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Abstract
We are interested in properties, especially injectivity (in the sense of category theory),
of the ternary rings of operators generated by certain subsets of an inverse semigroup
via the regular representation. We determine all subsets of the extended bicyclic semi-
group which are closed under the triple product xy∗z (called semiheaps) and show that
the weakly closed ternary rings of operators generated by them are injective operator
spaces.

Keywords Ternary ring of operators · Inverse semigroup · Bicyclic semigroup ·
Semiheap · Injective operator space

1 Introduction

Ternary rings of operators (TROs) originated in thework ofM.R.Hestenes in 1962 [4].
These are linear spaces of operators from one Hilbert space to another which are stable
under the triple product XY ∗Z , which he called ternary algebras. By their nature, these
spaces satisfied an associativity condition involving five elements, namely,

(XY ∗Z)U∗W = XY ∗(ZU∗W ) = X(UZ∗Y )∗W . (1)
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These were subsequently axiomatized and named associative triple systems [12]. A
milestone in their development in the realm of functional analysis was a Gelfand-
Naimark type representation theorem for associative triple systems equipped with an
operator type norm [16].

At around the same time as Hestenes’ work, unbeknownst to the researchers in the
West due partially to the Cold War [5], the concept of semiheap was introduced in the
Soviet Union [8]. A semiheap is a set together with a single three-variable operation
satisfying an abstract version of (1), and akin to the known concepts of ternary group
and inverse semigroup.

Since the concept of semiheap is central to this paper, we provide the formal def-
inition, as stated in [8, p. 56]. By a semiheap, we mean a set K together with a
singled-valued, everywhere defined ternary operation [· · ·], satisfying the condition

[[k1k2k3]k4k5] = [k1[k4k3k2]k5] = [k1k2[k3k4k5]].

An inverse semigroup is a semigroup S in which for every element x there exists a
unique element x∗, called the inverse or generalized inverse of x , such that x = xx∗x
and x∗ = x∗xx∗. For the basic facts on inverse semigroups, see [11, Chapter 1] or [7,
Chapter 5].

Semiheaps and their associated structures are closely related to inverse semigroups.
In turn, inverse semigroups, together with groupoids, give rise to operator algebras
[13]. A ubiquitous example of an inverse semigroup is the bicyclic semigroup, given
abstractly ([11, Section 3.4]) by the presentation 〈p, q : pq = 1〉, and concretely ([7,
p. 144]) as N × N with the multiplication

(m, n)(p, q) = (m − n + max(n, p), q − p + max(n, p)) (2)

We shall use the following notation: N = {1, 2, . . .}; N0 = N ∪ {0}; Z = N0 ∪ −N.
In this paper, we analyze the extended bicyclic semigroup, whichwe call E through-

out this paper, in such away that exhibits its semiheap structure. This inverse semigroup
E , which is the set Z × Z together with the multiplication (2), was defined originally
in [15, p. 367]; however, in that and most other papers, only binary structures are
considered.

Unlike the bicyclic semigroup, the extended bicyclic semigroup is not finitely gener-
ated, nor does it have an identity element. Nevertheless, they share the same semigroup
identities ([1, Corollary 4.3]).

We shall use the representation of the extended bicyclic semigroup which is based
on the realization of the bicyclic semigroup by the unilateral shift ([13, p. 188]), as
follows.

Let E22 be the bicyclic semigroup, as realized by the unilateral shift; that is,

E22 = {ai j =
∑

k≥0

ei+k, j+k : i, j ∈ N0},
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where for any i, j ∈ Z, ei j is the matrix over Z with 1 in the i, j position and zeros
elsewhere, and the ℵ0 by ℵ0 matrix ai j acts as a linear operator on column vectors of
complex numbers. (ai j is a bounded operator on the Hilbert space �2(Z).)

Set

E = E11 ∪ E12 ∪ E21 ∪ E22

where E21 = {ai j : i ∈ N0, j ∈ −N}, E11 = {ai j : i, j ∈ −N} and E12 = {ai j : i ∈
−N, j ∈ N0}.

We note that for i, j, p, q ∈ Z, a∗
i j = a ji , ai j is a partial isometry on �2(Z) and

ai j apq =
{
ai,q+ j−p, p ≤ j
ai+p− j,q , p ≥ j

, (3)

equivalently

ai j apq = ai+p−min( j,p), j+q−min( j,p).

In particular, ai j apq 
= 0, ai j a jq = aiq , and aii app = amm with m = max(i, p).

Remark 1.1 Thus E is an inverse semigroup consisting of partial isometries with
inverse a∗

i j equal to the adjoint of ai j . E is isomorphic to the extended bicyclic semi-
group, and when convenient notationally, we represent ai j in formulas and diagrams
simply by (i, j) ∈ Z × Z.

We shall analyze the extended bicyclic semigroup E toward the aims of finding all
of the subsemiheaps of E , and showing that the associated W*-TROs, that is, weakly
closed TROs, are injective operator spaces.

In our main and only theorem, Theorem 1.2, we classify all of the subsemiheaps of
this extended bicyclic semigroup. We then show in Corollary 4.3, via a general result
applying to all inverse semigroups [13, Theorem 4.5.2], that each of the examples
resulting from this classification has the property that the weakly closed ternary ring
of operators it generates is an injective operator space. It is worth pointing out that,
although the injectivity of the W*-TROs generated by the classification of subsemi-
heaps uses deep results in functional analysis ([3, Theorem 2.5], [13, Theorem 4.5.2]),
the classification itself is self-contained using only elementary arguments.

Our results are summarized in the following theorem, listing all of the subsemiheaps
of the extended bicyclic semigroup. The proof is contained in the references in each
statement to later results of this paper.

Theorem 1.2 The subsemiheaps of the extended bicyclic semigroup are the inductive
limits (see Remark 3.1) of sequences of the following semiheaps K :

• K is a single point {apq} (Lemma 3.2 and Example 2.4)
• K = {aα0,β0}∪ {aα0+k j ,β0+k j : 1 ≤ j ≤ n0}, where 1 ≤ k1 < k2 < · · · < kn0 and
n0 ∈ N

(Proposition 3.3 and Examples 2.4)
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• K = {aα0β0}∪{aα0+k j ,β0+k j : j ∈ N}where 1 ≤ k1 < k2 < · · · < k j < · · · < ∞
(Proposition 3.4 and Example 2.4)

• There exist σ, �0 ∈ N such that

K = {aα0β0} ∪ {aα0+k j ,β0+k j : j = 1, . . . �0 − 1} ∪ K σ
α0+k�0 ,β0+k�0

or

K = {aα0β0} ∪ {aα0+ki ,β0+ki : 1 ≤ i < �0} ∪
⎛

⎝
j⋃

i=�0

K σ
α0+ki ,β0+ki

⎞

⎠

where 1 ≤ k1 < k2 < · · · < k�0 . (Proposition 3.4 and Examples 2.5 and 2.6)
• K = K p

α0,β0
for some p > 0 (Proposition 3.18 and Example 2.7)

• There exist p > 0 and q > 0 such that

K =
n⋃

i=0

K p
α0+qi ,β0+qi

.

where aα0+qi ,β0+qi , 0 ≤ i < ∞, are the points of K lying on the diagonal, such
that

q = q0 < q1 < q2 < · · · < qn < p and p < qn+1 < qn+2 < · · · .

(Proposition 3.18 and Example 2.7)

All of the subsemigroups of the bicyclic semigroup have been determined in [2].
Those subsemigroups which are inverse subsemigroups, which were determined ear-
lier in [14] and later in [6], were also identified in [2, Theorem 7.1]. Since inverse
subsemigroups are semiheaps, our results give a new approach to the description of
the inverse subsemigroups of the (extended) bicyclic semigroup.

2 Diagrams 1–10 and Examples

In order to analyze the subsemiheaps of the extended bicyclic semigroup E , we prepare
some material.

The idempotents of E are the elements aii with i ∈ Z and aii ≤ a j j , that is,
aii a j j = aii , if and only if j ≤ i . From (3), we calculate and find that for p, q ∈ Z,

aii apq =
{
ai,q+i−p p ≤ i
apq p ≥ i

apqa j j =
{
apq j ≤ q
ap+ j−q, j j ≥ q
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and

aii apqa j j =

⎧
⎪⎪⎨

⎪⎪⎩

ai,q+i−p p ≤ i and j ≤ q + i − p
a j−q+p,q p ≤ i and j ≥ q + i − p
apq p ≥ i and j ≤ q
ap+ j−q, j p ≥ i and j ≥ q

In particular, a00E = E21∪E22 and Ea00 = E12∪E22. Also, aii E , Ea j j and aii Ea j j

are subsemigroups and semiheaps, and aii Ea j j is an inverse semigroup if i = j . Also,

Ea j j = {apq : j ≤ q}, aii E = {apq : p ≥ i},

and

aii E ∩ Ea j j = aii Ea j j = {apq : p ≥ i, q ≥ j}.

From (3), we have the following lemma.

Lemma 2.1 For any ai j , apq , ars in E, we have

ai j a
∗
pqars =

⎧
⎪⎪⎨

⎪⎪⎩

(i) ai,s+p+ j−q−r r ≤ p + j − q, q ≤ j
(ii) ai+r−p− j+q,s r ≥ p + j − q, q ≤ j
(iii) ai+q− j+r−p,s r ≥ p, q ≥ j
(iv) ai+q− j,s+p−r r ≤ p, q ≥ j

It is worth noting, as will be evident in the ten diagrams that follow, all triple
products in E which involve only two elements, produce new elements which do not
propagate to the left of, or up from the diagram.

Lemma 2.2 and Diagrams 1–5 describe the case in which the slope of the line
connecting the two points is negative (or zero or infinite). Lemma 2.3 and Diagrams
6-10 describe the case in which the slope of the line connecting the two points is
positive (or zero or infinite).

Lemma 2.2 If K is a subsemiheap of E, and if aαβ, aγ δ ∈ K with γ ≥ α and δ ≥ β,
then the following elements belong to K :

• x1 = aα+δ−β,β+γ−α

• x2 = aα+δ−β,δ

• x3 = aγ,β+γ−α

• x4 = aγ,δ+(δ−β)−(γ−α) if γ − α ≤ δ − β

• x5 = aγ+(γ−α)−(δ−β),δ if γ − α ≥ δ − β

Proof The following are the eight possible triple products containing two distinct
elements, and thus belong to K . They are calculated using Lemma 2.1.

• aαβa∗
αβaαβ = aαβ

• aαβa∗
γ δaαβ = aα+δ−β,β+γ−α = x1

• aαβa∗
αβaγ δ = aγ δ
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• aαβa∗
γ δaγ δ = aα+δ−β,δ = x2

• aγ δa∗
αβaαβ = aγ δ

• aγ δa∗
γ δaαβ = aγ,β+γ−α = x3

• aγ δa∗
αβaγ δ =

{
aγ,δ+α+δ−β−γ = x4, γ − α ≤ δ − β

aγ+γ−α−δ+β,δ = x5, γ − α ≥ δ − β

• aγ δa∗
γ δaγ δ = aγ δ �

Diagram 1 δ − β > γ − α > 0 (b = δ − β, h = γ − α)

β δ

α •
... h b−h

γ · · · ◦ · · · · · · • ◦
x3 x4

◦ ◦
x1 x2

Diagram 2 γ = α, δ − β > 0

β δ

α, γ • · · · · · · • ◦
x3 x4

◦ ◦
x1 x2

Diagram 3 γ − α > δ − β > 0 (b = δ − β, h = γ − α)

β δ

α •
...
... ◦ x2 ◦ x1
...
...

γ · · · · · · • h−b ◦ x3

◦ x5
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Diagram 4 δ = β, γ − α > 0

β, δ

α • x2 ◦ x1
...

γ • ◦ x3

◦ x5

Diagram 5 δ − β = γ − α > 0

β δ

α •
. . .

γ •◦◦◦◦◦ x1, x2, x3, x4, x5

Lemma 2.3 If K is a subsemiheap of E, and if aαβ, aγ δ ∈ K with γ ≥ α, δ ≤ β, then
the following elements belong to K :

• x1 = aα,β+(γ−α)+(β−δ)

• x2 = aγ+β−δ,β

• x3 = aγ,β+γ−α

• x4 = aγ+(β−δ)+(γ−α),δ

Proof The following eight products belong to K and can be calculated using
Lemma 2.1.

• aαβa∗
αβaαβ = aαβ

• aαβa∗
γ δaαβ = aα,β+(γ−α)+(β−δ) = x1

• aαβa∗
αβaγ δ = aγ δ

• aαβa∗
γ δaγ δ = aαβ

• aγ δa∗
αβaαβ = aγ+β−δ,β = x2

• aγ δa∗
γ δaαβ = aγ,β+γ−α = x3

• aγ δa∗
αβaγ δ = aγ+β−δ+γ−α,δ = x4

• aγ δa∗
γ δaγ δ = aγ δ

�
Example 2.4 For α, β ∈ Z, and J ⊂ N0, Dα,β(J ) := {aα+ j,β+ j : j ∈ J } is a
subsemiheap of E .

Example 2.5 For α, β ∈ Z, and σ ∈ N, Kα,β = {aα+�,β+m : �,m ∈ N0}, and more
generally, K σ

α,β := {aα+�σ,β+mσ : �,m ∈ N0} are subsemiheaps of E .

Special cases of Lemma 2.3 and their diagrams are as follows:
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Diagram 6 β − δ > γ − α > 0 (b = β − δ, h = γ − α)

δ β

α • ◦ x1
... h

...

γ • · · · · · · · · · ◦ · · · · · · · · ·
x3

b + h

◦ x2
...

◦ · · · · · · · · ·
x4

Diagram 7 γ = α, β − δ > 0

δ β

α, γ • · · · · · · • ◦
x3 x1

◦ ◦
x4 x2

Diagram 8 γ − α > β − δ > 0 (b = β − δ, h = γ − α)

δ β b + h
α • ◦ x1

...
...

...
...

γ • · · · ◦ · · ·
x3

◦ x2
...
...

x4 ◦ · · ·
Diagram 9 δ = β, γ − α > 0

β, δ

α • ◦ x1
...

γ • x2 ◦ x3

◦ x4
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Diagram 10 δ − β = γ − α > 0

δ β

α • ◦ x1
...

...

γ • · · · ◦ · · ·
x3

◦ x2
...

◦ · · ·
x4

Example 2.6 K = {aα0β0} ∪ {aα0+k j ,β0+k j : j = 1, . . . �0 − 1} ∪ K σ
α0+k�0 ,β0+k�0

is a

subsemiheap of E , where α0, β0 ∈ Z, �0, σ, ki ∈ N, k1 < k2 < · · · < k�0−1, and

K σ
α0+k�0 ,β0+k�0

= {aα0+k�0+mσ,β0+k�0+nσ : m, n ∈ N0}.

Proof Let x j = aα0+k j ,β0+k j for 1 ≤ k j < �0 and ymn = aα0+�0+mσ,β0+�0+nσ for
m, n ∈ N0.

The following eight products belong to K , as calculated by Lemma 2.1.

1. x j y∗
mn ypq =

{
yn+p−m,q if p ≥ m (Lemma 2.1(iii))
yn,q+m−p if p ≤ m (Lemma 2.1(iv))

2. ymnx∗
j ypq =

{
ym,n+q−p if p ≤ n (Lemma 2.1(i))
ym+p−n,q if p ≥ n (Lemma 2.1(ii))

3. ymn y∗
pq x j =

{
ym,p+n−q if q ≤ n (Lemma 2.1(i))
ym+q−n,p if q ≥ n (Lemma 2.1(iv)

4. ymnx∗
i x j = ymn (Lemma 2.1(i))

5. xi y∗
mnx j = ynm (Lemma 2.1(iv))

6. xi x∗
j ymn = ymn (Lemma 2.1(ii))

7. xi x∗
j x� = xmax(i, j,�) (Lemma 2.1(i)-(iv))

8. ymn y∗
pq yrs =

⎧
⎪⎪⎨

⎪⎪⎩

ym,s+p+n−r−q if q ≤ n and r + q ≤ p + n (Lemma 2.1(i))
ym+r+q−p−n,s if q ≤ n and r + q ≥ p + n (Lemma 2.1(ii))
ym+q−n+r−p,s if q ≥ n and r ≥ p (Lemma 2.1(iii))
ym+q−n+p−r ,s if q ≥ n and r ≤ p (Lemma 2.1(iv))

We provide some details for cases 1 and 8.
For case 1, by Lemma 2.1(iii),

x j y
∗
mn ypq = aα0+k j ,β0+k j a

∗
α0+�0+mσ,β0+�0+nσaα0+�0+pσ,β0+�0+qσ

= aα0+�0+(n+p−m)σ,β0+�0+qσ ,
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if p ≥ m and �0 + nσ ≥ k j ; and by Lemma 2.1(iv),

aα0+k j ,β0+k j a
∗
α0+�0+mσ,β0+�0+nσaα0+�0+pσ,β0+�0+qσ

= aα0+�0+nσ,β0+�0+(q+m−p)σ ,

if p ≤ m and �0 + nσ ≥ k j .
For case 8, with q ≤ n, by Lemma 2.1(i),

aα0+�0+mσ,β0+�0+nσa
∗
α0+�0+pσ,β0+�0+qσaα0+�0+rσ,β0+�0+sσ

= aα0+�0+mσ,β0+�0+(s+p+n−r−q)σ ,

if q ≤ n and r + q ≤ p + n, so that s + p + n − r − q ∈ N0; and by Lemma 2.1(ii),

aα0+�0+mσ,β0+�0+nσa
∗
α0+�0+pσ,β0+�0+qσaα0+�0+rσ,β0+�0+sσ

= aα0+�0+(m+r+q−p−n)σ,β0+�0+sσ ,

if q ≤ n and r + q ≥ p + n, so that m + r + q − p − n ∈ N0.
The subcases of case 8 for which q ≥ n are as follows. By Lemma 2.1(iii),

aα0+�0+mσ,β0+�0+nσa
∗
α0+�0+pσ,β0+�0+qσaα0+�0+rσ,β0+�0+sσ

= aα0+�0+(m+q−n+r−p)σ,β0+�0+sσ ,

if q ≥ n and r ≤ p, so that m + q − n ∈ N0; and by Lemma 2.1(iv),

aα0+�0+mσ,β0+�0+nσa
∗
α0+�0+pσ,β0+�0+qσaα0+�0+rσ,β0+�0+sσ

= aα0+�0+(m+q−n)σ,β0+�0+(s+p−r)σ ,

if q ≥ n and r ≤ p, so that m + q − n ∈ N0 and s + p − r ∈ N0. �
Example 2.7 Let K = ⋃

k∈A K p
α0+k,β0+k , where α0, β0 ∈ Z, p > 0, A ⊂

{0, 1, . . . , p − 1} and aα0+k,β0+k , k ∈ A, denote the elements of K lying on the
diagonal with k < p. (See the following Diagram and Proposition 3.15.) In fact, K is
an inverse subsemigroup of E .

Proof We note first that setting α0 = β0 = 0 for convenience (see Remark 2.8), and
changing notation (see Remark 1.1),

K = {(k + �p, k + mp) : k ∈ A, �,m ∈ N0}

and it suffices to show that

(k1 + �1 p, k1 + m1 p)(k2 + �2 p, k2 + m2 p)
∗(k3 + �3 p, k3 + m3 p)

belongs to K . We calculate this triple product using the four cases in Lemma 2.1.
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By Lemma 2.1(i), if k2+m2 p ≤ k1+m1 p, and k3+�3 p ≤ k1+ (�2+m1−m2)p,
then

(k1 + �1 p, k1 + m1 p)(k2 + �2 p, k2 + m2 p)
∗(k3 + �3 p, k3 + m3 p)

= (k1 + �1 p, k1 + (m3 + �2 + m1 − m2 − �3)p),

and it is required to show that m3 + �2 + m1 − m2 − �3 ≥ 0.
Following the argument in [2, Lemma 4.5], we have

k1 + (�2 + m1 − m2 − �3)p ≥ k3 ≥ 0

so that (�2 + m1 − m2 − �3)p ≥ −k1 > −p and therefore �2 + m1 − m2 − �3 ≥ 0
and m3 + �2 + m1 − m2 − �3 ≥ 0, as required.

By Lemma 2.1(ii), if k2+m2 p ≤ k1+m1 p, and k3+�3 p ≥ k1+(�2+m1−m2)p,
then

(k1 + �1 p, k1 + m1 p)(k2 + �2 p, k2 + m2 p)
∗(k3 + �3 p, k3 + m3 p)

= (k3 + (�1 + �3 − �2 − m1 + m2)p, k3 + m3 p)

and it is required to show that �3 − �2 − m1 + m2 ≥ 0.
Following the argument in [2, Lemma 4.5], we have

k3 + (�3 − �2 − m1 + m2)p ≥ k1 ≥ 0

so that (�3 − �2 − m1 + m2)p ≥ −k3 > −p and therefore �3 − �2 − m1 + m2 ≥ 0
and �1 + �3 − �2 − m1 + m2 ≥ 0, as required.

By Lemma 2.1(iii), if k3 + �3 p ≥ k2 + �2 p, and k2 + m2 p ≥ k1 + m1 p, then

(k1 + �1 p, k1 + m1 p)(k2 + �2 p, k2 + m2 p)
∗(k3 + �3 p, k3 + m3 p)

= (k3 + (�1 + m2 − m1 + �3 − �2)p, k3 + m3 p)

and it is required to show that �1 + m2 − m1 + �3 − �2 ≥ 0.
Following the argument in [2, Lemma 4.5], we have

k3 + (�3 − m1 + m2 − �2)p ≥ k1 ≥ 0

so that (�3 − m1 + m2 − �2)p ≥ −k3 > −p and therefore �3 − m1 + m2 − �2 ≥ 0
and �1 + �3 − m1 + m2 − �2 ≥ 0, as required.

By Lemma 2.1(iv), if k3 + �3 p ≤ k2 + �2 p, and k2 + m2 p ≥ k1 + m1 p, then

(k1 + �1 p, k1 + m1 p)(k2 + �2 p, k2 + m2 p)
∗(k3 + �3 p, k3 + m3 p)

= (k2 + (�1 + m2 − m1)p, k2 + (m3 + �2 − �3)p)

and it is required to show that �1 + m2 − m1 ≥ 0. and m3 + �2 − �3 ≥ 0.
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Following the argument in [2, Lemma 4.5], we have

k2 + (�2 − �3)p ≥ k3 ≥ 0

so that (�2 − �3)p ≥ −k3 > −p and therefore �2 − �3 ≥ 0 and m3 + �2 − �3 ≥ 0, as
required.

Following the argument in [2, Lemma 4.5], we have

k2 + (m2 − m3)p ≥ k1 ≥ 0

so that (m2 −m1)p ≥ −k1 > −p and thereforem2 −m1 ≥ 0 and �1 +m2 −m1 ≥ 0,
as required. �

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12
0 q p q + p 2p q + 2p 3p q + 3p

0 • � � �

k1 q � � � � · · ·

k2 • • •
k3 p � � � �

k4 • • •
k5 q + p � � � � · · ·

k6 • •
k7 2p � � � �

k8 • •
k9 q + 2p � � � � · · ·

k10 3p � � � �

k11 •

k12 q + 3p � � � � · · ·
...

...
...

...

Remark 2.8 The adjoint operation ai j �→ a∗
i j = a ji on the extended bicyclic semi-

group E is an anti-isomorphism of a subsemiheap K of E onto the subsemiheap
K ∗, that is, (ab∗c)∗ = c∗ba∗. As another application of Lemma 2.1, the trans-
lation map on the extended bicyclic semigroup is a triple isomorphism, that is, if
ϕα,β(ai j ) = ai+α, j+β , then

ϕ(ai j a
∗
pqars) = ϕ(ai j )ϕ(apq)

∗ϕ(ars).

Hence, if K is a subsemiheap of Kα,β , thenϕ−α,−β(K ) is a subsemiheap of the bicyclic
semigroup K0,0. At the very least, this fact can simplify notation in parts of this paper.

3 Subsemiheaps of the extended bicyclic semigroup

In this section, we shall determine all of the subsemiheaps of the extended bicyclic
semigroup. We shall proceed as follows. First, for an arbitrary subsemiheap K of E ,
we define

α0 = inf{α ∈ Z : ∃β ∈ Z, aαβ ∈ K },
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and

β0 = inf{β ∈ Z : ∃α ∈ Z, aαβ ∈ K }.

We have four mutually exclusive and exhaustive cases, namely,

1. Quadrant α0 
= −∞, β0 
= −∞
2. Right Half Plane α0 = −∞, β0 
= −∞
3. Lower Half Plane α0 
= −∞, β0 = −∞
4. Full Plane α0 = −∞, β0 = −∞
Remark 3.1 We only need to find all of the subsemiheaps of E which are in case (1),
since the other cases can be reduced to this case in steps, as follows, which shows
that every subsemiheap of the extended bicyclic semigroup is the inductive limit of
subsemiheaps in case (1) in the category of semiheaps and semiheaphomomorphisms.1

• If a subsemiheap K of E is in case (2), then K ⊂ {ai j : i ∈ Z, j ≥ β0} and
K = ∪α∈ZK α , where K α = K ∩ {ai j : i ≥ α, j ≥ β0} (which we have denoted
by Kα,β0 ) is in case (1).

• If a subsemiheap K of E is in case (3), then K ⊂ {ai j : i ≥ α0, j ∈ Z} and
K = ∪β∈ZKβ , where Kβ = K ∩ {ai j : i ≥ α0, j ≥ β} (=Kα0,β ) is in case (1).

• If a subsemiheap K of E is in case (4), then K ⊂ {ai j : i, j ∈ Z} and K =
∪α∈ZK(α), where K(α) = K ∩ {ai j : i ≥ α, j ∈ Z} is in case (3).
Alternatively, if a subsemiheap K of E is in case (4), then K = ∪β∈ZK (β), where
K (β) = K ∩ {ai j : i ∈ Z, j ≥ β} is in case (2).
Therefore we shall concentrate only on case (1). Suppose then that α0 
= −∞ and

β0 
= −∞. Then K ⊂ Kα0,β0 = {apq : p ≥ α0, q ≥ β0}. We define three parameters
as follows:

β = sup{β ∈ Z : aα0β ∈ K }
α = sup{α ∈ Z : aαβ0 ∈ K }
γ = sup{k ∈ N0 : aα0+k,β0+k ∈ K }.

.
We shall consider three primary cases:

1. β = β0 2. β0 < β < ∞ 3. β = ∞

Each of the cases 1, 2, 3, consists of three further subcases.

1.1 β = β0, α = α0 1.2 β = β0, α0 < α < ∞ 1.3 β = β0, α = ∞.

2.1 β = β0 < ∞, α = α0 2.2 β0 < β < ∞, α0 < α < ∞ 2.3 β0 < β < ∞, α = ∞.

3.1 β = ∞, α = α0 3.2 β = ∞, α0 < α < ∞ 3.3 β = ∞, α = ∞.

1 In fact, it is an elementary inductive limit since the connecting maps are inclusions (see Theorem 1.2).
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Each of these nine cases consists of three further subcases. Thus, in order to account
for the quadrant case (1), andhence the other three cases, itwill be necessary to consider
27 cases. We summarize the results in the table Classification Scheme below. It is
worthy to note that by Diagram 2, if β is finite, by which we mean, β0 < β < ∞,
then aα0,β

is the only point of K of the form aα0,β . A similar statement holds for α.

Also, if α = α0, or if β = β0, then aα0,β0 ∈ K . Thus in cases 2.2, 2.3, 3.2, and 3.3, it
is necessary to consider the two possibilities: aα0,β0 ∈ K , and aα0,β0 /∈ K .

Classification Scheme

Case subcase β α γ Exists? result

1.1.1. β0 α0 0 Yes Lemma 3.2
1.1 1.1.2. β0 α0 Finite Yes Proposition 3.3

1.1.3. β0 α0 ∞ Yes Proposition 3.4
1.2.1. β0 Finite 0 No Lemma 3.7

1 1.2 1.2.2. β0 Finite Finite No Lemma 3.7
1.2.3. β0 Finite ∞ No Lemma 3.7
1.3.1. β0 ∞ 0 No Lemma 3.7

1.3 1.3.2. β0 ∞ Finite No Lemma 3.7
1.3.3. β0 ∞ ∞ No Lemma 3.7
2.1.1. Finite α0 0 No Lemma 3.8

2.1 2.1.2. Finite α0 Finite No Lemma 3.8
2.1.3. Finite α0 ∞ No Lemma 3.8
2.2.1. Finite Finite 0 No Lemma 3.9

2 2.2 2.2.2. Finite Finite Finite No Lemma 3.9
2.2.3. Finite Finite ∞ No Lemma 3.9
2.3.1. Finite ∞ 0 No Lemma 3.10

2.3 2.3.2. Finite ∞ Finite No Lemma 3.10
2.3.3. Finite ∞ ∞ No Lemma 3.10
3.1.1. ∞ α0 0 No Lemma 3.11

3.1 3.1.2. ∞ α0 Finite No Lemma 3.11
3.1.3. ∞ α0 ∞ No Lemma 3.11
3.2.1. ∞ Finite 0 No Lemma 3.11

3 3.2 3.2.2. ∞ Finite Finite No Lemma 3.11
3.2.3. ∞ Finite ∞ No Lemma 3.11
3.3.1. ∞ ∞ 0 No Proposition 3.12

3.3 3.3.2. ∞ ∞ Finite No Proposition 3.12
3.3.3. ∞ ∞ ∞ Yes Proposition 3.18

We now proceed to analyze all 27 cases.

Lemma 3.2 In case 1.1.1 (β = β0, α = α0, γ = 0), we have K = {aα0β0}.
Proof In this case, the diagram is the following, where the bullet represents the element
aα0β0 , and the circles indicate that no element of K occupies that position. (Ignore,
for the moment, the symbols �,�,�)

• o o o o o

o � �

o � o
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o o

o o

...
. . .

Suppose that aα0+2,β0+1, denoted by�, belonged to K . Then by Diagram 3 applied
to the points aα0β0 and �, the point aα0+1,β0+1, denoted by �, would belong to K , a
contradiction. So � does not belong to K . By the same argument, no element of K
resides in the second column of the diagram.

Suppose that aα0+1,β0+2, denoted by�, belonged to K . Then by Diagram 1 applied
to the points aα0β0 and �, the point aα0+1,β0+1, denoted by �, would belong to K , a
contradiction. So � does not belong to K . By the same argument, no element of K
resides in the second row of the diagram.

Repetition of these two arguments shows that no element of K resides in any column
or row of the diagram, other than the first row and column, and therefore K = {aα0β0}
contains exactly one element. �

Proposition 3.3 In case 1.1.2 (β = β0, α0 = α, 0 < γ < ∞), we have

K = {aα0,β0} ∪ {aα0+k j ,β0+k j : 1 ≤ j ≤ n0},

where 1 ≤ k1 < k2 < · · · < kn0 = γ and n0 ∈ N.

Proof In this case, inDiagram11, the bullets represent someof the elements of K resid-
ing on the diagonal, the circles indicate that no element of K occupies that position, and
the dots represent both the finite number of points of K on the diagonal together with
some positions on the diagonal not containing points of K (Ignore for the moment,
the symbols �,� which represent two elements of K lying on the diagonal, and the
symbols �,�,�,�). The symbol ♣ represents the element aα0+kn0 ,β0+kn0

. We shall
show that all off-diagonal positions are not occupied by elements of K , which means
that K = {aα0,β0} ∪ {aα0+k j ,β0+k j : 1 ≤ j ≤ n0}. �

Suppose that for k j ≤ � < k j+1, the point aα0+k j+1,β0+�, denoted by � in Dia-
gram 11, belonged to K . Then by Diagram 2, starting with � and aα0+k j+1,β0+k j+1 ,
denoted by � in Diagram 11, shows that

K ⊃ K
k j+1−�

α0+k j+1,β0+� = {aα0+k j+1+m(k j+1−�),β0+�+n(k j+1−�) : m, n ∈ N0}.

Then choosing m = n − 1, so that

k j+1 + m(k j+1 − �) = � + n(k j+1 − �)

and letting n → ∞ shows that there are infinitely many points of K on the diagonal,
a contradiction, so � /∈ K . The same argument applies to every point on each row
determined by α0 + k j+1 to the left of aα0+k j+1,β0+k j+1 for 0 ≤ j ≤ n0 − 1.

Suppose now that for k j < � ≤ k j+1, the point aα0+k j ,β0+�, denoted by � in
Diagram 11, belonged to K . Then by Diagram 2, starting with aα0+k j ,β0+k j , denoted
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by � in Diagram 11, and �, shows that

K ⊃ K
�−k j
α0+k j ,β0+� = {aα0+k j+m(�−k j ),β0+k j+n(�−k j ) : m, n ∈ N0}.

Then choosing m = n, and letting n → ∞ show that there are infinitely many points
of K on the diagonal, a contradiction, so � /∈ K . The same argument applies to every
point on each row α0 + k j to the right of aα0+k j ,β0+k j for 0 ≤ j ≤ n0.

Thus all rows containing an element of K on the diagonal do not contain any other
elements of K , as in Diagram 12.

Diagram 11 k j � k j+1 ki kn0
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ . . .

k j ◦ � �

� ◦ � . . . �
k j+1 ◦ � �

◦ . . .

◦ •
◦ . . .

◦ ♣
...

. . .

Diagram 12 k j � k j+1 ki kn0
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ . . .

k j ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ · · ·
� ◦ . . .

k j+1 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ · · ·
◦ . . .

ki ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ · · ·
◦ . . .

kn0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ♣ · · ·
...

. . .

Aparallel argument, using Diagram 4 shows that all columns containing an element
of K on the diagonal do not contain any other elements of K . For completeness, we
include the details.

Suppose that for k j ≤ � < k j+1, the point aα0+�,β0+k j+1 , denoted by � in Dia-
gram 11, belonged to K . Then by Diagram 4, starting with � and aα0+k j+1,β0+k j+1 ,
denoted by �, shows that

K ⊃ K
k j+1−�

α0+�,β0+k j+1
= {aα0+�+m(k j+1−�),β0+k j+1+n(k j+1−�) : m, n ∈ N0}.
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Then choosing m = n + 1, so that

k j+1 + n(k j+1 − �) = � + m(k j+1 − �)

and letting n → ∞ shows that there are infinitely many points of K on the diagonal,
a contradiction, so � /∈ K . The same argument applies to every point on each column
determined by β0 + k j+1 above aα0+k j+1,β0+k j+1 for 0 ≤ j ≤ n0 − 1.

Suppose now that for k j ≤ � < k j+1, the point aα0+�,β0+k j , denoted by � in
Diagram 11, belonged to K . Then by Diagram 4, starting with � and aα0+k j ,β0+k j ,
denoted by �, shows that

K ⊃ K
�−k j
α0+k j ,β0+k j

= {aα0+k j+m(�−k j ),β0+k j+n(�−k j ) : m, n ∈ N0},

Then choosing m = n, so that

k j + n(� − k j ) = k j + m(� − k j )

and letting n → ∞ shows that there are infinitely many points of K on the diagonal,
a contradiction, so � /∈ K . The same argument applies to every point on each column
determined by β0 + k j above aα0+k j ,β0+k j for 0 ≤ j ≤ n0.

To complete the proof, we now show that no point aα0+m,β0+n , with m 
= n can
belong to K . By what was just proved, it suffices to consider points which are not on
a row or column containing a point of K , that is,m 
= k j for all j and n 
= k� for all �.

We shall refer to the following diagram, which depicts the eight possible locations
for the element aα0+m,β0+n , reflecting the cases m > n and m < n, namely,

1. m > kn0 ≥ k�+1 > n > k�, denoted by �
2. k�+1 > m > k� ≥ k j+1 > n > k j , denoted by �
3. k j+1 > m > n > k j , denoted by �
4. m > n > kn0 , denoted by �
5. n > kn0 ≥ k�+1 > m > k�, denoted by �
6. k�+1 > n > k� ≥ k j+1 > m > k j , denoted by �
7. k j+1 > n > m > k j , denoted by 	
8. n > m > kn0 , denoted by �

Suppose first that m > n, for example case (2), k�+1 > m2 > k� ≥ k j+1 >

n2 > k j . We consider the two points aα0+k j ,β0+k j and � = aα0+m2,β0+n2 . These
two points are vertices of a triangle with height h = m2 − k j greater than the base
b = n2 − k j , so h − b = m2 − n2. Then by Lemma 2.2 (see Diagram 3), the point
x2 = aα0+k j+β0+m2−α0−k j ,βo+m2 = aα0+m2,β0+m2 would belong to K , which is a
contradiction since k� < m2 < k�+1.

Suppose next that m < n, for example, case (6), k j < m6 < k j+1 ≤ k� <

n6 < k�+1 We again consider the two points aα0+k j ,β0+k j and � = aα0+m6,β0+n6 .
These two points are vertices of a triangle with height h = m6 − k j less than the
base b = n6 − k j and b − h = n6 − m6. Then by Lemma 2.2 (see Diagram 1), the
point x1 = aα0+k j+β0+n6−β0−k j ,β0+n6 = aα0+n6,β0+n6 would belong to K , which is a
contradiction since k� < n6 < k�+1.
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The same two-part argument works in all the other cases, more precisely, as follows:

• For case (3), k j < n3 < m3 < k j+1, Diagram 3 applied to aα0+k j ,β0+k j and �
yields x2 = aα0+n3,β0+n3

• For case (7), k j < m7 < n7 < k j+1, Diagram 1 applied to aα0+k j ,β0+k j and 	
yields x3 = aα0+m7,β0+m7

• For case (4), m4 > n4 > kn0 , Diagram 3 applied to aα0+kn0 ,β0+kn0
and � yields

x2 = aα0+n4,β0+n4
• For case (8), n8 > m8 > kn0 , Diagram 1 applied to aα0+kn0 ,β0+kn0

and � yields
x3 = aα0+m8,β0+m8

• For case (1), m1 > kn0 ≥ k�+1 > n1 > k�, Diagram 3 applied to aα0+k�,β0+k�
and

� yields x2 = aα0+n1,β0+n1
• For case (5), n5 > kn0 ≥ k�+1 > m5 > k�, Diagram 1 applied to aα0+k�,β0+k�

and
� yields x3 = aα0+m5,β0+m5 . This completes the proof of Proposition 3.3. �

n6, n4,
n3 n2 n7 n1 n8 n5

k j k j+1 k� k�+1 kn0
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦

k j ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
m7 ◦ 	
m6 ◦ ◦ ◦ ◦ � ◦
m3 ◦ �

k j+1 ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

k� ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ · · ·
m2,m5 ◦ ◦ � ◦ ◦ ◦ �

k�+1 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ · · ·
◦ ...

...
...

...
. . .

...

kn0 ◦ ◦ ◦ ◦ ◦ ♣ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦

m1,m8 ◦ ◦ ◦ ◦ � ◦ ◦ � ◦
m4 ◦ ◦ ◦ ◦ ◦ ◦ � ◦

...
...

...
...

...
...

. . .

Proposition 3.4 In case 1.1.3: (β = β0, α = α0, γ = ∞), either K = {aα0β0} ∪
{aα0+k j ,β0+k j : j ∈ N}, or there exist σ, �0 ∈ N such that (see Examples 2.6 and 2.7)

K = {aα0β0} ∪ {aα0+ki ,β0+ki : i = 1, . . . �0 − 1} ∪ K σ
α0+k�0 ,β0+k�0

, or (4)

K = {aα0β0} ∪ {aα0+ki ,β0+ki : 1 ≤ i < �0} ∪
⎛

⎝
j⋃

i=�0

K σ
α0+ki ,β0+ki

⎞

⎠ (5)

where 1 ≤ k1 < k2 < · · · < ki < · · · < ∞, and in (5), σ = k j − k�0 where k j is
such that no point aα0+k�0 ,β0+kp belongs to K for 1 ≤ p < j . If �0 = 1, then the term
{aα0+ki ,β0+ki : 1 ≤ i < �0} is missing in (4) and (5).

Proof In this case, the diagram is the following, where the bullet represents the element
aα0β0 , the circles indicate that no element of K occupies that position, and the dots
indicate that infinitely many elements of K reside in the diagonal.

• o o · · ·
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o
. . .

o
. . .

...
. . .

We consider a point aα0+m,β0+n , denoted by � in Diagram 13, with m 
= n and
m 
= k j , n 
= k j for every j ≥ 1.

Suppose first that m > n, more precisely, k j+1 > m > k j ≥ k�+1 > n > k�. We
consider the two points aα0+k�,β0+k�

(an element of K on the diagonal), denoted by �
in Diagram 13, and aα0+m,β0+n = �. These two points are vertices of a right triangle
with height h = m − k� greater than the base b = n − k�, so h − b = m − n. Then by
Lemma 2.2 (see Diagram 3), the point x2 = aα0+k�+β0+n−β0−k�,βo+m = aα0+n,β0+n ,
denoted by �, would belong to K , which is a contradiction since k� < n < k�+1.
Therefore all elements below the diagonal which are neither located on a row nor on
a column containing a diagonal point of K , do not belong to K .

Diagram 13
k� k�+1 k j k j+1

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ o · · ·
◦ . . .

k� ◦ �
n(m) ◦ � �
k�+1 ◦ •

◦ . . .

◦ . . .

k j ◦ •
m(n) ◦ � ◦
k j+1 ◦ •

◦ . . .

Suppose next that m < n, more precisely, k� < m < k�+1 ≤ k j < n < k j+1
We again consider the two points aα0+k�,β0+k�

, denoted by � in Diagram 13, and
aα0+m,β0+n , denoted by � in Diagram 13. These two points are vertices of a right
triangle with height h = m − k� smaller than the base b = n− k� and b− h = n−m.
Then by Lemma 2.2 (see Diagram 1), the point x1 = aα0+kl+β0+n−β0−k�,β0+n =
aα0+n,β0+n , denoted by �, would belong to K , which is a contradiction since k j <

n < k j+1.
The same two-part argument works in the cases k j < m < n < k j+1 and k j < n <

m < k j+1. Therefore all elements above or below the diagonal which are not located
on a row or on a column containing a diagonal point of K , do not belong to K .

We now have Diagram 14. Thus the only off-diagonal points that can possibly
belong to K are those that are located either on a row containing a diagonal point of
K , indicated by · · · , or on a column containing a diagonal point of K , indicated by
vertical dots.
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We next show that points which lie on a row or column, but not both, cannot belong
to K .

Consider first, for any row determined by k j and any n with n 
= km for all m,
the element aα0+k j ,β0+n , denoted by � in Diagram 15, and suppose it belonged to K .
Then by Lemma 2.1(iii),

aα0β0a
∗
α0+k j ,β0+naα0+k j ,β0+n = aα0+n,β0+n (denoted by�)

would belong to K , a contradiction since n 
= km for every m.
Next, for any column determined by k j and any n with n 
= km for all m, consider

the element aα0+n,β0+k j , denoted by � in Diagram 15, and suppose it belonged to K .
Then by Lemma 2.1(i),

aα0+n,β0+k j a
∗
α0+n,β0+k j aα0β0 = aα0+n,β0+n (denoted by�)

would belong to K , a contradiction since n 
= km for every m.
We now have Diagram 16. Thus the only off-diagonal points that can possibly

belong to K are those, denoted by �, that are located simultaneously on a row con-
taining a diagonal point of K and a column containing a diagonal point of K .

If none of the off-diagonal elements � belong to K , then obviously K = {aα0β0} ∪
{aα0+k j ,β0+k j : j ∈ N}. We next consider the case that some of the elements � in
Diagram 16 belong to K .

Diagram 14

k� k�+1 k j k j+1

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ . . .

.

.

. ◦
.
.
. ◦ ◦

.

.

. ◦
.
.
. ◦ ◦ · · ·

k� ◦ · · · • · · ·
.
.
. · · · · · ·

.

.

. · · ·
.
.
. · · · · · · · · ·

◦ ◦
.
.
. ◦

.

.

. ◦ ◦
.
.
. ◦

.

.

. ◦ ◦ · · ·
k�+1 ◦ · · ·

.

.

. · · · • · · · · · ·
.
.
. · · ·

.

.

. · · · · · · · · ·
◦ ◦

.

.

. ◦
.
.
. ◦ ◦

.

.

. ◦
.
.
. ◦ ◦ · · ·

◦ . . .

k j ◦ · · ·
.
.
. · · ·

.

.

. · · · · · · • · · ·
.
.
. · · · · · · · · ·

◦ ◦
.
.
. ◦

.

.

. ◦ ◦
.
.
. ◦

.

.

. ◦ ◦ · · ·
k j+1 ◦ · · ·

.

.

. · · ·
.
.
. · · · · · ·

.

.

. · · · • · · · · · · · · ·
◦ ◦

.

.

. ◦
.
.
. ◦ ◦

.

.

. ◦
.
.
. ◦ ◦ · · ·

.

.

.
. . .
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A row determined by k j for which no element other than aα0+k j ,β0+k j belongs to
K , that is, aα0+k j ,β0+k j ∈ K , and aα0+k j ,β0+kp /∈ K for all p ∈ N − {k j }, will be
called a null row. More precisely, a right-null (respectively left-null) row determined
by k j is one that satisfies aα0+k j ,β0+k j ∈ K , and aα0+k j ,β0+kp /∈ K for all p > k j
(respectively p < k j ). The row determined by α0 is a null row.

Similarly, a row determined by k j which contains an element of K other than
aα0+k j ,β0+k j , that is, there exists � > j (respectively � < j), such that aα0+k j ,β0+� ∈
K , will be called a right-ample (respectively left-ample) row. A row that is either
left-ample or right-ample (or both), will be called simply ample. By Diagram 2, a
left-ample row is also right-ample, but not conversely (see the sentence following
Lemma 2.1). For the same reason, a right-null row is also left-null. As noted above, if
all rows of K are null, then K = {aα0β0} ∪ {aα0+k j ,β0+k j : j ∈ N}. Thus we have the
following lemma.

Lemma 3.5 If all the rows of K are right-null, then K = {aα0β0} ∪ {aα0+k j ,β0+k j :
j ∈ N}.

Diagram 15

k� n k�+1 k j k j+1

• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ . . .

.

.

. ◦ .
.
. ◦ ◦ .

.

. ◦ .
.
. ◦ ◦ · · ·

k� ◦ · · · • · · · .
.
. · · · · · · .

.

. · · · .
.
. · · · · · · · · ·

n ◦ ◦ .
.
. �

.

.

. ◦ ◦ � ◦ .
.
. ◦ ◦ · · ·

k�+1 ◦ · · · .
.
. · · · • · · · · · · .

.

. · · · .
.
. · · · · · · · · ·

◦ ◦ .
.
. ◦ .

.

. ◦ ◦ .
.
. ◦ .

.

. ◦ ◦ · · ·
◦ . . .

k j ◦ · · · .
.
. �

.

.

. · · · · · · • · · · .
.
. · · · · · · · · ·

◦ ◦ .
.
. ◦ .

.

. ◦ ◦ .
.
. ◦ .

.

. ◦ ◦ · · ·
k j+1 ◦ · · · .

.

. · · · .
.
. · · · · · · .

.

. · · · • · · · · · · · · ·
◦ ◦ .

.

. ◦ .
.
. ◦ ◦ .

.

. ◦ .
.
. ◦ ◦ · · ·

.

.

.
. . .
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Diagram 16

k� k�+1 k j k j+1
• ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ . . . ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

k� ◦ ◦ • ◦ � ◦ ◦ � ◦ ◦ � ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

k�+1 ◦ ◦ � ◦ • ◦ ◦ � ◦ ◦ � ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ . . .

k j ◦ ◦ � ◦ � ◦ ◦ • ◦ ◦ � ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

k j+1 ◦ ◦ � ◦ � ◦ ◦ � ◦ ◦ • ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
...

. . .

Lemma 3.6 All right-null rows lie above all ample rows. Hence, if there is at least one
ample row, then there are only finitely many right-null rows.

Proof Suppose k j determines a right-null row, and k� determines an ample row, which
we may assume to be right-ample, say containing the element aα0+k�,β0+km , and sup-
pose by way of contradiction that � < j . Since � < j < m, the diagram is the
following, where � denotes the element aα0+k j ,β0+km .

k� k j km
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

k� ◦ • ◦ ◦ ◦ ◦ � ◦ · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

k j ◦ · · · ◦ · · · • ◦ ◦ ◦ · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

km · · · · · · ◦ · · · · · · ◦ • ◦ · · ·
The two points � and aα0+k j ,β0+k j are vertices of a triangle with base b = km − k j

and height h = k j − k�. Then by Diagrams 6, 8, or 10, depending on the relative
sizes of b and h, the point x3 = aα0+k j ,β0+km+k j−k�

would belong to K , which is a
contradiction since km + k j − k� > k j . �

Let �0 ∈ N be such that the first ample row is determined by k�0 , and assume
without loss of generality, that this row is right-ample. Assume also, temporarily, that
�0 > 1. The rows lying above the row determined by α0 + k�0 do not contain any
elements of K above the diagonal. It follows from Diagram 4 that the columns lying
to the left of the column determined by β0 + k�0 do not contain any elements of K
below the diagonal. By Diagram 2, K contains infinitely many elements to the right
of aα0+k�0 ,β0+k�0

, and then by Diagrams 2 and 4, K contains infinitely many elements
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below aα0+k�0 ,β0+k�0
. Since γ = ∞, the subsemiheap K ∩ Kα0+k�0 ,β0+k�0

falls into
subcase 3.3.3 below (see Propositions 3.15 and 3.16, and Diagram 17), and therefore

K = {aα0β0} ∪ {aα0+ki ,β0+ki : 1 ≤ i < �0} ∪ K
k j−k�0
α0+k�0 ,β0+k�0

, (6)

or

K = {aα0β0} ∪ {aα0+ki ,β0+ki : 1 ≤ i < �0} ∪
⎛

⎝
j⋃

i=�0

K
k j−k�0
α0+ki ,β0+ki

⎞

⎠ (7)

where k j is such that no point aα0+k�0 ,β0+kp belongs to K for 1 ≤ p < j . If �0 = 1,
then the term {aα0+ki ,β0+ki : 1 ≤ i < �0} is missing in (6) and (7). (In Diagram 17,
σ = k�0+1 + (k j − k�0)). This completes the proof of Proposition 3.4 and hence of
case 1.1. �

In each of the six subcases of cases 1.2 and 1.3, the diagram is the following:

β0
α0 • ◦ ◦ ◦ ◦ ◦ · · ·

◦ . . .

◦ . . .

◦ . . .

r • . . .

...
. . .

...
. . .

Then applying Diagram 4 to the points aα0β0 and aα0+r ,β0 shows that x1 =
aα0,β0+r ∈ K , a contradiction. Hence we have the following lemma.

Lemma 3.7 Cases 1.2 and 1.3 do not occur.
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Diagram 17

β0· · · k1· · · k2· · · k�0−1· · · k�0 · · · k�0+1· · · k j · · · σ · · · · · ·
α0 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
k1 ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
k2 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
... ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

k�0−1 ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦· · ·
... ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

k�0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦· · ·
... ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

k�0+1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ · · ·
... ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

k j ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ · · ·
... ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

σ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ · · ·
... ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
...

...
...

...
...

...
...

...

Lemma 3.8 Case 2.1 does not occur.

Proof Diagram 18 includes each of the three subcases of case 2.1. Then applying
Diagram 2 to the points aα0β0 and aα0,β0+p shows that x1 = aα0+p,β0 ∈ K , a contra-
diction.

�

Lemma 3.9 Case 2.2 does not occur.

Proof Note first that by Diagrams 2 and 4, only one element of K can reside on the
row determined by α0 or on the column determined by β0. Thus, Diagram 19 depicts
this case (if r < p).

Then by Diagrams 6 and 8 (depending on whether r < p or p ≥ r , K would
contain elements aα0,β0+� with � > p, a contradiction. �
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Diagram 18

β0 p
α0 • ◦ ◦ ◦ • ◦ · · ·

◦ . . .

◦ . . .

◦ . . .

◦ . . .

...
. . .

...
. . .

Diagram 19

β0 r p
α0 ◦ ◦ ◦ ◦ • ◦ · · ·

◦ . . .

r • . . .

◦ . . .

p ◦ . . .

...
. . .

...
. . .

Lemma 3.10 Case 2.3 does not occur, hence case 2 does not occur.

Proof In case 2.3.1 (β0 < β < ∞, α = ∞, γ = 0), note that aα0,β0+p is the only
point of K on the row determined by α0. From the following diagram we see that if
p < r , we get a contradiction using Diagram 8, and if r < p we get a contradiction
using Diagram 6, whereas if p = r , we get a contradiction using Diagram 10.

β0 p
α0 ◦ ◦ ◦ ◦ • ◦ ◦ · · ·

◦ ◦
◦ ◦
◦ ◦
◦ ◦
◦ ◦

r • ◦
...

. . .

The same proof applies to cases 2.3.2 (β0 < β < ∞, α = ∞, 0 < γ < ∞) and
2.3.3 (β0 < β < ∞, α = ∞, γ = ∞). �
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Lemma 3.11 Cases 3.1 and 3.2 do not occur.

Proof Cases 3.1.1, 3.1.2, and 3.1.3 do not occur by Diagram 2. Cases 3.2.1, 3.2.2, and
3.2.3 do not occur by Diagram 6. �
Proposition 3.12 Cases 3.3.1 and 3.3.2 do not occur.

Proof ByDiagram 2 or 4, wemay assume that aα0,β0 /∈ K . The subsets K ∩Kα0,β0+k1
and K∩Kα0+�1,β0 are subsemiheaps of K which fall into case 3.3.3, which is described
below in Proposition 3.18. However, as shown in the proof of Lemma 3.17 below, the
four possible situations each lead to aα0,β0 ∈ K . �
Case 3.3.3 (β = ∞, α = ∞, γ = ∞)

Let aα0,β0+p ∈ K with p ≥ 1 and aα0,β0+p′ /∈ K for 1 ≤ p′ < p. Similarly, let
aα0+r ,β0 ∈ K with r ≥ 1 and aα0+r ′,β0 /∈ K for 1 ≤ r ′ < r and let aα0+q,β0+q ∈ K
with q ≥ 1 and aα0+q ′,β0+q ′ /∈ K for 1 ≤ q ′ < q

In the diagram below, the bullets represent the three points of K which were just
defined, the symbol � means that the element aα0β0 may or may not belong to K ,
and the circles indicate that no element of K occupies that position. The diagram
represents just one of 13 possible cases (namely case (5) below), and is for illustration
purposes only.

β0 q r p
α0 � ◦ ◦ ◦ ◦ ◦ ◦ ◦ • · · ·

◦ ◦
◦ ◦

q ◦ •
◦ . . .

◦ . . .

◦ . . .

r • . . .

p
...

. . .

...
. . .

Of course, we must consider the various relations between the three elements
p, q, r ∈ N, some of which can be equal, of which there are six, namely

• r ≤ p ≤ q
• p ≤ r ≤ q
• p ≤ q ≤ r
• r ≤ q ≤ p
• q ≤ r ≤ p
• q ≤ p ≤ r

But for our purposes, it is necessary to distinguish 13 more refined cases, namely
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1. r < p < q
2. p < r < q
3. p < q < r
4. r < q < p
5. q < r < p
6. q < p < r
7. r = p < q
8. p = q < r
9. r = q < p

10. r < p = q
11. p < r = q
12. q < r = p
13. r = p = q

Lemma 3.13 Cases (3) to (11) do not occur. If aα0,β0 ∈ K, then cases (1) and (2) do
not occur. If aα0β0 /∈ K, then case (12) does not occur. In case (13), aα0β0 ∈ K.

Proof By Lemma 2.1, we have

aα0,β0+pa
∗
α0+q,β0+qaα0+r ,β0 =

⎧
⎪⎪⎨

⎪⎪⎩

(i) aα0,β0+p−r if r ≤ p and q ≤ p
(ii) aα0+r−p,β0 if r ≥ p and q ≤ p
(iii) aα0+r−p,β0 if r ≥ q and q ≥ p
(iv) aα0+q−p,β0+q−r if r ≤ q and q ≥ p.

(8)

In case (1) with aα0β0 ∈ K , we obtain a contradiction by Diagram 4.
In case (2) with aα0β0 ∈ K , we obtain a contradiction by Diagram 2.
In case (3), we obtain a contradiction by (8(iii)).
In case (4), we obtain a contradiction by (8(i)).
In case (5), we obtain a contradiction by (8(i)).
In case (6), we obtain a contradiction by (8(ii)).
In case (7), we obtain a contradiction by (8(iv)).
In case (8), we obtain a contradiction by (8(ii)).
In case (9), we obtain a contradiction by (8(i)).
In case (10), we obtain a contradiction by (8(i)).
In case (11), we obtain a contradiction by (8(iii)).
In case (12) with aα0β0 /∈ K , we obtain a contradiction by (8(i)) or (ii).
In case (13), aα0β0 ∈ K by (8(iii)). �

It remains to consider cases (1) and (2), with aα0β0 /∈ K , and the cases (12) and
(13), with aα0β0 ∈ K . The latter two will be resolved in Propositions 3.15 and 3.16
and the former two in Lemma 3.17.

We start with some properties in case (12). The basic diagram for case (12) is the
following.
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0 1 2 3 4 5 6 7
β0 q p

0 α0 • ◦ ◦ ◦ ◦ ◦ ◦ • · · ·
1 ◦ ◦
2 ◦ ◦
3 q ◦ •
4 ◦ . . .

5 ◦ . . .

6 ◦ . . .

7 r = p • . . .

...

Lemma 3.14 In case (12), with (necessarily) aα0β0 ∈ K,

(a) The rows 1, 2, . . . , q − 1 contain no elements of K above the diagonal
The columns 1, 2, . . . , q − 1 contain no elements of K below the diagonal

(b) The points aα0+q,β0+q+i , for 1 ≤ i ≤ p − q do not belong to K .
The points aα0+q+i,β0+q , for 1 ≤ i ≤ p − q do not belong to K .

(c) The points aα0+q,β0+p, and aα0+p,β0+q do not belong to K .
(d) The points aα0+q,β0+ j , for mp < j < mp + q, with m ∈ N do not belong to K .

The points aα0+i,β0+q , for mp < i < mp + q, with m ∈ N do not belong to K .
(e) aα0+q,β0+p+q , aα0+p+q,β0+q ∈ K.
(f) The points aα0+q,β0+ j , for mp + q < j ≤ (m + 1)p, with m ∈ N do not belong

to K .
The points aα0+i,β0+q , for mp + q < i ≤ (m + 1)p, with m ∈ N do not belong to
K .

(g) The points aα0,β0+ j , for mp < j < (m + 1)p, with m ∈ N do not belong to K .
The points aα0+i,β0 , for mp < i < (m + 1)p, with m ∈ N do not belong to K .

Proof In what follows, we shall elaborate on the above diagram. In the next diagram,
the symbols�,�,�,�,
,�,♠,♣, and their blank versions, represent points which,
a priori, do not belong to K . They should be temporarily ignored. (The locations of
(a)–(g) are indicated in the diagram preceding Proposition 3.16.)

(a) Consider the two points aα0β0 and aα0+i,β0+ j , the latter indicated by � in the
next diagram, with 1 ≤ i < q, 2 ≤ j < ∞ and i < j , and suppose that aα0+i,β0+ j

belongs to K . Then by Diagram 1, x3 = aα+i,β0+i , indicated by �, belongs to K , a
contradiction. Therefore the rows 1, 2, 3, . . . q − 1 contain no elements of K above
the diagonal.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
β0 q p p + q 2p

0 α0 • ◦ ◦ ◦ � 	 ◦ • ♣ · · ·
1 ◦ ◦ · · ·
2 ◦ � ♦ � · · ·
3 ◦ � · · ·
4 q ◦  • � � � • · · ·
5 ◦ · · ·
6 ◦ ♠ . . . · · ·
7 r = p • 
 • · · ·
8 � · · ·
9 � . . . · · ·

10 � · · ·
11 p + q • • · · ·
12 · · ·
13 · · ·
14 2p • • · · ·

Consider the two points aα0β0 and aα0+i,β0+ j , the latter indicated by � in the
preceding diagram, with 1 ≤ j < q, 2 ≤ i < ∞ and i > j , and suppose that
aα0+i,β0+ j belongs to K . Then byDiagram3, x2 = aα+ j,β0+ j , indicated by�, belongs
to K , a contradiction. Therefore columns 1, 2, 3, . . . q − 1 contain no elements of K
below the diagonal.

(b) Assuming that aα0+q,β0+q+ j , indicated by � in the preceding diagram, with
1 ≤ j < p − q, belongs to K , we have that

K ⊃ K j
α0+q,β0+q = {aα0+q+� j,β0+q+mj : �,m ≥ 0}.

Then by Lemma 2.1(i),

aα0,β0+pa
∗
α0+q+� j,β0+q+mjaα0β0 = aα0,β0+(�−m) j+p ∈ K ,

provided that 0 ≤ (� − m) j + p and q + mj ≤ p. Then with � = 0 and m = 1, we
have that aα0,β0− j+p, indicated by 	, belongs to K , which is a contradiction.

For the second statement of (b), the proof is the same, namely, assuming that
aα0+q+i,β0+q , indicated by ♠, with 1 ≤ i < p − q, belongs to K , we have that

K ⊃ Ki
α0+q,β0+q = {aα0+q+�i,β0+q+mi : �,m ≥ 0}.

Then by Lemma 2.1(i),

aα0,β0+pa
∗
α0+q+�i,β0+q+miaα0β0 = aα0,β0+(�−m)i+p ∈ K ,

provided that 0 ≤ (� − m)i + p and q + mi ≤ p. Then with � = 0 and m = 1, we
have that aα0,β0−i+p, indicated by 	, belongs to K , which is a contradiction.

(c)Assuming thataα0+q,β0+p, indicatedby�, belongs to K , thenbyLemma2.1(iii),

aα0,β0+pa
∗
α0+q,β0+paα0+q,β0+q = aα0,β0+q ,
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indicated by �, belongs to K , a contradiction. Assuming that aα0+p,β0+q , indicated
by 
, belongs to K , then applying Diagram 4 to the two points aα0+q,β0+q and 
 we
have x1 = aα0+q,β0+p ∈ K , a contradiction to the previous paragraph.

(d) Suppose mp < j < mp + q and assume that aα0+q,β0+ j , indicated by � in the
preceding diagram (with m = 1), belongs to K . Then by Lemma 2.1(iii),

aα0,β0+mpa
∗
α0+q,β0+ j aα0+q,β0+q = aα0+ j−mp,β0+q ,

indicated by ♦, belongs to K , a contradiction to (i), since j − mp < q.
Suppose mp < i < mp + q and assume that aα0+i,β0+q , indicated by � in the

preceding diagram (with m = 1), belongs to K . Then by Lemma 2.1(iv),

aα0+q,β0+qa
∗
α0+i,β0+qaα0+mp,β0 = aα0+q,β0+i−mp,

indicated by , belongs to K , a contradiction to (i′), since i − mp < q.
(e) By Diagrams 6 or 8, applied to the vertices aα0+q,β0+q and aα0+p,β0 , x1 =

aα0+q,β0+p+q ∈ K , and then by Diagram 7, aα0+p+q,β0+q ∈ K .
In the proofs of (f) and (g), and in the rest of this section, we can assume (by Remark

2.8), with no loss of generality, that α0 = β0 = 0.
(f) Suppose that (q, j) ∈ K with mp + q < j ≤ (m + 1)p. By Lemma 2.1(iii),

(0,mp)(q, j)∗(q, q) = ( j−mp, q). This is a contradiction to (b) since p ≥ j−mp >

q.
Suppose that (i, q) ∈ K with mp + q < i ≤ (m + 1)p. By Lemma 2.1(iv),

(q, q)(i, q)∗(mp, 0) = (q, i −mp). This is a contradiction to (b) since p ≥ i −mp >

q.
(g) Supposing that aα0,β0+ j , with p < j < ∞ and j /∈ {2p, 3p, . . .}, denoted

by ♣ in the preceding diagram, belongs to K , we apply Diagram 2 to aα0,β0+mp and
aα0,β0+ j , wheremp < j < (m+1)p to get x2 = aα0+ j−mp,β0+ j ∈ K , a contradiction
since j−mp < p. Hence no element of K occupies any position in the row determined
by α0 except for the points aα0,β0+mp for m ∈ N0.

Supposing that aα0+i,β0 , with p < i < ∞ and i /∈ {2p, 3p, . . .}, denoted by �,
belongs to K , we apply Diagram 4 to aα0+mp,β0 and aα0+i,β0 , where mp < i <

(m + 1)p to get a contradiction. Hence no element of K occupies any position in the
column determined by β0 except for the points aα0+�p,β0 for � ∈ N0. �

We now have the following diagram for case (12) with aα0,β0 ∈ K , and it is clear
that K ∩ Kq,q is also in subcase (12), so it follows that K = ⋃∞

i=0 K
p
qi ,qi , where

aα0+qi ,β0+qi are the points of K lying on the diagonal with

q = q0 < q1 < q2 < · · · < qn < qn+1 < · · · .

Proposition 3.15 In case (12), with (necessarily) aα0,β0 ∈ K, let aα0+qi ,β0+qi , 0 ≤
i < ∞,be the points of K lying on the diagonal, such that

q = q0 < q1 < q2 < · · · < qn < p and p < qn+1 < qn+2 < · · · .
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Then

K =
n⋃

i=0

K p
qi ,qi .

Proof We know that K = ⋃∞
i=0 K

p
qi ,qi . We need to show that

⋃∞
i=n+1 K

p
qi ,qi ⊂⋃n

i=0 K
p
qi ,qi . For this it suffices to show that each qn+ j with j ≥ 1 is congruent

to some element of {q0, q1, . . . qn}, modulo p.
Let (qk + �p, qk + mp) ∈ K p

qk ,qk for some k ≥ n + 1 with fixed �,m, and let
(�′ p,m′ p) ∈ K p

0,0 with variable �′,m′. By Lemma 2.1(i),

(qk + �p, qk + mp)(α0, β0)
∗(�′ p,m′ p) = (qk + �p, qk + (m′ + m − �′)p) ∈ K

as long as qk + mp ≥ 0 and �′ p ≤ qk + mp, We now choose �′ such that qk =
(�′ − m)p + d, where �′ − m ≥ 1 and 0 ≤ d < p. To check that �′ p ≤ qk + mp, we
note that (�′ − m)p = qk − d ≤ qk . We now have

(qk + �p, qk + (m′ + m − �′)p) = (d + (� + �′ − m)p, d).

Thus (d + tp, d) ∈ K = ⋃∞
i=0 K

p
qi ,qi for some t ≥ 0, so that (d + tp, d) = (qi +

rp, qi + sp) for some i, r , s ≥ 0. Hence d + tp = qi + rp and d = qi + sp, so by
subtraction tp = (r − s)p and d + (r − s)p = qi + rp so that d = qi + sp. Since
d < p, s = 0 and d = qi with i ≤ n. �

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
β0 q p p + q 2p

α0 • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ (g) ◦ ◦ (g) ◦ • ◦ · · ·
◦ ◦ (a) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ (a) ◦ (a) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ (a) ◦ (a) ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

q ◦ ◦ ◦ (a) • (b) ◦ (c) ◦ (d) ◦ •(e) ◦ ( f ) ◦ ◦ · · ·
◦ ◦ ◦ ◦ (b) · · ·
◦ ◦ ◦ ◦ ◦ . . . · · ·

p • ◦ ◦ ◦ (c) • • · · ·
◦ ◦ ◦ ◦ ◦ · · ·

(g) ◦ ◦ ◦ (d)
. . . · · ·

◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ •(e) • · · ·

(g) ◦ ◦ ◦ ◦ . . . · · ·
◦ ◦ ◦ ◦ ( f ) · · ·

2p • ◦ ◦ ◦ ◦ • • · · ·
◦ ◦ ◦ ◦ ◦ . . . · · ·
...

...
...

...
...

...
...

... · · ·

Proposition 3.16 In case (13), K = K p
α0,β0

Proof The diagram for case (13) is Diagram 20. (Temporarily ignore the symbols
�,�,�,�).
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In the first place, we notice that by Diagrams 2 and 4,

K ⊃ K p
α0,β0

= {aα0+�p,β0+mp : �,m ∈ N0}.

Diagram 20

β0 p
α0 • ◦ ◦ ◦ • · · · � · · ·

◦ ◦
◦ ◦ �
◦ ◦

r = p = q • •
...

. . .

� . . .

... � . . .

The next four paragraphs refer to Diagram 20.
Supposing that aα0+i,β0+ j for 1 ≤ i < p and 2 ≤ j < ∞, denoted by �, belongs

to K , we apply Diagram 1 to aα0β0 and aα0+i,β0+ j to get x3 = aα0+i,β0+i ∈ K , a
contradiction. Hence no element of K occupies any position above the diagonal in the
rows determined by α0 + i , for 1 ≤ i < p.

Supposing that aα0+i,β0+ j for 2 ≤ i < ∞ and 1 ≤ j < p, denoted by �, belongs
to K , we apply Diagram 3 to aα0β0 and aα0+i,β0+ j to get x2 = aα0+ j,β0+ j ∈ K , a
contradiction. Hence no element of K occupies any position below the diagonal in the
columns determined by β0 + j , for 1 ≤ j < p

Supposing that aα0,β0+ j , with p < j < ∞ and j /∈ {2p, 3p, . . .}, denoted by �,
belongs to K , we applyDiagram2 to aα0,β0+kp and aα0,β0+ j , where kp < j < (k+1)p
to get x2 = aα0+ j−kp,β0+ j ∈ K , a contradiction since j − kp < p. Hence no element
of K occupies any position in the row determined by α0 except for the points aα0,β0+mp

for m ∈ N0.
Supposing that aα0+i,β0 , with p < i < ∞ and i /∈ {2p, 3p, . . .}, denoted by �,

belongs to K , we apply Diagram 4 to aα0+kp,β0 and aα0+i,β0 , where kp < i < (k+1)p
to get a contradiction. Hence no element of K occupies any position in the column
determined by β0 except for the points aα0+�p,β0 for � ∈ N0.

We now have
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β0 p 2p
α0 • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

r = p = q • ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ . . .

◦ ◦ ◦ ◦ . . .

◦ ◦ ◦ ◦ . . .

2p • ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ . . .

...
...

...
...

. . .

We next consider what happens in the row defined by α0 + p.
Supposing that aα0+p,β0+p+i belongs to K , with 1 ≤ i < p, then applying Dia-

gram 3 to aα0,β0+p and aα0+p,β0+p+i we obtain x2 = aα0+i,β0+p+i ∈ K , which is
a contradiction, and repeating this argument shows that no element of K occupies
any position in the row determined by α0 + p except for the points aα0+p,β0+mp for
m ∈ N0.

We next consider what happens in the column defined by β0 + p.
Supposing that aα0+p+i,β0+p belongs to K , with 1 ≤ i < p, then applying Dia-

gram 1 to aα0+p,β0 and aα0+p+i,β0+p we obtain x3 = aα0+p+i,β0+i ∈ K , which is a
contradiction, and repeating this argument shows that no element of K occupies any
position in the column determined by β0 + p except for the points aα0+�p,β0+p for
� ∈ N0.

We now have (ignore temporarily the symbol �)

β0 p 2p
α0 • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

r = p = q • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ · · ·
◦ ◦ ◦ ◦ ◦ . . .

◦ ◦ ◦ ◦ ◦ �

◦ ◦ ◦ ◦ ◦ . . .

2p • ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦ . . .

...
...

...
...

...
. . .

Finally, we consider what happens along the diagonal.
Supposing that aα0+p+i,β0+p+i , denoted by �, with 1 ≤ i < p, belongs to K , we

apply Diagram 1 to aα0+p,β0 and aα0+p+i,β0+p+i , we obtain x3 = aα0+p+i,β0+i ∈ K ,
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which is a contradiction, and repeating this argument shows that no element of K
occupies any position in the diagonal except for the points aα0+�p,β0+�p for � ∈ N0.

We now have

β0 p 2p
α0 • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·

r = p = q • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

2p • ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦ ◦
...

...
...

...
...

. . .

We are now in the position at the beginning of the proof, namely, the semiheap K ∩
Kp,p is in subcase (13) of case 3.3.3, and the result follows by applying successively
what has already been proved. �

We shall now consider cases (1) and (2) with aα0,β0 /∈ K (See Lemma 3.13), and
assume with no loss of generality, that α0 = β0 = 0. We consider the following
diagram for case (1) and establish the following notation. The points of K on the
row determined by α0, indicated by �, are aα0,β0+mi , with 1 ≤ m1 < m2 < · · · ,
and the points on the column determined by β0, indicated by �, are aα0+�i ,β0 , with
1 ≤ �1 < �2 < · · · . We denote σ = m2 − m1 and ρ = �2 − �1. For example, in that
diagram, σ = 6 and ρ = r = 4.

m1 m2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

r p q
0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ � ◦ ◦ ◦ ◦ ◦ � �
1 ◦ ◦ ◦
2 ◦ ◦ ◦
3 ◦ ◦ ◦
4 �1 = r � � � � � � ◦ � � � �
5 ◦ � ◦ ◦
6 ◦ � ◦ � � �
7 ◦ � ◦
8 �2 � � � � � � �
9 p ◦
10 ◦
11 ◦
12 q � � � � �• � � � � �
13
14
15
16 � � � � � � �
17
18 � � �
19
20 � � � � � � �
21
22
23
24 � � � � � � � � � �
25

We consider first Kr ,0. By Diagram 2, the points (r , i), 1 < i < ρ, indicated by
�, do not belong to K . By Diagram 4, K ⊃ K ρ

r ,0. The semiheap K ∩ Kr ,0 falls into
case 3.3.3, more precisely, either cases (7), (12) or (13), but case (7) does not occur.
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In case (13), the points (r + j, j), 1 ≤ j < ρ, indicated by �, do not belong to K , so
by Proposition 3.16, K ∩ Kr ,0 = K ρ

r ,0, and therefore in this case,

K1 := K ρ
r ,0 ∩ Kr ,p = {(α0 + r + �ρ, β0 + mρ : � ∈ N0,mρ ≥ p}.

By the same argument applied to K0,p, assuming that K ∩ K0,p is also in case (13),
we have

K2 := K σ
0,p ∩ Kr ,p = {(α0 + �′σ, β0 + p + m′σ) : �′σ ≥ r ,m′ ∈ N0}.

K1 is depicted by the symbols� in Kr ,p and K2 is depicted by the symbols� in Kr ,p,
and we must have K1 = K ∩ Kr ,p = K2.

As suggested by the diagram, we now show that σ = ρ, and that p and r are
divisible by σ .

• Taking m′ = 0 and �′σ ≥ r , (�′σ, p) ∈ K2 so that (�′σ, p) = (r + �ρ,mρ) for
some �,m ∈ N0 with mρ ≥ p. Therefore p = mρ and r = �′σ − �ρ.

• Taking � = 0 and mρ ≥ p, (r ,mρ) ∈ K1 so that (r ,mρ) = (�′σ, p + m′ρ) for
some �′,m′ ∈ N0 with �′σ ≥ r . Therefore r = �′σ and mρ = p + m′σ .
Thus p is divisible by ρ, say p = m0ρ, and r is divisible by σ , say r = �0σ .

• Taking � = 0 and (m0 + 1)ρ = p + ρ > p, (r , (m0 + 1)ρ) ∈ K1 so that
(r , (m0 +1)ρ) = (�′′σ, p+m′′ρ) for some �′′,m′′ ∈ N0 with �′′σ ≥ r . Therefore
r = �′′σ and (m0 + 1)ρ = p + m′′σ . So p + ρ = p + m′′σ , and ρ = m′′σ .

• Taking m′ = 0 and (�0 + 1)σ = r + σ > r , ((�0 + 1)σ, p) ∈ K2 so that
((�0 + 1)σ, p) = (r + �ρ,mρ) for some �,m ∈ N0 with mρ ≥ p. Therefore
r + σ = r + �ρ, so that σ = �ρ

Thus ρ is divisible by σ and σ is divisible by ρ, hence σ = ρ.

Since p and r are each a multiple of ρ, it follows that (r , p) ∈ K , so that
(0, p)(r , p)∗(r , 0) = (0, 0) ∈ K , which is a contradiction. We conclude that if both
semiheaps K ∩ Kr ,0 and K ∩ K0,p are in case (13), then case (1) does not occur.

It remains to show that case (1) does not occur in the three other possible cases,
namely,

• K ∩ Kr ,0 is in case (12) and K ∩ K0,p is in case (13)
• K ∩ Kr ,0 is in case (13) and K ∩ K0,p is in case (12)
• K ∩ Kr ,0 is in case (12) and K ∩ K0,p is in case (12)

Let us now suppose that K ∩ Kr ,0 is in case (12), and K ∩ K0,p is in case (13) and
refer to the following diagram. Recall that the points of K on the row determined by
α0, indicated by �, are aα0,β0+mi , with 1 ≤ m1 < m2 < · · · , and the points on the
column determined by β0, indicated by �, are aα0+�i ,β0 , with 1 ≤ �1 < �2 < · · · .
We denote σ = m2 − m1 and ρ = �2 − �1. For example, in that diagram, σ = 6 and
ρ = r = 4.
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Since K ∩ Kr ,0 is assumed in case (12), by Proposition 3.15, there exist 0 = j0 <

1 ≤ j1 < j2 < · · · < jn < ρ such that

K ∩ Kr ,0 =
n⋃

i=0

K ρ
r+ ji , ji

,

and therefore in this case,

K1 := K ρ
r ,0 ∩ Kr ,p =

n⋃

i=0

(
K ρ
r+ ji , ji

∩ Kr ,p

)

=
n⋃

i=0

{(r + ji + �ρ, ji + mρ) : �,m ∈ N0, ji + mρ ≥ p}.

In the diagram, we indicate the points of K ρ
r+ j1, j1

= K 4
r+3,3 with the symbols ♥, and

the points of K ρ
r+ j2, j2

= K 4
r+6,6 with the symbols ⊕.

As before, assuming that K ∩ K0,p is in case (13), we have

K2 := K σ
0,p ∩ Kr ,p = {(α0 + �′σ, β0 + p + m′σ) : �′σ ≥ r ,m′ ∈ N0}

Also in the diagram, K1 is depicted by the symbols �,♥,⊕ in Kr ,p and K2 is
depicted by the symbols � in Kr ,p, and we must have K1 = K ∩ Kr ,p = K2.

j1 j2 m1 m2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

r p q
0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ � ◦ ◦ ◦ ◦ ◦ � �
1 ◦ ◦ ◦
2 ◦ ◦ ◦
3 ◦ ◦ ◦
4 �1 = r � � � ◦ � � � �
5 ◦ ◦ ◦
6 ◦ ◦ � � �
7 r + j1 ◦ ♥ ♥◦ ♥ ♥ ♥ ♥
8 �2 � � � � � � �
9 p ◦
10 r + j2 ⊕ ⊕◦ ⊕ ⊕ ⊕
11 ♥ ♥ ♥◦ ♥ ♥ ♥
12 q � � � � �• � � � � �
13
14 ⊕ ⊕ ⊕ ⊕ ⊕
15 ♥ ♥ ♥ ♥ ♥ ♥
16 � � � � � � �
17
18 ⊕ � ⊕ ⊕ � ⊕ � ⊕
19 ♥ ♥ ♥ ♥ ♥ ♥
20 � � � � � � �
21
22 ⊕ ⊕ ⊕ ⊕ ⊕
23 ♥ ♥ ♥ ♥ ♥ ♥
24 � � � � � � � � � �
25

We show first that ρ = σ . Since K1 ⊂ K2, for �,m, i ∈ N0, with ji + mρ ≥ p,
there exist �′,m′ ∈ N0 with �′σ ≥ r and

(r + ji + �ρ, ji + mρ) = (�′σ, p + m′σ). (9)
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Fix i such that ji ≥ p. Then for all �,m ∈ N0, there exist �′,m′ ∈ N0 with �′σ ≥ r
such that

r + ji + �ρ = �′ρ and ji + mρ = p + m′σ.

Eliminating ji from these two equations results in

r + p = (m − �)ρ + (�′ − m′)σ, (10)

with (�′,m′) depending on (�,m) and satisfying �′σ ≥ r .
Since K2 ⊂ K1, for �,m ∈ N0, with �σ ≥ r , there exist �′,m′, i ∈ N0 with

ji + m′ρ ≥ p such that

r + ji + �′ρ = �σ and ji + m′ρ = p + mσ.

Eliminating ji from these two equations results in

r + p = (m′ − �′)ρ + (� − m)σ, (11)

with (�′,m′) depending on (�,m), provided �σ ≥ r .
With � ≥ 0 and m ≥ 0, from (10), there exist �1,m1 such that

r + p = (m − �)ρ + (�1 − m1)σ

and there exist �2,m2 such that

r + p = (m + 1 − �)ρ + (�2 − M2)σ,

so by subtraction, 0 = ρ + [(�2 − m2) + (�1 − m1)]σ and σ divides ρ.
With �σ ≥ r and m ≥ 0, from (11), there exist �3,m3 such that

r + p = (m3 − �3)ρ + (� − m)σ

and there exist �4,m4 such that

r + p = (m4 − �4)ρ + (� + 1 − m)σ,

so by subtraction, 0 = [(m4 − �4) − (m3 − �3)]ρ + σ and ρ divides σ .
Hence ρ = σ and from (10) or (11), ρ divides r + p. Now, taking i = 0, � = 0

in (9), r = �′σ , so that also ρ divides p. Hence, as in the previous case, (r , p) ∈ K ,
so that (0, p)(r , p)∗(r , 0) = (0, 0) ∈ K , which is a contradiction. We conclude that
if the semiheap K ∩ Kr ,0 is in case (12) and the semiheap K ∩ K0,p is in case (13),
then case (1) does not occur.

Since the adjoint mapping is an anti-isomorphism of the extended bicyclic semi-
group (See Remark 2.8), it follows that if the semiheap K ∩ Kr ,0 is in case (13) and
the semiheap K ∩ K0,p is in case (12), then case (1) does not occur.
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It remains to consider the case when both semiheaps K ∩ Kr ,0 and K ∩ K0,p are
in case (12). After this, again since the adjoint mapping is an anti-isomorphism, and
case (1) has been shown to not occur, it will follow that case (2) also does not occur,
so we will have the following lemma.

Lemma 3.17 Cases (1) and (2) with (necessarily) (0, 0) /∈ K, do not occur.

Proof It suffices to show that if both semiheaps K ∩ Kr ,0 and K ∩ K0,p are in case
(12), then (0, 0) ∈ K and therefore case (1) does not occur. We have

K1 := K ∩ Kr ,0 ∩ Kr ,p =
n⋃

i=0

{(r + ji + �ρ, ji + mρ) : �,m ∈ N0, ji + mρ ≥ p}

and

K2 := K ∩ K0,p ∩ Kr ,p =
n′⋃

i=0

{(ki + �σ, p + ki + mσ) : �,m ∈ N0, ki + �σ ≥ r},

where 0 = k0 < 1 ≤ k1 < k2 < · · · < kn′ < σ .
Since K1 ⊂ K2, for i, �,m ∈ N0 with ji + mρ ≥ p, there exist i ′, �′,m′ ∈ N0

satisfying ki ′ + �′σ ≥ r , such that

(r + ji + �ρ, ji + mρ) = (ki ′ + �′σ, p + ki ′ + m′σ)

so that

r + ji + �ρ = ki ′ + �′σ and ji + mρ = p + ki ′ + m′σ

Fix i such that ji ≥ p. Then for every �,m ∈ N0, by subtraction, we have

r + p = (m − �)ρ + (�′ − m′)σ (12)

with �′,m′ depending only on �,m ∈ N0 (and �′ satisfying ki ′ + �′σ ≥ r for some i ′).
Since K2 ⊂ K1, for i, �,m ∈ N0 with ki + �σ ≥ r , there exist i ′, �′,m′ ∈ N0

satisfying ji ′ + m′ρ ≥ p, such that

(ki + �σ, p + ki + mσ) = (r + ji ′ + �′ρ, ji ′ + m′ρ)

so that

ki + �σ = r + ji ′ + �′ρ and p + ki + mσ = ji ′ + m′ρ

Fix i such that ki ≥ r . Then for every �,m ∈ N0, by subtraction, we have

r + p = (� − m)σ + (m′ − �′)ρ (13)
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with �′,m′ depending only on �,m ∈ N0 (and m′ satisfying ji ′ + m′ρ ≥ p for some
i ′).

With � ≥ 0 and m ≥ 0, from (12), there exist �1,m1 such that

r + p = (m − �)ρ + (�1 − m1)σ

and there exist �2,m2 such that

r + p = (m + 1 − �)ρ + (�2 − M2)σ,

so by subtraction, 0 = ρ + [(�2 − m2) + (�1 − m1)]σ and σ divides ρ.
With � ≥ 0 and m ≥ 0, from (13), there exist �1,m1 such that

r + p = (� − m)σ + (m1 − �1)ρ

and there exist �2,m2 such that

r + p = (� + 1 − m)σ + (m2 − �2)ρ,

so by subtraction, 0 = σ + [(m2 − �2) + (m1 − �1)]ρ and ρ divides σ .
Hence ρ = σ and from (12) or (13), σ divides p + r . In fact, σ divides both p and

r . Indeed, since (q, q) ∈ K1 and K1 = K2, there exist �,m, i and �′,m′, i ′, such that

(q, q) = (r + ji + �σ, ji + σ) = (ki ′ + �′σ, p + ki ′ + m′σ),

so that r + �σ = mσ and p + m′σ = �′σ . We now have (r , p) ∈ K , so that
(0, 0) = (0, p)(r , p)∗(r , 0) ∈ K , a contradiction. �

We summarize the results of Lemma 3.13 to Lemma 3.17 in the following propo-
sition.

Proposition 3.18 If the semiheap K is in case 3.3.3, then either K = K p
α0,β0

for some
p > 0, or there exist p > 0 and q > 0 such that

K =
n⋃

i=0

K p
qi ,qi .

where

q = q0 < q1 < q2 < · · · < qn < p and p < qn+1 < qn+2 < · · · .

Proof By Lemma 3.17, cases (1) and (2) do not occur. By Lemma 3.13, cases (3)–(11)
do not occur. Cases (12) and (13) are described in Propositions 3.15 and 3.16. �
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4 Injectivity of W*-TROs

The notation for this section is the following.
S is an inverse semigroup with generalized inverse x∗.
K is a subset of S closed under the triple product xy∗z (semiheap).
π is the left regular representation of S on H := �2(S) so that S is an orthonormal

basis for H and π(x) is the partial isometry defined by π(x)y = xy if yy∗ ≤ x∗x and
π(x)y = 0 otherwise.

C∗
red(S) is the C*-algebra generated by {π(x) : x ∈ S} and is the norm closure of

spanπ(S).
T RO(K ) is the TRO generated by π(K ) and is the norm closure of spanπ(K ).
V N (S) is the von Neumann algebra generated by π(S) and is the weak closure of

C∗
red(S)

V NT RO(K ) is the W*-TRO generated by π(K ) and is the weak closure of
T RO(K ).

Details of the left regular representation are as follows ([13, pp. 25–27]). We have

π(ai j )apq =
{
ai j apq , apqa∗

pq ≤ a∗
i j ai j

0, otherwise
,

that is,

π(ai j )apq =
{
ai j apq , app ≤ a j j

0, otherwise
,

or

π(ai j )apq =
{
ai j apq , p ≥ j

0, otherwise
,

or

π(ai j )apq =
{
ai+p− j,q , p ≥ j

0, otherwise

Define provisionally a linear map �0 : spanπ(S) → spanπ(K ) as follows:
�0(0) = 0, and for x1, . . . xn ∈ S,

�0

(
n∑

i=1

λiπ(xi )

)
=

∑

xi∈K
λiπ(xi ).

Proposition 4.1 The idempotent map�0 is well-defined and contractive, and therefore
extends to a contractive projection � on C∗

red(S) with range T RO(K ). Moreover, �
extends to a completely contractive projection on V N (S) with range V NT RO(K ).
Hence, if V N (S) in an injective von Neumann algebra, then V NT RO(K ) is an
injective operator space.
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Proof Let a = ∥∥∑n
i=1 λiπ(xi )

∥∥ and b =
∥∥∥
∑

xi∈K λiπ(xi )
∥∥∥.With ξ = ∑

z∈S(ξ, z)z ∈
�2(S),

π(xi )ξ =
∑

zz∗≤x∗
i xi

(ξ, z)xi z

so that

b2 = sup
‖ξ‖≤1

∥∥∥∥∥∥

∑

xi∈K
λiπ(xi )ξ

∥∥∥∥∥∥

2

= sup
‖ξ‖≤1

∑

xi∈K ,z∈S,zz∗≤x∗
i xi

|λi (ξ, z)|2

and by the same calculation

a2 = sup
‖ξ‖≤1

∥∥∥∥∥∥

∑

xi∈S
λiπ(xi )ξ

∥∥∥∥∥∥

2

= sup
‖ξ‖≤1

∑

xi∈S,z∈S,zz∗≤x∗
i xi

|λi (ξ, z)|2.

Therefore �0 is contractive and extends to a contractive projection on C∗
red(S) with

range T RO(K ).
Let A = C∗

red(S), U = T RO(K ), so that �∗∗ is a contractive projection on the

von Neumann algebra A∗∗ with range U∗∗. By [10, Lemma], U∗∗ is isomorphic to
V NT RO(K ), and by [3, Theorem 2.5], �∗∗ is a completely contractive projection
with rangeV NT RO(K ). Therefore, the restriction� of�∗∗ toV N (S) is a completely
contractive projection of V N (S) onto V NT RO(K ). If V N (S) is injective, then there
is a completely contractive projection P of B(H) onto V N (S), so that � ◦ P is a
completely contractive projection with range V NT RO(K ). �

Example 4.2 Suppose that e and f are idempotents in the inverse semigroup S and
that K = eS f , which is a subsemiheap of S. The corresponding induced map takes
the form π(x) �→ π(ex f ) (with 0 → 0) and is contractive since

∥∥∥∥∥
∑

i

λiπ(exi f )

∥∥∥∥∥ ≤ ‖π(e)‖
∥∥∥∥∥
∑

i

λiπ(xi )

∥∥∥∥∥ ‖π( f )‖ =
∥∥∥∥∥
∑

i

λiπ(xi )

∥∥∥∥∥ .

Hence Proposition 4.1 applies. This also applies to maps of the form x �→ ex and
x �→ x f .

The maximal subgroups of any inverse semigroup S are of the form

See = {s ∈ S : ss∗ = s∗s = e}
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for some idempotent e (See [13, p. 198]). Thus, themaximal subgroups of the extended
bicyclic semigroup E reduce to one-element groups, so are trivially amenable and
hence by [13, Theorem 4.5.2], V N (E) is injective.2

Since V N (E) is injective, where E is the extended bicyclic semigroup, it follows
fromProposition 4.1 andExample 4.2, that V NT RO(aii Ea j j ) is an injective operator
space, as are V NT RO(Ea j j ) and V NT RO(aii E). More generally, we have

Corollary 4.3 All of the subsemiheaps of the extended bicyclic semigroup E (which
were determined in Theorem 1.2) give rise to injective W*-TROs.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Daviaud, L., Johnson, M., Kambites, M.: Identities in upper triangular tropical matrix semigroups and
the bicyclic monoid. J. Algebra 501, 503–525 (2018)

2. Descalço, L., Rus̆kuc, N.: Subsemigroups of the bicyclic monoid. Int. J. Algebra Comput. 15(1), 37–57
(2005)

3. Effros, E.G., Ozawa, N., Ruan, Z.-J.: On injectivity and nuclearity for operator spaces. Duke Math. J.
110(3), 489–522 (2001)

4. Hestenes, M.R.: A ternary algebra with applications to matrices and linear transformations. Arch.
Rational Mech. Anal. 11, 138–194 (1962)

5. Hollings,C.D.:MathematicsAcross the IronCurtain.AHistory of theAlgebraicTheoryofSemigroups.
American Mathematical Society, Providence (2014)

6. Hovsepyan, K.H.: Inverse subsemigroups of the bicyclic semigroup. Math. Notes 108(3–4), 550–556
(2020)

7. Howie, J. M.: An Introduction to Semigroup Theory. Academic Press [Harcourt Brace Jovanovich],
London, New York (1976)

8. Hollings, C.D., Lawson, M.V.: Wagner’s Theory of Generalized Heaps. Springer, Cham (2017)
9. Khoshkam, M., Skandalis, G.: Regular representation of groupoid C*-algebras and applications to

inverse semigroups. J. Reine Angew. Math. 546, 47–72 (2002)
10. Landesman, E.M., Russo, B.: The second dual of a C*-ternary ring. Can. Math. Bull. 26, 241–246

(1983)
11. Lawson, M.V.: Inverse Semigroups. The Theory of Partial Symmetries. World Scientific, River Edge

(1998)
12. Loos, O.: Associative Tripelsysteme. Manuscripta Math. 7, 103–112 (1972)
13. Paterson, A.L.T.: Groupoids, Inverse Semigroups, and their Operator Algebras. Birkhäuser, Boston

(1999)
14. Schein, B.M.: Tight inverse semigroups. In: Shum, K.P., Wan, Z.X., Zhang, J.-P. (eds.) Advances in

Algebra, pp. 232–243. World Scientific, River Edge (2003)

2 As pointed out to the authors by Alan Paterson, the proof of [13, Theorem 4.5.2] required the assumption
that the universal groupoid of the inverse semigroup be Hausdorff. This assumption holds for the extended
bicyclic semigroup E , because it is an E-unitary semigroup (see [9, Corollary 3.7] and [8, p.57]). In addition,
it appears from [9] that the Hausdorff assumption can actually be dropped.

123

http://creativecommons.org/licenses/by/4.0/


798 R. Pluta, B. Russo

15. Warne, R.J.: I-bisimple semigroups. Trans. Am. Math. Soc. 130, 367–386 (1968)
16. Zettl, H.: A characterization of ternary rings of operators. Adv. Math. 48, 117–143 (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Ternary rings of operators arising from inverse semigroups
	Abstract
	1 Introduction
	2 Diagrams 1–10 and Examples
	3 Subsemiheaps of the extended bicyclic semigroup
	4 Injectivity of W*-TROs
	References




