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Abstract
We apply, in the context of semigroups, the main theorem from the authors’ paper
“Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156,
2020) that an elementary classC of algebras which is closed under the taking of direct
products and homomorphic images is defined by systems of equations.We prove a dual
to the Birkhoff theorem in that if the class is also closed under the taking of containing
semigroups, some basis of equations of C is free of the ∀ quantifier. We also observe
the decidability of the class of equation systems satisfied by semigroups, via a link to
systems of rationally constrained equations on free semigroups. Examples are given
of EHP-classes for which neither (∀ · · · )(∃ · · · ) equation systems nor (∃ · · · )(∀ · · · )
systems suffice.

Keywords Equational classes · Regular semigroups · Makanin’s algorithm

1 Introduction

A theorem of universal algebra and model theory is proved in [8] that is particularly
pertinent to the study of semigroups. The theorem clarifies why it is so often the
case that classes of algebras which are closed under the taking of arbitrary direct
products (P) and homomorphic images (H), but not necessarily subalgebras (S), may
be defined by a set of equation-like sentences. Themembers of these bases are referred
to in [8] as equation systems and generally involve simultaneous equations, meaning
that the equations are not assumed to be independent in that a symbol may occur in
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more than one equation. More formally, a semigroup equation system is a quantified
conjunction of equalities between semigroup words (elements of a free semigroup).
Thus in comparison with the more familiar theory of varieties and equational logic,
we allow both ∀ and ∃ as quantifiers at the front of the sentence and we allow the
logical connective of conjunction ∧ (“and”).

For instance, Example 2.1(ii) of [8] shows that Completely regular semigroups
(CR) is the class consisting of all semigroups in which the following equation pair
may be solved:

(∀ a)(∃ x) : (a = axa) ∧ (ax = xa). (1)

These equations are simultaneous and indeed both the parameter a and the variable
x feature in each. Together they capture the property that each element has an inverse
with which it commutes, which is one definition of completely regular semigroups.
However, we shall show that this class may be defined by a single quantified equation
(without conjunction), and in more than one way.

Classes defined by equation systems in this fashion are referred to as {E, H , P}-
classes or simply EH P-classes, with the E symbol standing for the taking of
elementary substructures, H for homomorphic images and P for direct products.
An elementary class (or first order class) is one defined by a collection of first order
formulae: the quantifiers refer to elements of algebras, hence “elementary”, in con-
trast with second order logic where we may quantify over relations. The inclusion of
the class operator E is necessary to capture equivalence with definability by equation
systems, but the reader will not need familiarity with the definition of elementary sub-
structures in this article, because we always proceed by finding equation systems that
capture the classes we explore. It is not currently known if closure under the operator
EH P is enough to ensure closure under the set of operators {E, H , P}.

For relevant background and notation on universal algebra see [1, 2] (Chapter V
there also serves as a useful first introduction to model theoretic notions for those
wanting to delve further), while [3, 7, 9] are texts covering semigroup facts and
terminology.

In the following theorem, closure under taking elementary substructures is sub-
sumed by the assumption that C is an elementary class (all elementary classes are
closed under the taking of elementary substructures).

Theorem 1.1 [8, Theorem 3.1] An elementary class C equals the class of models of
some family of equation systems if and only if C is closed under taking homomorphic
images of direct products. If the elementary class is themodel class of a single sentence,
then it is a class of models of a single equation system.

The theorem was inspired by the observation that so many of the fundamental
classes of algebraic semigroups are EHP-classes, but are not varieties, which is to say
the class is not closed under the taking of subsemigroups, and so cannot be defined
by semigroup identities. Indeed since equation systems are examples of first order
sentences, a class defined by the satisfaction of a set of equations is automatically
an elementary class and the initial condition of the theorem is, in the (easy) forward
direction, redundant.
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Equationally defined classes of semigroups 461

In Sect. 2 we highlight examples showing just how rich is EHP theory in the context
of semigroups. Many extensively studied semigroup classes are captured through our
approach, in many cases by a single equation. We verify this in cases where the
equational bases differ from those given in [8].

An EHP-class C that is closed under the taking of all embeddings (and not only
elementary embeddings) is a variety in which case, by Birkhoff’s theorem, the equa-
tions defining C may be taken to be identities, which is to say the equations do not
involve the quantifier ∃. It is natural then to consider a kind of dual to the Birkhoff
theorem for EHP-classes C defined by equations that are free from the quantifier ∀.
Clearly such a class is closed under the taking of containing algebras. In Sect. 3 we
prove the converse does indeed hold for the class of semigroups.

In Theorem 1.1, the number of alternations between the ∀ symbol, which quali-
fies parameters, (denoted by lower case letters from the beginning of the alphabet
a, b, c, . . . ), and the ∃ symbol, which qualifies variables, (denoted typically by
x, y, z) is finite but unbounded in length. In Sect. 4 we give examples of EHP-classes
which have no basis comprised of equations of the form (∀ · · · )(∃ · · · ) nor the form
(∃ · · · )(∀ · · · ).

2 Classical semigroup collections as EHP-classes

2.1 Classes of regular semigroups

We begin with six examples that highlight how easily important classes of regular
semigroups may be characterised by a single equation. Moreover the proofs of this are
simple but elegant exercises in semigroup theory. In particular we see in Proposition
2.1 how the classes in question may be characterised by small adjustments to the
equation that defines regularity.

Proposition 2.1 The classes of Regular semigroups (Reg), Left groups (LG ), Right
groups (RG ), Groups (G ), Completely regular semigroups (CR), and Completely
simple semigroups (CS ) are the EHP-classes of semigroups defined by the following
equations.

Reg : (∀a)(∃x) : a = axa. (2)

LG : (∀a, b)(∃x) : a = axb, RG : (∀a, b)(∃x) : a = bxa. (3)

G : (∀a, b)(∃x) : a = bxb. (4)

CR : (∀ a)(∃x) : a = a2xa2. (5)

CS : (∀a, b)(∃x) : a = abxba. (6)

Proof The Eq. (2) may be satisfied in any regular semigroup S by taking x ∈ V (a).
Conversely, if x satisfies (2), then xax ∈ V (a).

For Eq. (3), let S be a left group and let a, b ∈ S. Since S is left simple, there exists
y ∈ S such that a = yb. By regularity there exists z ∈ S such that a = aza, whence
a = azyb. Putting x = zy gives a = axb, as required.
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Conversely suppose that a = axb is solvable in a semigroup S. Putting b = a gives
a = axa is solvable so that S is regular. Moreover a = axb implies that a ≤L b, and
since a, b are arbitrary it follows that a L b. Therefore S is left simple and regular
and so S is a left group. The left-right dual argument shows thatRG is defined by the
equation a = bxa in like manner.

For Eq. (4), if G is a group then for given a, b ∈ G there is a unique solution to
(4), that being x = b−1ab−1.

Conversely, let S be a semigroup in which (4) is solvable. The equation implies
that Ha ≤ Hb. By interchanging a and b we obtain the reverse inequality, whence S
consists of a single H -class, and is therefore a group.

For Eq. (5): from the equation, it follows that a H a2, from which we infer that
every H -class is a group, whence S is a union of groups, which is to say that S is
completely regular.

Conversely, let S be a completely regular semigroup. Let a ∈ S and put x = b3,
where b is the inverse of a in the group Ha . Then ab = ba is the identity element of
Ha and so

a2xa2 = a2b3a2 = a(ab)b(ba)a = aba = a,

in accord with (5).
Finally, let S be a semigroup that satisfies (6). By putting b = a we see that (6)

implies (5), so that S is completely regular. For any a, b ∈ S, (6) implies that Ja ≤J
Jb, and by role reversal of a and b, the reverse inequality follows so that that Ja =
Jb. Therefore S is a simple completely regular semigroup, which is to say that S is
completely simple.

Conversely let S be a completely simple semigroup and take a, b ∈ S. Then we
have a R ab L b R ba L a. By Green’s Lemma, the mapping ρba : Ha → Ha

whereby xρba = xba is a bijection, as is the the mapping λab : Ha → Ha whereby
xλab = abx . It follows that φ = λabρba = ρbaλab : Ha → Ha is also a bijection,
whereupon there exists a unique x ∈ Ha such that xλabρba = abxba = a, thereby
proving that S satisfies Eq. (6). �	

Other classes of regular semigroups may be defined by an equation system consist-
ing of (2) together with one more equation. For instance, Example 2.1(iii) of [8] shows
that Semilattices of groups (SG ) is the EHP-class of regular semigroups defined by
the additional equation:

(∀ a, b)(∃ y) : ab = bya. (7)

Some standard properties used in the description of classes of semigroups may be
expressed by equations, and that allows for abbreviation. For example, that a certain
product u of some parameters and variables is idempotent we write as u ∈ E , or if
v is an inverse of u we write v ∈ V (u). Properties defined by Green’s relations are
generally not intrinsically equational within the class of semigroups but may become
so in the presence of the regularity Eq. (2). However the respective properties of being
G -simple for any of the five Green’s relations G defines an EHP-class, except for the
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Equationally defined classes of semigroups 463

case of D . In general, bisimple semigroups are not closed under the taking of direct
products. Within Reg, the condition u H v is expressible through equations in S,
with similar comments applying to L ,R, J , and indeed D . In particular, the class
of regular bisimple semigroups is defined by the regularity equation together with the
equational relationships (∀a, b)(∃x) : a R x L b. This class is however not a variety
as, by a theorem of Preston, any semigroup may be embedded in a regular bisimple
monoid [7, Corollary 1.2.15].

The property of u belonging to a subgroup, which we write as u ∈ G, is also
equational:

(∃x) : (x ∈ V (u)) ∧ (ux = xu).

The ascending chain of the three important classes of I (Inverse semigroups),
O (Orthodox semigroups), and ES , (Idempotent-solid semigroups), which are those
regular semigroups whose idempotent generated subsemigroup is a union of groups,
may be defined in a uniform fashion that is conveniently displayed if we adjoin two
redundant equation types to the definition of regularity:

reg : (∀ a, b)(∃ x, u, v) : (x ∈ V (a)) ∧ (u ∈ V (a2)) ∧ (v ∈ V (b2)). (8)

We include two further classes within this sequence. For the first, we have the Right
Inverse semigroups introduced by Venkatesan [14] as regular semigroups in which
each L -class contains a unique idempotent (for that reason, they are also known as
L -unipotent semigroups). The class RI of Right inverse semigroups is given six
further characterisations in [14, Theorem 2.1], one of which is the class of all regular
semigroups S for which e f e = f e for any idempotents e, f in S. It follows that
I ⊆ RI ⊆ O . It also is the case that RI is an EHP class, and the argument for
closure under homomorphisms is given in Theorem 3 of [14].

The second inclusion in the chain is the class CN of Conventional semigroups of
Masat [13]: a regular semigroup S is conventional if aea′ is idempotent for all (a, a′) ∈
V (S) and e ∈ E(S). Equivalently, by [13, Lemma 2.2], if eEe ⊆ E , which compares
as a natural weakening of the e f e = f e condition of Right inverse semigroups. The
Conventional semigroup definition is also a weakening of the Orthodox semigroup
definition, and so O ⊆ CN . A consequence of Masat’s Lemma 2.2 and Lallement’s
Lemma is that CN is closed under the taking of homomorphisms [13, Lemma 3.1].
SinceCN is clearly closed under direct products and is an elementary class, it follows
that CN is an EHP-class. With the symbols a, b, u, v satisfying the equations of reg,
we may define each these five classes by means of one additional equation (to be
included within the scope of the quantification of reg). The following proposition is
[8, Theorem 5.2], extended by the inclusion of RI and CN .

Proposition 2.2 The classes of Inverse semigroups, Right inverse semigroups, Con-
ventional semigroups, Orthodox semigroups, and Idempotent solid semigroups, are
EHP-classes defined by the following equational bases.

I : reg ∧ aua · bvb = bvb · aua; (9)
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RI : reg ∧ aua · bvb · aua = bvb · aua; (10)

O : reg ∧ aua · bvb ∈ E; (11)

CN : reg ∧ aua · bvb · aua ∈ E; (12)

ES : reg ∧ aua · bvb ∈ G. (13)

Proof The cases ofI , O and ES are given in [8, Theorem 5.2]. The proof for CN
is indicative of the approach, and we omit the very similar argument forRI . Recall
that reg includes the conditions u ∈ V (a2) and b ∈ V (b2) so that aua and bvb are
idempotents. Thus any conventional semigroup satisfies the given equation system
because of the eEe ⊆ E condition of [13, Lemma 2.2]. Conversely if S satisfies the
equations then S is regular and for any two idempotents a and b we have:

aba = a2b2a2 = a2ua2 · b2vb2 · a2ua2 = aua · bvb · aub,

which is idempotent. It follows by [13, Lemma 2.2] that we have an equational basis
for Conventional semigroups. �	
The equational bases in Propositions 2.1 and 2.2 are not unique. The bases given by
Eqs. (9), (11), and (13) of Proposition 2.2 correspond to bases for these classes when
considered as e-varieties in the sense of Hall [6]. These are classes of regular semi-
groups that are HP-closed, and also closed under the taking of regular subsemigroups.
Indeed any e-variety (of regular semigroups) is an EHP-class of regular semigroups,
and so e-varieties may be defined without the need to introduce a unary operation
that selects arbitrary inverses. The only semigroup operation involved is the natural
operation of semigroup multiplication. However, not all EHP-classes consisting of
regular semigroups are e-varieties (see [8, Theorem 5.1]). In common with e-varieties
however is the property that if C is an EHP-class of regular semigroups then the class
C loc of all semigroups S whose local subsemigroups eSe lie in C (e ∈ E(S)) is also
an EHP-class (see [8, Theorem 5.5]).

The abstraction of the idea of e-varieties involves taking an EHP-class of algebras
N , which are labelled nice, and then considering classes C of nice algebras that are
HP-closed and closed under the taking of nice subalgebras. Since the nice algebras
are defined by first order formulae (equation systems), it follows that C will be closed
under the taking of elementary subalgebras, and so C will automatically be another
EHP-class. There could however, as in the case of regular semigroups, be EHP-classes
of nice algebras that were not closed under the taking of nice subalgebras. If we declare
the class of all algebras to be nice, then the corresponding class of e-varieties coincides
with varieties in the usual sense of algebras defined by identities (∃-free equation
systems).

2.2 Classes defined by (∃ . . . )(∀ . . . )

A simple example of a fundamentally different type is the classM of monoids.

M : (∃x)(∀a) : ax = xa = a. (14)
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We sometimes write these equations as x = 1, and similarly we write x = 0 to
abbreviate the equations that ensure the existence of a zero element in a semigroup.
The point to note here however is that the order of the existential quantifiers in (14) is
(∃ . . . )(∀ . . . ), which is the reverse of all our previous examples. Indeed M cannot
be represented by equations of the type (∀ . . . )(∃ . . . ) because any class that has such
a basis is closed under the taking of the union of an ascending chain of algebras from
the class, and the class M lacks this property. We will investigate this facet of the
theory further in our final section.

A natural exercise then is to exchange the order of the quantifiers of the examples
of Sect. 2.1. This will necessarily result in a more restricted class to that defined by the
original equation system. Exchanging the order of the quantifiers in Eq. (2) defines
the classB of all semigroups that possess a universal pre-inverse element:

B : (∃ x)(∀ a) : a = axa. (15)

We note that for any S ∈ B, the J -class Jx is maximal. Conversely any band B
with a maximal J -class J = Jx belongs to B. To see this observe that since B is a
semilattice of rectangular bands, it follows that for any a ∈ B, ax ∈ Da . Since Da is
a rectangular band, we have ax = a2x = a · axRa, whence ax · a = a, showing that
B ∈ B.

The following is a simple reformulation of the condition defined by (15).

Lemma 2.3 A semigroup S ∈ B if and only if ∃x ∈ S such that ax ∈ Ra ∩ E(S) for
all a ∈ S, which in turn is equivalent to the condition that xa ∈ La ∩ E(S) for all
a ∈ S.

Proposition 2.4 Suppose that S ∈ B, let E denote E(S), and let x denote a fixed
choice for satisfying (15). Then

(i) x ∈ E, S satisfies the identity a2 = a3, and S = E2.
(ii) In S, D = J , and H is the equality relation.
(iii) Let J = Jx . Then J is the maximumJ -class of S, the principal factor J ∪{0} =

S/(S − J ) ∈ B, and

Rx ∪ Lx ⊆ E . (16)

Proof (i) Taking a = x in (15) we get x = x3. For any a we have a2 = a2xa2 =
a(axa)a = a3. In particular, x2 = x3 = x , so that x ∈ E . Furthermore, since
(ax)2 = ax and (xa)2 = xa we have a = axa = (ax)(xa), and so S = E2.

(ii) That D = J follows from the satisfaction of a2 = a3, as this equality of
Green’s relations is true in any periodic semigroup; indeed it is true of any group-bound
semigroup (see [4, Theorem 1.2.20]).

Let D be any (regular)D-class of S. In any subgroup G of S, the equation a2 = a3

implies that a = e, the identity element ofG, and so S has trivial subgroups. It follows
that every group H -class, and hence every H -class of S is trivial, which is to say
that S is a combinatorial (i.e.H -trivial) semigroup.

123



466 P. M. Higgins, M. Jackson

(iii) Since Ja ≤ Jx it follows that J = Jx is the maximum J -class of S (where
x represents any solution to (15)). Since EHP-classes are closed under the taking of
homomorphisms, the principal factor J ∪ {0} also belongs to B, and any solution
to (15) in S is also a solution to (15) in J ∪{0}. Suppose that x R a in S, and hence in
S/(S− J ) also. Then since x ∈ E , it follows that a = xa. But then a = axa = a2, so
that a ∈ E . Dually if x L a then a is also idempotent.We conclude that Condition (16)
holds. �	
Remark 2.5 It is possible for a semigroup S to satisfy all three conditions of Proposition
2.4 yet for S not to belong to B. For example take the six-element semigroup A1

2,
which is the Rees matrix 0-simple semigroup with adjoined identity element 1, given
byM 0[{e}, 2, 2; P]1, where {e} is a one-element group and

P =
[
e e
e 0

]
.

Taking x = 1,we see that each of (i), (ii), and (iii) is satisfied.However A1
2 /∈ B: taking

a = 1 we see that we must take x = 1 in order to satisfy the condition of Proposition
2.4. However with x = 1, for the single non-idempotent element a = (e; 2, 2) of A1

2,
we have ax = xa = a /∈ E(S), contrary to Lemma 2.3.

We next consider the more restricted equational system V ⊆ B, consisting of all
semigroups that possess a universal inverse element:

V : (∃ x)(∀ a) : x ∈ V (a). (17)

Let S ∈ V , and so Proposition 2.4 applies. In particular S is a regular periodic
combinatorial semigroup. Moreover, (17) implies that S is bisimple, and since any
periodic bisimple semigroup is completely simple (Corollary 2.56 of [3]), we conclude
that S is completely simple. However, a completely simple combinatorial semigroup is
none other than a rectangular band, which certainly satisfies (17). Indeed this gives the
following curious formulation of the property of the existence of a universal inverse.

Proposition 2.6 For any semigroup S either
∩a∈SV (a) = ∅ or ∩a∈SV (a) = S,

the latter occurring if and only if S is a rectangular band.

2.3 Applying the EHP theorem: the Croisot theory

The previous section also serves to introduce a strategy for applying the EHP theorem.
The general approach is to systematically list semigroup equations and identify the
corresponding semigroup classes. The classical decomposition theory of R. Croisot
[5] deals in semigroup classes defined by a collection of simple related equations,
which we summarise here. The following two results, based on [5], may be found in
Sect. 4.1 of [3].

In this section the existential quantifiers are suppressed with a, b standing for
parameters and x, y variables. Some left-right dual statements are not explicitly stated.
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Theorem 2.7 [3] For the EHP-class defined by a = amxan (m + n ≥ 2):

(i) The class defined by (m, 0) is the class of all semigroups S in which eachR-class
is a subsemigroup (which is then necessarily a right simple subsemigroup) of S.
Equivalently aRa2 for all a ∈ S.

(ii) The class defined by (m, n)withm, n ≥ 1 andm+n ≥ 3 is the class of completely
regular semigroups.

Theorem 2.8 [3] The EHP-class defined by a = xa2y is the class of all semigroups S
that are unions of simple subsemigroups; S is then necessarily a semilattice of simple
semigroups, and these simple components are the J -classes of S.

The proof of Theorem 2.7 involves a mix of syntactic and semantic argument, with
equation manipulation and use of properties of Green’s relations. Another semantic
proof of Theorem 2.7(ii) comes through observing that a = a2xa implies that S is
regular and satisfies aRa2 so that eachR-class is a regular subsemigroup of S. (The
general (m, n) case of Theorem 2.7 follows easily from this basic equation.) From this
wemay deduce that the principal factors of S are completely simple, for if not S would
contain a copy of the bicyclic semigroup, B. However, the property ofR-classes being
subsemigroups would be inherited by any inverse subsemigroup of S, which would
then be a semilattice of groups, which is contradicted by the presence of B.

An advantage of the EHP theorem is that it characterises classes in the first-order
language, offering a vehicle for automated theorem proving. The software package
Prover 9 [11] found a proof that a = a2xa implies aL a2, whence aH a2, and so S is
a union of groups. The proof below is the result of equation manipulation, suggesting
that automated theorem provers may play a role in results of this kind.

Remark 2.9 We now present a demonstration of the statement that the equation a =
a2xa characterises completely regular semigroups.

Proof As observed above, it is enough to show that a L a2 for an arbitrary a ∈ S.
Fix two members a′, aR ∈ S such that a = aa′a and a = a2aR and put

r = aRa′a. (18)

Then r has three properties relevant to our purpose,

a2r = (a2aR)a′a = aa′a = a. (19)

(ar)2 = (aaRa′a)(aaRa′a) = (aaRa′)(a2aR)a′a
= aaRa′(aa′a) = a(aRa′a) = ar . (20)

Moreover a2r = a implies a2r2 = ar and since (20) shows that ar is idempotent we
infer:

a2r2 = ara2r2. (21)

We next deduce that a = ara as follows:
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a = a2r( by (19))

= a2r2r R (by definition of r R)

= ara2r2r R (by (21))

= ara2r (by definition of r R)

= ara (by (19)).

Now ra L a2 as ra = aRa′a2 (by (18)), and from (19), a2ra = a2. Since a = ara
we then have a L ra L a2, which completes the proof. �	
Proposition 2.10 The following are equivalent for a semigroup S.

(i) S satisfies a = abxba.
(ii) S satisfies a = abxa.
(iii) S satisfies a = axba.
(iv) S is completely simple.

Proof We have by Proposition 2.1 that (i) and (iv) are equivalent. Clearly (i) implies
(ii) as given a = abxba we have a = abya, where y = xb. Similarly (i) implies (iii).
By symmetry it is enough now to prove that (ii) implies (iv). By taking b = a in (ii)
we see that S satisfies a = a2xa, whence by Theorem 2.7(ii), S is completely regular.
It also follows from (ii) that S has only oneJ -class, whence S is completely simple.

�	

3 The EHP theorem

3.1 Outline of proof of Theorem 1.1

The proof of Theorem 1.1 in the forward direction is simple for it is clear that if a class
of algebras C is defined by an equation system then this property is preserved under
the taking of homomorphic images and arbitrary direct products. Moreover, such a
classC is automatically an elementary class asC is defined in the first order language.

The converse direction however is a consequence of Lyndon’s positivity theorem,
which states that for an elementary class closed under taking surjective homomorphic
images, a sentence is equivalent to a positive sentence (one free of negations). Thus
we may assume that our class of algebras C such that C ⊆ HP(C ) is the class of
models of a set � of positive sentences. There is no loss of generality to assume that
all quantifiers are at the front of the positive sentences. The remaining task then is to
show that disjunctions in each ρ ∈ � may be removed.

Consider a sentence ρ ∈ �. We may express the equation systems of ρ as a
finite conjunction of disjunctions,

∧
1≤i≤m γi , where each γi is a finite disjunction:

γi = αi,1 ∨ · · · ∨ αi,ri , and each αi, j is an atomic formula involving some subset
of the full set of parameters and variables of ρ. Suppose that for some i , ri ≥ 2
(1 ≤ i ≤ m). We show that the conjunct γi may be replaced by some αi, j and the
resulting reduced sentence is equivalent to ρ for any elementary class C that is closed
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Equationally defined classes of semigroups 469

under HP . Repeating this for each conjunct γi will see us arrive at the desired
∨
-free

sentence. The quantifiers remain unchanged throughout.
In view of this, we suppress the symbol i and use the corresponding symbols r = ri ,

γ = γi , and α j = αi, j . Let ρ j be the result of replacing γ in ρ by α j . Note that ρ j � ρ

so that the class of models satisfied by (� ∪ ρ j ) \ ρ is a subclass of C . We wish to
show that for some j the reverse containment holds. Assume by way of contradiction
that this is not the case. Then for each j (1 ≤ j ≤ r) there exists a model Mj ∈ C
such that ρ j fails in Mj . Put M = �r

j=1Mj ∈ C and so M |� γ . (This stage of the
argument only requires that C is closed under the taking of finitary direct products.
However sinceC is an elementary class,C is closed under the taking of ultraproducts;
C being closed under finitary direct products and ultraproducts then implies that C is
in fact closed under the taking of arbitrary direct products.)

The nature of the argument may be illustrated in the simplest case where ρ has only
one pair of existential quantifiers, for instance, let us say that each α j has a single
equation:

α j : (∀a j )(∃x j ) : u j (a j , x j ) = v j (a j , x j ),

where a j and x j are the respective vectors of parameters and variables of the
equation u j = v j . Since Mj �|� α j it follows that for Mj , ∃a j such that ∀x j

u j (a j , x j ) �= v j (a j , x j ). Since M |� γ we may select ã = (a1, . . . , a j , . . . , ar )
as our parameter choices for M and there exists a corresponding choice of variables
x̃ = (x1, . . . , x j , . . . , xr ) such that for some j, u j (ã, x̃) = v j (ã, x̃). However,
taking the projection of this last equation onto the j th component then yields the
contradiction that u j (a j , x j ) = v j (a j , x j ).

In general however, an equation system ρ ∈ � may have any finite number of
alternations of existential quantifiers. Since satisfaction for such a sentence is defined
recursively on the string of quantifiers, the above argument needs to be taken by
induction on the number of quantifiers through the stages outlined in the previous
discussion. This technical argument however does not require any additional facet
to the proof strategy presented in the previous paragraph. The complete argument is
given in [8, Theorem 3.1].

3.2 The dual variety theorem for semigroups

AnEHP-classC definedwithout the use of the ∃ quantifier is a variety, and in particular
the class is closed under the taking of subalgebras. (Birkhoff’s theorem says that a
class of algebras C is defined by a countable list of identities if and only if C is closed
under the operator HSP .) On the other hand, if the class is defined without the use of
the ∀ symbol then the class is closed under the taking of superalgebras, meaning that
if A ∈ C and A ≤ B, where B is an algebra in the defining signature of the algebra
class under consideration, then B ∈ C also.

Here we prove the converse for the class of Semigroups: if an EHP-classC is closed
under the taking of superalgebras it follows that C may be defined by equations of the
type (∃ x1, . . . , xn) : (

∧
1≤i≤m ui (x1, . . . , xn) = vi (x1, . . . , xn)).
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Definition 3.1 An equation system is called existential if it is has no instances of the
∀ quantifier. An EHP-class is called existential if it has a basis of existential equation
systems.

In the model theory literature what we call here an existential equation system is
known as a primitive positive sentence. First let us suppose that C is an EHP-class
that is closed under the taking of containing algebras. Suppose that A is an algebra
containing a trivial (one-element) subalgebra, T . Then as T ∈ C we have that A ∈ C
by the containment property. It follows that if our algebra is of a type where every
algebra contains a one-element algebra, such as Monoids or Groups, then C is the
EHP class of all algebras of the type under consideration. Moreover, in this context all
algebras satisfy all existential equation systems. It follows that the converse is trivially
true as a class closed under the taking of containing algebras and a class defined by
a basis of existential equation systems are both necessarily equal to the class of all
algebras.

However, within the class of Semigroups, there are (infinite) semigroups that are
idempotent-free, and so the previous observation does not apply. For example the
equation (∃x) : x = x2 defines the EHP-class of all semigroups that contain an idem-
potent. This is a proper class of semigroups that is contained in every existentially
defined EHP-class of semigroups.

Theorem 3.2 An EHP-class of semigroups C is existential if and only if C is closed
under the taking of containing semigroups. Equivalently, C is closed under the taking
of codomains of homomorphisms.

Before we embark on the main proof we observe the equivalence with the second
sentence. Suppose that the EHP-class C is closed under the taking of containing
semigroups and let S ∈ C with α : S → T a homomorphism. Since C is closed
under the taking of homomorphisms, Sα ∈ C , and since Sα ≤ T it then follows
that T ∈ C . Conversely suppose that C is closed under the taking of codomains of
homomorphisms and suppose that S ≤ T . We take α : S → T to be the identity
mapping on S with codomain T , whence by the given condition T ∈ C .

Most of the remainder of the section is devoted to the proof of Theorem 3.2, which
is completed after some preliminary lemmas and discussion. The main challenge of
the proof is facilitating a kind of quantifier elimination, achieved using the free product
construction. For any semigroup S, we consider the free product F ∗ S of S with the
free semigroup F = FA on a countably infinite alphabet A = {A1, A2, . . . }.

Consider an arbitrary equation system ε satisfied by F ∗ S: a quantified system
p1 = q1 ∧ · · · ∧ p
 = q
. As ε is satisfied, for every evaluation of the parameters
(universally quantifiedvariables in ε) in F∗S,wemayfindwitnesses to the existentially
quantified variables, with the choice of each witness being made on the basis of prior
quantified variables. As the parameters can be chosen without restriction, we are going
to adopt the strategy that each parameter is chosen to be a free generator from the set
A that has not appeared within the evaluation of any variable quantified before it:
we refer to this as the free dependency condition. Thus if we have ∀a1∃x1∀a2, we
choose a1 to be A1 and if we have chosen the witness x1 to evaluate as A2A1s A5 for
some s ∈ S, then we will choose a2 to take the value A3 (or any other free generator
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except for those already in use: A1, A2, A5 in the example). Without loss of generality
however, it is clear that we may rename the free generators so that each parameter ai
is assigned the free generator Ai : in the example just given we could rename A2 and
A3 and choose the witness A3A1s A5 for x1 and then choose a2 �→ A2. We refer to
this as an instance of a canonical evaluation of parameters, and we say that F ∗ S
satisfies ε under the canonical evaluation of parameters to mean that witnesses to the
existential variables can be made to achieve equality p1 = q1, . . . , p
 = q
 under
the evaluation (and satisfying the free dependency condition). The following lemma
holds in any variety within any signature of algebras, replacing “free semigroup” with
a relatively free algebra in the variety. We use U to denote a semigroup instead of S
to match later usage of the lemma.

Lemma 3.3 Let ε be an equation system with parameters a1, . . . , ap and U be a
semigroup. Let F = FA be the denumerably generated free semigroup with free
generators A = {A1, A2, . . . }. If F ∗ U satisfies ε under the canonical parameter
evaluation, then U satisfies ε.

Proof Every function φ : A → U extends to a retraction from F ∗ U onto the
subsemigroupU . We have witnesses X1, . . . , Xq ∈ F ∗U for the canonical evaluation
of parameters a1, . . . , ap as A1, . . . , Ap satisfying the free dependency condition. Let
γ be any evaluation of the parameters of ε inU , and letφ : A → U beφ(Ai ) := γ (ai ).
We may extend φ to a retraction onto U , and use witnesses φ(X1), . . . , φ(Xq) in U
to verify satisfaction of ε. �	
Note that the free dependency condition is used only at the final step of this proof: if
xi is (existentially) quantified prior to (the universally quantified) a j , we should have
that the choice of φ(Xi ) can yield satisfaction of ε for all subsequent evaluations of
a j . But if Xi contained an occurrence of A j , then the value of φ(Xi ) would in general
depend on the evaluation γ (a j ) = φ(A j ) of a j .

Every element of F ∗ S may be written uniquely in the form f1s1 f2 . . . sk−1 fk ,
where each fi is an element of FA, each si is an element of S and f1 and possibly fk
could be empty (though note that if k = 1, then this expression is simply f1 and then
f1 cannot be empty). We refer to this as the normal form for an element of F ∗ S.
If z1 . . . z p is an arbitrary semigroup word (possibly with repeats in the sequence of
letters z1, . . . , z p), then under any evaluation of the letters {z1, . . . , z p} into F ∗ S, the
word z1 . . . z p gives rise to a product of normal forms

∏
1≤i≤p

( fi,1si,1 fi,2 . . . si,ki−1 fi,ki ). (22)

Depending on the value of ki , and on whether fi,1 or fi,ki are empty, the product in
(22) may give rise to sequences of consecutive instances of elements of S; a max-
imal block of consecutive elements of S that arises from such a product will be
called an S-run. So for example, if letters z1, z2, z3, z4 are evaluated in F ∗ S as
A1s1, s2A2s1A3s3, s2 and s1A1 respectively, then the word z1z2z3z4 evaluates as
(A1s1)(s2A2s1A3s3)(s2)(s1A1), and we have S-runs s1s2, s1 and s3s2s1. These of
course collapse to individual elements of S in the reduction of (22) to normal form,

123



472 P. M. Higgins, M. Jackson

but we are interested in the uncollapsed form. For each S-run we may also create an
abstract run, which is a matching semigroup word in the alphabet {xs | s ∈ S} of
variables indexed by elements of S; so the S-run s3s2s1 becomes xs3xs2xs1 .

If F ∗S satisfies an equation system ε under the canonical evaluation of parameters,
then the chosen witnesses in F ∗ S will provide a collection of equalities between
S-runs. More precisely, each equality in ε produces an equality in F ∗ S of the form

f1S1 f2 . . . Ski−1 fki = g1T1g2 . . . T
i−1g
i (23)

where S1, . . . , Ski−1 and T1, . . . , T
i−1 are S-runs. As this is an equality holding in
the free product, it follows that ki = 
i and that S1 = T1, . . . , Ski−1 = Tki−1 in S (and
that fi = gi are identical as words in A+, or empty). For such a choice c of witnesses
to the canonical evaluation, let εc denote the existential equation systems consisting of
the conjunction of the equalities arising from the resulting abstract S-runs, across the
witnessing evaluations of all the equalities p1 = q1 ∧ · · · ∧ p
 = q
. As an example,
consider the equation system

ε : (∀a1)(∃x1)(∀a2)(∃x2∃x3) : (a1a2x1x2x3a1 = a1x2a1a2x3x1 ∧ a1x3a1 = a1x3x3a1),

and consider a semigroup S in which the canonical evaluation of a1, a2 into F ∗ S has
choices for x1, x2, x3 satisfying the free dependency condition that lead to satisfaction
of the equalities: an example might be X1 := s1A1, X2 := A2s1 and X3 = s2. (Note
that as x1 is quantified prior to a2 the free dependency condition requires that the word
X1 should not involve A2, because the value of x1 should not in general depend on
the choice of a2.) In this hypothetical scenario, we have

(A1)(A2)(s1A1)(A2s1)(s2)(A1) = (A1)(A2s1)(A1)(A2)(s2)(s1A1)

and

(A1)(s2)(A1) = (A1)(s2)(s2)(A1).

From the first equality we find that s1 = s1 and s1s2 = s2s1. From the second equality
we find that s2 = s2s2. Then for this choice c we obtain εc as

(∃xs1∃xs2) : (xs1 = xs1 ∧ xs1xs2 = xs2xs1 ∧ xs2 = xs2xs2).

Obviously the equality xs1 = xs1 here is redundant and could be removed. One can
further see that s1 could be replaced by s2 in this sentence, so that εc is logically
equivalent to (∃x) x = x2.

Lemma 3.4 Let ε be an equation system satisfied by F ∗S, under the canonical param-
eter evaluation for some semigroup S. Then for any choice c of witnesses in F ∗ S to
the satisfaction of the equalities in ε we have S |� εc and εc � ε within the class of
semigroups.
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Proof Fix a choice c of witnesses, xi �→ Xi ∈ F ∗ S. The construction of εc from this
choice trivially ensures that S |� εc, which proves the first claim. Now assume that
U is any semigroup satisfying εc; we show that U |� ε. We may find witnesses to the
canonical evaluation of parameters in F ∗U , as the witnesses to satisfaction of εc inU
provide the requiredU -runs tomatch those from S in the satisfaction of ε in F∗S under
the canonical parameter evaluation: note that thesewill not violate the free dependency
condition for existential witnesses, as they only provide the requiredU -runs, with any
free parameters chosen in the evaluation of a variable xi following whatever was done
in S for the choice c (which satisfied the free dependency condition). Then Lemma
3.3 shows that U satisfies ε. �	

Referring to the example given prior to Lemma 3.4, where εc was logically equivalent
to (∃x) x = x2, the statement εc � ε in Lemma 3.4 is asserting that any semigroup
containing an idempotent will satisfy

(∀a1)(∃x1)(∀a2)(∃x2∃x3) : (a1a2x1x2x3a1 = a1x2a1a2x3x1 ∧ a1x3a1 = a1x3x3a1).

For a given equation system ε and any S for which F ∗S satisfies ε under the canon-
ical parameter evaluation, the maximal length of any S-run is bounded by the maximal
number of consecutively adjacent existential variables within a word occurring in ε.
Thus there is an upper bound 
 on the number of S-runs of length more than 1 that
appear in εc (independent of S and c). Because equalities between S-runs of length 1
are trivial (they yield equalities xs = xs for some s ∈ S), the number of nontrivial
conjuncts within εc is at most 
 also, so that up to logical equivalence, there are only
finitely many different existential equation systems of the form εc, with the number
determined by the structure of the sentence ε only. We let H(ε) denote this (finite)
set of existential sentences. The case of H(ε) = ∅ is possible, and corresponds to the
situation where there are no nontrivial S-runs in any canonical evaluation, for any S.
In this situation, note that ε is trivially equivalent to the equation system ε′ obtained
by including in ε the conjunct x = x , where x is a new (existentially quantified) vari-
able. Because any element of F ∗ S will satisfy x = x , we have the same witnesses as
previously for ε (which by assumption all avoided any S-runs), along with an arbitrary
witness for x . Thus H(ε′) = {(∃x) : x = x}, so that we may let εc denote the equation
system (∃x) : x = x .

Proof of Theorem 3.2 Clearly an existential class is closed under the taking of contain-
ing semigroups. Conversely let us suppose that C is an EHP-class of semigroups that
is closed under the operation of taking containing semigroups.

Let B be the existential class with EHP basis E ′, which is the set of all existen-
tial equation systems that are satisfied by all members of C . Clearly C ⊆ B, and
indeed B is the smallest existential class that contains C . Our task is to prove the
reverse containment.

Let E be a set of equation systems characterising C and consider any ε ∈ E .
We will show that there is an equation of the form εc that can replace ε. Repeated
application, across all members of E leads to a subset of E ′, which will complete the
proof.
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As a first step we need to show that there is an equation of the form εc that holds on
all members of C . We may assume that H(ε) is not empty. Assume for contradiction
that for each εc ∈ H(ε) there is Sc ∈ C that fails εc. As C is closed under taking
direct products we have that T := ∏

εc∈H(ε) Sc ∈ C and then as C is closed under
taking containing semigroups we have that F ∗ T |� ε. But then T |� εc for some
choice of witnesses to the canonical parameter evaluation. But then all quotients of T
satisfy εc, contradicting the assumption that Sc fails εc.

Thus for every ε ∈ E there is an existential equation system of the form εc such
that εc ∈ E ′. By Lemma 3.4 we have that εc � ε, so that εc can replace ε in E . �	

The existential equations that are satisfied by every semigroup are explicitly identi-
fied in [8, Corollary 6.7]. To conclude this section we note that this may be extended,
at least at the level of an algorithmic solution to arbitrary equation systems. Satisfying
equations in F ∗ S by canonical parameter evaluation is somewhat reminiscent of
solving equations in free semigroups, a problem originally solved by Makanin [12],
and of continued interest and development. The connection turns out to be genuine,
and a strong form of Makanin’s algorithm can be used to show that it is decidable to
determine if an equation system holds in the variety of all semigroups.

Theorem 3.5 The class of equation systems satisfied in the class of all semigroups is
decidable.

Proof As we now explain, Theorem 3.5 is a direct corollary of Makanin’s celebrated
solution [12] to solvability of equations over free semigroups, as extended to allow for
rational constraints (see Chapter 12 of [10]). In the context of Makanin’s algorithm,
a system of equations on the free semigroup consists of a finite set of equalities ε

between words in alphabet {A1, A2, . . . } ∪ {X1, X2, . . . } and we are asked whether
there is a satisfying evaluation of the variables Xi in the free semigroup A+ (where
A = {A1, A2, . . . } as before). In the absence of any constraint on the choice of the Xi ,
this coincideswithwhatwe called the canonical parameter evaluation of the generators
A1, A2, . . . (as themselves) in the equation system (∀A1, . . . , An)(∃X1, . . . , Xm)ε

(for suitable n,m determined by the variables that appear in ε). Lothaire [10, §12.1.8]
details an extension of Makanin’s algorithm to allow for the variables X1, X2, . . . to
be constrained by rational languages λ1, λ2, . . . over the alphabet A. This enables
us to additionally enforce the free dependency condition for an equation system ε:
constrain each variable Xi to lie in the rational language λi excluding letters in A
that are quantified in ε to the right of the existential quantification of Xi . Satisfaction
of this constrained instance of the equation problem coincides in definition precisely
with satisfaction of ε under the canonical parameter evaluation with free dependency
condition holding. But this latter property is equivalent to unconditional satisfaction of
the equation system ε: for the nontrivial direction, use the universal mapping property
of A+ with respect to itself (or alternatively use Lemma 3.4, using the fact that A+ ∗
A+ ∼= A+). Thus the extension of Makanin’s algorithm in [10, §12.1.8] can be used
to decide satisfaction of arbitrary equation systems on A+.

Finally, the equation systems true on A+ (with A a denumerable alphabet) are
precisely those in the class of all semigroups. One direction of this claim follows
trivially from the fact that A+ is a semigroup. For the other direction, use the universal
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mapping property for A+ with respect to any other semigroup S to find that if ε is
satisfied by A+ (under canonical parameter evaluation, with free dependency), then it
is satisfied by S. �	

4 EHP-classes requiring both types of quantifier alternation

An open question in this new theory of EHP-classes is: For any n, does there exist an
EHP-class C such that in any basis for C , n alternations of the existential quantifiers
∀ and ∃ are necessary in at least one equation of the basis?

Example 2.3(iii) of [8] is the EHP-class C defined by:

(∃y)(∀a)(∃x, z) : a = xyz,

which is the class of semigroups S that have amaximumJ -class J such that S/(S−J )

is not a null semigroup. It is proved there that C cannot be defined by equations
systems exclusively of the type (∀ · · · )(∃ · · · ) nor by systems with the reverse order
of quantifiers (∃ · · · )(∀ · · · ).

The strategy for proving this type of result is two-fold. To show that (∀ . . . )(∃ . . . )

quantification is not possible we find a chain of semigroups S1 ⊆ S2 ⊆ . . . , with each
Sn ∈ C , such that the semigroup union S = ∪∞

n=1Sn /∈ C . It follows from this that C
cannot be captured by an equation system based on a (∀ . . . )(∃ . . . ) quantification as
that would imply that S ∈ C as well. (This phenomenon we have already observed in
Sect. 2 in the context of the EHP-class of Monoids.)

Next we wish to show that definition by a (∃ . . . )(∀ . . . ) quantification for C is
also impossible. This is done by identifying a semigroup chain S1 ⊆ S2 ⊆ . . . , where
no member of the chain lies in C , yet their union S = ∪∞

n=1Sn is a semigroup in C .
Given that S ∈ C , if C possessed a quantification of the form (∃ . . . )(∀ . . . ), it would
follow that Sn ∈ C for all sufficiently large n.

Our Example 4.1 is complementary to the previous one in that it is defined by
quantification of the type (∀ . . . )(∃ . . . )(∀ . . . ).

We are working with the class of Semigroups throughout and all quantifications are
assumed to take place in some arbitrary semigroup S. Letters at the front (resp. end)
of the alphabet a, b, c, (resp. x, y, z) denote parameters (resp. variables) in a given
equation, typically written e : p = q.

Example 4.1 Let C be the EHP-class defined by

C : (∀a)(∃x)(∀b) : axb = abx . (24)

Then C cannot be defined by equation systems of the type (∀ · · · )(∃ · · · ) nor by
systems with the reverse order of quantifiers (∃ · · · )(∀ · · · ).
Proof We prove the claim by applying the strategy we have just outlined.

Let FA be the free semigroup on the infinite set of generators

A = {a1, a2, . . . , x1, x2, . . . }.
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Denote the finite subset {a1, . . . , an, x1, . . . , xn} of A by An . Let ρ be the congruence
on FA generated by

ρ0 = {(bi x j , x j bi ) : where bi ∈ {ai , xi }, i ≤ j},

and put S = FA/ρ. Let Sn ≤ S, where Sn = 〈a1ρ, . . . , anρ, x1ρ, . . . , xnρ〉. In the
following argument we suppress the symbol ρ and write a ∈ Sn, b ∈ S and such like
to stand for aρ ∈ Sn, bρ ∈ S.

Thus we have a semigroup chain S1 ≤ S2 ≤ · · · ≤ Sn ≤ · · · ≤ S. Observe that
Sn ∈ C as for any a, b ∈ Sn we put x = xn and note that axb = abx as xn commutes
with each member of An . However we now show that S /∈ C . Put a = a1 and let
x ∈ S. Then x ∈ Sn for some n. Put b = an+1 and consider axb = a1xan+1. Since
an+1 commutes only with x j where j ≥ n + 1, we infer that any word w ∈ FA

such that a1xan+1 = w in S has the form w = w1an+1 where w1 is the result of a
permutation of the letters of a1x . In particular a1xan+1 �= a1an+1x in S. Hence S
does not satisfy the equation system (24). Therefore C cannot be defined by equations
using only (∀ . . . )(∃ . . . ) quantification.

Next we wish to show that definition by a (∃ . . . )(∀ . . . ) quantification forC is also
impossible. This is done by identifying a semigroup chain S1 ≤ S2 ≤ · · · , where no
member of the chain lies in C , yet their union S = ∪∞

n=1Sn is a semigroup in C . The
existence of such a chain together with the chain of the previous paragraph establishes
our claim.

Let Fn be the free semigroup on An = {a1, . . . , an, x1, . . . , xn} (n ≥ 1) and let FA

denote the free semigroup on A= ∪∞
n=1An . Let ρ be the congruence on FA generated

by ρ0 where

ρ0 = {(axn+1b, abxn+1), n ≥ 1, a ∈ Fn, b ∈ FA}

and put S = FA/ρ. Then S ∈ C for let us take any aρ ∈ S. Then a ∈ Fn for some
n ≥ 1. Take x = xn+1 and let bρ ∈ S. Then (axn+1b, abxn+1) ∈ ρ0, so that in S we
have axb = abx , and therefore S ∈ C .

Now define Sn = {aρ : a ∈ Fn}. Then Sn ≤ S and we have the semigroup chain
S1 ≤ S2 ≤ · · · ≤ Sn ≤ Sn+1 ≤ · · · , with S being the union of this chain. Now take
a = an and consider aρ, xρ, bρ ∈ Sn . Then aρxρbρ = (anxb)ρ. Since an /∈ Fm for
anym < n, the only ρ0 pairs involving a word with initial letter an contain some letter
xn+m /∈ An (m ≥ 1). Hence anxb �= anbx in Sn , for any b that is not a power of x ,
from which we infer that Sn does not satisfy the equation system (24). We conclude
that Sn /∈ C for all n ≥ 1 but, as we have witnessed, S ∈ C .

We therefore conclude that C cannot be defined by a basis of equation systems of
the type (∀ · · · )(∃ · · · ) nor of the type (∃ · · · )(∀ · · · ). �	
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