} of N such that
whenever for each p, 2, is afinite partition of A , there exist B, € 9,, and a sequence
(xj)?io such that xj € Bp, ;) N 2/N and for every finite sequence jo < ... < js, if
q = Pv(jo) T -+ DPvijy) then Xjo+ ...+ xj € Bq.

Proof One may suppose that S is in SN. Choose a partition {A, : p € S} of Nsuch that
A, € p.To see that this partition is as required, for each p, let %, be a finite partition
of A,. Pick B, € %, such that B, € p, and for every j > 0, put A,(j) = B).
Let (x j)?ozo be a sequence guaranteed by Theorem 4:1. For any jo < ... < Js, if
q = Dv(jo) + .-+ Dy, then xjy + ...+ x; € Ap(jo) = By. O
Now from Theorem 2.8 and Corollary 4.2 we obtain the following result.
Corollary4.3 Let m > 1 and n > 2 and let F be the set of nonempty words over
{0,...,m — 1} of length < n. There is a partition {Ay : w € F} of N such that,

whenever for each w € F, By, is a finite partition of A, there exist By, € B, and a
sequence (xj)?‘;o such that x; € 2/N and for every finite sequence jo < ... < jg, if

v(jo)v(js—n+2) ... v(js) otherwise,

{V(jo)-.-v(js) ifs <n—1

then xj, + ...+ xj, € By.
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Proof Consider F as the semigroup F (m, n). O

Remark 4.4 We have extended the addition of natural numbers to an operation + on
BN so as to obtain a right topological semigroup. But one can equally well extend the
addition to an operation * on SN so as to obtain a left topological semigroup. The
semigroup (BN, x) is the opposite of the semigroup (8N, +): p*xg = g+ p. There are
finite semigroups which have copies in (8N, *) and not in (8N, +). For example, the
3-element band {a, b, c}, where {a, b} is right zero semigroup and c is zero [11]. At
the end of the paper [9] it was wrongly remarked that Theorem 4.4 there, an analogue
of Theorem 4.1 here, holds for the semigroup (BN, x) as well and so the result can
be extended to finite semigroups which have copies in (8N, *). In fact Theorem 4.1
holds for (BN, %) with a correction:

Let S be a finite semigroup in (BN, %) generated by elements po, ..., pm—1, and
foreach p € S, let (A, ( j));?io be a sequence of members of the ultrafilter p. There is
a sequence (x j)?ozo inNsuchthatx; € Ay, (j)N 2/N and for every finite sequence
Jo < ... < Js,if g = pygj) * ... % o), then xjy + ...+ xj € Ay(jo).

And since py(j) * ... % Pu(jo) = DPv(jo) + --- T Pu(jy)» this is the result for the
semigroup (S, +) in (BN, +). Hence, using (8N, *) in addition to (8N, +) gives no
new result.

Theorem 4.5 Let S be a finite periodic sums system in H generated by a sequence
POy - Pm—1, and for each p € S, let (Ap(j))?io be a sequence of members of
p. There is a sequence (xj);io such that xj € Ap,; (j) N2/N and for every finite
sequence jo < ... < Jg such that j.+1 = j + 1 (mod m) for each t < s, if
q = Pujo) T+ Doy then xjo + ...+ xj; € Aq(jo)-

Proof Let (lg, ..., l,—1) be the order of S and let W be the set of periodic words over
{0, ..., m — 1}, V the subset of W representing a free finite periodic sums system of
order (lg, ..., ln—1) and period m, and & : W — V the canonical mapping. Also for
eachi € {0, ..., m—1},let V(i) denote the subset of V consisting of words with first

letter i. Define f : W — Sby f(io...ix) = piy+ ...+ pi,- Then f(w) = f (7w (w))
forall w € W and f(wv) = f(w) + f(v) forall w, v € W such that wv € W.
We construct inductively a sequence (x /')?io satisfying for every j the following

conditions in addition to x; € 2/N:
for each finite sequence jo < ... < jy = j withw = v(jo)...v(js) € W,

Xjo+ ...+ xj, € Aruw)(jo)
and for each v € V(v(j + 1)),
Xjo + ..+ xj + f(v) € Af(wv)(jO)-

To define xq, for each v € V (1), choose P(v) € pg such that P(v) + f(v)
A £(0v)(0). We can do this because po + f(v) = f(0v) and pf(y) is continuous. Pick

X0 € Ag(0) N ﬂ P(v).
veV(l)
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Then xo € Ap(0) and for each v € V (1), xo + f(v) € P(v) + f(v) € Af0v)(0), so
Xo is as required.

Fix j > 0 and suppose that we have defined xo, . . ., x; as required. To define x 11,
let F be the set of all sequences jo < ... < jg < j with v(jo)...v(j;) € W and
v(js) = v(j)andleti = v(j + 1) and r = v(j 4+ 2). For each v € V(r), choose
B(v) € p; such that B(v) + f(v) € Ay (j + 1). Then for each (jo, ..., js) € F,
choose C(jo, ..., js) € pi suchthat xj, + ...+ xj, + C(jo, ..., js) S Arwi(jo),
where w = v(jp) ... v(Js), and foreach v € V (r), choose D(jo, ..., js, v) € p; such
thatx jo+...+x;,+D(jo, ..., js, V)+ (V) € Afwiv)(jo). Wecando the first because
by the inductive hypothesis x j, +. ..+ x; + pi € A rwi)(jo) and Ay, where x = x, +
...+xj,,is continuous, and the second because p; + f(v) = f(iv) = f(7(iv)) and by
the inductive hypothesis xj; + ...+ x; + f (7w (V) € A fwr(iv) (Jo) = A fwiv)(Jo)
(since f(wiv) = f(w)+ f(iv) = f(w)+ f(7(iv)) = f(wr(iv)))and Ay and p ()
are continuous. Now pick

xj €2INAAG+DN () BN [ (Clo. ... )N
veV(r) (Jos--s Js)EF

() DGos - Jss v))

VeV (r)

(all those sets are members of p;).

To see that x 11 is asrequired, letany jo < ... < j, = j+1withv(jo) ... v(js) €
W be given. If s = 0, then x; 1 € A;(j + 1) and foreachv € V(r), xj11 + f(v) €
B() + f(v) S Arin(j+1).Ifs > 1, then

Xjg+ ...+ xj, €xjp+...+ x5 +C3o, .., js—1) S Arwi)(jo)s
where w = v(jp) ...V (js—1), and for each v € V(r),
Xjg+...+xj+f) exjy+...+xj_, +Dxjy, ..., Xj_v)
+£©) S Afwin) Go)-
O

Corollary 4.6 Let S be a finite periodic sums system generated by a sequence
PO, -, Pm—1 and suppose that S has a copy in H. Then there is a partition
{A, : p € S} of N such that whenever for each p, 9B, is a finite partition of Ap,
there exist By, € ) and a sequence (x;)7_ such that xj € By(jy N 2'N and for
every finite sequence jo < ... < js such that ji+1 = j, + 1 (mod m) for eacht < s,
ifq = puio) +---+ DPuiy) thenxj, + ...+ xj, € By

Proof Similar to the proof of Corollary 4.2. O

In [6] it was also deduced from the existence of a free finite m-generated periodic
sums system in H of order (mn, mn — 1, ..., mn —m + 1) that:
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There is a partition
{Ajr:ief0,....m—1}and k € {i, ..., mn — 1} for each i}

of N such that, whenever for each (i, k), %; j is a ﬁnite partition of A; g, there exist
Bi x € % x and a sequence (x;)52, such that x; € 2/N and for every finite sequence
jo < ...< jssuchthat j,+1 = j, +1 (mod m) for each t < s, if iy = v(jo) and

ig+s ifip+s <mn-—1

ko = .
mn —m + v(ig +s —mn) otherwise,

thenxjo +...+xj € BiO,kO'
Now from Theorem 3.6 and Corollary 4.6 we obtain the following result.

Corollary 4.7 Let n > m > 2. There is a partition
{Aig: G, k) ef0,....m—1} x{0,...,n—1}}

of N such that, whenever for each (i, k), B r is a finite partition of A, x, there exist
Bi x € PBi .k and a sequence (xj)‘]’.io such that x; € 27N and for every finite sequence
Jo < ... < Jssuchthat ji+1 = j; + 1 (mod m) foreacht < s, ifip = v(jo) and

K ifs<n-—1

ko = .
n—m+4v(s —n) otherwise,

then xj, + ...+ xj; € Bjj -

Proof Consider {0, ..., m — 1} x{0,...,n—1} as a free finite m-generated periodic
sums system of order (n, ..., n) with (i, k) = lej Pv(j)- O

In cases n = m and n = m + 1, Corollary 4.7 can be strengthened. The free finite
m-generated periodic sums systems of orders (m,...,m) and (m + 1,...,m + 1)
constructed in Theorem 3.6 are in fact the m x m rectangular band and the semigroup
F(m,2). Therefore, by Corollary 4.2, the following stronger results hold.

Corollary 4.8 For every m > 2, there is a partition
{Air:G, k)el0,....m—1} x{0,...,m —1}}

of N such that, whenever for each (i, k), B « is a finite partition of A, k, there exist
B; x € B\ and a sequence (xj)cj?io such that x; € 2/N and for every finite nonempty

J Cw, ifig = v(min J) and kg = v(max J), then Zjel Xj € Big k-

Corollary 4.9 For every m > 2, there is a partition

[Aix: (k) €f0,....m—1}x{0,...,m}}
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of N such that, whenever for each (i, k), B;  is a finite partition of Aj i, there exist
Bi x € Pi k and a sequence (xj)j?';o such that x; € 22NN By(j) 0 and for every finite
J Cowith|J| > 2, ifip = v(min J) and ko = 1+v(max J), then y_

jes Xj € Biy k-

In Corollary 4.9, (i, k) is identified with the 1-letter word i of F (m, 2) if k = 0 and
the word i (k — 1) otherwise. It is a restatement of case m > n = 2 of Corollary 4.3.

We also notice that a finite periodic sums system generated by two idempotents is
a semigroup, and so for such systems, if they have copies in SN, also stronger results
hold.

For every n > 3 (n > 2), a free finite 2-idempotent generated periodic sums
system of order (n, n — 1) ((n, n)) is the semigroup S, ,—1 (S,.») generated by idem-
potents po, p1 with defining relations Y _( pu(j) = Z?;g po(j and Y5 puj) =
Z;’j Pu(j) (Z?il Pu(j) = Z;’;% pu(j))- Presently m = 2, s0 v = vy. We know
only three of those semigroups that have copies in SN: S 2 (2 x 2 rectangular band),
S3.2 (the band (10) in [9, Theorem 2.3]), and S4 3 (the semigroup (3) in [9, Corollary
3.11]). For all others we do not know whether they have copies in N, in particular,
for S3,3 which is a free 2-generated band. We also do not know whether a sum of two
idempotents in BN can be an element of order n > 3.

For every finite nonempty subset J C w, write the elements of J as jo < ... < Jg
and let f(J) be the number of all # < s such that j;11 = j; + 1 (mod 2).

Corollary 4.10 Let n > 3 and suppose that the semigroup S, ,—1 has a copy in SN.
Then there is a partition

{Ajx:ief{0,1}andk € {i,...,n — 1} for each i}

of N such that, whenever for each (i, k), B i is a finite partition of A, i, there exist
Bix € Biranda sequence (x j)?ozo such that x; € 2/N and for every finite nonempty
J C w, ifip = v(min J) and

o o+ 1w ifio+ f(J)) <n—1
0= n—2+4+v(o+ f(J)—n) otherwise,

then ZjeJ Xj € Big k-

Proof Consider {(i, k) :i € {0, 1} and k € {i, ..., n—1} for each i} as the semigroup
Sp.n—1 with (i, k) = Zl;zi Duv(j)- For any finite nonempty J C w, if ig = v(min J),

i J
then Zje] Pv(j) = 210+f( )pv(j)~ Apply Corollary 4.2. O

J=io
A subset A C N is an IP set if it contains an infinite sequence all of whose sums

belong to A. By Hindman’s Theorem, whenever N is partitioned into finitely many
cells, at least one of the cells is an IP set.

Remark 4.11 All results of this section extend to IP sets, that is, in the statement of
each corollary the partitioning set N can be replaced with any IP set A € N.

Indeed, let (a,);2, be a sequence all of whose sums belong to A. Taking a
sum subsystem of (a,);2, one may suppose that maxsupp @, < minsupp @,
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(see [4, Exercise 5.2.2]), and also that A coincides with the set of all sums of the
sequence. Define a bijection f : N — A by f(x) = Znesupp . an. Then whenever
max supp x < minsupp y,one has f(x +y) = f(x) + f(y).

Now consider say Corollary 4.6. Let {A§ : p € S} be a partition of N guaranteed

by the corollary. Define a partition {A, : p € S}of Aby A, = f(A?}).

To see that this partition is as required, let for each p, %, be a finite partition of
A, and let %S =f _1(%1,). Let BEI € %’5 and (xjN);?‘;O be as guaranteed by the
corollary. One may suppose that max supp x}w < min supp xJNH. Define B, € %,
and (x;)52, by By = f(#),) and x; = f(x}).
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