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Abstract
Let H be a cancellative commutative monoid, let A(H) be the set of atoms of H and
let ˜H be the root closure of H . Then H is called transfer Krull if there exists a transfer
homomorphism from H into a Krull monoid. It is well known that both half-factorial
monoids and Krull monoids are transfer Krull monoids. In spite of many examples and
counterexamples of transfer Krull monoids (that are neither Krull nor half-factorial),
transfer Krull monoids have not been studied systematically (so far) as objects on
their own. The main goal of the present paper is to attempt the first in-depth study of
transfer Krull monoids. We investigate how the root closure of a monoid can affect the
transfer Krull property and under what circumstances transfer Krull monoids have to
be half-factorial or Krull. In particular, we show that if ˜H is a DVM, then H is transfer
Krull if and only if H ⊆ ˜H is inert. Moreover, we prove that if ˜H is factorial, then H is
transfer Krull if and only ifA( ˜H) = {uε | u ∈ A(H), ε ∈ ˜H×}. We also show that if
˜H is half-factorial, then H is transfer Krull if and only ifA(H) ⊆ A( ˜H). Finally, we
point out that characterizing the transfer Krull property is more intricate for monoids
whose root closure is Krull. This is done by providing a series of counterexamples
involving reduced affine monoids.
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74 A. Bashir and A. Reinhart

1 Introduction

Factorization theory studies the arithmetic structure of monoids and domains that are
not factorial. A monoid is called a Krull monoid if it is a completely integrally closed
Mori monoid. Moreover, a monoid is factorial if and only if it is a Krull monoid
with trivial t-class group. Krull monoids are also a natural generalization of Dedekind
domains, they are among the best understood objects in Factorization Theory and
they possess several remarkable properties. For instance, it is possible to describe the
arithmetic of Krull monoids purely in terms of their t-class group.More precisely, they
allow a transfer homomorphism to a monoid of zero-sum sequences over their t-class
group. Transfer homomorphisms allow to pull back the arithmetic properties from the
target object to the source object. Thus, main parts of the arithmetic of Krull monoids
can be studied in monoids of zero-sum sequences, where methods from Additive
Combinatorics are available. It has since been asked whether there exist other types of
monoids for which large parts of their arithmetic can be described by monoids of zero-
sum sequences. In [18] the concept of transfer Krull monoid was formally introduced
and it provides a natural generalization of Krull monoids. It is well known that half-
factorialmonoids are another important class of transferKrullmonoids. But in general,
transfer Krull monoids are neither Krull monoids nor half-factorial monoids.

The transfer Krull property has been studied in a variety of contexts. It was, for
instance, investigated in the case of commutative unit-cancellative semigroups with
identity, but also for noncommutative semigroups [5, 7–9, 31, 32]. To mention one of
the most striking results, let R be a bounded hereditary noetherian prime ring. If every
stably free right ideal is free, then there is a transfer homomorphism from the monoid
of regular elements of R to a Krull monoid. An overview on monoids (and domains)
that allow resp. do not allow transfer homomorphisms to a Krull monoid can be found
in [23]. We continue with a few more highlights to indicate the importance of transfer
Krull monoids. In [21] it is proved that a strongly primary monoid is transfer Krull if
and only if it is half-factorial. Moreover, a length-factorial monoid is transfer Krull if
and only if it is Krull ([24]). In [11] it is shown that the monoid of invertible ideals of
a stable order in a Dedekind domain is transfer Krull if and only if it is half-factorial.

It is proved in [23] that a monoid is transfer Krull if and only if there is a Krull
overmonoid for which the inclusion map (from the monoid into the Krull overmonoid)
is a transfer homomorphism. Obviously, every Krull overmonoid of a monoid H
contains the root closure of H . The root closure is, therefore, the smallest possible
candidate for a Krull overmonoid. The main purpose of this paper is to explore the
impact of the root closure on the transfer Krull property. We complement the known
literature with several new conditions that force a transfer Krull monoid to be Krull
or half-factorial.

This paper consists of six sections including the introduction. In the next section,
we introduce the most important notions and terminology and provide a series of
elementary results involving transfer homomorphisms and transfer Krull monoids.
Furthermore,wepresentmore practicable (and simple) characterizations of the transfer
Krull property for arbitrary monoids and s-noetherian monoids. The third section is
devoted to the study of transfer Krull monoids whose root closure satisfies what we
call property (U). It turns out, in particular, that a monoid H whose root closure ˜H

123



On transfer Krull monoids 75

satisfies property (U) is transfer Krull if and only if ˜H is Krull and the inclusion
map H ↪→ ˜H is a transfer homomorphism. Furthermore, we show that the valuation
monoids are precisely the GCD-monoids which satisfy property (U). In Sect. 4 we
discuss the effects of (half-)factoriality of the root closure, and show that a monoid
whose root closure is half-factorial is transfer Krull if and only if it is half-factorial.
Sect. 5 is devoted to the study of Cohen–Kaplansky domains and their generalizations.
In particular,we rediscover and strengthen a result of [6]which states that a seminormal
Cohen–Kaplansky domain is half-factorial and characterize the transfer Krull property
for generalizedCohen–Kaplansky domains. In the last sectionwe touch on the problem
of what transfer Krull monoids whose root closure is Krull can look like.We show that
none of the aforementioned characterizations in this paper can be applied to monoids
whose root closure is Krull. More precisely, we show that such simple descriptions
cannot even be gathered for affine monoids (i.e., finitely generated monoids that are
isomorphic to an additive submonoid of Z

n for some positive integer n).

2 Notation and preliminaries

Let H be a commutative semigroup with identity. We say that H is cancellative if for
all a, b, c ∈ H with ac = bc, it follows that a = b.

Throughout this paper, a monoid is always a commutative

cancellative semigroup with identity.

Wedenote byZ the set of integers, byN the set of positive integers and byN0 = N∪{0}
the set of non-negative integers. For r , s ∈ Z let [r , s] = {x ∈ Z | r ≤ x ≤ s}. Let
H be a (multiplicatively written) monoid and K a quotient group of H . We let H×
denote the group of units of H and we call H reduced if H× = {1}. We denote by
Hred = {aH× | a ∈ H} the associated reduced monoid of H . For a, b ∈ H we set
a |H b if b = ac for some c ∈ H andwe set a �H b if a |H b and b |H a (equivalently,
a = bε for some ε ∈ H×). A subset T of H is called a submonoid of H if 1 ∈ T
and ab ∈ T for all a, b ∈ T . For a subset S ⊆ H , we let [S] denote the smallest
submonoid of H containing S. If S ⊆ K , then let 〈S〉 denote the smallest subgroup of
K containing S. A submonoid of K that contains H is called an overmonoid of H . A
subset a ⊆ H is said to be an s-ideal of H if aH = a. Let p be an s-ideal of H . Then
p is said to be prime if H \ p is a submonoid of H and we denote by s-spec(H) the set
of all prime s-ideals of H . Moreover, an s-ideal a of H is called s-finitely generated
if a = EH for some finite subset E ⊆ a. By X(H) we denote the set of minimal
non-empty prime s-ideals of H . For a ∈ H let aH = {ab | b ∈ H} be the principal
ideal generated by a. Clearly, every principal ideal is an s-ideal. We letH(H) denote
the set of principal ideals of H .

The monoid H is said to be finitely generated if there exists a finite subset E ⊆ H
such that H = [E]. We say that H is s-noetherian if H satisfies the ascending chain
condition on s-ideals. Note that H is s-noetherian if and only if every s-ideal of H
is s-finitely generated if and only if H = [E ∪ H×] for some finite subset E ⊆ H
if and only if Hred is finitely generated (see [19, Proposition 2.7.4]). Moreover, H
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76 A. Bashir and A. Reinhart

is finitely generated if and only if H is s-noetherian and H× is finitely generated.
In particular, finitely generated monoids are s-noetherian and the converse holds for
reduced monoids.

Let u be a non-unit of H . Then u is called an atom of H if u is not the product of
two non-units of H . Moreover, u is said to be a prime element of H if uH is a prime
s-ideal of H . We denote by A(H) the set of atoms of H and say that H is atomic if
every non-unit can be written as a finite product of atoms. For each non-unit a ∈ H ,
we let LH (a) = L(a) = {k ∈ N | a is a product of k atoms of H} ⊆ N be the set of
lengths of a. Furthermore, we set LH (a) = L(a) = {0} for each a ∈ H×. An atomic
monoid H is said to be factorial if every atom of H is a prime element and it is called
half-factorial if |L(a)| = 1 for all a ∈ H . Observe that every factorial monoid is
half-factorial.

We denote by

• H ′ = {x ∈ K | there exists some N ∈ N such that xn ∈ H for all n ≥ N } the
seminormal closure of H (also called the seminormalization of H ), by

• ˜H = {x ∈ K | xN ∈ H for some N ∈ N} the root closure of H , and by
• ̂H = {x ∈ K | there exists some c ∈ H , such that cxn ∈ H for all n ∈ N} the
complete integral closure of H .

We have H ⊆ H ′ ⊆ ˜H ⊆ ̂H ⊆ K . Furthermore, H is said to be seminormal
(resp., root closed, resp., completely integrally closed) if H = H ′ (resp., H = ˜H ,
resp., H = ̂H ). Let A, B ⊆ K be subsets. We set AB = {ab | a ∈ A, b ∈ B},
(A : B) = {z ∈ K | zB ⊆ A}, A−1 = (H : A), Av = (A−1)−1 and At =
⋃

E⊆A,|E |<∞ Ev . If A ⊆ H , then A is called a t-ideal (resp., v-ideal) of H if At = A

(resp., Av = A). A t-ideal C of H is said to be t-invertible if (CC−1)t = H and
C is called t-finitely generated if C = Et for some finite subset E ⊆ C . Note that
every t-ideal is an s-ideal and every principal ideal is a t-invertible t-ideal. Let Ct (H)

denote the t-class group of H . It measures how far t-invertible t-ideals are from being
principal and it is trivial if and only if every t-invertible t-ideal is principal. For the
precise definition of the t-class group we refer to [26]. The monoid H is said to be

• Mori if it satisfies the ascending chain condition on t-ideals,
• Krull if it is a completely integrally closed Mori monoid,
• primary if H = H× and for all a, b ∈ H \ H× there is n ∈ N such that bn ∈ aH ,
• a DVM if H is a primary monoid for which H \ H× is a principal ideal of H , and
• finitely primary if H is a primary monoid, (H : ̂H) = ∅ and ̂H is factorial. If H
is finitely primary, then |X( ̂H)| is called the rank of H and each α ∈ N for which
(
∏

p∈X( ̂H) p)
α ⊆ (H : ̂H), is called an exponent of H .

Note that H is aMorimonoid if and only if H satisfies the ascending chain condition
on v-ideals. Also observe that the t-closure (and the v-closure) induce ideal systems
in the sense of [26]. All concepts involving t-ideals above (like t-invertibility and
t-class group) can also be introduced in analogy for v-ideals. For our purposes the
notion of t-ideals is the more useful notion. (This is the case, for instance, since the
t-system is a finitary ideal system.) For more information on t-ideals, v-ideals and
their relationships we refer to [19, 26].

It is well known that a monoid is a DVM if and only if it is a primary Krull monoid
if and only if it is a primary factorial monoid (cf. [19, Theorem 2.3.8]). Besides that,
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On transfer Krull monoids 77

every DVM is a finitely primary monoid of rank one and exponent one. A monoid is
factorial if and only if it is a Krull monoid with trivial t-class group and it is Krull if
and only if every non-empty t-ideal is t-invertible. Furthermore, the root closure of
an s-noetherian monoid is a Krull monoid.

Let H and B be monoids. A monoid homomorphism θ : H → B is said to be a
transfer homomorphism if the following two properties are satisfied.

(T1) B = θ(H)B× and θ−1(B×) = H×.
(T2) If u ∈ H , b, c ∈ B and θ(u) = bc, then there exist v,w ∈ H and ε, η ∈ B×

such that u = vw, θ(v) = bε and θ(w) = cη.

The monoid H is said to be a transfer Krull monoid if there exist a Krull monoid
B and a transfer homomorphism θ : H → B. Since the identity homomorphism
is trivially a transfer homomorphism, Krull monoids are transfer Krull, but transfer
Krull monoids need be neither Mori nor completely integrally closed. So far, the
arithmetic of Krull monoids is very well understood and via transfer homomorphisms,
the arithmetical properties of a Krull monoid B are pulled back to the monoid H . For
instance, transfer homomorphisms preserve the system of sets of lengths, whence all
the invariants describing the structure of sets of lengths coincide. We refer the reader
to the surveys [18, 23] for further details.

Proposition 2.1 Let H be a monoid with quotient group K . Then H is a transfer Krull
monoid if and only if there is a Krull monoid T with H ⊆ T ⊆ K such that the
inclusion H ↪→ T is a transfer homomorphism. If this holds, then K is the quotient
group of T , T = HT× and T× ∩ H = H×.

Proof See [23, Proposition 5.3]. ��
In the following remark we collect several useful facts and provide a variety of

situations in which a transfer Krull monoid is forced to be a Krull monoid or a half-
factorial monoid.

Remark 2.2 (1) Every half-factorial monoid is transfer Krull. Indeed, if H is half-
factorial, then θ : H → (N0,+), a �→ max L(a), is a transfer homomorphism.

(2) Strongly primary monoids (i.e., primary monoids H such that for each x ∈ H ,
there is an n ∈ N for which (H \ H×)n ⊆ xH ) are transfer Krull if and only if
they are half-factorial by [22, Theorem 5.5].

(3) Length-factorial monoids (i.e., atomic monoids H such that for all a ∈ H and
k ∈ L(a), there is exactly one way (up to order and associates) to write a as
a product of k atoms) are transfer Krull if and only if they are Krull by [24,
Corollary 1.5].

(4) If G is a finite group, then B(G) (i.e., the monoid of product-one sequences,
cf. [28, Definition 3.1]) is a reduced finitely generated monoid. Furthermore,
B(G) is transfer Krull if and only if B(G) is Krull if and only if G is abelian by
[28, Proposition 3.4]. For further recent results on the transfer Krull property for
monoids of product-one sequences, we refer to [15, 17].

(5) If R is a stable order in a Dedekind domain, then it follows from [11, Theorem
5.10] that the monoid of invertible ideals of R (resp., the semigroup of nonzero
ideals of R) is transfer Krull if and only if it is half-factorial.
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78 A. Bashir and A. Reinhart

Let T be a monoid and let H be a submonoid of T . We say that H ⊆ T is inert if
for all x, y ∈ T with xy ∈ H , there is some ε ∈ T× such that xε, yε−1 ∈ H . The
concept of an inert extension was introduced in [14] for ring extensions and studied
in [27]. We adapt it for monoid extensions accordingly. Following the terminology of
[19], H ⊆ T is called divisor-closed if for all x, y ∈ T with xy ∈ H , it follows that
x, y ∈ H . Observe that H ⊆ T is divisor-closed if and only if H ⊆ T is inert and
T× = H×.

Lemma 2.3 Let T be a monoid and let H be a submonoid of T .

(1) H ↪→ T is a transfer homomorphism if and only if T× ∩ H = H×, T = HT×
and H ⊆ T is inert.

(2) If T is an overmonoid of H, then H ↪→ T is a transfer homomorphism if and only
if T× ∩ H = H× and H ⊆ T is inert.

(3) H ↪→ ˜H is a transfer homomorphism if and only if H ⊆ ˜H is inert.
(4) H ′ ↪→ ˜H is a transfer homomorphism if and only if H ′ ⊆ ˜H is inert.

Proof (1) By definition, H ↪→ T is a transfer homomorphism if and only if (a)
T× ∩ H = H×, (b) T = HT× and (c) for all a ∈ H and x, y ∈ T such that a = xy,
there are some x ′, y′ ∈ H and ε, η ∈ T× such that a = x ′y′, x = x ′η and y = y′ε.

(⇒) Let H ↪→ T be a transfer homomorphism. It remains to show that H ⊆ T
is inert. Let x, y ∈ T be such that xy ∈ H . Set a = xy. Then there are some
x ′, y′ ∈ H and ε, η ∈ T× such that a = x ′y′, x = x ′η and y = y′ε. It follows
that x ′y′ = a = xy = x ′ηy′ε, and thus εη = 1. Consequently, η = ε−1, and hence
xε = x ′ ∈ H and yε−1 = y′ ∈ H .

(⇐) Let T× ∩ H = H×, let T = HT× and let H ⊆ T be inert. It remains to show
that for all a ∈ H and x, y ∈ T such that a = xy, there are some x ′, y′ ∈ H and
ε, η ∈ T× such that a = x ′y′, x = x ′η and y = y′ε.

Let a ∈ H and x, y ∈ T be such that a = xy. Then xy ∈ H , and hence xε, yε−1 ∈
H for some ε ∈ T×. Set η = ε−1, x ′ = xε and y′ = yε−1. Then x ′, y′ ∈ H ,
ε, η ∈ T×, a = x ′y′, x = x ′η and y = y′ε.

(2) Let T be an overmonoid of H . By (1) it suffices to show that if H ⊆ T is inert,
then T ⊆ HT×. Let H ⊆ T be inert and let y ∈ T . Since T is an overmonoid of H ,
there is some x ∈ H such that xy ∈ H . Therefore, there is some ε ∈ T× such that
xε, yε−1 ∈ H . We infer that y = yε−1ε ∈ HT×.

(3) This is an immediate consequence of (2) and the fact that ˜H is an overmonoid
of H and ˜H× ∩ H = H×.

(4) Observe that ˜H ′ = ˜H , and hence ˜H× ∩ H ′ = H ′×. Now this is an easy
consequence of (2). ��
Proposition 2.4 Let H bean s-noetherianmonoid. The following statements are equiv-
alent.

(1) H is transfer Krull.
(2) There is a root closed overmonoid T of H such that H ↪→ T is a transfer homo-

morphism.
(3) There is an overmonoid T of H such that T ⊆ ˜T is inert and H ↪→ T is a transfer

homomorphism.
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Proof (1) ⇒ (2): Let H be transfer Krull. It follows from Proposition 2.1 that there
is an overmonoid T of H such that T is a Krull monoid and H ↪→ T is a transfer
homomorphism. Since T is a Krull monoid, we have that T is root closed.

(2) ⇒ (1): Let T be a root closed overmonoid of H such that H ↪→ T is a transfer
homomorphism.We infer by Lemma 2.3(2) that H ↪→ T is a transfer homomorphism,
and thus T = HT×. There is some finite subset E ⊆ H such that H = [E ∪ H×].
Since T = HT×, it follows that T = [E ∪ T×]. Therefore, T is a root closed s-
noetherian monoid, and thus T is a Krull monoid by [19, Theorem 2.7.14]. Since
H ↪→ T is a transfer homomorphism, we have that H is transfer Krull.

(2) ⇒ (3): This is obvious.
(3) ⇒ (2): Let T be an overmonoid of H such that T ⊆ ˜T is inert and H ↪→ T is a

transfer homomorphism. Then T ↪→ ˜T is a transfer homomorphism byLemma 2.3(3),
and hence H ↪→ ˜T is a transfer homomorphism. Now the statement follows, since ˜T
is a root closed overmonoid of H . ��
Proposition 2.5 Let H be a monoid with quotient group K .

(1) If H ⊆ ˜H is inert and ˜H = {x ∈ K | xk ∈ H} for some k ∈ N, then H ′ ⊆ ˜H is
inert.

(2) If H is s-noetherian, then H ′ is s-noetherian.
(3) If H is s-noetherian and H ⊆ ˜H is inert, then H ′ is s-noetherian and H ′ ⊆ ˜H is

inert.

Proof (1) Let H ⊆ ˜H be inert and let k ∈ N be such that ˜H = {x ∈ K | xk ∈ H}.
It remains to show that for all x, y ∈ ˜H with xy ∈ H ′, there is some ε ∈ ˜H×
such that xε, yε−1 ∈ H ′. Let x, y ∈ ˜H be such that xy ∈ H ′. Then there is
some N ∈ N such that (xy)n ∈ H for each n ∈ N≥N , and hence (xy)kN+1 ∈ H .
Observe that there is some ε ∈ ˜H× such that xkN+1ε, ykN+1ε−1 ∈ H . We have
that (xε)kN+1 = xkN+1ε(εN )k ∈ H , (xε)2kN+1 = xkN+1ε(xN ε2N )k ∈ H ,
(yε−1)kN+1 = ykN+1ε−1(ε−N )k ∈ H and (yε−1)2kN+1 = ykN+1ε−1(yN ε−2N )k ∈
H . Since kN + 1 and 2kN + 1 are relatively prime, we infer that xε, yε−1 ∈ H ′.

(2) Let H be s-noetherian. Then (H : ˜H) = ∅ by [19, Propositions 2.7.4 and 2.7.11
and Theorem 2.7.13]. Therefore, (H : H ′) = ∅. Let (ai )i∈N be an ascending chain
of s-ideals of H ′. If x ∈ (H : H ′), then (xai )i∈N is an ascending chain of s-ideals
of H , and hence there is some N ∈ N such that xai = xaN for each integer i ≥ N .
Consequently, ai = aN for each integer i ≥ N .

(3) Let H be s-noetherian and let H ⊆ ˜H be inert. It is an immediate consequence
of [19, Propositions 2.7.4 and 2.7.11 and Theorem 2.7.13] that there is a finite subset
E ⊆ ˜H such that ˜H = [E ∪ H×] (note that ˜H/H× is finitely generated). Since E
is finite, there is clearly some k ∈ N such that ek ∈ H for each e ∈ E . It is straight-
forward to show that ˜H = {x ∈ K | xk ∈ H}. Now the statement follows from (1)
and (2). ��

Next we provide a generalization of [19, Proposition 3.7.5.1]. For the definition
of ideal systems, we refer to [26]. For a monoid H and an ideal system r on H let
r -max(H) denote the set of r-maximal r-ideals of H . Note that the s-system, the
t-system and the v-system (they are induced by the s-ideals, t-ideals and v-ideals,
respectively) are important examples of ideal systems on monoids.
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80 A. Bashir and A. Reinhart

Proposition 2.6 Let H be a monoid, let r be an ideal system on H and let T be an
overmonoid of H such that T× ∩ H = H× and T = HT×. If (H : T ) ∈ r-max(H),
then H ↪→ T is a transfer homomorphism.

Proof Let (H : T ) ∈ r -max(H). By Lemma 2.3(2), it suffices to show that for all
x, y ∈ T with xy ∈ H there is some ε ∈ T× such that xε, yε−1 ∈ H . Let x, y ∈ T
be such that xy ∈ H . There are some α, β ∈ T× and u, v ∈ H such that x = uα and
y = vβ.

Case 1: u ∈ (H : T ). Then xβ = uαβ ∈ H and yβ−1 = v ∈ H .
Case 2: u /∈ (H : T ). Then (uH ∪ (H : T ))r = H . There is some t ∈ H such that

t yα ∈ H . It follows that t yα ∈ t yαH = t yα(uH ∪ (H : T ))r = (t yαuH ∪ t yα(H :
T ))r = (t xyH ∪ t yα(H : T ))r ⊆ (t xyH ∪ t H)r = t H , and hence yα ∈ H . Finally,
observe that xα−1 = u ∈ H . ��
Proposition 2.7 Let T be a monoid and let H ⊆ T be a submonoid.

(1) If T× ∩ H = H× and T = HT×, then A(T ) ⊆ {uε | u ∈ A(H), ε ∈ T×}.
(2) If H ↪→ T is a transfer homomorphism, thenA(T ) = {uε | u ∈ A(H), ε ∈ T×}.
(3) If T is atomic and A(T ) ⊆ {uε | u ∈ A(H), ε ∈ T×}, then T = HT×.
(4) If H is atomic and A(H) ⊆ A(T ), then T× ∩ H = H×.

Proof (1) Let T× ∩ H = H× and T = HT×. Let v ∈ A(T ). There are some u ∈ H
and ε ∈ T× such that v = uε. It remains to show that u ∈ A(H). Clearly, u /∈ H×
(for if u ∈ H×, then v ∈ T×). Now let a, b ∈ H be such that u = ab. Then v = aεb,
and hence aε ∈ T× or b ∈ T×, so a ∈ T× ∩ H = H× or b ∈ T× ∩ H = H×.

(2) Let H ↪→ T be a transfer homomorphism. It is well known thatA(H) ⊆ A(T )

(e.g. see [19, Proposition 3.2.3.2]). Now the statement follows from (1).
(3) Let T be atomic and letA(T ) ⊆ {uε | u ∈ A(H), ε ∈ T×}. Let x ∈ T . Without

restriction let x /∈ T×. Then x = ∏n
i=1 ui for some n ∈ N and atoms ui of T . For

each i ∈ [1, n] there are some vi ∈ A(H) and εi ∈ T× such that ui = viεi . We infer
that x = (

∏n
i=1 vi )(

∏n
i=1 εi ) ∈ HT×.

(4) Let H be atomic and letA(H) ⊆ A(T ). Let x ∈ T×∩H . Assume that x /∈ H×.
Then x = ua for some u ∈ A(H) and a ∈ H . Since x ∈ T×, we infer that u ∈ T×,
which contradicts the fact that u ∈ A(T ). ��
Remark 2.8 Let H ⊆ L ⊆ T be monoids such that H ↪→ T is a transfer homomor-
phism.

(1) If T× ∩ L = L× and L = HL×, then L ↪→ T is a transfer homomorphism.
(2) If ˜H ⊆ T and ˜H = H ˜H×, then ˜H ↪→ T is a transfer homomorphism.

Proof (1) Let T×∩L = L× and L = HL×. Since T = HT×, we infer that T = LT×.
By Lemma 2.3(1), it remains to show that L ⊆ T is inert. Let x, y ∈ T be such that
xy ∈ L . There are some z ∈ H and η ∈ L× such that xy = zη. We have that
xη−1y = z ∈ H and xη−1, y ∈ T . Therefore, xη−1ε, yε−1 ∈ H for some ε ∈ T×. It
follows that xε, yε−1 ∈ L .

(2) This is an easy consequence of (1) and the fact that T× ∩ ˜H = ˜H×. (For more
details see the proof of Theorem 3.1 below.) ��
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3 Transfer Krull monoids and property (U)

Let H be a monoid with quotient group K . Then H is called a valuation monoid if
for each x ∈ K we have that x ∈ H or x−1 ∈ H . Observe that H is a DVM if and
only if H is an atomic valuation monoid and H = H×. For a submonoid S of H let
S−1H = {s−1x | s ∈ S, x ∈ H} which is clearly an overmonoid of H . Note that if
S ⊆ H is a submonoid and T = S−1H , then T = HT×. For each prime s-ideal p of
H and each overmonoid T of H we set Hp = (H \ p)−1H and Tp = (H \ p)−1T .

Next we introduce an “ad-hoc” property which is motivated by the concept of
QR-domains (i.e., domains for which every overring is a quotient overring). (QR-
domains will be discussed in Sect. 5.) We say that H satisfies property (U) if for each
overmonoid T of H with T = HT×, there is some submonoid S ⊆ H such that
T = S−1H . Note that if H is a valuation monoid, then for each overmonoid T of H ,
there is some submonoid S ⊆ H such that T = S−1H . In particular, every valuation
monoid satisfies property (U).

(We show that each overmonoid of a valuation monoid H is of the form S−1H for
some submonoid S of H . Let H be a valuation monoid, let T be an overmonoid of
H and set S = {x ∈ H | x−1 ∈ T }. Then S ⊆ H is a submonoid and S−1H ⊆ T . It
suffices to show that T ⊆ S−1H . Let z ∈ T . Then z ∈ H or z−1 ∈ H . If z ∈ H , then
z ∈ S−1H . If z−1 ∈ H , then z−1 ∈ S, and hence z = (z−1)−1 ∈ S−1 ⊆ S−1H .)

Theorem 3.1 Let H be a monoid such that ˜H satisfies property (U).

(1) H is transfer Krull if and only if ˜H is a Krull monoid and H ⊆ ˜H is inert.
(2) The following statements are equivalent.

(a) H is half-factorial.
(b) ˜H is half-factorial and H is transfer Krull.
(c) ˜H is half-factorial and H ⊆ ˜H is inert.

Proof (1) Clearly, if ˜H is a Krull monoid and H ⊆ ˜H is inert, then H is transfer
Krull by Lemma 2.3(3). Now let H be transfer Krull. By Proposition 2.1 there is
an overmonoid T of H which is a Krull monoid such that H ↪→ T is a transfer
homomorphism. Note that T× ∩ H = H× and T = HT×. Since H ⊆ T and T is
Krull, we have that ˜H ⊆ ˜T = T , and thus T = HT× ⊆ ˜HT× ⊆ T . Therefore,
T = ˜HT×, and hence T = S−1

˜H for some submonoid S ⊆ ˜H .
Next we show that T× ∩ ˜H = ˜H×. (⊆) Let x ∈ T× ∩ ˜H . There is some k ∈ N

such that xk ∈ H . We infer that xk ∈ T× ∩ H = H× ⊆ ˜H×. Since x ∈ ˜H , it follows
that x ∈ ˜H×. (⊇) This is clearly satisfied.

Observe that S ⊆ T×. Consequently, S ⊆ T× ∩ ˜H = ˜H×, and thus T = S−1
˜H =

˜H . Therefore, ˜H is a Krull monoid and H ⊆ ˜H is inert by Lemma 2.3(3).
(2) (a) ⇒ (b): It is well known that H is transfer Krull. By (1) and Lemma 2.3(2)

we have that H ↪→ ˜H is a transfer homomorphism, and thus ˜H is half-factorial by
[19, Proposition 3.2.3].

(b) ⇒ (c): This follows from (1).
(c) ⇒ (a): Note that H ↪→ ˜H is a transfer homomorphism by Lemma 2.3(3). Now

the statement follows from [19, Proposition 3.2.3]. ��
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Corollary 3.2 Let H be a monoid such that ˜H is half-factorial and satisfies property
(U). The following statements are equivalent.

(1) H is transfer Krull.
(2) H is half-factorial.
(3) H ⊆ ˜H is inert.

If these equivalent conditions are satisfied, then ˜H is a Krull monoid.

Proof This is an immediate consequence of Theorem 3.1. ��
Corollary 3.3 Let H be a monoid such that ˜H is a DVM (e.g. H is an s-noetherian
finitely primary monoid of rank one). The following statements are equivalent.

(1) H is transfer Krull.
(2) H is half-factorial.
(3) H ⊆ ˜H is inert.

Proof This is an immediate consequence of Corollary 3.2, since DVMs are half-
factorial and valuation monoids satisfy property (U). ��
Corollary 3.4 Let H be a monoid such that ˜H is half-factorial and satisfies property
(U). Then H is a Krull monoid if and only if H is root closed.

Proof Clearly, if H is a Krull monoid, then H is root closed. Now let H be root closed.
Then H = ˜H is half-factorial. Therefore, H = ˜H is a Krull monoid by Corollary 3.2.

��
Let H be amonoid. Then H is called aGCD-monoid if each two elements a, b ∈ H

have a greatest common divisor (i.e., there is some t ∈ H such that t |H a and t |H b
and for all s ∈ H with s |H a and s |H b, it follows that s |H t). Note that H is a
GCD-monoid if and only if every t-finitely generated t-ideal of H is principal by [26,
Theorem 11.5(iii)] (since the v-finitely generated v-ideals are precisely the t-finitely
generated t-ideals). It is well known that factorial monoids and valuation monoids are
GCD-monoids. For a thorough introduction to GCD-monoids, we refer to [26].

Proposition 3.5 Let H be a monoid. Then H is a valuation monoid if and only if H is
a GCD-monoid which satisfies property (U).

Proof Clearly, every valuation monoid is a GCD-monoid which satisfies property (U).
Now let H be a GCD-monoid which satisfies property (U). Since H is a GCD-monoid,
it suffices to show that for all relatively prime x, y ∈ H , it follows that x ∈ H× or
y ∈ H×. Let x, y ∈ H be relatively prime (i.e., for each t ∈ H with t |H x and
t |H y, we have that t ∈ H×). Set T = {a( xy )

k | a ∈ H , k ∈ Z}. Observe that T is

an overmonoid of H such that T = HT×. Consequently, there is some submonoid
S ⊆ H such that T = S−1H . Since x

y ∈ T , there are some u ∈ H and s ∈ S such that
x
y = u

s . We infer that xs = yu. Since H is a GCD-monoid and x and y are relatively
prime, there is somew ∈ H such that s = yw by [26, Proposition 10.2(ii)]. Therefore,
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y−1 = w
s ∈ S−1H = T . It follows that y−1 = a( xy )

k for some a ∈ H and k ∈ Z. If

k ≥ 1, then yk−1 = axk , and hence x ∈ H× (since x |H yk−1, H is a GCD-monoid
and x and y are relatively prime). Now let k ≤ 0 and set n = −k. Note that n ∈ N0
and xn = ayn+1. It follows that y ∈ H× (since y |H xn , H is a GCD-monoid and x
and y are relatively prime). ��

4 Transfer Krull monoids with (half-)factorial root closure

In this section we investigate when a monoid whose root closure is (half-)factorial is
a transfer Krull monoid. As a consequence we characterize when a weakly factorial
monoid whose root closure is Krull is transfer Krull.

Lemma 4.1 Let H be a monoid.

(1) A(H) ⊆ A( ˜H) if and only if there is an overmonoid T of ˜H such that A(H) ⊆
A(T ) and T× ∩ H = H×.

(2) If H is atomic, then A(H) ⊆ A( ˜H) if and only if there is an overmonoid T of ˜H
such that A(H) ⊆ A(T ).

(3) If H is transfer Krull, then A(H) ⊆ A( ˜H).

Proof (1) First let A(H) ⊆ A( ˜H). Set T = ˜H . It is obvious that T× ∩ H = H×.
Now let T be an overmonoid of ˜H such that A(H) ⊆ A(T ) and T× ∩ H = H×.

Observe that T× ∩ ˜H = ˜H×. (If x ∈ T× ∩ ˜H , then xk ∈ H for some k ∈ N, and
hence xk ∈ T× ∩ H = H× ⊆ ˜H×, so x ∈ ˜H×.)

Let u ∈ A(H). Since u /∈ H× (and ˜H× ∩ H = H×), we have that u /∈ ˜H×. Now
let a, b ∈ ˜H be such that u = ab. Then a, b ∈ T . Since u ∈ A(T ), we infer that
a ∈ T× ∩ ˜H = ˜H× or b ∈ T× ∩ ˜H = ˜H×.

(2) This is an immediate consequence of (1) and Proposition 2.7(4).
(3) This follows from (1) and Propositions 2.1 and 2.7. ��
The problem whether an atom of a half-factorial domain is again an atom of cer-

tain overrings has already been studied (e.g. see [30, Proposition 2.2]). Observe that
Lemma 4.1(3) is a result of similar type for monoids. Next we present the first main
result of this section. In Sect. 6 we provide examples of half-factorial monoids whose
root closure is also half-factorial.

Theorem 4.2 Let H be a monoid.

(1) If ˜H is half-factorial, then the following statements are equivalent.

(a) H is transfer Krull.
(b) There is an overmonoid T of H such that T is Krull and A(T ) = {uε | u ∈

A(H), ε ∈ T×}.
(c) There is an overmonoid T of ˜H such that A(H) ⊆ A(T ).
(d) A(H) ⊆ A( ˜H).
(e) H is half-factorial.

(2) If ˜H is factorial, then H is transfer Krull if and only if A( ˜H) = {uε | u ∈
A(H), ε ∈ ˜H×}.
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Proof (1) Let ˜H be half-factorial. Since ˜H× ∩ H = H×, we have by [19, Corollary
1.3.3] that H is atomic.

(a) ⇒ (b): This follows from Propositions 2.1 and 2.7(2).
(b) ⇒ (c): Since T is root closed, we have that ˜H ⊆ ˜T = T , and hence T is an

overmonoid of ˜H .
(c) ⇒ (d): This is an immediate consequence of Lemma 4.1(2).
(d) ⇒ (e): Let a ∈ H and let k, � ∈ L(a). Then a is the product of k atoms of H

and a is the product of � atoms of H . Consequently, a is the product of k atoms of ˜H
and a is the product of � atoms of ˜H . Since ˜H is half-factorial, we have that k = �.

(e) ⇒ (a): This is clear.
(2) Let ˜H be factorial. By (1) it remains to show that if H is transfer Krull, then

A( ˜H) ⊆ {uε | u ∈ A(H), ε ∈ ˜H×}. Let H be transfer Krull and let v ∈ A( ˜H). Set
Q = v ˜H and P = Q ∩ H . Then Q ∈ X( ˜H) (since ˜H is factorial) and P ∈ X(H)

by [13, Proposition 5(b)]. Since H is atomic, there is some u ∈ A(H) ∩ P . We infer
that u ∈ A( ˜H) ∩ Q. This implies that u ˜H = Q = v ˜H , and thus v = uε for some
ε ∈ ˜H×. ��

Let H be a monoid. A non-unit a of H is called primary if for all b, c ∈ H with
a |H bc and a �H b, there is some n ∈ N such that a |H cn . Moreover, H is said to
be weakly factorial if every non-unit of H is a finite product of primary elements of
H . In what follows, we freely use coproducts. Their precise definition can be found
in [19].

Remark 4.3 Let H be a weakly factorial monoid. Then H is half-factorial if and only
if HP is half-factorial for each P ∈ X(H).

Proof By [26, Theorem 22.5(ii)], we have that the t-dimension of H is at most one
(i.e., t-max(H) ⊆ X(H)). It is easy to see that

⋂

P∈X(H) xHP = xH for each x ∈ H
(cf. [26, Theorem 7.4]). Also note that xHP ∩ H is a principal ideal of H by [26,
Exercise 5(i), page 258] for all x ∈ H and P ∈ X(H). It is now straightforward to
show that ϕ : H(H) → ∐

P∈X(H) H(HP ) defined by ϕ(xH) = (xHP )P∈X(H) for
each x ∈ H is a monoid isomorphism. It follows from [19, Proposition 1.2.11.2]
that H is half-factorial if and only if Hred ∼= H(H) is half-factorial if and only if
∐

P∈X(H)(HP )red ∼= ∐

P∈X(H) H(HP ) is half-factorial if and only if (HP )red is half-
factorial for each P ∈ X(H) if and only if HP is half-factorial for each P ∈ X(H).

��
Now we provide the second main theorem of this section. In Sect. 5 we introduce

and discuss the concept of generalized Cohen–Kaplansky domain. The monoids of
nonzero elements of these domains are among the most important examples of weakly
factorial monoids whose root closure is a Krull monoid. In Sect. 6 it will become clear
that even if one modestly weakens the weakly factorial property in the next result then
the provided conditions no longer characterize the transfer Krull property.

Theorem 4.4 Let H be a weakly factorial monoid such that ˜H is a Krull monoid. The
following statements are equivalent.

(1) H is transfer Krull.
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(2) For each P ∈ X(H), HP is transfer Krull.
(3) For each P ∈ X(H), HP is half-factorial.
(4) H is half-factorial.
(5) A( ˜H) = {uε | u ∈ A(H), ε ∈ ˜H×}.
(6) A(H) ⊆ A( ˜H).

In addition, if H is seminormal, then these equivalent conditions are satisfied.

Proof It follows from [26, Exercise 5, page 258] that the t-class group of H is trivial,
and hence the t-class group of ˜H is trivial by [13, Proposition 8]. Therefore, ˜H
is factorial by [19, Corollary 2.3.13]. Next we show that ˜HP is a DVM for each
P ∈ X(H). Let P ∈ X(H). There is some Q ∈ X( ˜H) such that Q ∩ H = P by
[13, Proposition 5(b)]. Clearly, ˜HQ is a DVM by [19, Theorem 2.3.11]. We show that
˜HP = ˜HQ . Since Q∩H = P ,we have that˜HP = (H\P)−1

˜H ⊆ ( ˜H\Q)−1
˜H = ˜HQ .

It remains to show that ( ˜H \ Q)−1 ⊆ ˜HP . Let x ∈ ˜H \ Q. There is some k ∈ N such
that xk ∈ H . Observe that xk /∈ P . (If xk ∈ P , then xk ∈ Q, and thus x ∈ Q.)
Therefore, x−k ∈ (H \ P)−1 ⊆ HP , and hence x−1 ∈ ˜HP .

(1) ⇔ (4) ⇔ (5) ⇔ (6): This is an immediate consequence of Theorem 4.2.
(2) ⇔ (3): Let P ∈ X(H). Since ˜HP is a DVM, we infer by Corollary 3.3 (or by

Theorem 4.2(1)) that HP is transfer Krull if and only if HP is half-factorial.
(3) ⇔ (4): This follows from Remark 4.3.
Now let H be seminormal and let P ∈ X(H). Then HP is seminormal and ˜HP

is a DVM. By Theorem 4.2(1), it suffices to show that A(HP ) ⊆ A(˜HP ). Since HP

is primary and seminormal and ˜HP is a DVM, it follows from [20, Lemma 3.3] that
HP \ H×

P = ˜HP \ ˜HP
×
. Let u ∈ A(HP ). Clearly, u /∈ ˜HP

×
. Let x, y ∈ ˜HP be such

that u = xy. If x, y /∈ ˜HP
×
, then x, y ∈ HP \ H×

P , a contradiction. Consequently,

x ∈ ˜HP
×
or y ∈ ˜HP

×
. ��

Corollary 4.5 Let H be a transfer Krull monoid such that ˜H is Krull. If H is weakly
factorial or H ⊆ ˜H is inert, then HP is transfer Krull for each P ∈ X(H).

Proof Let P ∈ X(H). If H is weakly factorial, then it follows from Theorem 4.4
that HP is transfer Krull. Now let H ⊆ ˜H be inert. It is straightforward to show that
HP ⊆ ˜HP = ˜HP is inert. Since ˜H is Krull, it follows that ˜HP is a DVM. (This can be
proved along the same lines as in the proof of Theorem 4.4.) We infer by Corollary 3.3
that HP is transfer Krull. ��

5 (Generalized) Cohen–Kaplansky domains

In this section we first gather somemain properties of (generalized) Cohen–Kaplansky
domains. By a domain, wemean a commutative integral domain with identity element.
Let R be a domain with quotient field K . We denote by R• = R\{0} themultiplicative
monoid of nonzero elements, by R× the group of units of R and by R the integral
closure of R. If A is a monoid theoretic property (e.g. factorial, half-factorial), then we
say that R satisfies A if R• satisfies A. We say that R is a Cohen–Kaplansky domain
if one of the following equivalent statements holds ([3, Theorem 4.3]).
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(a) R is atomic and has only finitely many atoms up to associates.
(b) R is a semilocal principal ideal domain, R/(R : R) is finite, and |max(R)| =

|max(R)|.
(c) R is an at most one-dimensional semilocal noetherian domain with R/M finite

for each nonprincipal maximal ideal M of R, R is a finitely generated R-module
(equivalently (R : R) = {0}) and |max(R)| = |max(R)|.

(d) R is noetherian, K×/R× (the group of divisibility) is finitely generated and for
each x ∈ R, there exists an n ∈ N such that xn ∈ R (that is R ⊆ R is a root
extension).

For a local Cohen–Kaplansky domain R, the multiplicative monoid R• is a finitely
primary monoid of rank one. Another interesting fact is that if a domain R is a Cohen–
Kaplansky domain, then so are all the localizations and conversely if a domain R is
semilocal such that it is locally a Cohen–Kaplansky domain, then R is also a Cohen–
Kaplansky domain. Thus the study of Cohen–Kaplansky domains may be reduced to
the local case for various purposes. Also note that R is a Cohen–Kaplansky domain
if and only if R• is s-noetherian (see [19, Page 137]). We refer the reader to [2, 3] for
further details about Cohen–Kaplansky domains.

Furthermore, we say that R is a generalized Cohen–Kaplansky domain if one of
the following equivalent statements holds ([1, Corollary 5 and Theorem 6]).

(a) R is atomic and has only finitely many atoms (up to associates) that are not prime
elements.

(b) R is factorial, R ⊆ R is a root extension, (R : R) is a principal ideal of R and
R/(R : R) is finite.

If these equivalent conditions are satisfied, then R is weakly factorial. In particular,
if R is a generalized Cohen–Kaplansky domain, then R• is weakly factorial and ˜R•
is factorial. For non-trivial examples of generalized Cohen–Kaplansky domains we
refer to [19, Page 137].

Proposition 5.1 Let R be local Cohen–Kaplansky domainwithmaximal ideal M. Then
the following conditions are equivalent.

1. R is half-factorial.
2. R is transfer Krull.
3. R• ↪→ R

•
is a transfer homomorphism.

If these equivalent conditions hold, then MR = R \ R
×
.

Proof The equivalence is an immediate consequence of Corollary 3.3.
Now assume that the equivalent conditions hold. Then clearly, R = RR

×
. Let

t ∈ R \ R
×
. Since R = RR

×
, there are m ∈ R \ R× = M and u ∈ R

×
such that

t = mu ∈ MR. Therefore, R \ R
× ⊆ MR, and hence MR = R \ R

×
. ��

Observe that the condition MR = R \ R×
is not sufficient for R to be half-factorial

([3, Example 6.5]). Also note that the domain R in [3, Example 6.5] satisfies the
property R = RR

×
as well.
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Now our aim is to provide a more general version of the above characterization.
But for this we first recall that an integral domain R is said to be a QR-domain if
every overring of R is a quotient overring (i.e., for each overring T of R there is some
submonoid S ⊆ R• such that T = S−1R). Note that R is a QR-domain if and only
if R is a Prüfer domain for which the radical of every finitely generated ideal is the
radical of a principal ideal [29, Theorem 5]. In particular, every Dedekind domain
with torsion class group is a QR-domain. Also, every Bézout domain (i.e., a domain
in which every finitely generated ideal is principal) is a QR-domain.

Proposition 5.2 Let R be a Cohen–Kaplansky domain. The following statements are
equivalent.

1. There is an overring T of R such that T is a Krull domain and R• ↪→ T • is a
transfer homomorphism.

2. R• ↪→ R
•
is a transfer homomorphism.

Proof (1)⇒ (2): Let T be an overring of Rwhich is aKrull domain such that R• ↪→ T •
is a transfer homomorphism. Note that T× ∩ R = R× and T = RT×. Since R ⊆ T
and T is Krull, we have that R ⊆ T = T . Since R is a principal ideal domain, R is a
QR-domain, and hence T = S−1R for some submonoid S ⊆ R

•
.

Next we show that T× ∩ R = R
×
. (⊆): Let x ∈ T× ∩ R. There is some k ∈ N

such that xk ∈ R. We infer that xk ∈ T× ∩ R = R× ⊆ R
×
. Since x ∈ R, it follows

that x ∈ R
×
. (⊇): This is obvious.

Observe that S ⊆ T×. Consequently, S ⊆ T×∩R = R
×
, and thus T = S−1R = R.

Therefore, R• ↪→ R
•
is a transfer homomorphism.

(2) ⇒ (1): This is clear, since R is both an overring of R and a principal ideal
domain, and hence R is a Krull domain. ��
Theorem 5.3 Let R be a generalized Cohen–Kaplansky domain. The following state-
ments are equivalent.

(1) R is transfer Krull.
(2) RM is transfer Krull for each M ∈ max(R).
(3) RM is half-factorial for each M ∈ max(R).
(4) R is half-factorial.
(5) A(R) = {uε | u ∈ A(R), ε ∈ R

×}.
(6) A(R) ⊆ A(R).

In addition, if R is seminormal, then these equivalent conditions are satisfied.

Proof This follows from Theorem 4.4, since R is weakly factorial, R ⊆ R is a root
extension and R is factorial. ��

6 Transfer Krull monoids and finitely generatedmonoids

Let H be a monoid. Then H is called affine if H is finitely generated and the quo-
tient group of H is torsion-free (equivalently, H is isomorphic to a finitely generated
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additive submonoid of Z
d for some d ∈ N). Also note that H is reduced and affine

if and only if H is isomorphic to a finitely generated additive submonoid of N
d
0 for

some d ∈ N. For a profound introduction to affine monoids we refer to [12]. Clearly,
affine monoids are finitely generated, and hence the root closure of an affine monoid
is a Krull monoid by [19, Propositions 2.7.4.2 and 2.7.11 and Theorems 2.6.5.1 and
2.7.13]. First wewant to point out that even finitely generated finitely primarymonoids
of rank one and exponent larger than one need not be transfer Krull.

Example 6.1 Let F be a DVM for which F× is finite and cyclic and let p ∈ F
and α ∈ F× be such that F \ F× = pF and F× = 〈{α}〉. Set n = |F×| and
H = [{p} ∪ {αk pn | k ∈ [1, n − 1]}]. Then H is a reduced finitely generated finitely
primary monoid of rank one and exponent n and ˜H = F . Furthermore, if n ≥ 2, then
H is not transfer Krull.

Proof Let K be the quotient group of F . It is obvious that K is the quotient group
of H , H = K and H is finitely generated. Clearly, H ⊆ F = [{p, α}], and hence
˜H ⊆ ̂H ⊆ ̂F = F . Since xn ∈ H for each x ∈ F , we infer that ˜H = ̂H = F . Observe
that H× = ˜H× ∩ H = F× ∩ H = {1}, and thus H is reduced. Let a, b ∈ H \ H×.
Then a, b ∈ F \ F×, and since F is primary, there are some k ∈ N and some c ∈ F
such that bk = ca. We infer that bkn = cnan , and since cn ∈ H , it follows that
a |H bkn . Therefore, H is primary. Note that X( ̂H) = {p ̂H} and pn ̂H ⊆ (H : ̂H).
Together with the fact that ̂H is a DVM, this implies that H is a finitely primary
monoid of rank one and exponent n. Now let n ≥ 2 and assume that H is transfer
Krull. It follows from Corollary 3.3 that H ⊆ ˜H is inert. Since pα pn−1 ∈ H , there
is some k ∈ [0, n − 1] such that αk p, α1−k pn−1 ∈ H . Since αk p ∈ H , we have that
k = 0, and hence α pn−1 ∈ H , a contradiction. ��

Nextwe show that even if H is a factorialmonoidwith finitelymanyprime elements,
then H need not satisfy property (U).

Example 6.2 Let H = N
2
0 and T = {(x, y) ∈ Z

2 | x + y ≥ 0}. Then H is factorial
with precisely two prime elements, T is a DVM and an overmonoid of H , H ↪→ T is
a transfer homomorphism and H does not satisfy property (U).

Proof Obviously, H is a factorial monoid and {(0, 1), (1, 0)} is the set of prime ele-
ments of H . It is also easy to see that T is an overmonoid of H . Since H is not a
valuationmonoid, it follows from Proposition 3.5 that H does not satisfy property (U).
Note that T× = {(k,−k) | k ∈ Z} and T = {(n, 0) + (k,−k) | n ∈ N0, k ∈ Z}. This
implies that T is aDVM (since T is atomic and has precisely one atom up to associates)
and T× ∩ H = H×. By Lemma 2.3(2), it remains to show that H ⊆ T is inert. Let
a, b ∈ T be such that a + b ∈ H . There are some x, y, z, w ∈ Z such that a = (x, y),
b = (z, w) and x + y, z + w ≥ 0. Since a + b ∈ H , it follows that x + z, y + w ≥ 0.
Set k = min{y, z} and ε = (k,−k). Then ε ∈ T× and a + ε, b − ε ∈ H . ��

Let H be a monoid. Then H is called weakly Krull if H = ⋂

p∈X(H) Hp and
{p ∈ X(H) | a ∈ p} is finite for each a in H . Note that H is a Krull monoid if and only
if it is weakly Krull and Hp is a DVM for each p ∈ X(H). A Mori monoid H which is
not a group is weakly Krull if and only if t-max(H) = X(H) by [26, Theorem 24.5].
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Moreover, H is weakly factorial if and only if H is weakly Krull and every t-invertible
t-ideal of H is principal. Weakly Krull monoids were studied by Halter-Koch ([26,
Chapters 22 and 24.5]). Clearly, every primary monoid is a weakly Krull monoid.
Observe that even a finitely generated monoid whose root closure is factorial need not
be weakly Krull ([13, Example 2]). For more information on weakly Krull monoids
(and weakly Krull domains) we refer to [4, 25, 26].

Proposition 6.3 Let F be the free abelian monoid with basis {a, b} and quotient group
K and let H be the submonoid of F generated by {a, ab, a2b5}.
(1) H is a reduced affine monoid with quotient group K = {arbs | r , s ∈ Z}, ˜H ⊆ F

and A(H) = {a, ab, a2b5}.
(2) ˜H = {arbs | r , s ∈ N0, 5r ≥ 2s} = [{a, ab, ab2, a2b5}] and A(H) ⊆ A( ˜H).
(3) X(H) = {aH ∪ abH , abH ∪ a2b5H} and H is weakly Krull.
(4) There is anovermonoid B of H such that B isKrull, B×∩H = H× and B = HB×.
(5) There is no overmonoid T of ˜H such that A(H) ⊆ A(T ) and T = HT×. In

particular, H is not transfer Krull.

Proof (1) This is clear.
(2) First let x ∈ ˜H . Then x = arbs for some r , s ∈ N0 and xk ∈ N for some k ∈ N.

There are some α, β, γ ∈ N0 such that kr = α + β + 2γ and ks = β + 5γ . Then
(5r − 2s)k = 5α + 3β ≥ 0, and hence 5r ≥ 2s.

Let r , s ∈ N0 be such that 5r ≥ 2s. Then s = 5q + m for some q ∈ N0 and
m ∈ [0, 4]. Moreover, there are some p ∈ [0, 2] and n ∈ {0, 1} with m = 2p + n.
We obtain that r ≥ 2q + p + n and arbs = ar−2q−p−n(ab)n(ab2)p(a2b5)q ∈
[{a, ab, ab2, a2b5}].

Finally, we have that (ab2)3 = ab(a2b5) ∈ H , and thus [{a, ab, ab2, a2b5}] ⊆ ˜H .
It is now straightforward to show that A(H) ⊆ {a, ab, ab2, a2b5} = A( ˜H).

(3) Set P = aH ∪ abH and Q = abH ∪ a2b5H . Note that if N is a prime s-ideal
of H , then N = ⋃

u∈A(H)∩N uH . Since (ab)5 = (a2b5)a3, we obtain that aH , abH ,

a2b5H and aH ∪ a2b5H are not prime s-ideals of H . Next we show that P and Q
are prime. (Then we conclude by the aforementioned facts that X(H) = {P, Q}.)

Let x, y ∈ H \ P . Then xy = (a2b5)k for some k ∈ N0. Let r , s, t ∈ N0 be such
that xy = ar (ab)s(a2b5)t . Consequently, 2k = r + s + 2t and 5k = s + 5t , and thus
5r +5s+10t = 10k = 2s+10t . We infer that 5r +3s = 0 and r = s = 0. Therefore,
xy ∈ H \ P .

Let x, y ∈ H \ Q. Then xy = ak for some k ∈ N0. Let r , s, t ∈ N0 be such
that xy = ar (ab)s(a2b5)t . Then k = r + s + 2t and 0 = s + 5t . This implies that
s = t = 0. Consequently, xy ∈ H \ Q.

Finally, we show that H is weakly Krull. Since H has finitely many prime s-ideals,
it remains to show that

⋂

N∈X(H) HN = H . Note that HP = {ar (ab)s(a2b5)t | r , s ∈
N0, t ∈ Z} and HQ = {ar (ab)s(a2b5)t | r ∈ Z, s, t ∈ N0}. Let x ∈ HP ∩ HQ . Then
x = ar (ab)s(a2b5)t = ar

′
(ab)s

′
(a2b5)t

′
for some r , s, s′, t ′ ∈ N0 and r ′, t ∈ Z. It

follows that r + s + 2t = r ′ + s′ + 2t ′ and s + 5t = s′ + 5t ′, and hence r ′ + 3t =
r + 3t ′ ≥ 0. Consequently, r ′ ≥ 0 or t ≥ 0, and thus x ∈ H .

(4) Set B = {arbs | r ∈ N0, s ∈ Z}. Clearly, B is an overmonoid of H , B is a
DVM and B× = {bs | s ∈ Z}. Therefore, B× ∩ H = H× and B = HB×.

123



90 A. Bashir and A. Reinhart

(5) Assume that there is an overmonoid T of ˜H such thatA(H) ⊆ A(T ) and T =
HT×. We infer by Proposition 2.7 that T× ∩H = H×. Note that ab2 ∈ T \T× (since
T×∩ ˜H = {1}) and b /∈ T× (for if b ∈ T×, then a2 �T a2b5 ∈ A(T ), a contradiction).
Since ab2 ∈ HT×, there are some r , s, t ∈ N0 such that a1−r b2(ab)−s(a2b5)−t ∈
T×.

First we assume that r > 0. Then b2 ∈ T , and hence a2b5 = a(ab)(b2)2 /∈ A(T ),
a contradiction. Therefore, r = 0.

Next we assume that t > 0. Then a−1b−3(ab)−s(a2b5)1−t ∈ T×, and thus
a−1b−3 ∈ T . This implies that b−1 = ab2a−1b−3 ∈ T . Since ab2b−1 = ab ∈ A(T ),
we have that b−1 ∈ T×, and hence b ∈ T×, a contradiction. We infer that t = 0.

Since b, ab2 /∈ T×, it follows that s > 1. Consequently, (ab)s(ab2)−1 ∈ T×∩H =
{1}, and thus ab2 ∈ H , a contradiction. ��

Note that by Proposition 6.3, we have that conditions b and c in Theorem 4.2 are
no longer equivalent if H is a reduced affine weakly Krull monoid.

Proposition 6.4 Let F be the free abelian monoid with basis {a, b} and quotient group
K and let H be the submonoid of F generated by {a, ab3, ab5}.
(1) H is a reduced affine monoid with quotient group K = {arbs | r , s ∈ Z}, ˜H ⊆ F

and A(H) = {a, ab3, ab5}.
(2) ˜H = {arbs | r , s ∈ N0, 5r ≥ s} = [{a, ab, ab2, ab3, ab4, ab5}] and A(H) ⊆

A( ˜H).
(3) X(H) = {aH ∪ ab3H , ab3H ∪ ab5H}, H is half-factorial and weakly Krull and

˜H is half-factorial.
(4) A( ˜H) = {uε | u ∈ A(H), ε ∈ ˜H×}.
(5) There is some P ∈ X(H) such that HP is not transfer Krull.

Proof (1) This is straightforward to prove.
(2) Let x ∈ ˜H . There are some r , s ∈ N0 and some k ∈ N such that x = arbs and

xk ∈ H . Consequently, there are some α, β, γ ∈ N0 such that kr = α + β + γ and
ks = 3β + 5γ . We infer that (5r − s)k = 5α + 2β ≥ 0. This implies that 5r ≥ s.

Now let r , s ∈ N0 be such that 5r ≥ s. There are some q ∈ N0 and m ∈ [0, 4]
such that s = 5q + m. Set n = �m

5 �. It follows that r ≥ q + n and arbs =
ar−q−n(abm)n(ab5)q ∈ [{a, ab, ab2, ab3, ab4, ab5}]. If g ∈ [0, 5], then (abg)5 ∈ H
and thus [{a, ab, ab2, ab3, ab4, ab5}] ⊆ ˜H .

It is now easy to see that A(H) ⊆ {a, ab, ab2, ab3, ab4, ab5} = A( ˜H).
(3) It is obvious that H and ˜H are half-factorial (e.g. see [16, Lemma 2]). Set

P = aH ∪ ab3H and Q = ab3H ∪ ab5H . Since a2(ab5)3 = (ab3)5, we have that
aH , abH , ab5H and aH ∪ ab5H are not prime s-ideals of H . Moreover, it is easy
to show that P and Q are prime s-ideals of H . Therefore, X(H) = {P, Q}. Observe
that HP = {ar (ab3)s(ab5)t | r , s ∈ N0, t ∈ Z} and HQ = {ar (ab3)s(ab5)t | r ∈
Z, s, t ∈ N0}. It remains to show that

⋂

N∈X(H) HN = H . Let x ∈ HP ∩ HQ . Then

x = ar (ab3)s(ab5)t = ar
′
(ab3)s

′
(ab5)t

′
for some r , s, s′, t ′ ∈ N and r ′, t ∈ Z. This

implies that r+s+t = r ′+s′+t ′ and 3s+5t = 3s′+5t ′. Therefore, 3r−2t = 3r ′−2t ′,
and hence 3r ′ + 2t = 3r + 2t ′ ≥ 0. We infer that r ′ ≥ 0 or t ≥ 0, and thus x ∈ H .

(4) This is clear, since ˜H× = {1} and ab ∈ A( ˜H) \ A(H).
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(5) Set P = aH ∪ ab3H . Then P ∈ X(H) by (3) and HP = {ar (ab3)s(ab5)t |
r , s ∈ N0, t ∈ Z}. Observe that H×

P = {(ab5)k | k ∈ Z} and A(HP ) =
{a(ab5)k, ab3(ab5)k | k ∈ Z}. Since a2(ab5)3 = (ab3)5, we have that 2, 5 ∈
LHP (a5b15), and hence HP is not half-factorial. Therefore, HP is not transfer Krull
by Corollary 3.3 (since ˜HP is a DVM, see the proof of Theorem 4.4). ��

We obtain by Proposition 6.4 that a half-factorial monoid whose root closure is
half-factorial and Krull need not satisfy the equivalent conditions in Theorem 4.2(2).
It is also pointed out by this result that if H is a half-factorial weakly Krull monoid
whose root closure is Krull, then the localization HP (where P ∈ X(H)) need not be
transfer Krull (in contrast to Corollary 4.5).

Proposition 6.5 Let F be the free abelian monoid with basis {a, b, c, d} and quotient
group K and let H be the submonoid of F generated by {ab, ac, ad, abc, bcd}.
(1) H is a reduced affine monoid with quotient group K = {arbsctdu | r , s, t, u ∈ Z},

˜H ⊆ F and A(H) = {ab, ac, ad, abc, bcd}.
(2) ˜H = {arbsctdu | r , s, t, u ∈ N0, r ≤ s + t + u, s ≤ r + min{t, u}, t ≤

r + min{s, u}, u ≤ r + min{s, t}, s + u ≤ r + 2t, t + u ≤ r + 2s} =
[{ab, ac, ad, abc, bcd, abcd}].

(3) X(H) = {abH ∪ adH , acH ∪ adH , adH ∪ bcdH , abH ∪ abcH , acH ∪
abcH , abcH ∪ bcdH} and H is weakly Krull.

(4) There is an overmonoid T of H such that T is Krull and A(T ) = {uε | u ∈
A(H), ε ∈ T×}.

(5) H is not transfer Krull.

Proof Claim: If (ab)α(ac)β(ad)γ (abc)δ(bcd)ε = (ab)α
′
(ac)β

′
(ad)γ

′
(abc)δ

′
(bcd)ε

′

for α, β, γ, δ, ε ∈ Z and α′, β ′, γ ′, δ′, ε′ ∈ Z, then there is some k ∈ Z such that
(α, β, γ, δ, ε) = (α′, β ′, γ ′, δ′, ε′) + k(−2,−2, 1, 3,−1).

(1) and the claim are straightforward to prove.
(2) Set A = {arbsctdu | r , s, t, u ∈ N0, r ≤ s + t + u, s ≤ r + min{t, u}, t ≤

r + min{s, u}, u ≤ r + min{s, t}, s + u ≤ r + 2t, t + u ≤ r + 2s} and set B =
[{ab, ac, ad, abc, bcd, abcd}].

First we prove that ˜H ⊆ A. Let x ∈ ˜H . Clearly, there are some r , s, t, u ∈ N0
and k ∈ N such that x = arbsctdu and xk ∈ H . Consequently, there are some
α, β, γ, δ, ε ∈ N0 such that kr = α + β + γ + δ, ks = α + δ + ε, kt = β + δ + ε and
ku = γ + ε. Note that (s + t + u − r)k = δ + 3ε ≥ 0, (r + u − s)k = β + 2γ ≥ 0,
(r + t − s)k = 2β + γ + δ ≥ 0, (r + s − t)k = 2α + γ + δ ≥ 0, (r + u − t)k =
α + 2γ ≥ 0, (r + s − u)k = 2α + β + 2δ ≥ 0, (r + t − u)k = α + 2β + 2δ ≥ 0,
(r + 2t − s − u)k = 3β + 2δ ≥ 0 and (r + 2s − t − u)k = 3α + 2δ ≥ 0. This implies
that x ∈ A.

Nextwe prove that A ⊆ B. It suffices to showby induction that for all r , s, t, u ∈ N0
with arbsctdu ∈ A, it follows that arbsctdu ∈ B. Let r , s, t, u ∈ N0 be such that
arbsctdu ∈ A.

Case 1: r = 0. Observe that s = t = u, and hence arbsctdu = (bcd)s ∈ B.
Case 2: s = 0. We have that r = t + u, and thus arbsctdu = (ac)t (ad)u ∈ B.
Case 3: t = 0. It follows that r = s+u. Consequently,arbsctdu = (ab)s(ad)u ∈ B.
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Case 4: u = 0. Note that s, t ≤ r and r ≤ s + t . We infer that arbsctdu =
(ab)r−t (ac)r−s(abc)s+t−r ∈ B.

Case 5: r = s + t + u. Then arbsctdu = (ab)s(ac)t (ad)u ∈ B.
Case 6: r + 1 = s + t + u. It follows that s, t > 0. Consequently, arbsctdu =

(ab)s−1(ac)t−1(ad)uabc ∈ B.
Case 7: s = r + t . Clearly, t = u. Therefore, arbsctdu = (ab)r (bcd)t ∈ B.
Case 8: s = r + u. Observe that u ≤ s ≤ t . This implies that arbsctdu =

(ab)s−t (abc)t−u(bcd)u ∈ B.
Case 9: t = r + s. Obviously, s = u, and hence arbsctdu = (ac)r (bcd)s ∈ B.
Case 10: t = r + u. We have that u ≤ s ≤ t . It follows that arbsctdu =

(ac)t−s(abc)s−u(bcd)u ∈ B.
Case 11:u = r+min{s, t}.We infer that s = t , and thusarbsctdu = (ad)r (bcd)s ∈

B.
Case 12: r + 2t = s + u. Observe that t ≤ s, u. Therefore, arbsctdu =

(ab)s−t (ad)u−t (bcd)t ∈ B.
Case 13: r + 2s = t + u. Clearly, s ≤ t, u. This implies that arbsctdu =

(ac)t−s(ad)u−s(bcd)s ∈ B.
Now assume that none of the above cases applies. Set r ′ = r − 1, s′ = s − 1,

t ′ = t − 1 and u′ = u − 1. It is straightforward to show that ar
′
bs

′
ct

′
du

′ ∈ A. Since
r ′ < r , we infer by the induction hypothesis that ar

′
bs

′
ct

′
du

′ ∈ B. Consequently,
arbsctdu = abcdar

′
bs

′
ct

′
du

′ ∈ B.
Finally, we show that B ⊆ ˜H . Since (abcd)2 = (ad)(abc)(bcd) ∈ H and H ⊆ ˜H ,

it is clear that B ⊆ ˜H .
(3) It is an easy consequence of the claim that X(H) = {abH ∪ adH , acH ∪

adH , adH ∪ bcdH , abH ∪ abcH , acH ∪ abcH , abcH ∪ bcdH}. It remains
to show that

⋂

P∈X(H) HP = H . Let x ∈ ⋂

P∈X(H) HP . There are some
(αi )

6
i=1, (βi )

6
i=1, (γi )

6
i=1, (δi )

6
i=1, (εi )

6
i=1 ∈ Z

6 such that x = (ab)α j (ac)β j (ad)γ j

(abc)δ j (bcd)ε j for each j ∈ [1, 6] and α1, γ1, β2, γ2, γ3, ε3, α4, δ4, β5, δ5, δ6, ε6 ∈
N0.

We infer by the claim that x ∈ H if and only if there is some k ∈ Z such that
α1 − 2k, β1 − 2k, γ1 + k, δ1 + 3k, ε1 − k ≥ 0 if and only if there is some k ∈ Z such
that min{�α1

2 �, �β1
2 �, ε1} ≥ k ≥ max{−γ1,− δ1

3 } if and only if min{�α1
2 �, �β1

2 �, ε1} ≥
max{−γ1,− δ1

3 }. Therefore, it remains to prove the six inequalities �α1
2 � + γ1 ≥ 0,

�β1
2 � + γ1 ≥ 0, ε1 + γ1 ≥ 0, �α1

2 � + δ1
3 ≥ 0, �β1

2 � + δ1
3 ≥ 0 and ε1 + δ1

3 ≥ 0.
By the claim, there is some sequence (ki )5i=1 ∈ Z

5 such that (α1, β1, γ1, δ1, ε1) =
(α j , β j , γ j , δ j , ε j ) + k j−1(−2,−2, 1, 3,−1) for each j ∈ [2, 6].

Since α1, γ1 ≥ 0, we have that �α1
2 � + γ1 ≥ 0. By using β2, γ2 ≥ 0, we infer that

�β1
2 � + γ1 = �β2−2k1

2 � + γ2 + k1 = �β2
2 � + γ2 ≥ 0. Since γ3, ε3 ≥ 0, it follows that

ε1 + γ1 = ε3 − k2 + γ3 + k2 = ε3 + γ3 ≥ 0. By using α4, δ4 ≥ 0, we have that
�α1

2 � + δ1
3 = �α4−2k3

2 � + δ4+3k3
3 = �α4

2 � + δ4
3 ≥ 0. Since β5, δ5 ≥ 0, we infer that

�β1
2 � + δ1

3 = �β5−2k4
2 � + δ5+3k4

3 = �β5
2 � + δ5

3 ≥ 0. Finally, by using δ6, ε6 ≥ 0, it

follows that ε1 + δ1
3 = ε6 − k5 + δ6+3k5

3 = ε6 + δ6
3 ≥ 0.

(4) Set T = [{a, ac, ad, cd, b, b−1}]. Clearly, T is a finitely generated overmonoid
of H and T× = {bk | k ∈ Z}. Observe that T = {arbsctdu | r , t, u ∈ N0, s ∈ Z, t ≤
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r +u, u ≤ r + t}. We infer that T is root closed (and hence it is Krull by [19, Theorem
2.7.14]) and A(T ) = {abk, abkc, abkd, bkcd | k ∈ Z}. It is now straightforward to
prove that A(T ) = {uε | u ∈ A(H), ε ∈ T×}.

(5) Assume that H is transfer Krull. By Proposition 2.1 and Lemma 2.3(2) there
is an overmonoid B of H such that B is Krull, B× ∩ H = H× and H ⊆ B is
inert. (In particular, A(H) ⊆ A(B).) Note that (abcd)2 = (ad)(abc)(bcd) ∈ H and
abcd ∈ ˜H ⊆ B. Consequently, there is some ε ∈ B× such that abcdε, abcdε−1 ∈ H .

It follows by the claim that {x ∈ H | x |H (abcd)2} = {1, ad, abc, bcd, a2bcd,

abcd2, ab2c2d, a2b2c2d2}. We infer that ε ∈ {a−1b−1c−1d−1, b−1c−1, d−1, a−1,

a, d, bc, abcd}. Since B× ∩ ˜H = ˜H× = {1}, this implies that {a, d, bc} ∩ B× = ∅.
If bc ∈ B×, then a, d ∈ B, and hence a ∈ B× or d ∈ B× (since ad ∈ A(B)).

Case 1: a ∈ B×. Since ab, ac ∈ B \ B×, we have that b, c ∈ B \ B×. Moreover,
bc �B abc ∈ A(B), and thus bc ∈ A(B), a contradiction.

Case 2: d ∈ B×. Since ad, bcd ∈ B \ B×, it follows that a, bc ∈ B \ B×. Further-
more, abc ∈ A(B), a contradiction. ��

Note that Proposition 6.5 shows that conditions a and b in Theorem 4.2(1) are no
longer equivalent for reduced affine monoids.

Example 6.6 Let F be the free abelian monoid with basis {a, b} and quotient group
K , let H be the submonoid of F generated by {a2, b2, ab, a2b, ab2}, let T1 be the
submonoid of K generated by {a, ab, b2, b−2} and let T2 be the submonoid of K
generated by {b, ab, a2, a−2}.
(1) H is a reduced affine monoid with quotient group K = {arbs | r , s ∈ Z}, ˜H = F

and A(H) = {a2, b2, ab, a2b, ab2}.
(2) A(H) � A( ˜H) and, in particular, H is not transfer Krull.
(3) T1 and T2 are seminormal half-factorial overmonoids of H and H = T1 ∩ T2.
(4) X(H) = {a2H ∪ abH ∪ a2bH ∪ ab2H , b2H ∪ abH ∪ a2bH ∪ ab2H} and H is

seminormal and weakly Krull.

Proof (1) This is obvious.
(2) Note that A(H) = {a2, b2, ab, a2b, ab2} � {a, b} = A( ˜H). The remaining

statement follows from Lemma 4.1(3).
(3) Clearly, T1 and T2 are overmonoids of H , ˜T1 = [{a, b, b−1}] is a DVM and

˜T2 = [{a, b, a−1}] is a DVM. Moreover, T×
1 = {b2r | r ∈ Z}, T×

2 = {a2r | r ∈ Z},
T1 \ T×

1 = ˜T1 \ ˜T1
× = {arbs | r ∈ N, s ∈ Z} and T2 \ T×

2 = ˜T2 \ ˜T2
× = {arbs |

r ∈ Z, s ∈ N}. Therefore, T1 and T2 are seminormal. Furthermore, A(T1) = {abs |
s ∈ Z} = A(˜T1) and A(T2) = {arb | r ∈ Z} = A(˜T2). Consequently, T1 and T2 are
half-factorial.

Finally, note that H = {1} ∪ {a2r | r ∈ N} ∪ {b2s | s ∈ N} ∪ {arbs | r , s ∈ N} =
({b2s | s ∈ Z} ∪ {arbs | r ∈ N, s ∈ Z}) ∩ ({a2s | s ∈ Z} ∪ {arbs | r ∈ Z, s ∈ N}) =
T1 ∩ T2.

(4) Set P = a2H ∪ abH ∪ a2bH ∪ ab2H and Q = b2H ∪ abH ∪ a2bH ∪ ab2H .
Since (ab)2 = a2b2, (ab)3 = (a2b)(ab2), (a2b)2 = a2(ab)2 and (ab2)2 = b2(ab)2,
we infer that each non-empty prime s-ideal of H contains P or Q. It is straightforward
to prove that P and Q are non-empty prime s-ideals of H . Now it is easy to see that
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X(H) = {P, Q}. Observe that HP = T1 and HQ = T2. Therefore, H = HP ∩ HQ is
seminormal and weakly Krull by (3). ��

By Theorem 4.4, we know that every seminormal weakly factorial monoid whose
root closure is a Krull monoid has to be half-factorial. On the contrary, Example 6.6
shows that a seminormal (reduced affine) weakly Krull monoid whose root closure is
factorial need not even be a transfer Krull monoid.

Example 6.7 Let F be the free abelianmonoidwith basis {a, b, c} andquotient group K
and letH be the submonoidof K generatedby {a, ac, ab, abc, ab2, ab2c, a2b5, a2b5c,
c2, c−2}.
(1) H is an affinemonoidwith quotient group K andA(H) = {act , abct , ab2c, a2b5ct |

t ∈ Z}.
(2) H ⊆ ˜H is inert and, in particular, H is transfer Krull.
(3) H is seminormal.
(4) H is neither Krull nor half-factorial.

Proof (1) This is clear.
(2) We have that ˜H = [{a, ab, ab2, a2b5, c, c−1}] and H \ H× = ˜H \ ˜H×. Let

x, y ∈ ˜H be such that xy ∈ H . We have to show that xε, yε−1 ∈ H for some
ε ∈ ˜H×. The statement clearly holds if x, y ∈ H . Now let x /∈ H or y /∈ H . Without
restriction let x /∈ H . Then x ∈ ˜H×. Set ε = x−1. Then ε ∈ ˜H×, xε = 1 ∈ H and
yε−1 = xy ∈ H .

(3) This is clear, since H \ H× = ˜H \ ˜H×.
(4) Since c ∈ ˜H \ H , we have that H is not Krull. Since (ab)5 = (a2b5)a3, we

obtain that H is not half-factorial. ��
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