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Abstract
We propose two universal constructions of globalization of a partial action of a semi-
groupon a set, satisfying certain conditionswhich arise inMorita theory of semigroups.
One of the constructions is based on the tensor product of a partial semigroup act with
the semigroup and generalizes the globalization construction of strong partial actions
of monoids due to Megrelishvili and Schröder. It produces the initial object in an
appropriate category of globalizations of a given partial action. The other construction
involves Hom-sets and is novel even in the monoid setting. It produces the terminal
object in an appropriate category of globalizations. While in the group case the results
of the two constructions are isomorphic, they can be far different in the monoid case.

Keywords Partial action · Partial semigroup action · Partial monoid action ·
Globalization · Enveloping action

1 Introduction

The study of partial actions and related concepts is an active research area, see the
survey article [6] and, e.g., [2, 3, 8, 10, 15, 27, 28] for more recent developments.
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Globalization of partial actions of semigroups 201

Strong partial monoid actions were introduced by Megrelishvili and Schröder [25,
Definition 2.3]1, who have shown that they generalize partial group actions of Exel [9]
(see also Abadie [1] and Kellendonk and Lawson [16]) and that every strong partial
monoid action can be globalized (or has an enveloping action, in the terminology of
[1]), that is, it arises as a restriction of a global action. A more general notion of a
partial monoid action by Hollings [14] has found recent applications in the theory
of two-sided restriction semigroups [5, 20, 21]. Partial actions of inverse semigroups
have been studied in [13, 17], of left restriction semigroups in [13] and of two-sided
restriction semigroups in [7].

If a monoid S acts partially from the right on a set A, we say that A is a right
partial S-act. The globalization of a strong right partial S-act A from [14, 25], denote
it by A ⊗ S, is universal in the sense that for any other globalization B of A there is a
unique morphism from A⊗ S to B, which means that A⊗ S is an initial object in the
category of all globalizations of A. In the case where S is a group, it follows from [16,
Theorem 5.4] that A⊗ S is, up to isomorphism, the only A-generated globalization of
A. This raises the question if the same holds also in the monoid case, and if the answer
is negative, whether the category of all A-generated globalizations of A possesses a
terminal object, which could be regarded as the ’smallest’ A-generated globalization
of A, while A ⊗ S being the freest such globalization.

In this note, we propose a new construction of a globalization of A which involves
Hom-sets, denoted AS , and prove that it produces the terminal object in the category
of all A-generated globalizations of A. While in the group case A ⊗ S and AS are
isomorphic, they can be far differentwith infinitelymany intermediate non-isomorphic
objects between them in themonoid case (see Example 5.5).We hope that the universal
globalization AS will find applications in the study of various globalization problems
for partial actions of semigroups, monoids and beyond.

We work at the level of generality of semigroups and generalize to partial acts two
classes of global semigroup acts, called firm and nonsingular, which arise in theMorita
theory of semigroups (see, e.g., [4, 23, 24]). We construct globalizations of strong
partial acts in these classes using the tensor product and the Hom-set constructions,
prove the universal properties for the constructed globalizations and derive respective
corollaries for the special case of strong partial monoid actions.

The structure of the paper is as follows. In Sect. 2 we collect necessary definitions
and basic facts about partial semigroup actions and their globalizations. In Sect. 3
for a semigroup S we construct the tensor product globalization A ⊗ S of a strong
and firm partial S-act A and prove its universal property (see Theorem 3.5). We then
prove that the category of firm global S-acts is a reflective subcategory of the category
of firm and strong partial S-acts with the tensoring globalization functor being the
reflector (see Theorem 3.11). In Sect. 4 we construct the Hom-set globalization AS

of a unitary, strong and nonsingular partial S-act A and prove its universal property
(see Theorem 4.7). Finally, in Sect. 5 we apply our results to strong partial monoid
actions, see Theorem 5.1, Corollary 5.4 and Example 5.5.

Throughout the text, the notation S is used for a semigroup and A, B,C for sets or
for (global or partial) right S-acts.

1 In [25, Definition 2.3] strong partial monoid actions were called partial monoid actions.
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202 G. Kudryavtseva, V. Laan

2 Actions and partial actions of semigroups

2.1 Partial actions of semigroups

We first recall the definition of an action of a semigroup on a set. We will refer to
actions as global actions, to emphasise their difference from partial actions, which we
consider along with global actions throughout the paper.

Definition 2.1 (Global action) A map ∗ : A × S → A, (a, s) �→ a ∗ s, is called a
right global action of S on A if for all a ∈ A and s, t ∈ S we have (a ∗ s) ∗ t = a ∗ st .

If X ,Y are sets then by a partial map f : X → Y we understand a map Z → Y
where Z ⊆ X . We write Z = dom( f ). If z ∈ dom( f ) we say that f (z) is defined.

Definition 2.2 (Partial action) A partial map · : A× S → A, (a, s) �→ a · s, is called
a right partial action of S on A if the following condition holds:

(PA) If a · s and (a · s) · t are defined then a · st is defined and (a · s) · t = a · st .
Left global actions and left partial actions can be defined similarly. In this note,

unless explicitly stated otherwise, we deal with right global and partial actions. Thus
by a partial action (or by a global action) we mean a right partial action (or a right
global action).

The notion of a partial action generalizes that of a global action. If · is a partial
action of S on A, we say that (A, ·) is a partial S-act, and when · is clear from the
context, we sometimes write A for (A, ·). In the case where · is a global action on a
set B we say that (B, ·) is a global S-act. If (B, ·) is a global S-act and C ⊆ B is such
that c · s ∈ C for all c ∈ C and s ∈ S we say that C is a subact of B.

Definition 2.3 (Unitary and strong partial actions) A right partial action · of S on A
is called strong if for all a ∈ A and s, t ∈ S the following condition holds:

(S) If a · s and a · st are defined then (a · s) · t is defined and (a · s) · t = a · st .
It is called unitary if the following condition holds:

(U) For each a ∈ A there are b ∈ A and s ∈ S such that b · s is defined and a = b · s.
In view of (PA), condition (S) is equivalent to the condition that under the assump-

tion that a · s is defined, we have that a · st is defined if and only if (a · s) · t is defined
in which case (a · s) · t = a · st .

Note that in the definition of a partial action of a monoid due to Hollings [14,
Definition 2.2] it is required that · satisfies (PA) and the following condition:

(Um) For all a ∈ A: a · 1 is defined and a · 1 = a.

The following lemma shows that our notion of a strong and unitary partial action of
a semigroup generalizes the notion of a strong partial action of a monoid, see Hollings
[14].

Lemma 2.4 If S is a monoid, then · is a strong and unitary partial action of S on a set
A (that is, conditions (PA),(U) and (S) hold) if and only if · is a strong partial action
of S on A in the sense of [14] (that is, conditions (PA), (Um) and (S) hold).
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Globalization of partial actions of semigroups 203

Proof Suppose that · satisfies conditions (PA), (U) and (S). We show that (Um) is
satisfied. Let a ∈ A and write it as a = b · s, where b ∈ A, s ∈ S. Since b · s and
b ·(s1) are defined, condition (S) implies that (b ·s)·1 is defined and (b ·s)·1 = b ·(s1).
Then a · 1 is defined and a · 1 = a, as required. The reverse implication is clear. �	
Definition 2.5 (Restriction of an action) Let ∗ be a right global action of S on a set B
and A ⊆ B a subset. The restriction of ∗ to A is the partial map · : A× S → A where
for a ∈ A and s ∈ S the element a · s is defined if and only if a ∗ s ∈ A in which case
a · s = a ∗ s.

Lemma 2.6 A restriction of a global action of S is a strong partial action of S.

Proof Let ∗ be a global action of S on a set B and A ⊆ B. Let · be the restriction of ∗ to
A. Suppose that a ·s and a ·st are defined. Then a ·s = a∗s ∈ A and a ·st = a∗st ∈ A.
It follows that (a · s) · t is defined and equals (a ∗ s) ∗ t = a ∗ st = a · st . �	
Definition 2.7 (Morphisms of partial acts) Let · and ◦ be partial actions of S on the
sets A and B, respectively, and let ϕ : A → B be a map. We say that ϕ is a morphism
(or a homomorphism) of partial S-acts from A to B provided that for all a ∈ A and
s ∈ S if a · s is defined then ϕ(a) ◦ s is defined and ϕ(a · s) = ϕ(a) ◦ s.

The set of all morphisms from (A, ·) to (B, ◦) will be denoted by Hom(A, B).
A morphism of global acts [19, Definition I.4.15] is a special case of Definition 2.7.

2.2 Globalization of a partial action

Definition 2.8 (Globalization) Let · be a right partial action of a semigroup S on a
set A. A globalization of · is a right action ∗ of S on a set B and an injective map
ι : A → B such that the following conditions hold:

(G1) For all a ∈ A and s ∈ S: a · s is defined if and only if ι(a) ∗ s ∈ ι(A).
(G2) For all a ∈ A and s ∈ S: if a · s is defined then ι(a · s) = ι(a) ∗ s.

We also say that the right global S-act (B, ∗) is a globalization of the right partial
S-act (A, ·) via the map ι.

A partial action · can be globalized if it has a globalization. Lemma 2.6 implies the
following.

Proposition 2.9 If a partial action of a semigroup can be globalized then it is strong.

Definition 2.10 (A-generated globalization) Let the global action ∗ of S on B be a
globalization of the partial action · of S on A via the map ι : A → B. We say that B is
A-generated if any b ∈ B can be written as b = ι(a) ∗ s for some a ∈ A and s ∈ S.

Let (A, ·) be a partial S-act and (B, ∗) a global S-act which is an A-generated
globalization of (A, ·) via the map ι : A → B. Since ι(A) ⊆ B, for every b ∈ A there
are a ∈ A and s ∈ S such that ι(b) = ι(a) ∗ s, hence we have ι(b) = ι(a · s), so that
b = a ·s. It follows that (A, ·) is necessarily unitary. So A-generated globalizations do
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204 G. Kudryavtseva, V. Laan

not exist for non-unitary S-acts. If (A, ·) is unitary and (B, ∗) is its globalization via
the map ι, then ι(A) is a subset of the set C = {ι(a) ∗ s : a ∈ A, s ∈ S}. The elements
of ι(A) are those ι(a) ∗ s ∈ C , for which a · s is defined. The following statement is
now immediate.

Lemma 2.11 Let the global S-act (B, ∗) be a globalization of the unitary partial S-act
(A, ·) via the map ι : A → B. Let C = {ι(a) ∗ s : a ∈ A, s ∈ S}. Then C is a subact
of B and is the unique A-generated globalization of A which is a subact of B.

It is easy to see that if (A, ·) is a unitary global S-act then any of its A-generated
globalizations is isomorphic to (A, ·).

Let (A, ·) be a partial S-act. We define the category G(A, S, ·) of globalizations
of (A, ·) as follows. Its objects are triples (B, ι, ∗) where (B, ∗) is a globalization of
(A, ·) and ι : A → B is an injective map satisfying Definition 2.8. A morphism from
(B, ι, ∗) to (C, i, ◦) is a map ϕ : B → C which is a morphism of right S-acts, that
is, ϕ(b ∗ s) = ϕ(b) ◦ s holds for all b ∈ B and s ∈ S, and which satisfies ϕι = i . In
the case where (A, ·) is unitary let GA(A, S, ·) be the full subcategory of G(A, S, ·)
whose objects are A-generated globalizations of (A, ·). When ι and ∗ are clear from
the context, we sometimes abbreviate (B, ι, ∗) by B.

The proof of the following is straightforward.

Proposition 2.12 Let (A, ·) be a unitary partial S-act and (B, ι, ∗) and (C, i, ◦) be
objects of the category G(A, S, ·).
(1) Suppose that B is A-generated and ϕ : (B, ι, ∗) → (C, i, ◦) is a morphism in

G(A, S, ·). Then ϕ(B) is the A-generated subact of C.
(2) If B is A-generated then there is at most one morphism from (B, ι, ∗) to (C, i, ◦).
(3) If B and C are A-generated then a morphism from (B, ι, ∗) to (C, i, ◦) is neces-

sarily surjective.

3 The tensor product globalization

3.1 The construction and the universal property

Let · be a right partial action of a semigroup S on a set A. For (a, s) and (b, t) in A× S
we put (a, s) → (b, t) if there is u ∈ S such that s = ut and the element a · u is
defined and equals b. We have (a, ut) → (a · u, t). Let ρ be the smallest equivalence
relation on A× S which contains →. We put A⊗ S = (A× S)/ρ. Elements of A⊗ S
will be denoted by a ⊗ s where a ⊗ s is the ρ-class of (a, s). By the definition, we
have a ⊗ s = b ⊗ t if and only if (a, s) = (b, t) or there exist n ≥ 1 and elements
(a, s) = (a0, s0), (a1, s1), . . . , (an, sn) = (b, t) such that for all i = 0, . . . , n − 1 we
have that either (ai , si ) → (ai+1, si+1) or (ai+1, si+1) → (ai , si ) in which case we
say that (b, t) is obtained from (a, s) in n steps. We call A ⊗ S the tensor product
of the right partial S-act A and the left global S-act S where S acts on itself by left
multiplication.

For a ⊗ s ∈ A ⊗ S and t ∈ S we put

(a ⊗ s) ∗ t = a ⊗ st . (3.1)
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Globalization of partial actions of semigroups 205

Lemma 3.1 The map ∗: (A ⊗ S) × S → A ⊗ S given in (3.1) defines a global action
of S on A ⊗ S.

Proof Let us first verify that the map ∗ is well-defined. Suppose that a ⊗ s = a′ ⊗ s′.
It is enough to assume that (a′, s′) is obtained from (a, s) in one step and then apply
induction. Suppose that (a, s) → (a′, s′). That is, there is u ∈ S such that s = us′ and
the element a · u is defined and equals a′. For t ∈ S we have a ⊗ st = a ⊗ us′t =
a · u ⊗ s′t = a′ ⊗ s′t . If (a′, s′) → (a, s), the equality a ⊗ st = a′ ⊗ s′t
follows by symmetry. Hence ∗ is well-defined. That ∗ defines an action is clear since
(a ⊗ s) ∗ uv = a ⊗ suv = (a ⊗ su) ∗ v = ((a ⊗ s) ∗ u) ∗ v. �	

The following definition is motivated by the notion of a firm global action, see
Definition 3.9 and the subsequent discussion.

Definition 3.2 (Firm partial action) We say that a partial action · of S on A is firm
provided that it is unitary (that is, it satisfies condition (U)) and also it satisfies the
condition:

(F) whenever a · s and b · t are defined and a · s = b · t , we have a ⊗ s = b ⊗ t in
A ⊗ S.

Lemma 3.3 If S is a monoid then condition (F) holds.

Proof Let a, b ∈ A and s, t ∈ S be such that a · s, b · t are defined and a · s = b · t .
Then a ⊗ s = a ⊗ s1 = a · s ⊗ 1 = b · t ⊗ 1 = b ⊗ t . �	

Suppose that · is firm and let a ∈ A. Let b ∈ A and t ∈ S be such that a = b · t .
Then there is a well-defined map

δ : A → A ⊗ S, a �→ b ⊗ t . (3.2)

Lemma 3.4 Suppose that · is firm and strong. The map δ given in (3.2) is injective.

Proof Suppose that a, b ∈ S are such that δ(a) = δ(b). Since · is unitary we have
a = a′ · s and b = b′ · t for some a′, b′ ∈ A and s, t ∈ S. Then a′ ⊗ s = b′ ⊗ t and
we need to show that a′ · s = b′ · t . If (a′, s) = (b′, t) then a′ = b′ and s = t , so that
a = a′ · s = b′ · t = b. Otherwise, there exists a sequence

(a′, s) = (a0, s0), (a1, s1), . . . , (an, sn) = (b′, t)

such that, for all i = 0, . . . , n − 1, we have that either (ai , si ) → (ai+1, si+1) or
(ai+1, si+1) → (ai , si ). For the first transition, we have two possibilities.

1) If (a′, s) → (a1, s1), there exists u ∈ S such that a′ · u is defined, s = us1 and
a′ · u = a1. Since a′ · u, a′ · us1 are defined, strongness implies that (a′ · u) · s1 is
defined and a′ · s = a′ · us1 = (a′ · u) · s1 = a1 · s1.

2) If (a1, s1) → (a′, s), there exists u ∈ S such that s1 = us, a1 · u is defined and
a1 · u = a′. Since a′ · s = (a1 · u) · s is defined, also a1 · us = a1 · s1 is defined
and a′ · s = a1 · s1.
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206 G. Kudryavtseva, V. Laan

Continuing in this way we see that also a2 · s2, . . . , an−1 · sn−1 are defined and a′ · s =
a1 · s1 = · · · = an · sn = b′ · t . �	

We now state the main result in this section.

Theorem 3.5 Let S be a semigroup and (A, ·) a firm and strong partial S-act. Then:

(1) The global S-act (A⊗ S, ∗) is an A-generated globalization of (A, ·) via the map
δ : A → A ⊗ S given in (3.2).

(2) The globalization (A ⊗ S, ∗) has the following universal property: if (B, ◦) is a
globalization of (A, ·) via a map ι : A → B then there is a unique morphism of
right S-acts ϕ : A ⊗ S → B such that ι = ϕδ, that is, the following diagram
commutes:

A A ⊗ S

B

δ

ι ϕ

Proof (1) Note that δ(A) = {a ⊗ s : a · s is defined}. By Lemma 3.4, the map δ is
injective. Let a ∈ A. By (U), there are b ∈ A and s ∈ S such that a = b · s.
Due to (S), we have that a · t = (b · s) · t is defined if and only if b · st is
defined which, in turn, is equivalent to b ⊗ st ∈ δ(A). If this is the case, we have
δ(a · t) = δ((b · s) · t) = δ(b · st) = b ⊗ st = (b ⊗ s) ∗ t = δ(a) ∗ t , so that ∗ is
a globalization of ·. Since a ⊗ t = (b · s) ⊗ t = b ⊗ st = (b ⊗ s) ∗ t = δ(a) ∗ t ,
we see that A ⊗ S is A-generated.

(2) Let (B, ◦) be a globalization of (A, ·) via ι : A → B. For a ⊗ s ∈ A ⊗ S we put
ϕ(a ⊗ s) = ι(a) ◦ s. To show that ϕ is well defined, assume that a ⊗ s = b ⊗ t
and show that ι(a) ◦ s = ι(b) ◦ t . Arguing by induction and due to symmetry, it
suffices to assume that (a, s) → (b, t). Then there is u ∈ S such that s = ut and
a · u is defined and equals b. We have

ι(a) ◦ s = ι(a) ◦ ut = (ι(a) ◦ u) ◦ t (since ◦ is an action)

= ι(a · u) ◦ t (by (G2))

= ι(b) ◦ t, (since a · u = b)

as desired. The map ϕ is a morphism of S-acts because

ϕ((a ⊗ s) ∗ t) = ϕ(a ⊗ st) (by the definition of ∗)

= ι(a) ◦ st (by the definition of ϕ)

= (ι(a) ◦ s) ◦ t (since ◦ is an action)

= ϕ(a ⊗ s) ◦ t . (by the definition of ϕ)
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Globalization of partial actions of semigroups 207

Further, let a ∈ A. Since · is unitary there are b ∈ A and s ∈ S such that the
element b · s is defined and equals a. Then we have:

ϕ(δ(a)) = ϕ(b ⊗ s) (by the definition of δ)

= ι(b) ◦ s (by the definition of ϕ)

= ι(b · s) = ι(a), (by (G2) and since a = b · s)

so that ϕδ = ι. Uniqueness of ϕ follows from Proposition 2.12(2).
�	

Corollary 3.6 Let · be a firm and strong partial action of a semigroup S on a set A. The
triple (A ⊗ S, δ, ∗) is an initial object in the category G(A, S, ·) and in the category
GA(A, S, ·).
Remark 3.7 Let S be a monoid and · its strong partial action in the sense of Hollings
[14] (that is, (PA), (Um) and (S) hold). By Lemma 2.4 · satisfies also (U). Now, from
Lemma 3.3 we have that · is firm. It is easy to see that the globalization (A ⊗ S, ∗) of
(A, ·) fromTheorem 3.5 coincides with that from [25] and [14]. Hence Theorem 3.5(1)
is a generalization of [25, Proposition 2.2] (and of the construction in its proof). In
addition, Corollary 3.6 is a generalization of [14, Theorem 5.10].

Remark 3.8 Let (A, ·) be a strong partial S-act and let S1 be the monoid obtained
from S by attaching an external identity element 1. Consider the partial S1-act (A, ◦)

defined as follows. For all a ∈ A, a ◦ 1 is defined and equals a. If s = 1 then a ◦ s is
defined if and only if a · s is defined in which case a ◦ s = a · s. Note that (A, ◦) is
firm since it is a partial monoid act and strong since so is (A, ·). Consider the tensor
product A ⊗ S1 with the right action ∗ of S1 on it given by (3.1). By Theorem 3.5, it
is an A-generated globalization of (A, ◦). Since 1 is an external identity element of
S1 the action of S1 on A⊗ S1 restricts to the action of S on A⊗ S1, so that the global
S-act (A ⊗ S1, ∗) is a globalization of (A, ·). It follows that any strong partial S-act
can be globalized and thus the converse statement to that of Proposition 2.9 holds true.

Let (A, ·) be a strong partial S-act. It can be shown that there is a well-defined
map a ⊗ s �→ a ⊗ s from A ⊗ S to A ⊗ S1. Moreover, this map is surjective if
and only if (A, ·) is unitary, and injective if and only if (A, ·) satisfies condition (F)
of Definition 3.2. It follows that this map is bijective if and only if (A, ·) is firm. In
particular, for a firm and strong partial S-act (A, ·) its globalizations A⊗ S and A⊗ S1

are isomorphic. We will not further develop this theme here.

3.2 Firmness of the tensor product globalization

Definition 3.9 (Firm global actions) A global action ∗ of a semigroup S on a set B is
called firm if the map μ : B ⊗ S → B, b ⊗ s �→ b ∗ s, is bijective.

The notion of a firm global action is a special case of that of a firm partial action,
see Definition 3.2.
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208 G. Kudryavtseva, V. Laan

Firm global acts are semigroup-theoretic analogues of firm modules over rings,
which probably appearedfirst in [30,Definition 1.2], but the term ‘firm’was introduced
in [26]. They have been successfully used to develop Morita theory for semigroups
without identity in [24] where the term ‘closed act’ was used, in [23] where the term
‘firm act’ first appeared and several subsequent papers. Somewhat earlier firmmodules
have been used in Morita theory of nonunital rings, for example in [11] and [12].

Proposition 3.10 Let S be factorizable (which means that S = S2) and A a firm and
strong partial S-act. Then the global S-act A ⊗ S from Theorem 3.5 is firm.

Proof We need to show that the mapμ : (A⊗S)⊗S → A⊗S given by (a⊗s)⊗u �→
a ⊗ su is bijective. From now on we write a ⊗ s ⊗ u for (a ⊗ s) ⊗ u using the
fact that (a ⊗ s) ⊗ u corresponds to a ⊗ (s ⊗ u) under the canonical isomorphism
(A⊗ S)⊗ S ∼= A⊗ (S⊗ S)which can be proved in a standard way. Let a⊗s ∈ A⊗ S.
Since A is firm, it is unitary. Hence a = b · t for some b ∈ A and t ∈ S. Then
a ⊗ s = b · t ⊗ s = b ⊗ ts = μ(b ⊗ t ⊗ s). Thus μ is surjective.

To show it is injective, assume that a ⊗ su = b ⊗ tv in A ⊗ S and show that
a⊗s⊗u = b⊗ t⊗v in (A⊗S)⊗S. Suppose first that (a, su) = (b, tv), that is, a = b
and su = tv. Since A is firm, condition (U) implies that there are c ∈ A and r ∈ S such
that c ·r is defined and equals a. Then a⊗s⊗u = c ·r⊗s⊗u = c⊗rs⊗u = c⊗r⊗su
and similarly a⊗ t ⊗v = c⊗r ⊗ tv. It follows that a⊗ s⊗u = a⊗ t ⊗v. Otherwise,
(b, tv) is obtained from (a, su) in n ≥ 1 steps.

Arguing by induction and due to symmetry, it is enough to suppose that c, d ∈ A
and x, y ∈ S are such that (c, x) → (d, y) and show that for any p, q, s, t ∈ S such
that x = pq and y = st we have c⊗ p⊗ q = d ⊗ s ⊗ t . (Such factorizations x = pq
and y = st exist since S is factorizable.) Since A is firm, condition (U) implies that
there are c′ ∈ A and r ∈ S such that c′ ·r is defined and equals c. Since (c, x) → (d, y),
there is u ∈ S such that x = uy = ust , c · u is defined and d = c · u. Applying the
definition of (A ⊗ S) ⊗ S, we calculate:

c ⊗ p ⊗ q = c′ · r ⊗ p ⊗ q = c′ ⊗ rp ⊗ q = c′ ⊗ r ⊗ pq = c′ ⊗ r ⊗ ust =
c′ ⊗ rus ⊗ t = (c′ · r) · u ⊗ s ⊗ t = d ⊗ s ⊗ t,

as needed. �	

3.3 The tensoring globalization functor and the reflection

In this subsection we extend the result of [1, Theorem 1.1] (see also [18]) from par-
tial actions of groups to firm and strong partial actions of semigroups. Let FSPA(S)

denote the category whose objects are firm and strong right partial S-acts and whose
morphisms are morphisms between partial S-acts. Let FGA(S) be the full subcategory
of FSPA(S) whose objects are firm right global S-acts (the latter category has been
considered in [23, 24]).

If A is an object of the category FSPA(S), by T(A) we denote the right global S-act
A⊗ S. By Proposition 3.10, it is an object of the category FGA(S). Let f : A → B be
a morphism in the category FSPA(S). Define T( f ) to be the map from A⊗ S to B ⊗ S
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given by a ⊗ s �→ f (a) ⊗ s. It is easy to see that it is well defined and is a morphism
of global S-acts. It is routine to check that the assignment f �→ T( f ) is functorial, so
that we have defined a functor T : FSPA(S) → FGA(S) which we call the tensoring
globalization functor.

Theorem 3.11 Suppose that S is factorizable. The functor T : FSPA(S) → FGA(S) is
a left adjoint to the inclusion functor I : FGA(S) → FSPA(S). Consequently, FGA(S) is
a reflective subcategory of the category FSPA(S)with the functor T being the reflector.

Proof Let A be an object of the category FSPA(S). Define the map ηA : A → IT(A) =
I(A⊗ S), a �→ b⊗ s, where a = b · s. Let a · t be defined. Since ηA(a · t) = a ⊗ t =
(b · s) ⊗ t and ηA(a) ∗ t = (b ⊗ s) ∗ t = b ⊗ st = (b · s) ⊗ t , ηA is a morphism in
the category FSPA(S), and it is routine to see it is natural in A.

Let (B, ◦) be an object of the category FGA(S) and f : A → I(B) a morphism in
FSPA(S). Define a map of global S-acts g : T(A) → B by g(a⊗ s) = f (a)◦ s. Let us
show that g is well defined. Arguing by induction and applying symmetry, it is enough
to assume that (a, s) → (b, t), that is, s = ut and a · u is defined and equals b. Then

f (a) ◦ s = f (a) ◦ ut = ( f (a) ◦ u) ◦ t = f (a · u) ◦ t = f (b) ◦ t,

as needed. Further, g is a morphism in the category FGA(S) since

g((a ⊗ s) ∗ t) = g(a ⊗ st) = f (a) ◦ st = ( f (a) ◦ s) ◦ t = g(a ⊗ s) ◦ t .

In addition, for each a ∈ A, where a = b · s, we have I(g)ηA(a) = g(b ⊗ s) =
f (b) ◦ s = f (b · s) = f (a), thus we have the following commuting triangle:

A

I(B) IT(A)

f
ηA

I(g)

The map g is unique because if h : T(A) → B is another morphism in the category
FGA(S) satisfying I(h)ηA = f then for a = b · s ∈ A and t ∈ S we have

h(a ⊗ t) = h(b · s ⊗ t) = h(b ⊗ st) (by the definition of A ⊗ S)

= h((b ⊗ s) ∗ t) = h(ηA(a) ∗ t) (by the definition of ∗ and ηA)

= h(ηA(a)) ◦ t = f (a) ◦ t (since h is a morphism and hηA = f )

= g(a ⊗ t), (by the definition of g)

as desired. This completes the proof. �	
Remark 3.12 Semigroups S and T are called Morita equivalent if the categories
FGA(S) and FGA(T ) are equivalent (see [24]). In view of the connection between
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categories of global and partial acts demonstrated in Theorem 3.11, it would be inter-
esting to examine the equivalence relation on the class of all semigroups which is
defined by requiring that the categories FSPA(S) and FSPA(T ) are equivalent. Even
in the case of monoids it is not known if this coincides with the Morita equivalence
relation.

4 The Hom-set globalization

Let (A, ·), (B, ◦) be partial S-acts. Generalizing Definition 2.7 we define a partial
morphism from (A, ·) to (B, ◦) to be a partial map ϕ : A → B which respects the
action, that is, if a · s, ϕ(a) and ϕ(a · s) are defined then ϕ(a) ◦ s is defined and the
equality ϕ(a · s) = ϕ(a) ◦ s holds. The set of all partial morphisms from (A, ·) to
(B, ◦) will be denoted by Hom p(A, B).

Let (A, ·) be a right partial S-act and consider S as a right S-act under the action by
right multiplication. Then Hom p(S, A) is the set of all partial maps f : S → A such
that if s, st ∈ dom( f ) then f (s) · t is defined and f (st) = f (s) · t .

For all f ∈ Hom p(S, A) and s ∈ S define the partial map f ∗ s : S → A by

dom( f ∗ s) = {t ∈ S : st ∈ dom( f )}, (4.1)

( f ∗ s)(t) = f (st) for all t ∈ dom( f ∗ s). (4.2)

Lemma 4.1 The assignment ∗ defines a right global action of S on Hom p(S, A).

Proof First we check that f ∗ s ∈ Hom p(S, A). Suppose that u, ut ∈ dom( f ∗ s). By
(4.1) this means that su, sut ∈ dom( f ). It follows that f (su) · t is defined and equals
f (sut). Since, in addition, ( f ∗ s)(u) = f (su) and ( f ∗ s)(ut) = f (sut) by (4.2),
we have that ( f ∗ s)(u) · t is defined and equals ( f ∗ s)(ut), so f ∗ s ∈ Hom p(S, A).

Let s, t ∈ S and show that ( f ∗ s) ∗ t = f ∗ st . Indeed,

dom(( f ∗ s) ∗ t) = {u ∈ S : tu ∈ dom( f ∗ s)}
= {u ∈ S : stu ∈ dom( f )} = dom( f ∗ st)

and for every u ∈ dom(( f ∗ s)∗ t)we have (( f ∗ s)∗ t)(u) = ( f ∗ s)(tu) = f (stu) =
( f ∗ st)(u), as needed. �	

For each a ∈ A and s ∈ S define the partial function fa,s : S → A by

dom( fa,s) = {t ∈ S : a · st is defined}, (4.3)

fa,s(t) = a · st for all t ∈ dom( fs,a). (4.4)

Let

AS = { fa,s : a ∈ A, s ∈ S}.
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Lemma 4.2 Suppose · is strong. AS is a subact of Hom p(S, A) and

fa,s ∗ t = fa,st for all fa,s ∈ AS and t ∈ S. (4.5)

Proof Let fa,s ∈ AS and u, v ∈ S be such that fa,s(u) and fa,s(uv) are defined. This
means that a · su and a · suv are defined. Since (A, ·) is strong, (a · su) ·v = fa,s(u) ·v
is defined and equals a · suv. Hence fa,s(uv) = a · suv = (a · su) · v = fa,s(u) · v.
We have shown that AS ⊆ Hom p(S, A). Observe that

dom( fa,s ∗ t) = {u ∈ S : tu ∈ dom( fa,s)} (by(4.1))

= {u ∈ S : a · stu is defined} ( by (4.3))

= dom( fa,st ). ( by (4.3))

In addition, if u ∈ dom( fa,st ), we have

( fa,s ∗ t)(u) = fa,s(tu) (by(4.2))

= a · stu (by (4.4))

= fa,st (u). (by(4.4))

We have shown that fa,s ∗ t = fa,st ∈ AS , which completes the proof. �	
Suppose · is strong. For each a ∈ A let λa : S → A be the map given by dom(λa) =

{s ∈ S : a · s is defined} and λa(s) = a · s for all s ∈ dom(λa). It is easy to see that
λa ∈ Hom p(S, A). We have defined the map λ : A → Hom p(S, A), a �→ λa .

Lemma 4.3 Suppose that · is unitary and strong. For a ∈ A let b ∈ A and s ∈ S be
such that a = b · s. Then λa = fb,s ∈ AS. Consequently,

λ(A) = { fb,s : b ∈ A, s ∈ S and b · s is defined}.

Proof We have dom(λa) = {t ∈ S : a · t is defined} = {t ∈ S : (b · s) · t is defined}.
Also, dom( fb,s) = {t : b · st is defined}. Since b · s is defined and · is strong, we have
dom(λa) = dom( fb,s). In addition, for each t ∈ dom(λa) we have λa(t) = a · t =
(b · s) · t = b · st = fb,s(t). �	

The following notion is an extension to partial S-acts of the notion of a nonsingular
global S-act. Unitary nonsingular global acts have been used in the Morita theory
of semigroups starting from [4]. The term ‘nonsingular act’ was introduced in [22,
Definition 3.1].

Definition 4.4 A partial S-act A is called nonsingular, if from fa,s = fb,t , where a · s
is defined, it follows that b · t is defined and a · s = b · t .
Lemma 4.5 If S is a monoid then any partial S-act (A, ·) is nonsingular.
Proof Suppose that s, t ∈ S and a, b ∈ A are such that fa,s = fb,t and that a · s is
defined. Then 1 ∈ dom( fa,s). It follows that 1 ∈ dom( fb,t ) which means that b · t is
defined. Moreover, we have a · s = fa,s(1) = fb,t (1) = b · t . �	
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Lemma 4.3 implies the following.

Corollary 4.6 Suppose that · is unitary, nonsingular and strong. Then the map λ :
A → AS, a �→ λa, is injective.

We arrive at the main result of this section.

Theorem 4.7 Let S be a semigroup and (A, ·) a unitary, nonsingular and strong partial
S-act. Then:

(1) The global S-act (AS, ∗) is an A-generated globalization of (A, ·) via the map
λ : A → AS given by a �→ fb,s where a = b · s.

(2) The globalization (AS, ∗) has the following universal property: if (B, ◦) is an
A-generated globalization of (A, ·) via a map ι : A → B then there is a unique
morphism of S-acts ϕ : B → AS such that λ = ϕι, that is, the following diagram
commutes:

A AS

B

λ

ι ϕ

Proof (1) We first show that (AS, ∗) is a globalization of (A, ·). By Corollary 4.6, the
map λ is injective. Let a = b · t ∈ A. For s ∈ S we have that a · s is defined if and only
if (b · t) ·s is defined. Due to (S), this is equivalent to b · ts being defined which implies
λa ∗ s = fb,t ∗ s = fb,ts = λb·ts ∈ λ(A). Conversely, if fb,ts ∈ λ(A), nonsingularity
implies that b · ts is defined and so a · s is defined by (S). If this is the case, we have
λ(a · s) = λ(b · ts) = fb,ts = fb,t ∗ s = λ(a) ∗ s, as needed.

Let fa,s ∈ AS . Since · is unitary, there are b ∈ A and t ∈ S such that b · t is defined
and equals a. Then fa,s = fb·t,s = fb,ts = fb,t ∗ s = λ(a) ∗ s, where for the second
equality we used (S), so that AS is A-generated.

(2) Let (B, ◦) be an A-generated globalization of (A, ·) via ι : A → B and b ∈ B.
Since B is A-generated, there are a ∈ A and s ∈ S such that b = ι(a) ◦ s. We put
ϕ(ι(a)◦s) = fa,s . Firstly,we show thatϕ iswell defined.Assume that ι(a)◦s = ι(b)◦t
and show that fa,s = fb,t . Let x ∈ dom( fa,s). This means that a · sx is defined. In
view of (G1) and (G2), we have that ι(a) ◦ sx ∈ ι(A) and ι(a · sx) = ι(a) ◦ sx .
Our assumption yields that ι(b) ◦ t x = (ι(b) ◦ t) ◦ x = (ι(a) ◦ s) ◦ x = ι(a) ◦ sx .
Thus ι(b) ◦ t x ∈ ι(A). In view of (G1), we obtain that b · t x is defined. It follows
that dom( fa,s) ⊆ dom( fb,t ). By symmetry, the reverse inclusion also holds. Let
x ∈ dom( fa,s). Then fa,s(x) = a · sx and fb,t (x) = b · t x . Applying (G2), we have
ι(a · sx) = ι(a) ◦ sx = ι(b) ◦ t x = ι(b · t x). Since ι is injective, we conclude that
a · sx = b · t x , so that fa,s(x) = fb,t (x). This implies that fa,s = fb,t .

The map ϕ is a morphism of S-acts because

ϕ((ι(a) ◦ s) ◦ t) = ϕ(ι(a) ◦ st) (since ◦ is an action)

= fa,st (by the definition of ϕ)

= fa,s ∗ t (by (4.5))

= ϕ(ι(a) ◦ s) ∗ t . (by the definition of ϕ)
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Further, let a ∈ A. Since · is unitary there are b ∈ A and s ∈ S such that the element
b · s is defined and equals a. Then ϕ(ι(a)) = ϕ(ι(b) ◦ s) = fb,s = λa , so that ϕι = λ.
Uniqueness of ϕ follows from Proposition 2.12(2). �	
Remark 4.8 Let (A, ·) be a strong partial S-act and let S1 be the monoid obtained from
S by attaching an external identity element 1. Consider the partial S1-act (A, ◦) defined
in Remark 3.8. Then it is strong, since so is (A, ·), and also unitary and nonsingular
by (Um) and Lemma 4.5. It follows from Theorem 4.7 that the global S1-act (AS1 , ∗)

is a globalization of the partial S1-act (A, ◦). Since 1 is an external identity element
of S1, the action of S1 on AS1 restricts to that of S on AS1 which globalizes the initial
partial action · of S on A. This provides another construction, in addition to that in
Remark 3.8, of globalization of an arbitrary strong partial semigroup act.

Let (A, ·) be a strong partial S-act. Let C be the subset of AS1 consisting of all
f ∈ AS1 which can be written as f = fa,s where s = 1. Then the assignment
fa,s �→ fa,s (where a ∈ A and s ∈ S) is a well-defined surjective map from C onto
AS . It can be shown that this map is injective if and only if (A, ·) is nonsingular, and
that its domain C coincides with the whole AS1 if and only if (A, ·) is unitary. Hence,
it is an isomorphism between AS1 and AS if and only if (A, ·) is both unitary and
nonsingular.

Corollary 4.9 Let · be a unitary, nonsingular and strong partial action of a semigroup
S on a set A. The triple (AS, λ, ∗) is a terminal object in the category GA(A, S, ·).

Apartial action · of S on A is called a partially defined action [20] (or an incomplete
action [13]) if it satisfies the condition that a·s and (a·s)·t are defined if and only if a·st
is defined (this is the case if and only if the corresponding premorphism S → PT (A),
where PT (A) is the partial transformation semigroup on A, is a homomorphism, see
[13, 20]). A partially defined action is necessarily strong. If · is a partially defined
action, we say that (A, ·) is a partially defined S-act.

Let (A, ·) be a partially defined S-act and c /∈ A. It is known (see, e.g., [14, p. 297]
for the case where S is a monoid) and easy to see that the assignment

a ◦ s =
⎧
⎨

⎩

a · s, if a ∈ A and a · s is defined,
c, if a ∈ A and a · s is not defined,
c, if a = c,

defines a global S-act (A ∪ {c}, ◦) which is a globalization of (A, ·) via the map
ι : A → A ∪ {c} which is identical on A.

Let 0 denote the only partial function f : S → A whose domain is the empty set.

Proposition 4.10 Let · be a nonsingular and unitary partially defined action of S on
A which is not a global action. Then AS = λ(A)∪{0} and the universal globalization
(AS, ∗) is isomorphic to (A ∪ {c}, ◦) via the map fa,s �→ a · s if fa,s ∈ λ(A) and
0 �→ c.
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Proof Let a ∈ A and s ∈ S be such that a · s is not defined (they exist since · is not
global). Then, for any t ∈ S, a · st is not defined either, so that t /∈ dom( fa,s). Thus
fa,s = 0. This and Lemma 4.3 imply the equality AS = λ(A) ∪ {0}. The claim about
the isomorphism is routine to verify. �	

5 Globalizations of a strong partial action of a monoid

In this section S is a monoid. Combining Corollary 3.6 and Corollary 4.9 we obtain
the following.

Theorem 5.1 Let · be a strong partial action of a monoid S on a set A in the sense
of Hollings [14] (that is, conditions (PA), (Um) and (S) hold). Then A ⊗ S is an
initial object and AS is a terminal object in the category GA(A, S, ·). In particular,
if ∗ is a global action of S on a set B which is an A-generated globalization of · via
a map ι : A → B then there are unique morphisms of global S-acts A ⊗ S → B,
a ⊗ s �→ ι(a) ∗ s, and B → AS, ι(a) ∗ s �→ fa,s , such that the following diagram
commutes:

A

A ⊗ S B AS

δ
ι

λ

Theorem 5.1 says that A ⊗ S is the ‘freest’ possible A-generated globalization of
A, and AS is the ‘smallest’ possible such globalization.

Remark 5.2 The globalization A ⊗ S coincides with that considered by Megrelishvili
and Schröder [25] and Hollings [14] (although the tensor product notation is not used
in [14, 25]), see Remark 3.7. The globalization AS is novel, as well as its property of
being the terminal object of the category GA(A, S, ·).

Let G be a group and A a set. A partial action of G on A [9, 16] is a partial map
· : A × G → A, (a, g) �→ a · g, which satisfies conditions (PA), (Um) and also the
condition

(I) If a · g is defined then (a · g) · g−1 is defined and (a · g) · g−1 = a.

It has been observed in [25] that · is a partial action of G on A in the sense of [9,
16] (that is, it satisfies (PA), (Um) and (I)) if and only if it satisfies (PA), (Um) and (S).
The following result is a direct consequence of [16, Proposition 3.3] but we provide
it with a proof, for completeness.

Proposition 5.3 Let S be a group and let · be a partial action of S on a set A in the
sense of [9, 16]. Let ∗ be a global action of S on a set B which is a globalization of ·.
Then the map ϕ : A ⊗ S → B from the proof of Theorem 3.5(2) is injective.

Proof Let ι : A → B be the injective map such that (B, ∗) is a globalization of
(A, ·) via ι. Recall that the map ϕ : A ⊗ S → B from the proof of Theorem 3.5(2)
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is given by a ⊗ s �→ ι(a) ∗ s. Assume that ι(a) ∗ s = ι(b) ∗ t . Acting on both
sides of this equality by s−1 from the right, we obtain ι(a) = ι(b) ∗ ts−1. Then
ι(b) ∗ ts−1 ∈ ι(A), and (G1) implies that b · ts−1 is defined. In view of (G2), we have
that ι(b · ts−1) = ι(b)∗ ts−1 = ι(a). Injectivity of ι yields that b · ts−1 = a. Therefore,
b ⊗ t = b ⊗ ts−1s = b · ts−1 ⊗ s = a ⊗ s. This proves that ϕ is injective. �	

Corollary 5.4 Let S be a group and let · be a partial action of S on a set A in the
sense of [9, 16]. Let (B, ∗) and (C, ◦) be A-generated globalizations of (A, ·) via the
injective maps ι and i , respectively. Then the map B → C, ι(a) ∗ s �→ i(a) ◦ s, is
an isomorphism of global S-acts. In particular, A ⊗ S and AS are isomorphic via the
map A ⊗ S → AS given by a ⊗ s �→ fa,s .

Proof The statement follows from Proposition 5.3 because, since the globalization B
therein is A-generated, the map ϕ is surjective (see Proposition 2.12(2)). Hence it is a
bijection, and an isomorphism of global S-acts. �	

The following example shows that a partial action of a monoid can have infinitely
many pairwise non-isomorphic globalizations and that A ⊗ S and AS can be far
different.

Example 5.5 LetN be the set of positive integers andN0 = (N∪{0},+) be the additive
monoid of non-negative integers. Let the partial mapN×N

0 → N, (a, n) �→ a ·n, be
given by letting a · n be defined if and only if a − n > 0 in which case a · n = a − n.
It is easy to see that · is a partially defined action of N0 on N.

Let BZ = Z be the set of integers and ι : N → BZ be themapwhich acts identically
on N. For each b ∈ BZ and n ∈ N

0 put b ∗ n = b − n. Then ∗ is a global action
of N0 on BZ which is a globalization of · via the map ι. Since every x ∈ BZ can be
written as x = a ∗n where a ∈ N and n ∈ N

0, BZ isN-generated. In addition, for any
a, b ∈ N and n,m ∈ N

0 we have a ∗ n = b ∗ m if and only if a − n = b − m. From
this it easily follows that BZ is isomorphic to N ⊗ N

0 via the map BZ → N ⊗ N
0

given by a ∗ n �→ a ⊗ n.
For an integer a ≤ 0 put Ba = {z ∈ Z : z ≥ a}. For each b ∈ Ba and n ∈ N

0 put

b ∗a n =
{
b − n, if b − n > a,

a, if b − n ≤ a.

Then ∗a is an action of N0 on Ba which globalizes · via the map ι. In addition, Ba is
N-generated.

If a < b where a, b ≤ 0 are integers, then the map ϕ : Ba → Bb given by

ϕ(x) =
{
x, if x ≥ b,
b, if a ≤ x ≤ b − 1,

is a morphism of global N0-acts from Ba to Bb. It can be checked that the map ϕ can
be alternatively given by ϕ(c ∗a n) = c ∗b n where c ∈ N and n ∈ N

0.
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Similarly, for an integer b ≤ 0 the map ψ : BZ → Bb given by

ψ(x) =
{
x, if x ≥ b,
b, if x ≤ b − 1,

is a morphism of N0-acts from BZ to Bb. It can be checked that the map ψ can be
alternatively given by ψ(c ∗ n) = c ∗b n where c ∈ N and n ∈ N

0. Proposition 4.10
implies that B0 is isomorphic to NN

0
. If a = b then Ba is not isomorphic to Bb, since

there is no bijection from Ba to Bb which would be identical on N. Similarly, BZ is
not isomorphic to any Ba where a ≤ 0 is an integer.
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