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Abstract
Since its introduction by Symons, the semigroup of maps with restricted range has
been studied in the context of transformations on a set, or of linear maps on a vector
space. Sets and vector spaces being particular examples of independence algebras,
a natural question that arises is whether by taking the semigroup T (A ,B) of all
endomorphisms of an independence algebra A whose image lie in a subalgebra B,
one can obtain corresponding results as in the cases of sets and vector spaces. In this
paper, we put under a common framework the research from Sanwong, Sommanee,
Sullivan, Mendes-Gonçalves and all their predecessors. We describe Green’s relations
as well as the ideals of T (A ,B) following their lead. We then take a new direction,
completely describing all of the extended Green’s relations on T (A ,B). We make
no restriction on the dimension of our algebras as the results in the finite and infinite
dimensional cases generally take the same form.

Keywords Independence algebras · Endomorphisms with restricted range · Green’s
relations · Extended Green’s relations

1 Introduction

The full transformation monoid TX of a set X , the monoid of linear transformations
End(V ) on a vector space V , as well as their generalisation to the endomorphism
monoid End(A ) of an independence algebraA have been the focus of a large amount
of research during the last decades. Following Malcev’s work on the automorphism
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group ofTX , Symons [16] investigated the automorphism group of the subsemigroup
of TX consisting of all maps with range restricted to Y ⊆ X , denoted by T (X ,Y ).
Later, Nenthein, Youngkhong and Kemprasit started the study of the properties of
T (X ,Y ) which led to similar studies of T (V ,W ), the semigroup of linear transfor-
mations of a vector space V with restricted range in a subspace W . Since both sets
and vector spaces lie in the general framework of independence algebras, we use this
more generic structure to describe and extend these studies. We give full details of
independence algebras in Sect. 2. For the moment, it is enough for the reader to know
they behave similarly to sets and vector spaces in terms of endomorphisms.

LetA be an independence algebra, andB be a subalgebra ofA .Wemake no global
assumptions concerning the cardinalities of A and B, which means that these could
be either finite or infinite dimensional algebras. Define by T (A ,B) the semigroup of
all endomorphisms from A toB, that is, the set

T (A ,B) = {α ∈ End(A ) | im α ⊆ B}.

Of course, if B = ∅ then T (A ,B) = ∅ and we will therefore exclude this case.
Otherwise the set T (A ,B) is easily seen to be a subsemigroup of End(A ), and if
B = A it is equal to the monoid End(A ). In fact, we will prove later in Corollary
2.2 that unless B = A or B is a singleton, then T (A ,B) is not isomorphic to the
endomorphism monoid End(C ) of any independence algebra C .

In the case where A is simply a set, Green’s relations on T (A ,B) have been
studied by Sanwong and Sommanee in [14], while Sullivan [15] carried out the same
workwhenA is a vector space, following the exhibition of the regular elements in both
cases by Nenthein, Youngkhong and Kemprasit in [10, 11]. Later, Mendes-Gonçalves
and Sullivan [8, 15] gave the structure of the ideals of T (A ,B) for both the set and the
vector space case. The sets {α ∈ T (A ,B) | rank α < r} for any cardinal r are ideals
of T (A ,B). However, unlike the case for End(A ) these ideals are not the only ones
present in T (A ,B) in general, nor do they form a chain. In [8, 15], the authors used
the ideal structure when the dimension ofB is at least 3 in order to construct two ideals
that are not comparable under containment. Doing this, they showed a weaker version
of Corollary 2.2, namely, that if dimB ≥ 3 then T (A ,B) cannot be isomorphic to
End(C ) for any appropriate C since ideals of the latter always form a chain. Even if
the proof we give for this result does not rely on the ideal structure of T (A ,B), we
will give similar examples of ideals not forming a chain to give the reader an idea on
this particular behaviour.

After recalling the notion of independence algebras used in this paper, the first
sections will closely follow the techniques of previous authors [8, 10, 11, 14, 15]. We
thus state the results in the context of independence algebras and effectively enhance
the proofs existing in special cases to fit under our general framework. Some of these
results can also be obtained from the work of East [2] on the structure of one-sided
ideals, since the semigroup T (A ,B) is a principal left ideal of End(A ) generated
by any idempotent η ∈ End(A ) whose image lie inB. We nonetheless prefer to give
these proofs more directly, in order to provide a better build up for the subsequent
part of the paper. We start by looking at the regular elements in Sect. 3, and derive
Green’s relations in Sect. 4 as well as the ideal structure in Sect. 5. An astute reader
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130 A. Grau

can retrace in the aforementioned papers the origin of the ideas used throughout the
proofs present in these three sections.

The major part of this article is devoted to giving new results on the semigroup
T (A ,B) where A is an independence algebra and B is a subalgebra of A . From
Corollary 3.2,we have that T (A ,B) is not a regular semigroup in general, and in order
to further understand its structure, we turn ourselves to the extended Green’s relations
L ∗, R∗, ˜L and ˜R. These equivalence relations were introduced to complement the
study of regular semigroups since these only differ from the initial Green’s relations
in non-regular semigroups. While working on the structure of semigroups that are
not necessarily regular, Fountain [4] introduced the notion of abundant semigroups,
later extended further to the concept of Fountain semigroups (formerly called semi-
abundant semigroups by El-Qallali [3]). These are semigroups in which every L ∗
and R∗-class [resp. ˜L and ˜R] contains an idempotent, emulating the role that the
relations L and R play in a regular semigroup. It is well-known that the relations L
andR commute. However, this is not the case forL ∗ andR∗ nor ˜L and ˜R and this
presents extra difficulties in describing the joins D∗ = L ∗ ∨R∗ and ˜D = ˜L ∨ ˜R.
Additionally, the equivalence relations J ∗ and ˜J induced by the principal ∗-ideals
and ∼-ideals complete the list of studied relations and are shown to coincide withD∗
and ˜D. All of these extended Green’s relations are fully characterised on T (A ,B)

in Sect. 6, and allow us to give a new example of right-abundant semigroups (that is,
where allL ∗-classes contain an idempotent), and thus right-Fountain semigroups, that
are not abundant nor Fountain since not allR∗ and ˜R-classes contain an idempotent.

2 Preliminaries and notation

In order to allow this paper to be almost self-contained, we give here a short overview
of the notion of independence algebras that will be necessary.

These were introduced by Gould in [5] in order to account for the similarities
between endomorphisms of sets, vector spaces and free group acts, and to allow
their study under a more general setting. Incidentally, it was noted that independence
algebras also corresponds to the v∗-algebras described by Narkiewicz [9].

Let A = 〈

A; F 〉

be a (universal) algebra, with A a non-empty set as its uni-
verse and F its (possibly infinite) set of fundamental operations that all have finite
arity. As a convention, we will always denote the underlying universe of an alge-
bra, say K , by the corresponding non-scripted capital letter, here K . Fundamental
operations can be composed as follows: if f is an n-ary operation and g1, . . . , gn
are all m-ary operations, then f ◦ (g1, . . . , gn) is an m-ary operation defined by
f ◦ (g1, . . . , gn)(x) = f (g1(x), . . . , gn(x)) for all x ∈ Am . We also call projec-
tions the maps πn

i : An → A for all 1 ≤ i ≤ n sending the n-tuple (x1, . . . , xn) to xi .
With this, for an integer n ≥ 0, an n-ary term operation t is a map t : An → A built by
successive compositions of fundamental operations and projections, where a nullary
term operation f () = a will be identified with its image a ∈ A and will be called
a constant. For any X ⊆ A, the universe of the subalgebra generated by X will be
denoted by 〈X〉 and consists of all elements t(a1, . . . , an) where t is a term operation
and a1, . . . , an ∈ X . The subalgebra generated by ∅ consists of all the elements that
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The semigroup of endomorphisms with restricted... 131

can be obtained using nullary term operations, and thus
〈∅〉 = ∅ if and only ifA has no

constants. In order to facilitate readability and to follow classical semigroup notation,
terms of our algebras will be operating on the left while functions on our algebras will
be operating on the right. We will also give precedence to terms in the evaluation, so
that fewer parentheses are needed.

A set X ⊆ A is said to be independent if for all x ∈ X wehave that x /∈ 〈

X\{x} 〉

, and
it is a basis of A (or A) if it is independent and generates A. We say that an algebra
A satisfies the exchange property (EP) if all subsets X of A satisfy the following
condition:

for all a, b ∈ A, if b ∈ 〈

X ∪ {a} 〉

and b /∈ 〈X〉, then a ∈ 〈

X ∪ {b} 〉

.

An important point from [5] is that any algebra A that satisfies (EP) has a basis, and
in addition in such algebra, a set X is a basis if and only if it is a maximal independent
set, if and only if it is a minimal generating set. Additionally, in such an algebra,
any independent set can be extended to a basis of A and all bases have the same
cardinality, called the dimension (or the rank) ofA , denoted by dimA . Furthermore,
for any B ⊆ A, the dimension (or rank) of B is the cardinality of a basis X of the
subalgebraB = 〈B〉 and the codimension (or corank) ofB inA , denoted codimAB,
is the cardinality of an independent set Z such that X � Z forms a basis of A .

For B,C ⊆ A, a function α : B → C is a homomorphism of A if for all n-ary term
operations t and all b1, . . . , bn ∈ B, we have that t(b1, . . . , bn)α = t(b1α, . . . , bnα).
Moreover, α is an isomorphism between the subalgebras B = 〈B〉 and C = 〈C〉 if it
is also bijective, which will be denoted byB ∼= C . Note that in particular, this forces
any homomorphism to act as the identity on constants. An endomorphism of A is a
homomorphism α : A → A, and the set of all endomorphisms of A is denoted by
End(A ), which is a monoid under composition of functions.

An algebra A satisfying (EP) has the free basis property (F) if any map defined
from a basis X ⊆ A to A can be extended to an endomorphism ofA . An independence
algebra is an algebra A that satisfies both the exchange property and the free basis
property. Consequently, for A an independence algebra, any subalgebra of A is an
independence algebra in its own right. Lastly, for an endomorphism α ∈ End(A ), the
rank of α is defined as the rank of the subalgebra Aα. Independence algebras have
been classified by Urbanik [17] and include, as previously mentioned, sets and vector
spaces.

We let A be an independence algebra with a non-empty subalgebra B. It is clear
that T (A ,B), as defined in Sect. 1, is a subsemigroup of End(A ), but not usually a
monoid as given by the following lemma:

Lemma 2.1 The semigroup T (A ,B) is a monoid if and only if B = A , or B is a
singleton.

Proof Clearly ifB = A then T (A ,B) = End(A ), and ifB is a singleton, say {b},
then T (A ,B) = {cb}, where cb is the constant map with value b. Moreover, both of
these are indeed monoids.

Let us now assume that B � A and let b1, b2 ∈ B. Since A satisfies (EP) we
extend a basis of B to a basis X of A and take a to be one of the basis element in
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132 A. Grau

A \ B. Define two maps α, β : X → A such that aα = b1, aβ = b2 and α, β act
as identity maps on X ∩ B (with elements of X \ (B ∪ {a}) arbitrarily sent to some
elements in B). From the free basis property we know that α and β can be extended
to endomorphisms ofA , and thus we can assume that α and β belonged to T (A ,B)

in the first place. Suppose that T (A ,B) is a monoid, and denote its identity by ε.
Now let c ∈ B be such that aε = c. Then, as ε is a left identity for α and α|B is the
identity on B, we need b1 = aα = aεα = cα = c. Similarly, ε is a left identity for β

and thus b2 = aβ = aεβ = c. Therefore b1 = b2, which means thatB is a singleton.
This shows that for any proper subalgebra B with at least two distinct elements, the
semigroup T (A ,B) does not contain a two-sided identity, and thus is not a monoid.��

From this as well as the fact that the trivial monoid is the endomorphism monoid
of an algebra with a single element, we directly obtain the following result:

Corollary 2.2 The semigroup T (A ,B) is isomorphic to End(C ) for C an indepen-
dence algebra if and only ifB = A , or B is a singleton.

In order to facilitate the reading of the proofs, the following notation will be used
throughout the paper:

• the image of α ∈ End(A ) is im α = Aα and its rank is ρ(α) = dim(im α);
• the set {ei | i ∈ I } ⊆ A is abbreviated as {ei } without necessarily specifying the
index set that will be denoted by capitalising the letter used as index, here I , and
such a set will most of the time be non-empty and can be either finite or infinite;

• the closure operator is denoted by 〈·〉 and by writing C = 〈b1, b2〉 we mean that
C is the subalgebra generated by b1 and b2, while having C = 〈{b1, b2}〉 gives the
additional information that b1 and b2 form a basis for C ;

• similarly, by B = 〈{ei }�
{

f j
}〉wemean that the sets {ei } and

{

f j
}

are independent
sets and that together they form a basis for the subalgebraB, and by B = C�〈{xk}〉
we mean that C is a subalgebra of B and that a basis of C can be extended to a
basis of B through {xk};

• for A = 〈{xi } � {y j }
〉

, by writing α =
(

xi y j
bi d j

)

we mean that xiα = bi , y jα = d j

for all i ∈ I , j ∈ J , and that this map is the endomorphism obtained by extension
of the underlyingmapon the basis using the free basis property of our independence
algebra. We also notice that the sets {bi } and {d j } are not necessarily independent
and that their intersection is not necessarily empty, and if both are subsets of the
subalgebra B, then α lies in T (A ,B);

• by writing t(xi ), we mean that the n-ary term t depends upon the set {xi }, such
that there exists a subset

{

xi1 , . . . , xin
} ⊆ {xi } with t(xi ) = t(xi1, . . . , xin ). This

will be used by saying that for any c ∈ C = 〈{xi }〉 there exists a term t such that
c = t(xi );

• since T (A ,B) is not a monoid in general as noted in Lemma 2.1, we will denote
by T (A ,B)1 the monoid obtained by adjoining an identity to T (A ,B).

We finish this section by giving a few lemmas that provide some useful initial
properties of T (A ,B) inherited from those of End(A ). The omitted proofs are well
known and can be found in [1, 5].

123
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Lemma 2.3 Let α ∈ End(A ) and {xi } = X ⊆ A. If {xiα} is independent, then X is
an independent set.

Following this, we define a preimage basis of α ∈ End(A ) to be an independent set
X ⊆ A such that Xα is a basis for im α. Notice that, by writing im α = 〈{xiα}〉, if
A has constants then we have that ρ(α) = 0 if and only if I = ∅, in which case the
empty set is a preimage basis for α.

Lemma 2.4 In an independence algebra, all subalgebras of a given rank are isomor-
phic.

Lemma 2.5 Let α, β ∈ T (A ,B) be such that im α ∼= im β. Then there exist twomaps
γ, μ ∈ T (A ,B) such that:

1. im γ = im β and ker γ = ker α; and
2. imμ = im α and kerμ = ker β.

Proof Since im α ∼= im β, there exists an isomorphism φ : Aα → Aβ. Define γ, μ ∈
T (A ,B) by γ = αφ and μ = βφ−1. Then, im γ = Aγ = (Aα)φ = Aβ = im β

and similarly imμ = im α. Additionally, we have that ker γ ⊇ ker α by definition of
γ and for the reverse inclusion, we have that for any a, b ∈ A, (a, b) ∈ ker(γ ) if and
only if (aα, bα) ∈ ker φ. However, since φ is injective, this is equivalent to aα = bα,
that is, (a, b) ∈ ker α and thus ker γ ⊆ ker α. Therefore ker γ = ker α and using
similar arguments we have kerμ = ker β which concludes the proof. ��
Lemma 2.6 Let α, β ∈ T (A ,B). Then ρ(αβ) ≤ min {ρ(α), ρ(β)}.
Proof From Aαβ ⊆ Bβ ⊆ Aβ, we get ρ(αβ) ≤ ρ(β). Similarly,
dim(Aαβ) ≤ dim((Aα)β) ≤ dim(Aα) and thus ρ(αβ) ≤ ρ(α) and the claim follows
from the two inequalities. ��

3 Regular elements of T(A ,B)

It is well-known that for any independence algebra A , its endomorphism monoid
End(A ) is regular [5, Prop. 4.7]. Thus in the case where B = A , it follows that
T (A ,B) is regular. On the other hand, it is easy to see that if we take B to be the
constant subalgebra

〈∅〉

whenever this is non-empty, we have that T (A ,B) is a left-
zero semigroup. Indeed, since any homomorphism has to act as the identity on

〈∅〉

,
then for any α, β ∈ T (A ,B) we have that im α ⊆ 〈∅〉

and thus αβ = α. Besides,
when

〈∅〉 = ∅ and dimB = 1 we have that T (A ,B) can be seen as G �I {c1}, where
G is the group of unary term operations which do not have constant image, I is an
indexing set for a basis of A, c1 : I → I is the constant map with value 1 ∈ I and the
multiplication is given by

((g1, g2, g3, . . . ), c1) ((h1, h2, h3, . . . ), c1) = (

(g1h1c1, g2h2c1, g3h3c1, . . . ), c1
)

= ((g1h1, g2h1, g3h1, . . . ), c1) .

123



134 A. Grau

In both these cases, T (A ,B) is a regular semigroup but we will show that T (A ,B)

is not regular when B does not satisfy the conditions given above.
To see that, first notice that if α ∈ T (A ,B) is any regular element, then there

exists γ ∈ T (A ,B) such that α = αγα and from this, we obtain that

Aα = (Aαγ )α ⊆ Bα.

We therefore define a set Q which will contain all regular elements as follows:

Q = {α ∈ T (A ,B) | Aα ⊆ Bα} .

It is clear that the condition Aα ⊆ Bα on the elements of Q can be rewritten as
Aα = Bα or (A \ B)α ⊆ Bα, and these equivalent conditions will be equally used
throughout the paper to define an element of Q.

Lemma 3.1 The set Q is a right ideal and the maximal regular subsemigroup of
T (A ,B) with respect to containment.

Proof As per the remark above, any regular element of T (A ,B) lies in Q. Moreover,
for any α ∈ Q, β ∈ T (A ,B) we have that

A(αβ) = (Aα)β ⊆ (Bα)β = B(αβ),

and thus Q is a right ideal.
Let us now show that any α ∈ Q is a regular element. Let Bα = 〈{biα}〉, where,

according to our convention, {bi } ⊆ B is a preimage basis, and take an element
c ∈ 〈{bi }〉, which exists asB is non-empty. Since Aα ⊆ Bα, then for any a ∈ A there
exists a term t such that aα = t(biα) = t(bi )α. Now if A = 〈{bi } � {

x j
}〉 and we

define u j = x jα = t j (biα), then we have that

α =
(

bi x j
biα u j

)

.

Additionally, let
{

a j
}

be such that A = 〈{biα} � {

a j
}〉, and define γ ∈ T (A ,B) by:

γ =
(

biα a j

bi c

)

.

Thenwe have that γ ∈ Q since Aγ = 〈{bi }〉 = Bγ . Finally, we can see that α = αγα.
Indeed, this is clear for any b ∈ 〈{bi }〉, but also for a ∈ A we have

aαγα = t(biα)γ α = t((biα)γ )α = t(bi )α = aα,

which finishes the proof that any element in Q is regular. ��
For ease of use, the set of non-regular maps, that is, the set T (A ,B) \ Q will be

denoted by Qc.
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Corollary 3.2 For B �= A , the semigroup T (A ,B) is not regular if and only if
dim B ≥ 2 or

〈∅〉 �= ∅ and dim B = 1.

Proof If dim B ≥ 2 or dim B = 1 with
〈∅〉 �= ∅, there exist at least two elements

b1, b2 ∈ B such that b1 /∈ 〈b2〉 since we can either take two independent elements,
or take b1 to be an independent element and b2 a constant. Now let B = 〈{x j

}〉,
A = 〈{yi } � {

x j
}〉 and define α ∈ T (A ,B) by

α =
(

yi x j
b1 b2

)

.

Then we have that Bα = 〈b2〉 � 〈b1, b2〉 = Aα and thus α is not in Q.
Additionally, the comments at the beginning of Sect. 3 give us the contrapositive

statement, hence the equivalence. ��
Following Corollary 3.2, we will restrict ourselves to the cases where T (A ,B) is

not regular, since if T (A ,B) is regular, thenwe automatically obtainGreen’s relations
and the ideal structure from that of End(A ). Therefore, from now on we assume that
B �= A and that dim B ≥ 2 or

〈∅〉 �= ∅ and dim B = 1. As a consequence, a similar
argument to the one mentioned in the proof will be often used, namely, the fact that
there exist two distinct elements b1 and b2 in B such that the former does not lie in the
subalgebra generated by the latter. This will allow us to treat in a similar way algebras
of a given rank that contain constants with algebras of a rank one higher that do not
have them, as long as we define our maps to be the identity on the element b2 whenever
this is relevant.

Remark 3.3 A few notes on the structure of Q worth mentioning are the following:

• Q is always nonempty: let B = 〈{bi }〉 and A = 〈{bi } � {

a j
}〉, then the map

α =
(

bi a j

bi b1

)

is an idempotent and is clearly in Q.

• Q is not a left ideal: let b1, b2 ∈ B such that b1 /∈ 〈b2〉 and define the algebras
C = 〈b1, b2〉, B = C � 〈{y j

}〉, and A = B � 〈{xi }〉 together with the following
maps:

α =
(

xi y j b1 b2
b1 b2 b2 b2

)

and β =
(

xi y j b1 b2
b1 b1 b1 b2

)

.

Then it follows that α /∈ Q and β ∈ Q are such that αβ /∈ Q.
• Anymap in Q has apreimagebasis in B: forα ∈ Qwehave that im α = Aα = Bα,
so there exists {bi } ⊆ B such that im α = 〈{biα}〉, and then {bi } is a preimage
basis for α. From now on, this fact will be used without explicit mention.

Since regular maps will be of utmost importance in the description of Green’s
relations in T (A ,B), some lemmas are given here for later use. The first one gives
us a sufficient and necessary condition on when the product of two maps lies in Q.

Lemma 3.4 For α, β ∈ T (A ,B), αβ ∈ Q if and only if for all x ∈ A, there exists an
element y ∈ B such that (xα, yα) ∈ ker β ∩ (B × B).

123



136 A. Grau

Proof From the remarks above, if αβ ∈ Q, then there exists a preimage basis of αβ

in B, say {bi }. Therefore, for any a ∈ A, we have that aαβ ∈ 〈{biαβ}〉 and thus
there exists a term t such that aαβ = t(biαβ) = t(bi )αβ. Since t(bi ) ∈ B and
(

aα, t(bi )α
) ∈ ker β ∩ (B × B), the first direction is proved.

For the converse, we have that Aαβ = {xα | x ∈ A} β. However, each element
of the set {xα | x ∈ A} lies in B and is ker β-related to some element yα in Bα by
assumption. Thus Aαβ = {yα | y ∈ B} β = Bαβ which gives us that αβ ∈ Q. ��

The next lemma shows that we can always create a map in Q from a non-regular
one with the same image, and that the converse is also true given that the rank is not
minimal. For this, let us denote by e the minimal rank of a subalgebra of A , that is,
e = 0 ifA has constants, and e = 1 otherwise. As a direct consequence, e is also the
minimal rank of any map in T (A ,B).

Lemma 3.5 For any map α ∈ Qc, there exists a map α′ ∈ Q such that im α′ = im α.
Similarly, for any map β ∈ Q such that ρ(β) > e, there exists β ′ ∈ Qc such that
im β ′ = im β.

Proof Let us assume first that α ∈ Qc. Then Bα = 〈{biα}〉 (with I possibly empty)
and we extend this to a basis {biα} � {

a jα
}

of im α. Since dim B ≥ |I | + |J |, we
can write B = 〈{ci } � {

x j
} � {yk}〉 where the set K is possibly empty. Finally letting

A = 〈{zs} � {ci } � {

x j
} � {yk}〉 and defining α′ as the following:

α′ =
(

zs ci x j yk
zsα biα a jα ykα

)

,

we have that

Aα′ = im α = 〈{biα} � {

a jα
}〉 = 〈{ci } � {

x j
}〉α′ ⊆ Bα′,

and thus α′ ∈ Q with the same image as α.
Now assume that β ∈ Q is such that ρ(β) > e. Then, there exist two elements

b1, b2 ∈ B such that b1β /∈ 〈b2β〉 together with a set {x j
} ⊆ B such that Aβ = Bβ =

〈b1β, b2β〉�〈{x jβ
}〉, and we write B = 〈b1, b2〉�〈{x j

}〉, A = 〈{ai }〉� B and define

β ′ =
(

ai {b1, b2} x j
b1β b2β x jβ

)

.

Then Aβ ′ = 〈b1β, b2β〉 � 〈{x jβ
}〉 and Bβ ′ = 〈b2β〉 � 〈{x jβ

}〉. By the exchange
property, we have that b1β /∈ Bβ ′ which gives us that Aβ ′ �= Bβ ′, that is β ′ /∈ Q, and
also im β ′ = im β as required. ��

Whenwe consider a non-regular map α, even thoughwe do not have that Aα = Bα,
nevertheless we can have that Aα ∼= Bα, which happens precisely when Aα and Bα

have the same dimension. As an example, consider A = 〈{xi }〉, B = 〈{xi } \ {x1}〉
where I = N, and define α ∈ T (A ,B) by xkα = xk+1. Then clearly x2 ∈ Aα \ Bα,
so that α /∈ Q but we still have ρ(α) = dim B = dim(Bα). This peculiar behaviour of
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non-regular maps can however only happen if α has infinite rank. This is made clear
in the following lemma.

Lemma 3.6 Let α ∈ T (A ,B) be such that Aα ∼= Bα. Then either α ∈ Q, or
ρ(α) ≥ ℵ0.

Proof Assume that Aα ∼= Bα. If Aα = Bα then α ∈ Q. Otherwise, we have that
ρ(α|B) = ρ(α) by Lemma 2.4 and we let Bα = 〈{bkα}〉. Since Bα � Aα, there exist
elements

{

a jα
} ∈ Aα \ Bα and we can write Aα = 〈{bkα} � {

a jα
}〉 with |J | ≥ 1.

But then

|K | = ρ(α|B) = ρ(α) = |K | + |J |,

which can only happen if |K | = ρ(α|B) = ρ(α) is infinite. ��
As an immediate consequence, the contrapositive statement tells us that a non-

regular map α with finite rank necessarily satisfies the equation ρ(α|B) = dim(Bα) <

dim(Aα) = ρ(α).
The last lemma for this section concerns the equivalence between a map being

regular and the existence of a map acting as a left identity on it.

Lemma 3.7 Let α ∈ T (A ,B). Then the following are equivalent:

1. α is regular;
2. α = ηα for some η idempotent in T (A ,B) with ρ(η) = ρ(α); and
3. α = γα for some γ ∈ T (A ,B).

Proof 1 ⇒ 2: Since α is regular, then α = αβα for some β ∈ T (A ,B) and taking
η = αβ gives the desired result.

2 ⇒ 3: Putting γ = η gives the result immediately.
3 ⇒ 1: If α = γα, then Aα = (Aγ )α ⊆ Bα and thus α ∈ Q. ��

4 Green’s relations

In order to better understand the structure of T (A ,B), as for any semigroup, we start
by looking at Green’s relations. There are three relevant semigroups in question here:
End(A ), T (A ,B) and Q. To avoid confusion, where the relation is on End(A ) or
Q, we use a subscript (we consider T (A ,B) as our base case and so do not use a
subscript here). For example,RA,R andRQ denote Green’s relationR on End(A ),
T (A ,B) and Q respectively. On the monoid End(A ), the Green’s relations have
been studied extensively (see for example [5]) where we have that αRA β if and
only if ker α = ker β, αLA β if and only if im α = im β, and αDA β if and only if
ρ(α) = ρ(β). It is well known that a regular subsemigroup inherits Green’s relations
R andL from the larger semigroup and since Q is a regular subsemigroup of End(A ),
we get that RQ = RA, LQ = LA and thus also DQ = DA. The description of the
Green’s relations in the semigroup T (A ,B) is however slightly different. This section
will be devoted to proving adapted versions of the statements Sullivan, Sanwong
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and Sommanee gave in [14, 15] in a more general approach that covers all types of
independence algebras, using similar ideas to those they developed.

We start by showing thatR behaves the same way in all of T (A ,B) as given by:

Proposition 4.1 If α, β ∈ T (A ,B), then α = βμ for someμ ∈ T (A ,B) if and only
if ker β ⊆ ker α. Consequently, αR β in T (A ,B) if and only if ker α = ker β.

Proof Clearly if α = βμ then ker β ⊆ ker α. Now suppose that ker β ⊆ ker α, and
let Aβ = 〈{aiβ}〉. We also let A = 〈{aiβ} � {

x j
}〉 and define γ ∈ T (A ,B) by:

γ =
(

aiβ x j
aiα x jβ

)

.

By definition of {aiβ}, for any z ∈ A, there exists a term t such that zβ = t(aiβ) =
t(ai )β which shows that (z, t(ai )) ∈ ker β ⊆ ker α, and thus

zβγ = t
(

aiβ
)

γ = t
(

(aiβ)γ
)

= t (aiα) = t(ai )α = zα.

Therefore we have that α = βγ .
It follows from this that if ker α = ker β then αR β. Conversely if αR β then

αRA β and so ker α = ker β using the remarks made previously. ��
Notice that regular maps can only be related to other regular maps since R ⊆ D

and in any semigroup either all elements in a D-class are regular, or none of them is.
The relationL, however, does not behave exactly as in End(A ) and is more restric-

tive on the non-regular part of T (A ,B).

Proposition 4.2 If α ∈ T (A ,B) and β ∈ Q, then α = λβ for some λ ∈ T (A ,B)

if and only if im α ⊆ im β. Consequently, αL β in T (A ,B) if and only if α = β or
( im α = im β and α, β ∈ Q).

Proof Let α ∈ T (A ,B) and β ∈ Q. Clearly if α = λβ, then im α ⊆ im β. Con-
versely, let us assume that im α ⊆ im β and write Aα = 〈{aiα}〉 with {ai } ⊆ A.
Since β ∈ Q, we have that im α ⊆ Bβ and thus there exists { fi } ⊆ B such that
aiα = fiβ for all i ∈ I , hence the set { fiβ} is independent. Now we take { f jβ}
such that Aβ = 〈{ fiβ} � { f jβ}〉 and let {xk} and {y�} be subsets of A such that
A = 〈{ai } � {xk}〉 and A = 〈{ fi } � { f j } � {y�}〉. From this we can write the maps α

and β as:

α =
(

ai xk
aiα tk(aiα)

)

and β =
(

fi f j y�
fiβ f jβ y�β

)

.

for some terms tk . By defining λ ∈ T (A ,B) as

λ =
(

ai xk
fi tk( fi )

)

,

123



The semigroup of endomorphisms with restricted... 139

we get that aiλβ = fiβ = aiα and xkλβ = tk( fi )β = tk( fiβ) = tk(aiα) = xkα.
Thus α = λβ, which concludes the first statement of the proposition.

Now, let us assume that αL β in T (A ,B). Then, there exist λ, λ′ ∈ T (A ,B)1

such that α = λβ and β = λ′α. If λ = 1 or λ′ = 1 thenwe have that α = β. Otherwise,
we have that

α = λλ′α and β = λ′λβ,

from which we get that α, β ∈ Q using Lemma 3.7. From the first part of the proposi-
tion we also have that im α ⊆ im β and im β ⊆ im α, hence the equality. The converse
follows directly from the description ofLQ given above whenever α �= β. ��

From R and L we can deduce the description of the relation H which is the
equality relation on the complement of Q and consists of the set of maps with the
same kernel and image on Q. The relations D andJ are given by the following two
propositions.

Proposition 4.3 If α, β ∈ T (A ,B), then αD β in T (A ,B) if and only if
ker α = ker β or (ρ(α) = ρ(β) and α, β ∈ Q).

Proof Assume that αD β. Then there exists γ ∈ T (A ,B) such that αR γ L β. By
Propositions 4.1 and 4.2 we have that ker α = ker γ , and either γ = β or γ, β ∈ Q
have the same image. In the case where γ = β we obtain that ker α = ker γ = ker β,
as expected. So let us now assume that im γ = im β and γ, β ∈ Q. Then α is also in
Q since αR γ and we also have that

ρ(β) = ρ(γ ) = dim(A/ ker γ ) = dim(A/ ker α) = ρ(α),

as required.
Conversely, if ker α = ker β, then αR β and thus αD β. Otherwise, assume

ρ(α) = ρ(β) and α, β ∈ Q. Therefore, by Lemmas 2.4 and 2.5 we have that
im α ∼= im β and then there exists γ ∈ T (A ,B) such that im γ = im β, and
ker γ = ker α. Furthermore, since α ∈ Q, we get that γ ∈ Q by the note following
Proposition 4.1, which finishes the proof that αR γ L β and therefore αD β. ��
Proposition 4.4 If α, β ∈ T (A ,B), then α = λβμ for some λ ∈ T (A ,B) and
μ ∈ T (A ,B)1 if and only if ρ(α) ≤ dim(Bβ). Consequently, αJ β in T (A ,B) if
and only if one of the following happens:

1. ker α = ker β, or
2. ρ(α) = dim(Bα) = dim(Bβ) = ρ(β).

Proof Let us assume first that α = λβμ for some λ ∈ T (A ,B) and μ ∈ T (A ,B)1.
Then Aα = (Aλ)βμ ⊆ (Bβ)μwhich gives that ρ(α) = dim(Aα) ≤ dim ((Bβ)μ) ≤
dim(Bβ). Conversely, let us assume that ρ(α) ≤ dim(Bβ). If ρ(α) = 0, then clearly
α = αβ and we obtain the result. Assuming now that ρ(α) ≥ 1 and writing
Aα = 〈{xiα}〉, we have by the first hypothesis on the rank of α that there exists
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an independent set {bi } ⊆ B such that Aβ = 〈{biβ} � {ykβ}〉. Thus we can write
A = 〈{xi } � {x ′

j }〉 = 〈{bi } � {yk} � {y�}〉 and we get that

α =
(

xi x ′
j

xiα u j (xiα)

)

and β =
(

bi yk y�
biβ ykβ v�(biβ, ykβ)

)

,

for some terms u j and v�. Now if we also extend {biβ} into a basis of A via {zm} and
define λ and μ in T (A ,B) by the following:

λ =
(

xi x ′
j

bi u j (bi )

)

and μ =
(

biβ zm
xiα x1α

)

,

then it can be easily seen that α = λβμ.
In order to prove the second part of the proposition, let us first assume that αJ β,

that is, there exist λ,μ, λ′, μ′ ∈ T (A ,B)1 such that α = λβμ and β = λ′αμ′. If
λ = λ′ = 1, then we have that αR β and thus Proposition 4.1 gives us that ker α =
ker β. If we have that only one of λ and λ′ is 1, then we can find γ, γ ′ ∈ T (A ,B)

and δ, δ′ ∈ T (A ,B)1 such that α = γβδ and β = γ ′αδ′. Indeed, assuming without
loss of generality that λ = 1, we have α = βμ = λ′αμ′μ = λ′β(μμ′μ) and we thus
can take γ = γ ′ = λ′, δ = μμ′μ and δ′ = μ′. By the previous part of the proposition
we therefore have that ρ(α) ≤ dim(Bβ) and ρ(β) ≤ dim(Bα). Thus we get that:

dim(Aα) = ρ(α) ≤ dim(Bβ) ≤ dim(Aβ) = ρ(β) ≤ dim(Bα) ≤ dim(Aα),

which forces the equalities.
Conversely, assume that ker α = ker β, or ρ(α) = dim(Bβ) = dim(Bα) = ρ(β).

If the first condition holds, then αR β by Proposition 4.1 and thus αJ β since
R ⊆ J. On the other hand, if the second condition holds, then we use the first part
of the proof in both directions in order to obtain the desired result. ��
Remark 4.5 In the proof of Proposition 4.4 given above, notice that the maps λ and
μ are constructed in such a way that μ ∈ Q, and whenever {xi } ⊆ B we also have
λ ∈ Q.

From Lemma 3.6, we know that the condition ρ(α) = dim(Bα) is equivalent to
α ∈ Q only if α has finite rank, which means that D = J whenever B is finite
dimensional. On the other hand, if B is infinite dimensional, then there exist non-
regular maps of infinite rank that are J-related to regular maps of the same rank,
which shows that in that caseD � J. However, on the regular subsemigroup Q these
relations always coincide and the description also corresponds to that of DA relating
maps of the same rank, as is given by the following:

Lemma 4.6 Let α, β ∈ Q. Then α = λβμ for some λ,μ ∈ Q if and only if
ρ(α) ≤ ρ(β). Consequently,α JQ β if and only ifρ(α) = ρ(β), and thusJQ = DQ.

Proof Clearly if α = λβμ then ρ(α) ≤ ρ(βμ) ≤ ρ(β) by Lemma 2.6. Conversely,
assume that ρ(α) ≤ ρ(β). Since both α and β lie in Q, we have that Aα = Bα and
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ρ(β) = dim(Aβ) = dim(Bβ). Thus, using the same maps λ and μ constructed in the
proof of Proposition 4.4 together with the remark above, we get that α = λβμ with
λ,μ ∈ Q.

The second part of the lemma now follows directly from the definition of maps
being J-related in Q together with the characterisation of D-classes in Q given in
Proposition 4.3. ��

5 Ideals

In the same way that Sect. 4 was simply generalising the approach to Green’s rela-
tions exhibited in the cases of vector spaces and sets, this section is generalising the
description of the ideals of T (A ,B) using the same ideas developed by Sullivan and
Mendes-Gonçalves [8, 15]. It is well-known [5] that the ideals of the endomorphism
monoid of an independence algebra are precisely the sets {α ∈ End(A ) | ρ(α) < k}
for each k ≤ (dim A)+, where we denote by κ+ the successor cardinal of κ . However,
in the context of T (A ,B), the ideals are not solely determined by ranks. Nevertheless,
the ideals of the subsemigroup Q are in one-to-one correspondence with the cardinals
not greater than (dim B)+.

Recall that e denotes the smallest rank of a non-empty subalgebra ofA or equiva-
lently the smallest rank of a map in T (A ,B).

Proposition 5.1 The ideals of Q are precisely the sets

Qr = {α ∈ Q | ρ(α) < r}

where e < r ≤ (dim B)+.
Proof Let e < r ≤ (dim B)+. Let α ∈ Qr and β ∈ Q. Then from Lemma 2.6 we
have that ρ(βα), ρ(αβ) ≤ ρ(α) and then both αβ and βα lie in Qr , which shows that
Qr is an ideal of Q.

Conversely, let us assume that I is an ideal of Q and let r be the least cardinal
strictly greater than the rank of all maps in I , so that e < r ≤ (dim B)+. We show
that I = Qr . Clearly I ⊆ Qr . For the reverse inclusion, let β ∈ Qr . If ρ(α) < ρ(β)

for all α ∈ I , then this means that ρ(β) ≥ r by minimality of r , which contradicts
our assumption that β ∈ Qr . Thus, there exists some α ∈ I such that ρ(β) ≤ ρ(α).
By Lemma 4.6, it follows that there exist λ,μ ∈ Q such that β = λαμ. This gives us
that β ∈ I since I is an ideal of Q and thus Qr ⊆ I . Therefore I = Qr , completing
the proof. ��

Following the usual definition in End(A ), we define the sets Tk for any k > e
by Tk = {α ∈ T (A ,B) | ρ(α) < k}, which are easily seen to be ideals of T (A ,B)

usingLemma2.6. It is obvious that for all k ≥ (dim B)+ wehave that Tk = T(dim B)+ =
T (A ,B). Following [8, 15] we define for any non-empty subset S of T (A ,B) the
cardinal r(S) and the subset K (S) ⊆ T (A ,B) as follows:

r(S) = min{κ ≤ (dim B)+ | dim(Bα) < κ, ∀α ∈ S},
and K (S) = {β ∈ T (A ,B) | ker α ⊆ ker β, for some α ∈ S}.
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Using Proposition 4.1, we can also express K (S) as

K (S) = {β ∈ T (A ,B) | β = αμ, for some α ∈ S and μ ∈ T (A ,B)} .

From this, it is clear that if β ∈ K (S) and λ ∈ T (A ,B), then we have that βλ ∈ K (S)

and thus K (S) is a right ideal.
We now want to show that any ideal of T (A ,B) is of the form Tr(S) ∪ K (S) or

Tr(S)+ ∪ K (S) for some non-empty subset S ⊆ T (A ,B). The ideals Tk are easily
seen to satisfy this rule as Tk = Tr(S) ∪ K (S) for S = Tk . Indeed, let S = Tk . Then,
for any s < k, Tk contains the idempotent ηs with image a subalgebra C of B that
has rank s, from which we get that r(S) = k. Also, if β ∈ K (S), then β = αμ for
some α ∈ Tk and μ ∈ T (A ,B). Hence ρ(β) = ρ(αμ) ≤ ρ(α) < k, which shows
that β ∈ Tk and thus K (S) ⊆ Tk . Therefore Tk = Tr(S) ∪ K (S) as claimed.

Before we can show that all ideals are of the form Tr(S) ∪ K (S) or Tr(S)+ ∪ K (S)

for some non-empty set S, we first need to show that such sets are indeed ideals.

Lemma 5.2 For each non-empty subset S of T (A ,B), the sets Tr(S) ∪ K (S) and
Tr(S)+ ∪ K (S) are ideals of T (A ,B).

Proof Let ∅ �= S ⊆ T (A ,B), and consider r(S) and K (S) as in their definition. As
mentioned earlier, we first have that K (S) is a right ideal. Now let β ∈ K (S) and
λ ∈ T (A ,B). Then there exists α ∈ S and μ ∈ T (A ,B) such that β = αμ. Thus

ρ(λβ) = dim(Aλβ) ≤ dim(Bβ) = dim(Bαμ) ≤ dim(Bα) < r(S),

and therefore λβ ∈ Tr(S). The result now follows from the fact that Tr(S) ⊆ Tr(S)+
and that Tκ is a two-sided ideal of T (A ,B) for all κ > e. ��

In order to show the reverse statement, we need a small lemma beforehand which
will become handy in order to choose an adequate set S for each ideal of T (A ,B).

Lemma 5.3 If α ∈ Q and e ≤ s < ρ(α), then there exists λ ∈ T (A ,B) such that
λα /∈ Q and dim(Bλα) = s.

Proof Since α ∈ Q, then Aα = Bα = 〈{biα}〉 for some {bi } ⊆ B, and for
A = 〈{bi } � {

x j
}〉 the map α can be written as

α =
(

bi x j
biα u j (biα)

)

,

for some terms u j . Now take
{

b′
k

} � {b1} ⊆ {bi } such that |K | = s (which is possible
by the assumption on the value of s), and take some basis element z ∈ A\B. Let
A = 〈{b′

k

} � {z} � {y�}〉, and define λ ∈ T (A ,B) by

λ =
(

b′
k z y�
b′
k b1 c

)

,
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where c can be taken in
〈∅〉

whenever this is non-empty, and otherwise we can take c
to be any element in

{

b′
k

} �= ∅ since s ≥ e = 1 in that case. Then Bλα = 〈{b′
kα

}〉 �=
〈{b′

kα
} � {b1α}〉 = Aλα so λα /∈ Q and dim(Bλα) = |K | = s as required. ��

We can now finally show the characterisation of the ideals in T (A ,B).

Theorem 5.4 The ideals of T (A ,B) are precisely the sets Tr(S) ∪ K (S) and Tr(S)+ ∪
K (S) where S is a non-empty subset of T (A ,B).

Proof Taking into account Lemma 5.2, it suffices to show that for any ideal I of
T (A ,B), there exists a set S such that I = Tr(S) ∪ K (S) or I = Tr(S)+ ∪ K (S). So
let I be an ideal of T (A ,B).

If I is the smallest ideal of T (A ,B), that is, if I = Te+ , then we set S = Te+ .
From the discussion preceding Lemma 5.2, we obtain I = Tr(S) ∪ K (S) as required.

From now on, let us assume that I �= Te+ , and let α ∈ I\Te+ . Then ρ(α) > e and α

has the property that there exist z1, z2 ∈ im α ⊆ B such that z1 /∈ 〈z2〉. If we can find
two such elements with one of z1 and z2 not in Bα, then we have that Aα �= Bα and
thus α /∈ Q. On the contrary, if for any two elements z1 and z2 satisfying the property
above, both lie in Bα, then we get that im α = Bα and thus α ∈ Q. In this second
case, since ρ(α) ≥ e + 1 we call upon Lemma 5.3 with s = e to get that that there
exists λ ∈ T (A ,B) such that λα /∈ Q. Moreover, since I is an ideal, we also have
that λα ∈ I . Therefore in both cases, if we take S = I \ Q we have that S �= ∅. Now
by setting r = r(S), we show that I is equal to either Tr ∪ K (S) or Tr+ ∪ K (S).

Firstly, we have that Tr ∪ K (S) ⊆ I . Indeed, if β ∈ K (S), then β = αμ for
some α ∈ S ⊆ I and μ ∈ T (A ,B), and thus β ∈ I . Similarly, take β ∈ Tr . If
ρ(β) > dim(Bα) for all α ∈ I , then, in particular ρ(β) > dim(Bα) for all α ∈ S,
which contradicts the minimality of r since ρ(β) < r . Therefore, there exists α ∈ I
such that ρ(β) ≤ dim(Bα). By Proposition 4.4, this means that β = λαμ for some
λ ∈ T (A ,B), μ ∈ T (A ,B)1 which shows that β ∈ I . Therefore Tr ∪ K (S) ⊆ I .

It is also clear that I \ Q = S ⊆ K (S). Similarly, for any γ ∈ I ∩ Q such that
dim(Bγ ) < r , we have that r > dim(Bγ ) = ρ(γ ) and therefore γ ∈ Tr . We now
need to distinguish between the case where I = Tr ∪ K (S) and I = Tr+ ∪ K (S) by
looking at the possible values of dim(Bγ ) for γ ∈ I ∩ Q.

On one hand, if dim(Bγ ) < r for all γ ∈ I ∩ Q, then, using the argument in the
previous paragraph, we have shown that I = Tr ∪ K (S).

On the other hand, assume that there exists at least one β ∈ I ∩ Q such that
dim(Bβ) ≥ r and set κ = ρ(β) = dim(Bβ). We show in this case that I = Tr+ ∪
K (S). If κ > r , then using Lemma 5.3 with s = r , we get that there exists λ ∈
T (A ,B) such that dim(Bλβ) = r and λβ /∈ Q. But then λβ ∈ I \ Q = S and this
contradicts the definition of r = r(S). Therefore we must have that κ = r from which
we have that β ∈ Tr+ . This gives us that I ∩ Q ⊆ Tr+ and therefore I ⊆ Tr+ ∪ K (S).
In order to get the equality we only need to show that Tr+ ⊆ I since we already know
that Tr ∪ K (S) ⊆ I . For this, consider γ ∈ Tr+ . Since in the current case there exists
a map β ∈ I with dim(Bβ) = r , we have that ρ(γ ) ≤ r = dim(Bβ). Then by
Proposition 4.4, γ = λβμ for some λ ∈ T (A ,B), μ ∈ T (A ,B)1 which shows that
γ ∈ I and gives us that Tr+ ⊆ I . Therefore, when there exists a map in I ∩ Q which
rank is equal to r , we have that I = Tr+ ∪ K (S). ��
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Remark 5.5 Notice that for two distinct sets S and S′, one can have Tr(S) ∪ K (S) =
Tr(S′) ∪ K (S′). Similarly, for an ideal I , there might exist sets S and S′ such that
I = Tr(S) ∪ K (S) and I = Tr(S′)+ ∪ K (S′). Indeed, if we take I = Tk , then we know
that I = Tr(S) ∪ K (S) for S = Tk , but we can also obtain I using the construction
of the proof with the set S′ = I \ Q. More precisely, if k is finite, then we have that
r(S′) = k − 1, and there exist many elements γ ∈ Tk for which dim(Bγ ) ≥ k − 1,
namely all idempotents on subalgebras of rank k − 1. Thus we have that Tk = I =
Tr(S′)+ ∪K (S′). On the other hand, if k is infinite, then we directly have that r(S′) = k
and that all elements of I are such that dim(Bγ ) ≤ ρ(γ ) < k, which gives us that
Tk = I = Tr(S′) ∪ K (S′) in this case.

Using the theoremabove,we can give examples of the construction of two ideals that
are not comparable under inclusion, as long as we are not in the case where the algebra
A is a setwith 3 elements and its subalgebraB has dimension exactly 2. In that specific
case, the 8 elements of T (A ,B) form three ideals T2, T2 ∪ {α ∈ Qc | ρ(α) = 2} and
T (A ,B) itself, which make up a chain.

Example 5.6 Let us assume that there exist independent elements b1, b2 ∈ B, that
A does not have any constants and that B has codimension at least 2 in A. Let
B = 〈{b1, b2} � {

d j
}〉 and A = 〈{b1, b2} � {

d j
} � {x1, x2} � {yk}〉. Define the

following maps in T (A ,B):

α =
(

x1
{

bi , d j , x2, yk
}

b1 b2

)

and β =
(

x2
{

bi , d j , x1, yk
}

b1 b2

)

.

From this we have that ρ(α) = ρ(β) = 2, dim(Bα) = dim(Bβ) = 1 and
(x1, b1) ∈ ker β \ ker α while (x2, b1) ∈ ker α \ ker β, which shows that ker α and
ker β are incomparable. Since r({α}) = r({β}) = 2, we let Iα = T2 ∪ K ({α}) and
Iβ = T2 ∪ K ({β}), which are both ideals from the previous theorem. Now it is easy
to see that α ∈ Iα \ Iβ and β ∈ Iβ \ Iα , which shows that these two ideals are
incomparable.

A similar trick can be used with b2 a constant, and another small modification
can be used to find incomparable ideals when B contains at least three independent
elements, or two independent elements and a constant.

6 Extended Green’s relations

The study of extendedGreen’s relationswas introduced by Pastjin in [12] and extended
by El-Qallali [3] and Lawson [7], and, since then, they have been widely used in
order to generalise the notion of regular semigroups to abundant, Fountain and U -
semiabundant semigroups. For a semigroup S and a, b ∈ S, these relations are given
as follows:

aL ∗ b ⇐⇒
(

ax = ay ⇔ bx = by ∀x, y ∈ S1
)

,

aR∗ b ⇐⇒
(

xa = ya ⇔ xb = yb ∀x, y ∈ S1
)

,
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a ˜L b ⇐⇒
(

a f = a ⇔ b f = b ∀ f ∈ E(S)
)

,

a ˜R b ⇐⇒
(

f a = a ⇔ f b = b ∀ f ∈ E(S)
)

,

H ∗ = L ∗ ∧R∗, ˜H = ˜L ∧ ˜R,

D∗ = L ∗ ∨R∗, and ˜D = ˜L ∨ ˜R .

Of course, there are analogous extended relations J ∗ and ˜J of Green’s relation J
but we delay their description which is less straightforward until these relations are
needed. Also, the description of the relations H ∗ and ˜H will not be given as they
can be easily deduced from the descriptions of L ∗, R∗, ˜L and ˜R. A well-known
consequence of these definitions (see [4]) is that two elements are R∗ related in a
semigroup S if and only if they are R related in an oversemigroup T , and dually for
L ∗. Also it is easy to see that by definition, L ∗ and R∗ are right, respectively left,
congruences and that we have the inclusions R ⊆ R∗ ⊆ ˜R and L ⊆ L ∗ ⊆ ˜L.
These inclusions may be strict but it is well-known that they become equalities when
we restrict our attention to regular elements as given in the next lemma (the proof of
which is only included for completeness purposes).

Lemma 6.1 [3] In a semigroup S, if a and b are both regular elements, then
aR b ⇔ a ˜R b and aL b ⇔ a ˜L b.

Proof By the remark above, we only need to prove the implication from right to left. So
assume that a and b are regular elements such that a ˜R b. Then there exist a′, b′ ∈ S
such that a = aa′a and b = bb′b. Thus aa′ and bb′ are idempotents and by the
definition of being ˜R related, we get that a = bb′a and b = aa′b, and thus aR b. A
dual argument shows that the similar result holds for ˜L. ��

As a direct consequence of this lemma, we have that the relations RQ , R∗
Q , and

˜RQ are equal (and similarly LQ = L ∗
Q = ˜LQ), but this is not true on the whole of

T (A ,B). Indeed, the following propositions shows that on T (A ,B) the relations
L ∗ and ˜L are equal but they differ fromL, while the relationsR,R∗ and ˜R are all
distinct.

Proposition 6.2 In T (A ,B) we have that α ˜L β if and only if im α = im β. Thus
L ∗ = ˜L in T (A ,B).

Proof Let α ∈ T (A ,B) and η ∈ E . If αη = α, then it is clear that im α ⊆ im η.
Conversely, assume that im α ⊆ im η. Since η is an idempotent, it follows that
η|im η= idim η and then η|im α= idim α which shows that αη = α. Therefore for any
α ∈ T (A ,B), η ∈ E , we have that αη = α if and only if im α ⊆ im η.

Let α, β ∈ T (A ,B) and assume that α ˜L β. Now let im α = 〈{xiα}〉,
im β = 〈{ykβ}〉 and A = 〈{xiα} � {x j }〉 = 〈{ykβ} � {y�}〉. Define idempotents η

and θ as follows:

η =
(

xiα x j
xiα x̃

)

θ =
(

ykβ y�
ykβ ỹ

)

,
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for some elements x̃ ∈ 〈{xiα}〉 and ỹ ∈ 〈{ykβ}〉. It is clear that im η = im α and
im θ = im β which gives us that αη = α and βθ = β. Since α ˜L β, it follows that
αθ = α and βη = β. Hence, by the equivalence previously proved, we have that
im α ⊆ im θ = im β and im β ⊆ im η = im α. Therefore im α = im β. Conversely,
it can easily be seen that for any α, β ∈ T (A ,B) with im α = im β, any idempotent
η satisfying αη = α will be such that im α ⊆ im η and thus im β ⊆ im η and βη = β,
so α ˜L β.

Finally, since αLA β implies αL ∗ β, we get from the description of LA the fol-
lowing inclusions:

{(α, β) | im α = im β} ⊆ L ∗ ⊆ ˜L = {(α, β) | im α = im β},

which forces the equalities, and soL ∗ = ˜L. ��
Whereas the description ofL ∗ and ˜L follows from the description ofLQ , the same

cannot be said forR∗ and ˜R and their explicit descriptions are given by Propositions
6.3 and 6.4.

Proposition 6.3 In T (A ,B), we have that αR∗ β if and only if one of the following
occurs:

1. ker α = ker β and α, β ∈ Q;
2. ker α ∩ (B × B) = ker β ∩ (B × B) and α, β /∈ Q.

Proof Let α ∈ Q, β ∈ T (A ,B) and assume αR∗ β. From Lemma 3.7, we know
that there exists γ ∈ T (A ,B) such that α = γα and therefore β = γβ, so γ is a
left-identity for β and thus from Lemma 3.7 again, we have that β ∈ Q. Since the
case for Q × Q is given by Lemma 6.1, we only need to consider the case of two
non-regular elements.

Notice that for any map α ∈ T (A ,B), if γα = δα with γ �= δ = 1, it follows
that Aα = Aγα ⊆ Bα and then α ∈ Q. Therefore in what follows, either γ = δ = 1
or γ, δ �= 1.

Now, letα, β ∈ Qc and assume thatαR∗ β, that is, γα = δα if and only if γβ = δβ

for γ, δ ∈ T (A ,B)1. Then for any pair (b1, b2) ∈ ker α ∩ (B × B) with b1 �= b2,
we construct specific maps γ, δ ∈ T (A ,B) satisfying the relation γα = δα. To this
end, let B = 〈{yk}〉 and A = 〈{yk} � {u} � {x j }〉 and define γ, δ ∈ T (A ,B) by:

γ =
(

yk u x j
yk b1 y1

)

and δ =
(

yk u x j
yk b2 y1

)

.

It is clear that γα = δα, and since αR∗ β, it follows that γβ = δβ. Therefore b1β =
uγβ = uδβ = b2β and thus (b1, b2) ∈ ker β ∩ (B × B). Using the same argument
interchanging the roles of α and β, we deduce that ker α∩(B×B) = ker β ∩(B×B).

Conversely, assume that ker α ∩ (B × B) = ker β ∩ (B × B) and that γα = δα

for some γ, δ ∈ T (A ,B). Then for any a ∈ A we have aγα = aδα from which
(aγ, aδ) ∈ ker α. But since aγ, aδ ∈ B, it follows that (aγ, aδ) ∈ ker β. Therefore
aγβ = aδβ, and since this is true for any a ∈ A we get that γβ = δβ. Interchanging
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the roles of α and β, we obtain that γα = δα if and only if γβ = δβ for any
γ, δ ∈ T (A ,B). Since this equivalence also holds when γ = δ = 1 together with
the note made earlier in the proof, we conclude that αR∗ β as required. ��
Proposition 6.4 In T (A ,B), we have that α ˜R β if and only if α, β ∈ Qc or
(ker α = ker β and α, β ∈ Q).

Proof From Lemma 3.7 we know that α = ηα where η ∈ E if and only if α is regular.
Using this and Lemma 6.1, the proposition follows easily, since regular maps can
only be ˜R related to regular maps, and for two non-regular maps the condition in the
definition of ˜R is trivially realised. ��

In order to compare kernels the following lemma will come in handy:

Lemma 6.5 Let B = 〈{bk}�{bi }〉 and A = B�〈{a j
}〉. Suppose that γ, δ ∈ T (A ,B)

can be expressed as follows:

γ =
(

bk bi a j

fk ti ( fk) g j

)

and δ =
(

bk bi a j

xk ti (xk) y j

)

,

for some terms ti , where the sets { fk} and {xk} are respective bases of im (Bγ ) and
im (Bδ). Then we have that ker γ ∩ (B × B) = ker δ ∩ (B × B). Consequently, if
γ, δ ∈ Qc we also obtain that γ R∗ δ.

Proof Let us assume that the maps γ, δ ∈ T (A ,B) are given as above. Let
(a, b) ∈ ker γ ∩ (B × B). Then there exist terms u and v such that a = u(bk, bi ) and

b = v(bk, bi ). Then we have that u( fk, ti ( fk)) = aγ = bγ = v( fk, ti ( fk)). Now we

extend { fk} to a basis of A through {dm}, and we define η =
(

fk dm
xk x1

)

∈ T (A ,B).

From this we get the following:

aδ = u(bk, bi )δ = u(xk, ti (xk) = u( fkη, ti ( fkη)) = u( fk, ti ( fk))η = aγ η

= bγ η = v( fk, ti ( fk))η = v(xk, ti (xk) = bδ,

which means that (a, b) ∈ ker δ∩ (B× B). Hence ker γ ∩ (B× B) ⊆ ker δ∩ (B× B).

The converse inclusion works similarly by using the map θ =
(

xk em
fk f1

)

∈ T (A ,B).

Therefore we have that ker γ ∩ (B × B) = ker δ ∩ (B × B). Moreover, if γ, δ ∈ Qc

then Proposition 6.3 allows us to conclude that γ R∗ δ. ��
Recall from the introduction that a semigroup is called left abundant [resp. left

Fountain] if each R∗-class [resp. each ˜R-class] contains an idempotent, and dually
for the right-handed notion using L ∗ and ˜L. From the description of our extended
Green’s relations, we can see that T (A ,B) is right abundant (and thus right Fountain)
but is not left abundant nor left Fountain since no idempotent lies in theR∗ or ˜R-class
of an element in Qc.

As noticed at the beginning of this section L ∗ and R∗ are respectively right and
left congruences, and thus ˜L is also a right congruence. However, it is not always true
that the same holds for ˜R, as is shown by the following lemma.
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Lemma 6.6 The equivalence ˜R is a left congruence if and only if one of the following
occurs:

1. dim B = 2 and one-dimensional subalgebras are singletons; or
2. dim B = 1 and

∣

∣

〈∅〉∣

∣ = 1.

Proof First, notice that if α, β ∈ T (A ,B) are such that ker α ∩ (B × B) = ker β ∩
(B × B), then for any γ ∈ T (A ,B), Lemma 3.4 tells us that γα ∈ Q if and only
if γβ ∈ Q, and we also have that (xγ, yγ ) ∈ ker α if and only if (xγ, yγ ) ∈ ker β
(as xγ, yγ ∈ B) showing that ker γα = ker γβ. From this we see that either γα and
γβ are in Q and have the same kernel or neither of them is in Q, which gives us in
both cases that they are ˜R-related. Since ˜RQ = RQ and Q is a union of ˜R-classes,
it follows that ˜R when restricted to Q × Q is a left congruence. Therefore ˜R can
only fail to be a left congruence on Qc × Qc. To this extend, we need to find maps
α, β ∈ Qc (which are then ˜R-related by Proposition 6.4) and γ ∈ T (A ,B) such that
γα and γβ are not ˜R-related. That is, we need either that only one of γα and γβ lie
in Q, or that both products are regular but have a different kernel.

With this in mind, let us assume that dim B = 2 and that one-dimensional sub-
algebras are singletons and let α, β /∈ Q. Then Bα � Aα ⊆ B and similarly
for β so ρ(α|B) = ρ(β|B) = 1. Also, since one-dimensional subalgebras are
singleton, this forces Bα = {c} and Bβ = {

c′} for some c, c′ ∈ B and thus
ker α ∩ (B × B) = ker β ∩ (B × B). Using the previous argument, it follows that for
any map γ ∈ T (A ,B), we have that γα ˜R γβ, and thus ˜R is a left congruence in
this case.

Similarly, if dim B = 1 and the constant subalgebra only consists of a single
element, say 0, then it is clear that for any map α /∈ Q, we have that Bα = {0}, and
thus the argument above works and ˜R is a left congruence in this case.

In order to show that outside of these cases ˜R fails to be a left congruence, we
exhibit counterexamples. Let us assume first that dim B ≥ 3 and let B = 〈{ym}�{bi }〉,
A = 〈{x} � {

a j
}� {ym} � {bi }〉 where |M | = 3 and the sets

{

a j
}

and {bi } are possibly
empty. Consider the following maps:

α =
(

x y1 y2 y3 a j , bi
y1 y3 y3 y3 y3

)

and β =
(

x y1 y2 y3 a j , bi
y1 y2 y2 y3 y3

)

.

Then it is clear that α, β /∈ Q and thus they are ˜R-related. Also, we have that α2 ∈ Q
but αβ /∈ Q, and thus they cannot be related.

Now assume that dim B = 2 with B = 〈{b1, b2}〉, A = 〈{a j
} � {b1, b2}〉 and

suppose that one-dimensional subalgebras are not singletons, that is, that there exists
a term g such that g(b2) �= b2. Then for the maps

α =
(

a j b1 b2
b1 b2 b2

)

, β =
(

a j b1 b2
b1 g(b2) b2

)

, and γ =
(

a j b1 b2
b1 b1 b2

)

,

we have the following:

• α, β /∈ Q and thus α ˜R β;
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• γα =
(

a j b1 b2
b2 b2 b2

)

and thus γα ∈ Q;

• γβ =
(

a j b1 b2
g(b2) g(b2) b2

)

and thus γβ ∈ Q;

• (b1, b2) ∈ ker γα, but (b1, b2) /∈ ker γβ.

Therefore we have that γα and γβ are not ˜R-related, whereas α and β are. Similarly,
if dim B = 1 and

〈∅〉

contains at least two distinct elements, then by abusing notation
on the counterexample where dim B = 2, we can take b2 ∈ 〈∅〉

and choose the term g
such that g(b2) �= b2. This shows that ˜R is not a left congruence in these two cases. ��

In any semigroup we can define the relationD∗ as the join of the relationsL ∗ and
R∗. A well-known characterisation (see for example in Howie [6, Prop. 1.5.11]) tells
us that aD∗ b if and only if for some n ∈ N there exist c0, c1, . . . , c2n ∈ S such that

a = c0 L
∗ c1R∗ c2 . . .L ∗ c2n−1R

∗ c2n = b.

If L ∗ and R∗ were to commute, this sequence of compositions would result in a
single composition. However Pastjin [12] noticed that in general this is not the case,
as can be seen here by the following example.

Example 6.7 Let A = 〈{x1, x2, x3, x4, x5}〉 and B = 〈{x3, x4, x5}〉. Define α, β and γ

in T (A ,B) by the following:

α =
(

x1 x2 x3 x4 x5
x3 x3 x3 x4 x5

)

, β =
(

x1 x2 x3 x4 x5
x3 x3 x5 x5 x5

)

,

and γ =
(

x1 x2 x3 x4 x5
x3 x4 x5 x5 x5

)

.

Then we clearly have that α ∈ Q, β /∈ Q, γ /∈ Q and from Propositions 6.2 and 6.3
these maps satisfy the relations im α = im γ and ker β ∩ (B × B) = ker γ ∩ (B × B).
Therefore αL ∗◦R∗ β through γ .

Now, in order to have αR∗◦L ∗ β, we need to find δ ∈ T (A ,B) such that im δ =
im β = 〈{x3, x5}〉 and ker α = ker δ (since α ∈ Q). However, for any such δ wewould
need

im δ ∼= A/ ker δ = A/ ker α ∼= im α,

giving that dim(im δ) = 3 which is impossible. Therefore, no such δ ∈ T (A ,B) can
exist and L ∗ and R∗ do not commute in T (A ,B).

When replacing in the example above the relation R∗ by ˜R, the same arguments
hold since γ, β /∈ Q implies that γ ˜R β. Therefore, similarly to L ∗ and R∗, we can
see that the relations ˜L = L ∗ and ˜R do not commute either in T (A ,B), exhibiting
a different behaviour from the usual Green’s relations.

Nevertheless, in the case of T (A ,B) it is possible to give a precise characterisation
forD∗ which, surprisingly, depends on the corank of the subalgebraB insideA . Some
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elements are easily seen to beD∗-related, such as those of the same rank, as given by
the following lemma.

Lemma 6.8 Let α, β ∈ T (A ,B) be such that ρ(α) = ρ(β). Then αL ∗◦R∗ β and
thus αD∗ β.

Proof For any α, β ∈ T (A ,B) with ρ(α) = ρ(β), Lemmas 2.4 and 2.5 give us
that there exists μ ∈ T (A ,B) with im α = imμ and ker β = kerμ (so that also
ker β ∩ (B × B) = kerμ ∩ (B × B)). Thus αL ∗ μ by Proposition 6.2. Additionally,
using the appropriate case on whether β and μ are regular in Proposition 6.3, we also
have that μR∗ β. Therefore we have αL ∗◦R∗ β and αD∗ β. ��

However, the full characterisation of D∗ requires us to concentrate on the compo-
sitionL ∗◦R∗ beforehand.

Proposition 6.9 Let α ∈ T (A ,B). Then αL ∗◦R∗ β for some β ∈ T (A ,B) if and
only if one of the following happens:

1. β ∈ Q and im α ∼= im β;
2. β /∈ Q and Bβ ∼= im α with ρ(β|B) ≥ ℵ0;
3. β /∈ Q and ρ(β|B) < ρ(α) ≤ ρ(β|B) + codimAB.

Exchanging the roles of α and β, we have the dual characterisation for when
αR∗◦L ∗ β.

Proof Let α ∈ T (A ,B) and suppose that β ∈ T (A ,B) is such that αL ∗◦R∗ β.
Then there exists γ ∈ T (A ,B) such that αL ∗ γ and γ R∗ β. Therefore we always
have that im α = im γ by Proposition 6.2, and Proposition 6.3 tells us that either
β, γ ∈ Q are such that ker γ = ker β, or β, γ /∈ Q and then ker γ ∩ (B × B) =
ker β ∩ (B × B). If β ∈ Q (and hence also γ ∈ Q), then we have that

im α = im γ ∼= A/ ker γ = A/ ker β ∼= im β,

which gives us the first case.
We now assume that β, γ /∈ Q. Thus

im β|B∼= B/ (ker β ∩ (B × B)) = B/ (ker γ ∩ (B × B)) ∼= im γ |B,

so that ρ(β|B) = ρ(γ |B). If ρ(γ ) = ρ(γ |B), then ρ(γ ) ≥ ℵ0 by Lemma 3.6 and
from ρ(β|B) = ρ(γ ) = ρ(α)we get that Bβ ∼= im α which corresponds to the second
case. Otherwise, ρ(γ |B) < ρ(γ ) and then, setting Z to be a basis extension of B in
A , we have that

ρ(β|B) = ρ(γ |B) < ρ(α) = ρ(γ ) = dim(Aγ ) ≤ dim(Bγ ) + dim(Zγ )

≤ ρ(γ |B) + dim Z = ρ(β|B) + codimAB,

giving us the remaining case.
For the converse, let α ∈ T (A ,B). We show that each case gives us that

αL ∗◦R∗ β.
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1. If im α ∼= im β and β ∈ Q, then Lemma 6.8 directly gives us that αL ∗◦R∗ β.
2. Suppose now that β /∈ Q is such that Bβ ∼= im α with ρ(β|B) ≥ ℵ0.We thenwrite

Bβ = 〈{bkβ}〉, B = 〈{bk} � {bi }〉 and A = 〈{bk} � {bi } � {

a j
}〉. By assumption,

we have that Aα = 〈{xkα}〉 for some {xk} ⊆ A. Since |K | = ρ(β|B) ≥ ℵ0 we
have that by setting K ′ = K \ {1} there exists a bijection φ : K → K ′. For all
k ∈ K we set zk = xkφα and we now define γ ∈ T (A ,B) by:

γ =
(

bk bi a j

zk ti (zk) x1α

)

,

where the terms ti are such that biβ = ti (bkβ). Then, we have that im α =
〈{xkα}〉 = im γ �= 〈{zk}〉 = im (γ |B) and thus αL ∗ γ and γ /∈ Q. Also, looking

at the expression of γ and noting that β =
(

bk bi a j

bkβ ti (bkβ) a jβ

)

, we have that

γ R∗ β by Lemma 6.5. Therefore αL ∗◦R∗ β as expected.
3. Last, assume that β /∈ Q and ρ(β|B) < ρ(α) ≤ ρ(β|B)+ codimAB. Keeping the

same notation as above for Bβ, B and A, we write Aα = 〈{xkα}�{y�α}〉 for some
{xk} , {y�} ⊆ A where L �= ∅ (since ρ(α) > ρ(β|B)). Since codimAB = |J |, we
can now rewrite the equation on the ranks in terms of the underlying sets, which
gives us that

|K | < |K � L| ≤ |K � J |.

Notice that if dim(Bβ) = |K | is finite, then we directly obtain that |L| ≤ |J |.
Otherwise |K | is infinite and from the equation abovewehave that |K | < |K�L| =
max {|K |, |L|}, so that |L| > |K |. Similarly |J | > |K |, which put together gives
us that |L| = |K � L| ≤ |K � J | = |J |. From the inequality on the cardinalities
of L and J in both the finite and the infinite dimensional cases, we can extract a
subset J ′ ⊆ J such that φ : J ′ → L is a bijection. From this we define

{

z j
} ⊆ B

for all j ∈ J by z j = y jφα if j ∈ J ′ and z j = y1α (which necessarily exists)
otherwise. Under this definition, it is easy to see that 〈z j 〉 = 〈{y�α}〉. Now we
define a map γ ∈ T (A ,B) as follows:

γ =
(

bk bi a j

xkα ti (xkα) z j

)

,

where the terms ti are such that biβ = ti (bkβ). Then we have that im γ = 〈{xkα}�
{y�α}〉 = im α, that is, αL ∗ γ . Similarly as above, we can also see that γ /∈ Q
and that γ R∗ β by Lemma 6.5. Therefore αL ∗◦R∗ β, which concludes the last
case of the proof. ��

If B is a maximal proper subalgebra of A , then the set of maps that can be reached
through a series of composition ofL ∗ andR∗ starting from a map α with finite rank
is restricted to those having the same rank as α. This is stated formally and proved in
the following lemma.
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Lemma 6.10 Assume that codimAB = 1 and let α ∈ T (A ,B) be a map of finite
rank. Then αL ∗◦R∗ β for some β ∈ T (A ,B) if and only if ρ(α) = ρ(β).

Proof Since the sufficient condition was given by Lemma 6.8, we only need to show
one direction. So we let β ∈ T (A ,B) be such that αL ∗◦R∗ β.

We first suppose that β ∈ Q. Then by Proposition 6.9, αL ∗◦R∗ β if and only if
im α ∼= im β which is equivalent to ρ(α) = ρ(β).

Now suppose that β /∈ Q. Since α has finite rank, only case 3 of Proposition 6.9
can occur. Hence we have that ρ(β|B) < ρ(α) ≤ ρ(β|B) + codimAB = ρ(β|B) + 1.
This forces ρ(β|B) to be finite and using the contrapositive of Lemma 3.6 we get

ρ(β|B) = dim(Bβ) < ρ(β) = dim(Aβ)

≤ dim(Bβ) + codimAB

= ρ(β|B) + 1,

which in turn forces ρ(β) = ρ(β|B) + 1. Similarly, ρ(α) = ρ(β|B) + 1, and so
ρ(α) = ρ(β), which concludes the proof. ��

On the other hand, if B is not a maximal proper subalgebra then, by consecutive
compositions of L ∗ and R∗, we are able to go up and down the finite ranks as long
as the map we started with does not have the minimal rank e where e was defined in
Sect. 3 as the smallest rank of a subalgebra of A . This process is given formally by
the following lemma.

Lemma 6.11 Assume that codimAB ≥ 2 and let α ∈ Q be such that e < ρ(α) < ℵ0.
If ρ(α) ≥ e + 2 then there exist δ1 /∈ Q and γ1 ∈ Q such that ρ(δ1) = ρ(γ1) =

ρ(α) − 1 and αL ∗◦R∗ δ1L ∗ γ1.
If ρ(α) < dim B, then there exist δ2 /∈ Q and γ2 ∈ Q such that ρ(δ2) = ρ(α),

ρ(γ2) = ρ(α) + 1 and αL ∗ δ2 R∗◦L ∗ γ2.
Consequently, for all β ∈ T (A ,B) such that e < ρ(β) < ℵ0, there exists n ∈ N

such that α (L ∗◦R∗)n β.

Proof Suppose that codimAB ≥ 2 and consider α ∈ Q such that e < ρ(α) < ℵ0.
Since α is regular, we let Aα = Bα = 〈{biα}〉, B = 〈{bi } � {ck}〉 and A = 〈{bi } �
{ck} � {

x j
}〉 with |J | ≥ 2. Then we have that

α =
(

bi ck x j
biα uk(biα) v j (biα)

)

for some terms uk and v j .
For the first part, since |I | = ρ(α) ≥ 2, define δ1 and γ1 as follows:

δ1 =
(

bi≥3 {b1, b2} ck x j
biα d d b2α

)

and γ1 =
(

bi≥2 b1 ck x j
biα b2α b2α b2α

)

,

where the set
{

bi≥3
}

is possibly empty and the element d ∈ B is taken as a constant
if e = 0, and d = b3α otherwise (which necessarily exists since |I | = ρ(α) ≥ 3 in
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that case). Thus δ1 /∈ Q, γ1 ∈ Q and we have that im δ1 = 〈{biα} \ {b1α}〉 = im γ1,
so that δ1L ∗ γ1 and ρ(δ1) = ρ(γ1) = |I | − 1. Also ρ(δ1|B) = |I | − 2 < |I | = ρ(α)

and ρ(δ1|B) + codimAB ≥ |I | − 2 + 2 = ρ(α), which shows that αL ∗◦R∗ δ1 by
Proposition 6.9 and finishes the first part of the proof.

Now assume that e < ρ(α) < dim B, then there exists an element z ∈ B such that
z /∈ im α. Using the same notation as above with this time |I | = ρ(α) ≥ 1, define δ2
and γ2 by

δ2 =
(

bi≥2 b1 ck x j
biα d d b1α

)

and γ2 =
(

bi ck x j
biα z x jα

)

,

where the set
{

bi≥2
}

is again possibly empty and the element d ∈ B is defined in a
similar way as before, that is, d is chosen as any constant if e = 0 and is set to b2α
(which then exists) otherwise. Then clearly δ2 /∈ Q and im α = im δ2 so αL ∗ δ2.
Also

{

x jα
} ⊆ 〈{biα}〉 so γ2 ∈ Q. Finally, ρ(γ2) = |I | + 1 ≤ ρ(δ2|B) + codimAB

and since ρ(δ2|B) = |I | − 1 < ρ(γ2) we have that γ2 L ∗◦R∗ δ2 from Proposition
6.9, finishing the proof of the second part of the lemma.

Now consider β ∈ T (A ,B) such that e < ρ(β) < ℵ0. If β /∈ Q, then by Lemma
3.5, there exists β ′ ∈ Q such that im β ′ = im β and thus, β ′ L ∗ β R∗ β, so we can
assume that β ∈ Q in the first place. Similarly, we can assume that ρ(α) ≥ ρ(β) since
otherwise we can exchange the role of α and β. If ρ(α) = ρ(β), then αL ∗◦R∗ β

by Lemma 6.8, so we can assume that ρ(α) > ρ(β). Set m = ρ(α) − ρ(β) and
construct γ1, . . . , γm ∈ Q by the process described in the first part of the lemma with
the following properties:

• ρ(γ1) = ρ(α) − 1 and α (L ∗◦R∗)2 γ1;
• ρ(γm) = ρ(β); and
• ρ(γr+1) = ρ(γr ) − 1 and γr (L ∗◦R∗)2 γr+1 for all 1 ≤ r ≤ m − 1.

Then we have that α (L ∗◦R∗)2m γm and γm L ∗◦R∗ β. Therefore, in all cases, we
have that α (L ∗◦R∗)n β for some integer n. ��

The two previous lemmas were concerned by maps of finite rank. The following
two on the other hand, are focused on maps of infinite rank, whenever this is possible.
We first show that if the subalgebraB has a codimension smaller than its dimension,
then the relation L ∗◦R∗ can only keep the higher ranks stable.

Lemma 6.12 Assume that codimAB < κ ≤ dim B for some infinite cardinal κ and
let α ∈ T (A ,B) be such that ρ(α) = κ . Then αL ∗◦R∗ β for some β ∈ T (A ,B)

if and only if ρ(β) = ρ(α).

Proof Since one direction is already given by Lemma 6.8, we assume that αL ∗◦R∗ β

and we go through the cases of Proposition 6.9. If im α ∼= im β, then we directly have
that ρ(α) = ρ(β). On the other hand, if im α ∼= Bβ then ρ(β|B) = κ . But then
κ = ρ(β|B) ≤ ρ(β) ≤ ρ(β|B) + codimAB = κ , and therefore ρ(β) = κ = ρ(α).
Notice that the third case of the proposition cannot occur since we would have that
κ = ρ(α) ≤ ρ(β|B) + codimAB which forces ρ(β|B) = κ and thus the condition
ρ(β|B) < ρ(α) is not satisfied. ��
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In another way, if the dimension and codimension of B are both infinite cardinals,
from a map with rank at least ℵ0, we can reach maps with larger infinite rank through
the relationL ∗◦R∗, as long as we do not go further than the codimension of B. This
idea is given more formally in the following lemma.

Lemma 6.13 Assume that dim B and codimAB are both infinite cardinals, and set
M = min{dim B, codimAB}. Let α ∈ Q be such that ℵ0 ≤ ρ(α) < M. Then for all ν
with ρ(α) < ν ≤ M there exists β ∈ T (A ,B) such that ρ(β) = ν and αL ∗◦R∗ β.

Proof Let α ∈ Q. Then we can write Aα = Bα = 〈{bkα}〉, B = 〈{bk} � {ci }〉 and
A = 〈{bk} � {ci } � {

a j
}〉. By assumption on the rank of α, we have that |K � I | =

dim B > ρ(α) = |K | ≥ ℵ0, and thus it follows that |I | = dim B > ℵ0. Now, let ν

be such that ρ(α) < ν ≤ M = min{|I |, |J |}. Then there exist sets S ⊆ J and S′ ⊆ I
such that |S| = |S′| = ν, and we let φ : S → S′ be a bijection between them. For all
j ∈ J we now set elements z j ∈ B by z j = c jφ if j ∈ S and z j = c1 otherwise, and
we define the map β ∈ T (A ,B) as:

β =
(

bk ci a j

bkα b1α z j

)

.

Clearly we have that β /∈ Q and ρ(β) = |K � S| = |K | + ν = ρ(α) + ν = ν.
Also Bβ = 〈{bkα}〉 = im α and from the second case of Proposition 6.9 we have that
αL ∗◦R∗ β, which concludes the proof. ��

We now have all the tools needed to prove the characterisation of D∗ that differs
greatly depending on the corank of our subalgebra B as is shown by the theorem
below.

Theorem 6.14 Let α, β ∈ T (A ,B). Then αD∗ β if and only if one of the following
happens:

(I) codimAB = 1 and ρ(α) = ρ(β);
(II) 2 ≤ codimAB < ℵ0 and either e < ρ(α), ρ(β) < ℵ0 or ρ(α) = ρ(β);
(III) codimAB = κ for some infinite cardinal κ , and either e < ρ(α), ρ(β) ≤ κ or

ρ(α) = ρ(β).

Proof Let α, β ∈ T (A ,B) be such that αD∗ β. Then there exists a finite sequence
γ1, . . . , γ2n such that

αL ∗ γ1R
∗ γ2L

∗ . . .L ∗ γ2n−1R
∗ γ2n = β.

In order to show that the conditions of the theorem are necessary, we focus on the
different situations. Suppose first that ρ(α) = e. Then, by Proposition 6.2, we have
that im α = im γ1 and thus ρ(γ1) = e and γ1 ∈ Q. From this, we use Proposition 6.3
to get that γ2 ∈ Q and ker γ1 = ker γ2. But then im γ1 ∼= im γ2 so that ρ(γ2) = e.
By induction, this argument gives us that ρ(γ2i−1) = ρ(γ2i ) = e for all 1 ≤ i ≤ n
and thus ρ(β) = e. Therefore, in all settings, a map in Te+ can only be D∗-related to
another one with the same rank e.
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Similarly, assume that codimAB = 1. If ρ(α) is finite, then Lemma 6.10 tells us that
ρ(γ2) = ρ(α) and by induction, we obtain that ρ(β) = ρ(α). Furthermore, for any
δ ∈ T (A ,B)wecan see that ifρ(δ|B)+codimAB ≥ ℵ0, then this forcesρ(δ|B) ≥ ℵ0
and if the inequalities ρ(δ|B) ≤ ρ(δ) ≤ ρ(δ|B) + codimAB are satisfied, we also get
that ρ(δ) = ρ(δ|B). From this fact, if ρ(α) ≥ ℵ0 then the third case of Proposition
6.9 cannot happen, and in the other cases of the proposition, we directly have that
ρ(γ2|B) = ρ(γ2) = ρ(α). By induction, we conclude again that ρ(β) = ρ(α). Case
(I) is therefore proved.

From now on, we assume that ρ(α) > e and codimAB ≥ 2. We also let κ be an
infinite cardinal. Using Proposition 6.9, we can get the following inequalities between
the rank of γ2 and that of α, depending on the case αL ∗◦R∗ γ2 falls into:

1. if γ2 ∈ Q and im α ∼= im γ2, then ρ(α) = ρ(γ2);
2. if γ2 /∈ Q and Bγ2 ∼= im α, then ρ(α) = ρ(γ2|B) ≤ ρ(γ2) ≤ ρ(γ2|B) +

codimAB = ρ(α) + codimAB;
3. otherwise, γ2 /∈ Q and we have that ρ(α) ≤ ρ(γ2|B) + codimAB ≤ ρ(γ2) +

codimAB and also ρ(γ2|B) < ρ(α). These two inequalities combined give us that
ρ(γ2) ≤ ρ(γ2|B) + codimAB ≤ ρ(α) + codimAB.

In all cases we can see that the inequalities ρ(α) ≤ ρ(γ2) + codimAB and ρ(γ2) ≤
ρ(α) + codimAB always hold. Thus, by induction on n, we get that

ρ(α) ≤ ρ(β) + n · codimAB and ρ(β) ≤ ρ(α) + n · codimAB. (�)

If we assumeρ(α), codimAB < ℵ0, thenwe have thatρ(β)≤ρ(α)+n ·codimAB<ℵ0
and ρ(β) > e by the earlier argument since D∗ is symmetric. This gives us the first
part of case (II).

Similarly, if ℵ0 ≤ ρ(α) ≤ codimAB = κ , then ρ(β) ≤ ρ(α) + n · codimAB =
codimAB and ρ(β) > e as above. Thus we have e < ρ(β) ≤ κ , which corresponds
to the first part of case (III).

Lastly, if ρ(α) ≥ ℵ0 and ρ(α) > codimAB, then the left inequality of (�) forces
ρ(β) > codimAB and then ρ(β) ≥ ℵ0. Hence, ρ(α) ≤ ρ(β) + n · codimAB =
ρ(β) ≤ ρ(α) + n · codimAB = ρ(α) and thus ρ(β) = ρ(α). This argument shows
that if 2 ≤ codimAB < ℵ0 and ρ(α) ≥ ℵ0, then ρ(β) = ρ(α), which corresponds to
the second part of case (II). Similarly, if codimAB = κ and ρ(α) > κ , we also have
that ρ(β) = ρ(α), giving us the second part of case (III).

Since all the possible values for codimAB and ρ(α) are covered in the different
arguments above, we have therefore proved that the conditions stated in the theorem
are necessary conditions to have αD∗ β.

Conversely, we now assume that one of conditions (I), (II) or (III) hold and we
verify that this is sufficient to get αD∗ β. In other words, for any α, β ∈ T (A ,B),
we want to show that α(L ∗◦R∗)nβ for some natural number n whenever one of these
conditions is satisfied.

Notice that if β /∈ Q, then there exists β ′ ∈ Q such that im β ′ = im β by Lemma
3.5. This means that β ′ L ∗ β by Proposition 6.2 and thus β ′ L ∗◦R∗ β. Therefore
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we can assume from now on that β ∈ Q, as this won’t change the finiteness of the
sequence of relations.

We already know from Lemma 6.8 that if ρ(α) = ρ(β), then αD∗ β, which shows
that the appropriate part of cases (I), (II) and (III) are sufficient conditions to get that
the two maps are D∗-related. The only possibilities left to verify are those where the
ranks of α and β are different and lie in the intervals given in conditions (II) and (III).

Assume that 2 ≤ codimAB and that e < ρ(α), ρ(β) < ℵ0, that is, either condition
(II) holds, or we have condition (III) with two maps of finite rank. Then, by invoking
the third part of Lemma 6.11, we have that α(L ∗◦R∗)nβ and therefore αD∗ β.

From now on, we assume that condition (III) holds with codimAB = κ and
e < ρ(α), ρ(β) ≤ κ for some infinite cardinal κ . Without loss of generality, we
also assume that ρ(α) < ρ(β). If both ranks are infinite, then we can use Lemma
6.13 with ν = ρ(β) (since dim B ≥ ρ(β) > ρ(α) ≥ ℵ0 in that case) to get a map
γ ∈ T (A ,B) such that αL ∗◦R∗ γ and ρ(γ ) = ρ(β). But then α(L ∗◦R∗)2β using
Lemma 6.8 and thus αD∗ β.

The only situation left iswhenρ(α) < ℵ0 ≤ ρ(β). For this,wewrite Aα = 〈{xkα}〉,
B = 〈{yk} � {bi }〉 and A = 〈{yk} � {bi } � {

a j
}〉. Since e < |K | < ℵ0 we set

L = K \{1}, so that |L| = |K |−1 and {yk} = {y1}�{y�}. By assumption, we have that
|K � I | = dim B ≥ ρ(β) ≥ ℵ0 so that |I | ≥ ℵ0, and |J | = codimAB = κ . Therefore,
there exist S ⊆ J and S′ ⊆ I such that |S| = |S′| = ℵ0 and we let φ : S → S′ be a
bijection between these sets. For all j ∈ J , we now set elements z j ∈ B by z j = b jφ

if j ∈ S and z j = b1 otherwise. With this, we define γ1 ∈ T (A ,B) as:

γ1 =
(

y1 y� bi a j

c y� c z j

)

,

where c ∈ 〈{y�}〉 (which necessarily exists following our assumptions on T (A ,B)

after Corollary 3.2). Then we have that Bγ1 = 〈{y�}〉 � 〈{y�} � {

z j
}〉 = Aγ1 so that

γ1 /∈ Q. Moreover, we have that

ρ(γ1|B) = |L| < |K | = ρ(α) < ℵ0 ≤ κ = ρ(γ1|B) + codimAB,

and thus αL ∗◦R∗ γ1 by the third case of Proposition 6.9. Now, either
ℵ0 = ρ(γ1) = ρ(β) and we directly get that γ1L ∗◦R∗ β by Lemma 6.8, or
we have that ℵ0 = ρ(γ1) < ρ(β). If the latter occurs, then we also have that
ρ(β) ≤ min {dim B, codimAB} ≤ κ by the initial assumptions. Thus, we can invoke
Lemma 6.13 with ν = ρ(β) to get a map γ2 ∈ T (A ,B) such that ρ(γ2) = ρ(β)

and γ1L ∗◦R∗ γ2 whichmeans that γ1(L ∗◦R∗)2β by Lemma 6.8. Therefore, in both
situations, we have that α(L ∗◦R∗)3β and thus αD∗ β, which finishes the proof of
the characterisation of D∗. ��
Remark 6.15 From the characterisation of D∗ in Theorem 6.14 it is easy to see that if
B is finite dimensional and codimAB ≥ 2, thenD∗ is made of only 2 classes, namely
Te+ and T c

e+ .

The last extended Green’s relations investigated here are the relations J ∗ and ˜J,
described in [4, 13]. The relation J ∗ on a semigroup S is given by the condition
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that αJ ∗ β if and only if J ∗(α) = J ∗(β), where J ∗(α) is the smallest ideal of
S containing α and that is saturated by both L ∗ and R∗, that is, the smallest ideal
containing α that is the union of L ∗-classes and R∗-classes of its elements. The
relation ˜J is defined similarly on S using the ∼-relations ˜L and ˜R, and is thus a
union of ˜L and ˜R-classes of S. Note also that we have the inclusions D∗ ⊆ J ∗,
˜D ⊆ ˜J, D∗ ⊆ ˜D and J ∗ ⊆ ˜J.
Since we have determined the D∗-classes, and D∗ is a subset of J ∗, ˜D and ˜J,

the characterisation of these remaining extended Green’s relations on T (A ,B) is
quite straightforward to determine. In order to work withJ ∗, we use the equivalence
proved byFountain in [4], namely thatβ ∈ J ∗(α) if and only if there exist γ0, . . . , γn ∈
T (A ,B) and λ1, . . . , λn, μ1, . . . , μn ∈ T (A ,B)1 such that α = γ0, β = γn and
(γi , λiγi−1μi ) ∈ D∗ for all 1 ≤ i ≤ n. An equivalent characterisation for ˜J in terms
of ˜D has been given by Ren, Shum and Guo in [13]. From this we have the short
proposition that follows:

Proposition 6.16 In T (A ,B), we have that D∗ = J ∗.

Proof Since we know that D∗ ⊆ J ∗, it remains to show the converse. To this end,
we are going to determine theJ ∗-classes of certain cases by describing the principal
∗-ideal generated by specific elements. Combining these cases with the description of
the D∗-classes given in Theorem 6.14 will finish the proof.

As a general setup, we consider α, β ∈ T (A ,B)with β ∈ J ∗(α). Then, there exist
a finite sequence γ0, . . . , γn ∈ T (A ,B) and some finite sets {λi } , {μi } ⊆ T (A ,B)1

such that γ0 = α, γn = β and (γi , λiγi−1μi ) ∈ D∗ for all 1 ≤ i ≤ n.
Assume first that codimAB = 1. Then, Theorem 6.14 gives us that ρ(γ1) =

ρ(λ1αμ1) ≤ ρ(α) and by induction, we obtain ρ(γi ) ≤ ρ(α) for all 1 ≤ i ≤ n, from
which we have that ρ(β) ≤ ρ(α). Hence, J ∗(α) = {β ∈ T (A ,B) | ρ(β) ≤ ρ(α)}.
Reversing the roles of α and β we have that J ∗(β) = {α ∈ T (A ,B) | ρ(α) ≤ ρ(β)}.
Therefore αJ ∗ β if and only if J ∗(α) = J ∗(β), which forces ρ(α) = ρ(β).

From now on, we assume that codimAB ≥ 2. In the case where ρ(α) = e, then we
also have that ρ(λ1αμ1) = e. Since γ1D∗ λ1αμ1, this forces ρ(γ1) = ρ(λ1αμ1) by
condition (II) of Theorem 6.14, and thus ρ(γ1) = e. By induction on the γi ’s, we get
that ρ(β) = e = ρ(α). Therefore J ∗(α) = Te+ , from which we have that if αJ ∗ β

with ρ(α) = e, then ρ(β) = ρ(α).
Consider the case when codimAB = κ for some infinite cardinal κ , and suppose

that ρ(β) > codimAB. Then, from the fact that β = γn D∗ λnγn−1μn , we necessarily
have that ρ(β) = ρ(λnγn−1μn) from (III) of Theorem 6.14 and therefore ρ(γn−1) ≥
ρ(β) > codimAB. By reverse induction on i from n − 1 to 1, we get that ρ(γi−1) ≥
ρ(γi ) > codimAB for all i and thus ρ(α) ≥ ρ(β) > codimAB. This shows that a map
α can only contain in its J ∗-ideal amapβ withρ(β) > codimAB ≥ ℵ0 ifρ(α) ≥ ρ(β)

and ρ(α) > codimAB in the first place. Together with the reverse statement, we
conclude that if ρ(α) > codimAB ≥ κ , then αJ ∗ β implies ρ(α) = ρ(β).

Using a similar argument when codimAB < ℵ0, we also have that if β ∈ J ∗(α)

with ρ(β) ≥ ℵ0, then ρ(α) ≥ ρ(β). Therefore, this case gives us that if ρ(α) ≥ ℵ0 >

codimAB and αJ ∗ β, then ρ(α) = ρ(β).
In all of the above cases, we can see that if two maps α and β are J ∗-related,

then they have the same rank and thus they are D∗-related by Lemma 6.8. The

123



158 A. Grau

remaining cases to consider are when we either have that 2 ≤ codimAB < ℵ0 and
e < ρ(α), ρ(β) < ℵ0, or we have that codimAB = κ and e < ρ(α), ρ(β) ≤ κ .
However, these cases are already given to beD∗-classes as the first part of conditions
(II) and (III) in Theorem 6.14, and are thus also J ∗-classes, which completes the
proof that J ∗ = D∗. ��

Finally, for the relations ˜D and ˜J there are always only two classes, since the
corank ofB has no impact in that situation as given by this last proposition.

Proposition 6.17 In T (A ,B), the only ˜D and ˜J classes are Te+ and T c
e+ .

Proof Let α, β ∈ T (A ,B) be such that ρ(α) = ρ(β) = e. Then αD∗ β by Lemma
6.8, and thus α ˜D β since D∗ ⊆ ˜D. On the other hand, assume that the rank of both
α and β is strictly greater than e. If α ∈ Q then, by Lemma 3.5, there exists α′ ∈ Qc

such that im α = im α′, while if α ∈ Qc in the first place, we simply set α′ = α. In
both cases, we have that α ˜L α′ and similarly, β ˜L β ′ for some β ′ ∈ Qc. Then, by
Proposition 6.4, we get that α′

˜R β ′, and so α ˜L ◦ ˜R ◦ ˜L β. Therefore α ˜D β for any
α, β ∈ T c

e+ .
For the converse, notice first that if γ ∈ T (A ,B) is such that ρ(γ ) = e, then

for any δ ∈ T (A ,B) we have that ρ(δ) = e whenever γ ˜R δ or γ ˜L δ. Indeed, if
γ ˜R δ then, by Proposition 6.4 together with the fact that γ ∈ Q, we get that δ ∈ Q
and ker δ = ker γ . Consequently, im δ ∼= im γ and so ρ(δ) = ρ(γ ) = e. Similarly,
if γ ˜L δ, then Proposition 6.2 gives us that im δ = im γ and thus ρ(δ) = ρ(γ ) = e,
proving the claim. Now consider α, β ∈ T (A ,B) such that α ˜D β. Then there exists
a finite sequence of compositions of ˜L and ˜R relating α to β. If ρ(α) = e, then the
arguments exposed above gives us that all maps in that sequence have rank e, and thus
ρ(β) = e. Similarly, if ρ(α) �= e, then by symmetry of the arguments, we necessarily
get that ρ(β) �= e, which concludes the proof of the characterisation of ˜D.

Invoking arguments similar to those used in the proof of Proposition 6.16 together
with the newfound characterisation of ˜D, one can show that a map in Te+ can only
be ˜J-related to another map in Te+ . Since ˜D ⊆ ˜J and ˜D only has two classes, it
follows that these equivalence relations are in fact equal. ��
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